[go: up one dir, main page]

JP6899104B2 - Wastewater treatment method and wastewater treatment equipment - Google Patents

Wastewater treatment method and wastewater treatment equipment Download PDF

Info

Publication number
JP6899104B2
JP6899104B2 JP2015071676A JP2015071676A JP6899104B2 JP 6899104 B2 JP6899104 B2 JP 6899104B2 JP 2015071676 A JP2015071676 A JP 2015071676A JP 2015071676 A JP2015071676 A JP 2015071676A JP 6899104 B2 JP6899104 B2 JP 6899104B2
Authority
JP
Japan
Prior art keywords
membrane
carrier
wastewater treatment
sponge
biological reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015071676A
Other languages
Japanese (ja)
Other versions
JP2016190203A (en
Inventor
克輝 木村
克輝 木村
江口 正浩
正浩 江口
敬介 村上
敬介 村上
啓徳 油井
啓徳 油井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Organo Corp
Original Assignee
Hokkaido University NUC
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Organo Corp filed Critical Hokkaido University NUC
Priority to JP2015071676A priority Critical patent/JP6899104B2/en
Publication of JP2016190203A publication Critical patent/JP2016190203A/en
Application granted granted Critical
Publication of JP6899104B2 publication Critical patent/JP6899104B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Description

本発明は、有機物を含有する排水を膜分離活性汚泥法で処理する排水処理方法および排水処理装置に関する。 The present invention relates to a wastewater treatment method and a wastewater treatment apparatus for treating wastewater containing organic matter by a membrane separation activated sludge method.

近年、浄化槽や食品工場等の中小規模の排水処理設備や下水処理場等において、浸漬膜活性汚泥処理装置等の膜分離活性汚泥処理装置が導入されている。浸漬膜活性汚泥処理の特徴として、汚泥濃度を通常の浮遊式活性汚泥に比較して高濃度に保持可能であることから、反応槽をコンパクト化でき、また、膜処理によりろ過されるため処理水質が従来法より非常に良好であることが挙げられる。 In recent years, membrane separation activated sludge treatment equipment such as immersion film activated sludge treatment equipment has been introduced in small and medium-sized wastewater treatment equipment such as septic tanks and food factories and sewage treatment plants. As a feature of the immersion membrane activated sludge treatment, the sludge concentration can be maintained at a higher concentration than that of ordinary floating activated sludge, so that the reaction tank can be made compact, and the treated water quality is filtered by the membrane treatment. Is much better than the conventional method.

しかし、浸漬膜活性汚泥処理を適用する場合、排水や汚泥の性状、汚泥負荷、膜フラックス等の条件によって、膜の目詰まりが著しく早く、膜の閉塞(ファウリング)に伴う運転トラブルが最大の課題となっており、膜差圧を抑制して安定運転することが望まれている。通常、膜に堆積した汚泥は、膜の下部に設置された散気装置によりエアレーションすることで洗浄されているが、微生物の代謝産物であるバイオポリマーやフミン質等の溶存有機物質は空気洗浄が困難であり、膜の主な閉塞物質となっている。これらの膜閉塞物質は、例えば数ヶ月に1度、場合によっては数日から1週間に1度程度、膜を活性汚泥内に浸漬したまま次亜塩素酸等の薬品を用いてインライン洗浄することで差圧を回復し、運転を実施しているため、安定運転ができないという課題があった。インライン洗浄でも差圧の回復が見られない場合は、膜を反応槽外に取り出して、次亜塩素酸、クエン酸等の薬品に浸漬洗浄することが行われている。浸漬洗浄の実施のタイミングは、通常、膜の吸引圧力の差圧が30〜50kPa程度に達した際に行われるのが一般的であり、その頻度は少なくとも1年以上、好ましくは浸漬洗浄せずに安定運転できることが運用上好ましい。このようなことから、現状では運転管理の煩雑さ、薬品コストの増大等の課題があった。 However, when the immersion membrane active sludge treatment is applied, the membrane is clogged remarkably quickly depending on the conditions such as drainage and sludge properties, sludge load, membrane flux, etc., and the operation trouble due to membrane clogging (fouling) is the largest. This has become an issue, and it is desired to suppress the membrane differential pressure and perform stable operation. Normally, sludge deposited on the membrane is washed by aeration with an air diffuser installed at the bottom of the membrane, but dissolved organic substances such as biopolymers and fuminic substances, which are metabolites of microorganisms, are washed by air. It is difficult and is the main obstructive substance of the membrane. These membrane-occlusive substances should be washed in-line with a chemical such as hypochlorous acid once every few months, and in some cases, once every few days to a week, while the membrane is immersed in activated sludge. There was a problem that stable operation could not be performed because the differential pressure was recovered and the operation was carried out. If the differential pressure does not recover even after in-line cleaning, the membrane is taken out of the reaction vessel and immersed in chemicals such as hypochlorous acid and citric acid for cleaning. The timing of the immersion cleaning is usually performed when the differential pressure of the suction pressure of the membrane reaches about 30 to 50 kPa, and the frequency is at least one year or more, preferably no immersion cleaning. It is preferable in terms of operation that stable operation is possible. For these reasons, at present, there are problems such as complicated operation management and an increase in chemical cost.

膜の閉塞を解消する方法として、ポリウレタン樹脂担体(特許文献1参照)、吸水性ゲル担体(特許文献2,3参照)、粒状微生物担体(非特許文献1参照)等の反応槽への投入や、生物反応槽を工夫する提案が行われている。 As a method for eliminating the blockage of the film, a polyurethane resin carrier (see Patent Document 1), a water-absorbent gel carrier (see Patent Documents 2 and 3), a granular microbial carrier (see Non-Patent Document 1), or the like is charged into a reaction vessel. , Proposals have been made to devise a biological reaction tank.

しかし、従来の担体では膜が破損することや、吸水性ゲル担体ではコストや強度的な面で実用化されていない。また、粒状微生物担体では、汚泥自体のろ過性が低下することや、膜表面にダメージを与えること等の課題があった。生物反応槽の内部構造や膜モジュールを標準以外の仕様にする提案もされているが、膜装置のコストが高く、実用化に課題があった。 However, the conventional carrier damages the film, and the water-absorbent gel carrier has not been put into practical use in terms of cost and strength. Further, the granular microbial carrier has problems such as a decrease in the filterability of the sludge itself and a damage to the membrane surface. Proposals have been made to make the internal structure of the biological reaction tank and the membrane module specifications other than the standard, but the cost of the membrane device is high and there is a problem in practical use.

これらの課題を、経済性的に実用化可能な方法、既存の設備でも適用可能な方法で解決することが、浸漬膜活性汚泥法等の膜分離活性汚泥法の普及に強く求められていた。 It has been strongly demanded for the spread of membrane separation activated sludge methods such as the immersion film activated sludge method to solve these problems by a method that can be economically put into practical use and a method that can be applied to existing equipment.

特開平11−221562号公報Japanese Unexamined Patent Publication No. 11-221562 特開2001−062477号公報Japanese Unexamined Patent Publication No. 2001-062477 特開2001−104982号公報Japanese Unexamined Patent Publication No. 2001-104982

Journal of Membrane Science, 469 (2014), p.292-299Journal of Membrane Science, 469 (2014), p.292-299

本発明の目的は、有機物を含有する排水を膜分離活性汚泥法で処理する排水処理において、膜の閉塞を抑制した安定運転を可能とする排水処理方法および排水処理装置を提供することにある。 An object of the present invention is to provide a wastewater treatment method and a wastewater treatment apparatus that enable stable operation while suppressing membrane blockage in wastewater treatment for treating wastewater containing organic substances by a membrane separation active sludge method.

本発明は、有機物を含有する排水を膜分離活性汚泥法で処理する排水処理方法であって、密度35kg/m以上かつセルサイズ46個/25mm以上のスポンジ状担体を生物反応槽内に存在させながら運転する排水処理方法である。 The present invention is a wastewater treatment method for treating wastewater containing organic matter by a membrane separation active sludge method, in which a sponge-like carrier having a density of 35 kg / m 3 or more and a cell size of 46 cells / 25 mm or more is present in a biological reaction tank. It is a wastewater treatment method that operates while letting it operate.

前記排水処理方法において、前記スポンジ状担体が疎水性ポリウレタン製であることが好ましい。 In the wastewater treatment method, it is preferable that the sponge-like carrier is made of hydrophobic polyurethane.

前記排水処理方法において、前記膜分離活性汚泥法で使用する膜の材質がフッ素系樹脂であることが好ましい。 In the wastewater treatment method, it is preferable that the material of the membrane used in the membrane separation activated sludge method is a fluororesin.

本発明は、有機物を含有する排水を膜分離活性汚泥法で処理する排水処理装置であって、密度35kg/m以上かつセルサイズ46個/25mm以上のスポンジ状担体を生物反応槽内に存在させながら運転する排水処理装置である。 The present invention is a wastewater treatment apparatus for treating wastewater containing organic matter by a membrane separation active sludge method, in which a sponge-like carrier having a density of 35 kg / m 3 or more and a cell size of 46 cells / 25 mm or more is present in a biological reaction tank. It is a wastewater treatment device that operates while operating.

前記排水処理装置において、前記スポンジ状担体が疎水性ポリウレタン製であることが好ましい。 In the wastewater treatment apparatus, it is preferable that the sponge-like carrier is made of hydrophobic polyurethane.

前記排水処理装置において、前記膜分離活性汚泥法で使用する膜の材質がフッ素系樹脂であることが好ましい。 In the wastewater treatment apparatus, it is preferable that the material of the membrane used in the membrane separation activated sludge method is a fluororesin.

本発明では、有機物を含有する排水を膜分離活性汚泥法で処理する排水処理において、密度35kg/m以上のスポンジ状担体を生物反応槽内に存在させながら運転することにより、膜の閉塞を抑制した安定運転が可能となる。 In the present invention, in the wastewater treatment in which the wastewater containing organic substances is treated by the membrane separation active sludge method, the membrane is blocked by operating while a sponge-like carrier having a density of 35 kg / m 3 or more is present in the biological reaction tank. Suppressed stable operation becomes possible.

本発明の実施形態に係る排水処理装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the wastewater treatment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る排水処理装置の他の例を示す概略構成図である。It is a schematic block diagram which shows another example of the wastewater treatment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る排水処理装置の他の例を示す概略構成図である。It is a schematic block diagram which shows another example of the wastewater treatment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る排水処理装置の他の例を示す概略構成図である。It is a schematic block diagram which shows another example of the wastewater treatment apparatus which concerns on embodiment of this invention. 実施例における処理日数(d)と膜の差圧(kPa)を示す図である。It is a figure which shows the processing day (d) and the differential pressure (kPa) of a film in an Example.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。 Embodiments of the present invention will be described below. The present embodiment is an example of carrying out the present invention, and the present invention is not limited to the present embodiment.

本発明の実施形態に係る排水処理装置の一例の概略を図1に示し、その構成について説明する。排水処理装置1は、生物反応槽12を備え、原水槽10と、処理水槽14とを備えてもよい。 An outline of an example of the wastewater treatment apparatus according to the embodiment of the present invention is shown in FIG. 1, and the configuration thereof will be described. The wastewater treatment device 1 may include a biological reaction tank 12, a raw water tank 10, and a treatment water tank 14.

図1の排水処理装置1において、原水槽10の入口には、原水配管26が接続されている。原水槽10の出口と生物反応槽12の入口とは、ポンプ20を介して原水供給配管28により接続されている。生物反応槽12の内部には、膜として浸漬膜16が設置され、浸漬膜16の処理水出口は、吸引ポンプ22を介して処理水配管30により処理水槽14と接続されている。生物反応槽12の内部には、密度35kg/m以上のスポンジ状担体18が所定の充填量で充填されている。生物反応槽12の下部の中央部付近および浸漬膜16の下方には、曝気配管32が接続され、図示しない曝気装置により曝気されるようになっている。浸漬膜16の下方に接続されている曝気配管32の途中には、風量計24が設置されている。 In the wastewater treatment device 1 of FIG. 1, a raw water pipe 26 is connected to the inlet of the raw water tank 10. The outlet of the raw water tank 10 and the inlet of the biological reaction tank 12 are connected by a raw water supply pipe 28 via a pump 20. An immersion membrane 16 is installed as a membrane inside the biological reaction tank 12, and the treated water outlet of the immersion membrane 16 is connected to the treated water tank 14 by a treated water pipe 30 via a suction pump 22. The inside of the biological reaction tank 12 is filled with a sponge-like carrier 18 having a density of 35 kg / m 3 or more in a predetermined filling amount. An aeration pipe 32 is connected to the vicinity of the central portion of the lower part of the biological reaction tank 12 and below the immersion film 16, and is aerated by an aeration device (not shown). An air volume meter 24 is installed in the middle of the aeration pipe 32 connected below the immersion film 16.

本実施形態に係る排水処理方法および排水処理装置1の動作について説明する。 The wastewater treatment method and the operation of the wastewater treatment apparatus 1 according to the present embodiment will be described.

原水である、有機物を含有する有機物含有排水は、原水配管26を通して必要に応じて原水槽10に貯留された後、ポンプ20により原水供給配管28を通して、生物反応槽12に送液される。生物反応槽12内には、好気性の活性汚泥が存在し、スポンジ状担体18が所定の充填量で充填されている。一方、生物反応槽12の下方の中央部付近および浸漬膜16の下方から、空気等の酸素含有気体が、曝気ブロア等から曝気配管32を通して送気される。生物反応槽12において、活性汚泥により原水中の有機物の分解処理が行われる(活性汚泥処理工程)。浸漬膜16の内部は吸引ポンプ22により吸引され、固液分離が行われる(固液分離工程)。固液分離された処理水は、ポンプ22により処理水配管30を通して、処理水槽14に送液される。 The organic matter-containing wastewater containing organic matter, which is raw water, is stored in the raw water tank 10 through the raw water pipe 26 as needed, and then sent to the biological reaction tank 12 through the raw water supply pipe 28 by the pump 20. Aerobic activated sludge is present in the biological reaction tank 12, and the sponge-like carrier 18 is filled with a predetermined filling amount. On the other hand, oxygen-containing gas such as air is sent from the aeration blower or the like through the aeration pipe 32 from the vicinity of the central portion below the biological reaction tank 12 and below the immersion membrane 16. In the biological reaction tank 12, the activated sludge is used to decompose organic substances in the raw water (activated sludge treatment step). The inside of the immersion film 16 is sucked by the suction pump 22 to perform solid-liquid separation (solid-liquid separation step). The solid-liquid separated treated water is sent to the treated water tank 14 through the treated water pipe 30 by the pump 22.

本実施形態に係る排水処理方法および排水処理装置1において、密度35kg/m以上のスポンジ状担体18を生物反応槽12内に存在させながら運転が行われる。従来、膜分離活性汚泥法による排水処理装置の運転において、運転継続に伴う膜の閉塞が大きな課題となっていた。本発明者らは、膜分離活性汚泥法による排水処理装置の安定運転について検討を重ねてきており、粒状担体を生物反応槽に添加することで差圧の上昇が抑制される傾向を見出してきた。しかし、従来の粒状担体では、膜表面へのダメージ、および生物汚泥のフロックへのダメージによる汚泥自体のろ過性の低下、充填量の多さに伴う経済性について課題があった。本発明者らは、生物反応槽の内部に充填する担体としてスポンジ状担体に着目し、スポンジ状担体の密度、大きさ、セルサイズ等を変えて、担体の効果について検討を行った。この結果、特に、密度35kg/m以上という密度が高いスポンジ状担体を生物反応槽の内部に充填することにより、膜の閉塞を抑制した安定運転が可能となることを見出した。このような適切な密度、開孔度のスポンジ状担体を生物反応槽に添加することで、膜、汚泥へのダメージもほとんどなく、膜の差圧上昇の抑制効果が高いことを見出した。 In the wastewater treatment method and the wastewater treatment apparatus 1 according to the present embodiment, the operation is performed while the sponge-like carrier 18 having a density of 35 kg / m 3 or more is present in the biological reaction tank 12. Conventionally, in the operation of a wastewater treatment device by the membrane separation activated sludge method, the blockage of the membrane due to the continuation of the operation has been a big problem. The present inventors have been studying the stable operation of the wastewater treatment apparatus by the membrane separation activated sludge method, and have found that the increase in the differential pressure is suppressed by adding the granular carrier to the biological reaction tank. .. However, the conventional granular carrier has problems in terms of damage to the membrane surface, deterioration of the filterability of the sludge itself due to damage to the flocs of biological sludge, and economic efficiency due to a large amount of filling. The present inventors focused on a sponge-like carrier as a carrier to be filled inside a biological reaction vessel, and investigated the effect of the carrier by changing the density, size, cell size, etc. of the sponge-like carrier. As a result, it has been found that, in particular, by filling the inside of the biological reaction tank with a sponge-like carrier having a high density of 35 kg / m 3 or more, stable operation with suppressed membrane blockage is possible. It was found that by adding such a sponge-like carrier having an appropriate density and openness to the biological reaction tank, there is almost no damage to the membrane and sludge, and the effect of suppressing the increase in the differential pressure of the membrane is high.

詳細なメカニズムは不明であるが、適切な密度のスポンジ状担体が膜面に付着した汚泥を洗浄する効果や、膜の目詰まり物質と考えられるバイオポリマーの吸着や分解促進する効果等により、膜の閉塞が抑制され、膜の差圧の抑制が可能になったと考えられる。これにより、膜の閉塞を抑制した安定運転を可能とし、薬品洗浄実施に伴う薬品費と運転管理の手間を削減することが可能となる。 Although the detailed mechanism is unknown, the membrane is due to the effect of a sponge-like carrier of appropriate density cleaning the sludge adhering to the membrane surface and the effect of adsorbing and decomposing biopolymers, which are considered to be substances that clog the membrane. It is considered that the blockage of the membrane was suppressed and the differential pressure of the membrane could be suppressed. As a result, stable operation with suppressed membrane blockage is possible, and it is possible to reduce the chemical cost and the labor of operation management associated with the chemical cleaning.

このように、図1の排水処理装置1において、密度35kg/m以上という密度が高いスポンジ状担体18を生物反応槽12の内部に充填することにより、浸漬膜16の閉塞を抑制した安定運転が可能となる。今まで、適用が困難であった排水、汚泥に対しても、膜分離活性汚泥法を採用でき、薬品洗浄の頻度低減による運転管理の負担低減、薬品費低減によるコスト削減に有効である。また、従来の標準の透過流速(フラックス)より高い値で排水処理を計画することが可能となり、イニシャルコストの低減にも有効な方法である。 As described above, in the wastewater treatment apparatus 1 of FIG. 1, by filling the inside of the biological reaction tank 12 with a sponge-like carrier 18 having a high density of 35 kg / m 3 or more, stable operation in which blockage of the immersion film 16 is suppressed is suppressed. Is possible. The membrane separation activated sludge method can be adopted for wastewater and sludge, which have been difficult to apply until now, and is effective in reducing the burden of operation management by reducing the frequency of chemical cleaning and cost reduction by reducing chemical costs. In addition, it is possible to plan wastewater treatment at a value higher than the conventional standard permeation flow velocity (flux), which is an effective method for reducing the initial cost.

[スポンジ状担体]
スポンジ状担体18の密度は、35kg/m以上であり、35kg/m以上、100kg/m以下の範囲であることが好ましい。スポンジ状担体18の密度が35kg/m未満であると、膜の閉塞の抑制効果が低くなり、100kg/mを超えると、気泡が担体から抜けにくくなり、浮上や流動性が悪くなる場合がある。また、担体の密度の増加に伴い価格が高くなり実用上問題となる。
[Sponge-like carrier]
The density of the sponge-like carrier 18 is 35 kg / m 3 or more, 35 kg / m 3 or more, is preferably in the range of 100 kg / m 3 or less. If the density of the sponge-like carrier 18 is less than 35 kg / m 3 , the effect of suppressing membrane blockage is low, and if it exceeds 100 kg / m 3 , air bubbles are difficult to escape from the carrier, resulting in poor levitation and fluidity. There is. In addition, the price increases as the density of the carrier increases, which poses a practical problem.

スポンジ状担体18の形状は、特に制限はないが、例えば、立方体形状等の四角柱形状等の多角柱形状、円柱体形状、球形状等が挙げられ、流動性等の点から、四角柱形状が好ましい。 The shape of the sponge-like carrier 18 is not particularly limited, and examples thereof include a polygonal pillar shape such as a square pillar shape such as a cube shape, a cylindrical shape, a spherical shape, and the like. Is preferable.

スポンジ状担体18の大きさは、例えば、一辺が3mm以上10mm以下の四角柱形状担体を用いればよい。スポンジ状担体18の大きさが3mmより小さいと、運転時間の経過に伴い、担体が磨耗して膜の閉塞の抑制効果が低くなる場合がある。スポンジ状担体18の大きさが3mmより小さいと、膜が中空糸型の場合には、膜モジュール内に入り込む可能性がある。一方、スポンジ状担体18の大きさが10mmより大きい場合には、比表面積が小さくなり、洗浄、吸着ともに効果が低くなる場合がある。 As for the size of the sponge-like carrier 18, for example, a square pillar-shaped carrier having a side of 3 mm or more and 10 mm or less may be used. If the size of the sponge-like carrier 18 is smaller than 3 mm, the carrier may be worn over time and the effect of suppressing film blockage may be reduced. If the size of the sponge-like carrier 18 is smaller than 3 mm, if the membrane is a hollow fiber type, it may enter the membrane module. On the other hand, when the size of the sponge-like carrier 18 is larger than 10 mm, the specific surface area becomes small, and the effects of both cleaning and adsorption may be low.

スポンジ状担体18のセルサイズは、15個/25mm以上、好ましくは46個/25mm以上が好ましく、上限は例えば80個/25mm未満である。スポンジ状担体18のセルサイズが15個/25mm未満であると、スポンジ状担体内部の表面積が小さくなってしまい、微生物の保持量が減少してしまう場合があり、80個/25mm以上であると、1つ当たり細孔が小さいスポンジ状担体となるため、細孔が生物膜で埋め尽くされて、細孔内への基質(有機物)の浸透および拡散が阻害されてしまう場合がある。 The cell size of the sponge-like carrier 18 is preferably 15 pieces / 25 mm or more, preferably 46 pieces / 25 mm or more, and the upper limit is, for example, less than 80 pieces / 25 mm. If the cell size of the sponge-like carrier 18 is less than 15 cells / 25 mm, the surface area inside the sponge-like carrier may become small and the retention amount of microorganisms may decrease. Since each of the sponge-like carriers has small pores, the pores may be filled with the biological film, and the permeation and diffusion of the substrate (organic matter) into the pores may be hindered.

生物反応槽12内のスポンジ状担体18の充填量は、生物反応槽12の内部容積に対して3%〜40%程度の範囲が好ましく、経済性、流動性等の点で、5%〜30%の範囲がより好ましい。生物反応槽12内のスポンジ状担体18の充填量が3%未満であると、膜の閉塞の抑制効果が低くなる場合があり、40%を超えると、スポンジ状担体が流動しにくくなり、長期運転においてスポンジ状担体への汚泥の付着等により、その流動性が低下して閉塞等が起こり、原水とスポンジ状担体との接触面積が低減し、処理水水質が悪くなる場合がある。 The filling amount of the sponge-like carrier 18 in the biological reaction tank 12 is preferably in the range of about 3% to 40% with respect to the internal volume of the biological reaction tank 12, and is 5% to 30 in terms of economy, fluidity and the like. The% range is more preferred. If the filling amount of the sponge-like carrier 18 in the biological reaction tank 12 is less than 3%, the effect of suppressing the blockage of the membrane may be lowered, and if it exceeds 40%, the sponge-like carrier becomes difficult to flow and the sponge-like carrier becomes difficult to flow for a long period of time. During operation, sludge may adhere to the sponge-like carrier, which may reduce its fluidity and cause clogging, reduce the contact area between the raw water and the sponge-like carrier, and deteriorate the quality of the treated water.

スポンジ状担体18の材質は、特に制限はないが、例えば、疎水性ポリウレタン、親水性ポリウレタン、ポリビニルアルコール(PVA)等が挙げられる。膜分離活性汚泥法では膜の洗浄を次亜塩素酸ナトリウムや塩酸等の薬品を用いて薬品洗浄を行うことがあるため、薬品耐性や強度等の点から、疎水性ポリウレタンが好ましい。 The material of the sponge-like carrier 18 is not particularly limited, and examples thereof include hydrophobic polyurethane, hydrophilic polyurethane, and polyvinyl alcohol (PVA). In the membrane separation active sludge method, the membrane may be washed with a chemical such as sodium hypochlorite or hydrochloric acid. Therefore, hydrophobic polyurethane is preferable from the viewpoint of chemical resistance and strength.

[膜]
本実施形態に係る排水処理方法および排水処理装置は、膜分離活性汚泥法である浸漬膜活性汚泥法、槽外型膜分離活性汚泥法等に適用することができる。また、用いる膜(分離膜)としては、平膜、中空糸膜、クロスフロー膜等のいずれにも適用することができる。
[film]
The wastewater treatment method and wastewater treatment apparatus according to the present embodiment can be applied to the immersion membrane activated sludge method, which is a membrane separation active sludge method, the out-of-tank type membrane separation activated sludge method, and the like. Further, as the membrane (separation membrane) to be used, any of a flat membrane, a hollow fiber membrane, a cross-flow membrane and the like can be applied.

膜の材質は、特に制限はないが、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂、ポリエチレン(PE)、ポリ塩化ビニル(PVC)、セラミック等が挙げられ、強度、薬品耐性等の点から、フッ素系樹脂またはセラミックが好ましい。 The material of the film is not particularly limited, and examples thereof include fluororesins such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE), polyethylene (PE), polyvinyl chloride (PVC), and ceramics. From the viewpoint of strength, chemical resistance and the like, a fluororesin or ceramic is preferable.

膜の孔径は、特に制限はないが、例えば、0.5μm以下が好ましく、0.01μm以上0.1μm以下の範囲がより好ましい。 The pore size of the film is not particularly limited, but is preferably 0.5 μm or less, and more preferably 0.01 μm or more and 0.1 μm or less.

運転の際の膜の透過流速は、例えば、0.1〜1.0m/h程度で運転すればよく、0.2〜0.6m/hで運転することが好ましい。 The permeation flow velocity of the membrane during operation may be, for example, about 0.1 to 1.0 m / h, and preferably 0.2 to 0.6 m / h.

[生物処理条件]
膜分離活性汚泥法における生物反応槽12の処理条件としては、汚泥濃度を例えば、15,000mg/L以下とすればよく、好ましくは3,000〜8,000mg/Lの範囲にすればよい。好気性の生物反応槽12の負荷は、例えば、1.5kgBOD/m/d以下で運転すればよく、好ましくは0.4〜1.0kgBOD/m/dの範囲で運転することが好ましい。
[Biological treatment conditions]
As the treatment conditions of the biological reaction tank 12 in the membrane separation activated sludge method, the sludge concentration may be, for example, 15,000 mg / L or less, preferably in the range of 3,000 to 8,000 mg / L. The load of the aerobic biological reaction tank 12 may be, for example, operated at 1.5 kgBOD / m 3 / d or less, preferably in the range of 0.4 to 1.0 kgBOD / m 3 / d. ..

生物反応槽12における汚泥負荷(BOD−SS負荷)については、例えば、0.05〜0.15kgBOD/SS/dayの範囲とすればよい。 The sludge load (BOD-SS load) in the biological reaction tank 12 may be, for example, in the range of 0.05 to 0.15 kg BOD / SS / day.

生物反応槽12におけるpHは、例えば、6.0〜8.5の範囲となるように調整すればよく、6.5〜7.5の範囲となるように調整することが好ましい。 The pH in the biological reaction vessel 12 may be adjusted to be, for example, in the range of 6.0 to 8.5, and preferably in the range of 6.5 to 7.5.

生物反応槽12におけるDO(溶存酸素)濃度は、例えば、0.5mg/L以上とすればよく、1.5〜3.5mg/Lの範囲にすることが好ましい。 The DO (dissolved oxygen) concentration in the biological reaction tank 12 may be, for example, 0.5 mg / L or more, preferably in the range of 1.5 to 3.5 mg / L.

生物反応槽12において、栄養源、窒素源およびリン源のうち少なくとも1つを添加してもよい。栄養源としては、微生物が有機物を分解し、増殖していくために、窒素、リンのほか、ナトリウム、カリウム、カルシウム、マグネシウム等のアルカリ金属類、鉄、マンガン、亜鉛等の金属類といった微量金属類等のうち少なくとも1つが挙げられる。窒素源としては、外部から尿素、アンモニア塩等を添加してもよい。リン源としては、外部からリン酸塩、リン酸を添加してもよい。 In the biological reaction vessel 12, at least one of a nutrient source, a nitrogen source and a phosphorus source may be added. As a nutrient source, in order for microorganisms to decompose and proliferate organic substances, in addition to nitrogen and phosphorus, trace metals such as alkali metals such as sodium, potassium, calcium and magnesium, and metals such as iron, manganese and zinc At least one of the types and the like can be mentioned. As the nitrogen source, urea, an ammonia salt or the like may be added from the outside. As the phosphorus source, phosphate or phosphoric acid may be added from the outside.

[処理対象排水]
本実施形態に係る排水処理方法および排水処理装置の処理対象とする排水は、下水処理、食品工場をはじめ、化学工場、半導体工場・液晶工場、紙パルプ工場、その他の分野から排出される有機物含有排水であって、生物処理、膜分離活性汚泥法が適用可能であればよい。本実施形態に係る排水処理方法および排水処理装置は、排水回収システムの膜分離活性汚泥法に対しても有効である。
[Disposal target wastewater]
The wastewater to be treated by the wastewater treatment method and the wastewater treatment apparatus according to the present embodiment contains organic substances discharged from sewage treatment, food factories, chemical factories, semiconductor factories / liquid crystal factories, paper and pulp factories, and other fields. It may be wastewater as long as biological treatment and membrane separation active sludge method can be applied. The wastewater treatment method and the wastewater treatment apparatus according to the present embodiment are also effective for the membrane separation activated sludge method of the wastewater recovery system.

<他の実施形態>
本発明の実施形態に係る排水処理装置の他の例の概略を図2に示す。排水処理装置3は、原水槽34、生物反応槽36、処理水槽40に加え、生物反応槽36の後段に膜分離槽38を備える。
<Other Embodiments>
FIG. 2 shows an outline of another example of the wastewater treatment apparatus according to the embodiment of the present invention. The wastewater treatment device 3 includes a membrane separation tank 38 after the biological reaction tank 36 in addition to the raw water tank 34, the biological reaction tank 36, and the treatment water tank 40.

図2の排水処理装置3において、原水槽34の入口には、原水配管58が接続されている。原水槽34の出口と生物反応槽36の入口とは、ポンプ48を介して原水供給配管60により接続されている。生物反応槽36の内部には、スクリーン42が設置され、生物反応槽36の生物処理水出口と膜分離槽38の入口とは、生物処理水配管62により接続されている。膜分離槽38の内部には、膜として浸漬膜44が設置され、浸漬膜44の処理水出口は、吸引ポンプ50を介して処理水配管64により処理水槽40と接続されている。生物反応槽36の内部には、密度35kg/m以上のスポンジ状担体46が所定の充填量で充填されている。生物反応槽36の下部の中央部付近およびスクリーン42の下方、および、生膜分離槽38の下部の中央部付近および浸漬膜44の下方には、曝気配管68が接続され、図示しない曝気装置により曝気されるようになっている。スクリーン42の下方および浸漬膜44の下方に接続されている曝気配管68の途中には、風量計54,56がそれぞれ設置されている。膜分離槽38の汚泥出口と生物反応槽36の汚泥入口とは、ポンプ52を介して汚泥循環配管66により接続されている。 In the wastewater treatment device 3 of FIG. 2, a raw water pipe 58 is connected to the inlet of the raw water tank 34. The outlet of the raw water tank 34 and the inlet of the biological reaction tank 36 are connected by a raw water supply pipe 60 via a pump 48. A screen 42 is installed inside the biological reaction tank 36, and the biological treatment water outlet of the biological reaction tank 36 and the inlet of the membrane separation tank 38 are connected by a biological treatment water pipe 62. An immersion membrane 44 is installed as a membrane inside the membrane separation tank 38, and the treated water outlet of the immersion membrane 44 is connected to the treated water tank 40 by a treated water pipe 64 via a suction pump 50. The inside of the biological reaction tank 36 is filled with a sponge-like carrier 46 having a density of 35 kg / m 3 or more in a predetermined filling amount. An aeration pipe 68 is connected near the center of the lower part of the biological reaction tank 36 and below the screen 42, and near the center of the lower part of the membrane separation tank 38 and below the immersion membrane 44, by an aeration device (not shown). It is supposed to be aerated. Air volume meters 54 and 56 are installed in the middle of the aeration pipe 68 connected to the lower part of the screen 42 and the lower part of the immersion film 44, respectively. The sludge outlet of the membrane separation tank 38 and the sludge inlet of the biological reaction tank 36 are connected by a sludge circulation pipe 66 via a pump 52.

原水である、有機物を含有する有機物含有排水は、原水配管58を通して必要に応じて原水槽34に貯留された後、ポンプ48により原水供給配管60を通して、生物反応槽36に送液される。生物反応槽36内には、好気性の活性汚泥が存在し、スポンジ状担体46が所定の充填量で充填されている。一方、生物反応槽36の下方の中央部付近およびスクリーン42の下方から、空気等の酸素含有気体が、曝気ブロア等から曝気配管68を通して送気される。生物反応槽36において、活性汚泥により原水中の有機物の分解処理が行われる(活性汚泥処理工程)。なお、生物反応槽36に担体を分離可能なサイズのスクリーン42を設置することにより、スポンジ状担体46が膜分離槽38に移動することを抑制することができる。膜分離槽38において、浸漬膜44の内部は吸引ポンプ50により吸引され、固液分離が行われる(固液分離工程)。膜分離槽38の下方の中央部付近および浸漬膜44の下方から、空気等の酸素含有気体が、曝気ブロア等から曝気配管68を通して送気される。固液分離された処理水は、ポンプ50により処理水配管64を通して、処理水槽40に送液される。膜分離槽38内の汚泥は、ポンプ52により汚泥循環配管66を通して、生物反応槽36に循環される(汚泥循環工程)。 The organic matter-containing wastewater containing organic matter, which is raw water, is stored in the raw water tank 34 through the raw water pipe 58 as needed, and then sent to the biological reaction tank 36 through the raw water supply pipe 60 by the pump 48. Aerobic activated sludge is present in the biological reaction tank 36, and the sponge-like carrier 46 is filled with a predetermined filling amount. On the other hand, oxygen-containing gas such as air is sent from the aeration blower or the like through the aeration pipe 68 from the vicinity of the central portion below the biological reaction tank 36 and from the lower part of the screen 42. In the biological reaction tank 36, the activated sludge is used to decompose organic substances in the raw water (activated sludge treatment step). By installing the screen 42 having a size capable of separating the carrier in the biological reaction tank 36, it is possible to prevent the sponge-like carrier 46 from moving to the membrane separation tank 38. In the membrane separation tank 38, the inside of the immersion membrane 44 is sucked by the suction pump 50, and solid-liquid separation is performed (solid-liquid separation step). Oxygen-containing gas such as air is sent from the aeration blower or the like through the aeration pipe 68 from the vicinity of the central portion below the membrane separation tank 38 and below the immersion film 44. The solid-liquid separated treated water is sent to the treated water tank 40 through the treated water pipe 64 by the pump 50. The sludge in the membrane separation tank 38 is circulated to the biological reaction tank 36 by the pump 52 through the sludge circulation pipe 66 (sludge circulation step).

図2の排水処理装置3において、密度35kg/m以上のスポンジ状担体46を生物反応槽36内に存在させながら運転が行われる。これにより、膜分離槽38の浸漬膜44の閉塞を抑制した安定運転が可能となる。このように、生物反応槽36と膜分離槽38が分かれている場合には、スポンジ状担体46を前段の生物反応槽36のみに入れて汚泥循環をすることにより、バイオポリマー吸着やバイオポリマーの分解に適した微生物相を形成し、浸漬膜44の差圧の上昇を抑制することが可能である。 In the wastewater treatment apparatus 3 of FIG. 2, the operation is performed while the sponge-like carrier 46 having a density of 35 kg / m 3 or more is present in the biological reaction tank 36. This enables stable operation in which the immersion film 44 of the membrane separation tank 38 is suppressed from being blocked. In this way, when the biological reaction tank 36 and the membrane separation tank 38 are separated, the sponge-like carrier 46 is placed only in the biological reaction tank 36 in the previous stage to circulate the sludge, thereby adsorbing the biopolymer and the biopolymer. It is possible to form a microbial phase suitable for decomposition and suppress an increase in the differential pressure of the immersion film 44.

本発明の実施形態に係る排水処理装置の他の例の概略を図3に示す。排水処理装置5では、図2の構成とほぼ同じであるが、膜分離槽38の内部にも、密度35kg/m以上のスポンジ状担体46が所定の充填量で充填されている。 FIG. 3 shows an outline of another example of the wastewater treatment apparatus according to the embodiment of the present invention. The wastewater treatment device 5 has almost the same configuration as that shown in FIG. 2, but the inside of the membrane separation tank 38 is also filled with a sponge-like carrier 46 having a density of 35 kg / m 3 or more in a predetermined filling amount.

図3の排水処理装置5において、密度35kg/m以上のスポンジ状担体46を生物反応槽36内および膜分離槽38内の両方に存在させながら運転が行われる。これにより、膜分離槽38の浸漬膜44の閉塞を抑制した安定運転が可能となる。このように、生物反応槽36と膜分離槽38が分かれている場合に、スポンジ状担体46を前段の生物反応槽36および後段の膜分離槽38の両方に入れて汚泥循環をすることにより、バイオポリマー吸着やバイオポリマーの分解に適した微生物相を形成し、浸漬膜44の差圧の上昇をより抑制することが可能である。 In the wastewater treatment apparatus 5 of FIG. 3, the operation is performed while the sponge-like carrier 46 having a density of 35 kg / m 3 or more is present in both the biological reaction tank 36 and the membrane separation tank 38. This enables stable operation in which the immersion film 44 of the membrane separation tank 38 is suppressed from being blocked. In this way, when the biological reaction tank 36 and the membrane separation tank 38 are separated, the sponge-like carrier 46 is placed in both the biological reaction tank 36 in the front stage and the membrane separation tank 38 in the rear stage to circulate the sludge. It is possible to form a microbial phase suitable for biopolymer adsorption and biopolymer decomposition, and to further suppress an increase in the differential pressure of the immersion film 44.

本発明の実施形態に係る排水処理装置の他の例の概略を図4に示す。排水処理装置7は、原水槽72、生物反応槽74、処理水槽78に加え、生物反応槽74の後段に膜を備える膜分離装置76を備える。 FIG. 4 shows an outline of another example of the wastewater treatment apparatus according to the embodiment of the present invention. The wastewater treatment device 7 includes a membrane separation device 76 having a membrane after the biological reaction tank 74, in addition to the raw water tank 72, the biological reaction tank 74, and the treatment water tank 78.

図4の排水処理装置7において、原水槽72の入口には、原水配管90が接続されている。原水槽72の出口と生物反応槽74の入口とは、ポンプ84を介して原水供給配管92により接続されている。生物反応槽74の内部には、スクリーン80が設置され、生物反応槽74の生物処理水出口と膜分離装置76の入口とは、ポンプ86を介して生物処理水配管94により接続されている。生物反応槽74の内部には、密度35kg/m以上のスポンジ状担体82が所定の充填量で充填されている。膜分離装置76の処理水(透過水)出口は、処理水配管96により処理水槽78と接続されている。生物反応槽74の下部の中央部付近およびスクリーン80の下方には、曝気配管100が接続され、図示しない曝気装置により曝気されるようになっている。スクリーン80の下方に接続されている曝気配管100の途中には、風量計88が設置されている。膜分離装置76の濃縮水出口と生物反応槽74の濃縮水入口とは、濃縮水循環配管98により接続されている。 In the wastewater treatment device 7 of FIG. 4, a raw water pipe 90 is connected to the inlet of the raw water tank 72. The outlet of the raw water tank 72 and the inlet of the biological reaction tank 74 are connected by a raw water supply pipe 92 via a pump 84. A screen 80 is installed inside the biological reaction tank 74, and the biological treatment water outlet of the biological reaction tank 74 and the inlet of the membrane separation device 76 are connected by a biological treatment water pipe 94 via a pump 86. The inside of the biological reaction tank 74 is filled with a sponge-like carrier 82 having a density of 35 kg / m 3 or more in a predetermined filling amount. The treated water (permeated water) outlet of the membrane separation device 76 is connected to the treated water tank 78 by a treated water pipe 96. An aeration pipe 100 is connected to the vicinity of the central portion of the lower part of the biological reaction tank 74 and below the screen 80, and is aerated by an aeration device (not shown). An air volume meter 88 is installed in the middle of the aeration pipe 100 connected below the screen 80. The concentrated water outlet of the membrane separation device 76 and the concentrated water inlet of the biological reaction tank 74 are connected by a concentrated water circulation pipe 98.

原水である、有機物を含有する有機物含有排水は、原水配管90を通して必要に応じて原水槽72に貯留された後、ポンプ84により原水供給配管92を通して、生物反応槽74に送液される。生物反応槽74内には、好気性の活性汚泥が存在し、スポンジ状担体82が所定の充填量で充填されている。一方、生物反応槽74の下方の中央部付近およびスクリーン80の下方から、空気等の酸素含有気体が、曝気ブロア等から曝気配管100を通して送気される。生物反応槽74において、活性汚泥により原水中の有機物の分解処理が行われる(活性汚泥処理工程)。活性汚泥処理された生物処理水は、ポンプ86により生物処理水配管94を通して膜分離装置76に送液される。なお、生物反応槽74に担体を分離可能なサイズのスクリーン80を設置することにより、スポンジ状担体82が膜分離装置76に移動することを抑制することができる。膜分離装置76において、膜により、固液分離が行われる(固液分離工程)。固液分離された処理水(透過水)は、処理水配管96を通して、処理水槽78に送液される。濃縮水は、濃縮水循環配管98を通して、生物反応槽74に送液され、汚泥が循環される(汚泥循環工程)。 The organic matter-containing wastewater containing organic matter, which is raw water, is stored in the raw water tank 72 through the raw water pipe 90 as needed, and then sent to the biological reaction tank 74 through the raw water supply pipe 92 by the pump 84. Aerobic activated sludge is present in the biological reaction tank 74, and the sponge-like carrier 82 is filled with a predetermined filling amount. On the other hand, oxygen-containing gas such as air is sent from the aeration blower or the like through the aeration pipe 100 from the vicinity of the central portion below the biological reaction tank 74 and from the lower part of the screen 80. In the biological reaction tank 74, the activated sludge is used to decompose organic substances in the raw water (activated sludge treatment step). The activated sludge-treated biologically treated water is sent to the membrane separation device 76 through the biologically treated water pipe 94 by the pump 86. By installing the screen 80 having a size capable of separating the carrier in the biological reaction tank 74, it is possible to prevent the sponge-like carrier 82 from moving to the membrane separation device 76. In the membrane separation device 76, solid-liquid separation is performed by the membrane (solid-liquid separation step). The solid-liquid separated treated water (permeated water) is sent to the treated water tank 78 through the treated water pipe 96. The concentrated water is sent to the biological reaction tank 74 through the concentrated water circulation pipe 98, and sludge is circulated (sludge circulation step).

図4の排水処理装置7において、密度35kg/m以上のスポンジ状担体82を生物反応槽74内に存在させながら運転が行われる。これにより、膜分離装置76の膜の閉塞を抑制した安定運転が可能となる。このように、生物反応槽74の外部に膜分離装置76を設置する場合には、スポンジ状担体82を前段の生物反応槽74に入れて汚泥循環をすることにより、バイオポリマー吸着やバイオポリマーの分解に適した微生物相を形成し、膜分離装置76の膜の差圧の上昇を抑制することが可能である。 In the wastewater treatment apparatus 7 of FIG. 4, the operation is performed while the sponge-like carrier 82 having a density of 35 kg / m 3 or more is present in the biological reaction tank 74. This enables stable operation in which the membrane of the membrane separation device 76 is suppressed from being blocked. In this way, when the membrane separation device 76 is installed outside the biological reaction tank 74, the sponge-like carrier 82 is placed in the biological reaction tank 74 in the previous stage to circulate the sludge, thereby adsorbing the biopolymer and the biopolymer. It is possible to form a microbial phase suitable for decomposition and suppress an increase in the differential pressure of the membrane of the membrane separation device 76.

膜として、浸漬型平膜を用いる場合、図1,2,3の形態に適用が可能である。 When an immersion type flat membrane is used as the membrane, it can be applied to the forms shown in FIGS. 1, 2, and 3.

膜として中空糸型の膜モジュールを適用する場合は、図2に示すように膜分離槽38ではなく、前段の生物反応槽36にスポンジ状担体46を投入し、スポンジ状担体46を投入した生物反応槽36に膜分離槽38の汚泥を循環することにより、中空糸型の膜モジュールに担体が捕捉されるのを抑制しながら、膜の閉塞を抑制することが可能である。中空糸型の膜モジュールは、図1,3の形態にも適用可能である。 When a hollow fiber type membrane module is applied as a membrane, the sponge-like carrier 46 is charged into the biological reaction tank 36 in the previous stage instead of the membrane separation tank 38 as shown in FIG. 2, and the organism into which the sponge-like carrier 46 is charged. By circulating the sludge of the membrane separation tank 38 in the reaction tank 36, it is possible to suppress the clogging of the membrane while suppressing the carrier from being trapped in the hollow fiber type membrane module. The hollow fiber type membrane module can also be applied to the forms shown in FIGS. 1 and 3.

膜としてクロスフロー型の膜モジュールを適用する場合は、図4に示すように膜分離装置76の前段の生物反応槽74にスポンジ状担体82を投入することにより、適用可能である。なお、スポンジ状担体82が膜モジュール内に詰まる可能性がある場合には、生物反応槽74に担体を分離可能なサイズのスクリーン80を設置することがより適切である。 When a cross-flow type membrane module is applied as a membrane, it can be applied by charging the sponge-like carrier 82 into the biological reaction tank 74 in the previous stage of the membrane separation device 76 as shown in FIG. When the sponge-like carrier 82 may be clogged in the membrane module, it is more appropriate to install a screen 80 having a size capable of separating the carrier in the biological reaction tank 74.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

<実施例1,2および比較例1,2>
[通水条件]
表1に示す組成および濃度の人工下水(原水TOC濃度:100mg/L、T−N濃度:50mg/L)を原水として用いて実験を行った。
<Examples 1 and 2 and Comparative Examples 1 and 2>
[Water flow conditions]
Experiments were conducted using artificial sewage having the composition and concentration shown in Table 1 (raw water TOC concentration: 100 mg / L, TN concentration: 50 mg / L) as raw water.

Figure 0006899104
Figure 0006899104

[実験装置]
図1に示すような実験装置を用いて、下記に示す試験条件で表2に示す担体を用いて実施した。50日間通水試験を行い、膜の差圧(kPa)を測定した。結果を図5に示す。図中の矢印は、差圧が上昇した際に膜表面の汚泥を物理的に洗浄したことを示す。なお、スポンジ状担体の密度は、JIS K7222に従って測定した。
(試験条件)
平膜(素材:PVDF製、公称孔径0.1μm)
生物反応槽:容量7.5L
水の滞留時間(HRT):7時間
pH:中性
水温:20℃
MLSS:3,000〜4,000mg/L
曝気量:17L/分
浸漬膜の透過流速:0.45m/日
[Experimental device]
It was carried out using the experimental equipment as shown in FIG. 1 and using the carriers shown in Table 2 under the test conditions shown below. A water flow test was carried out for 50 days, and the differential pressure (kPa) of the membrane was measured. The results are shown in FIG. The arrows in the figure indicate that the sludge on the film surface was physically washed when the differential pressure increased. The density of the sponge-like carrier was measured according to JIS K7222.
(Test condition)
Flat membrane (Material: PVDF, nominal pore size 0.1 μm)
Biological reaction tank: Capacity 7.5L
Water retention time (HRT): 7 hours pH: Neutral water temperature: 20 ° C
MLSS: 3,000-4,000 mg / L
Aeration amount: 17 L / min Permeation flow velocity of immersion membrane: 0.45 m / day

Figure 0006899104
Figure 0006899104

[結果]
担体を使用しない比較例1では、通水開始後7日程度で洗浄を必要とする差圧30kPa以上に達した。その後、膜表面の汚泥を物理洗浄して再度通水をしたが、3日から14日程度の間隔で差圧が増加し物理洗浄が必要であった。また、密度が35kg/mよりも低いスポンジ状担体を使用した比較例2では、初期に差圧を抑制する効果が見られたものの、1度差圧が上昇した後は、比較例1と同様に差圧が上昇し、差圧抑制効果が見られない結果となった。一方、密度が35kg/m以上のスポンジ状担体を使用した実施例1と実施例2では、差圧上昇の抑制効果が高く、試験期間の間、顕著な差圧上昇がほとんど見られず安定した運転が可能であった。
[result]
In Comparative Example 1 in which no carrier was used, the differential pressure of 30 kPa or more, which required washing, was reached about 7 days after the start of water flow. After that, the sludge on the membrane surface was physically washed and water was passed again, but the differential pressure increased at intervals of about 3 to 14 days, and physical washing was required. Further, in Comparative Example 2 using a sponge-like carrier having a density lower than 35 kg / m 3 , the effect of suppressing the differential pressure was observed at the initial stage, but after the differential pressure increased once, it was different from Comparative Example 1. Similarly, the differential pressure increased, and the result was that the differential pressure suppressing effect was not observed. On the other hand, in Examples 1 and 2 using the sponge-like carrier having a density of 35 kg / m 3 or more, the effect of suppressing the increase in the differential pressure was high, and the difference pressure increase was hardly observed during the test period and was stable. It was possible to drive.

表3に、処理水の水質(TOC濃度、T−N濃度)を示す。実施例、比較例ともに、良好な処理水質であった。 Table 3 shows the water quality (TOC concentration, TN concentration) of the treated water. The treated water quality was good in both Examples and Comparative Examples.

Figure 0006899104
Figure 0006899104

このように密度35kg/m以上のスポンジ状担体を生物反応槽内に存在させながら運転した実施例では、膜の閉塞を抑制した安定運転が可能となった。膜分離活性汚泥処理の大きな課題であった膜の目詰まりに対し、差圧上昇を抑制した安定運転が可能となり、運転管理の負担、洗浄薬品費の低減に有効な方法であることがわかった。また、本方法は、既設の膜分離活性汚泥処理の改善にも有効な方法である。 In the example in which the sponge-like carrier having a density of 35 kg / m 3 or more was operated while being present in the biological reaction tank as described above, stable operation was possible while suppressing the blockage of the membrane. Membrane separation Activated sludge treatment has been a major issue for membrane clogging, and stable operation with suppressed increase in differential pressure has become possible, and it has been found that this is an effective method for reducing the burden of operation management and cleaning chemical costs. .. In addition, this method is also an effective method for improving the existing membrane separation activated sludge treatment.

1,3,5,7 排水処理装置、10,34,72 原水槽、12,36,74 生物反応槽、14,40,78 処理水槽、16,44 浸漬膜、18,46,82 スポンジ状担体、20,48,52,84,86 ポンプ、22,50 吸引ポンプ、24,54,56,88 風量計、26,58,90 原水配管、28,60,92 原水供給配管、30,64,96 処理水配管、32,68,100 曝気配管、38 膜分離槽、42,80 スクリーン、62,94 生物処理水配管、66 汚泥循環配管、76 膜分離装置、98 濃縮水循環配管。 1,3,5,7 Wastewater treatment equipment 10,34,72 Raw water tank, 12,36,74 Biological reaction tank, 14,40,78 Treatment water tank, 16,44 Immersion membrane, 18,46,82 Sponge-like carrier , 20,48,52,84,86 pumps, 22,50 suction pumps, 24,54,56,88 air flow meters, 26,58,90 raw water pipes, 28,60,92 raw water supply pipes, 30,64,96 Treated water piping, 32,68,100 air exposure piping, 38 film separation tank, 42,80 screen, 62,94 biologically treated water piping, 66 sludge circulation piping, 76 film separation device, 98 concentrated water circulation piping.

Claims (6)

有機物を含有する排水を膜分離活性汚泥法で処理する排水処理方法であって、
密度35kg/m以上かつセルサイズ46個/25mm以上のスポンジ状担体を生物反応槽内に存在させながら運転することを特徴とする排水処理方法。
It is a wastewater treatment method that treats wastewater containing organic matter by the membrane separation activated sludge method.
A wastewater treatment method characterized in that a sponge-like carrier having a density of 35 kg / m 3 or more and a cell size of 46 cells / 25 mm or more is operated while being present in a biological reaction tank.
請求項1に記載の排水処理方法であって、前記スポンジ状担体が疎水性ポリウレタン製であることを特徴とする排水処理方法。 The wastewater treatment method according to claim 1, wherein the sponge-like carrier is made of hydrophobic polyurethane. 請求項1または2に記載の排水処理方法であって、前記膜分離活性汚泥法で使用する膜の材質がフッ素系樹脂であることを特徴とする排水処理方法。 The wastewater treatment method according to claim 1 or 2, wherein the material of the membrane used in the membrane separation activated sludge method is a fluororesin. 有機物を含有する排水を膜分離活性汚泥法で処理する排水処理装置であって、
密度35kg/m以上かつセルサイズ46個/25mm以上のスポンジ状担体を生物反応槽内に存在させながら運転することを特徴とする排水処理装置。
A wastewater treatment device that treats wastewater containing organic matter by the membrane separation activated sludge method.
A wastewater treatment apparatus characterized in that a sponge-like carrier having a density of 35 kg / m 3 or more and a cell size of 46 cells / 25 mm or more is operated while being present in a biological reaction tank.
請求項4に記載の排水処理装置であって、前記スポンジ状担体が疎水性ポリウレタン製であることを特徴とする排水処理装置。 The wastewater treatment apparatus according to claim 4, wherein the sponge-like carrier is made of hydrophobic polyurethane. 請求項4または5に記載の排水処理装置であって、前記膜分離活性汚泥法で使用する膜の材質がフッ素系樹脂であることを特徴とする排水処理装置。 The wastewater treatment apparatus according to claim 4 or 5, wherein the material of the membrane used in the membrane separation activated sludge method is a fluororesin.
JP2015071676A 2015-03-31 2015-03-31 Wastewater treatment method and wastewater treatment equipment Active JP6899104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015071676A JP6899104B2 (en) 2015-03-31 2015-03-31 Wastewater treatment method and wastewater treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015071676A JP6899104B2 (en) 2015-03-31 2015-03-31 Wastewater treatment method and wastewater treatment equipment

Publications (2)

Publication Number Publication Date
JP2016190203A JP2016190203A (en) 2016-11-10
JP6899104B2 true JP6899104B2 (en) 2021-07-07

Family

ID=57245983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015071676A Active JP6899104B2 (en) 2015-03-31 2015-03-31 Wastewater treatment method and wastewater treatment equipment

Country Status (1)

Country Link
JP (1) JP6899104B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105236568B (en) * 2015-08-07 2017-06-16 北京大学 A kind of method that Anammox is run using microbial immobilized membrane bioreactor
JP6867890B2 (en) * 2017-06-15 2021-05-12 オルガノ株式会社 Water treatment method and water treatment equipment

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3131989A1 (en) * 1981-08-13 1983-02-24 Linde Ag, 6200 Wiesbaden METHOD AND DEVICE FOR BIOLOGICAL WASTE WATER TREATMENT
JP3554613B2 (en) * 1995-07-03 2004-08-18 日清紡績株式会社 Wastewater treatment materials
JPH0957288A (en) * 1995-08-23 1997-03-04 Kurita Water Ind Ltd Biological treatment method using sponge-like carrier
JP3306786B2 (en) * 1996-05-21 2002-07-24 株式会社荏原製作所 Water biological treatment equipment
JP4696326B2 (en) * 1999-01-12 2011-06-08 栗田工業株式会社 TOC component removal equipment in ultrapure water production equipment
JP2005074357A (en) * 2003-09-02 2005-03-24 Ngk Insulators Ltd Membrane washing method in membrane separation activated sludge method
JP2005305285A (en) * 2004-04-21 2005-11-04 Toray Ind Inc Activated sludge treatment method, activated sludge treatment apparatus and waste water treatment method
JP2006159087A (en) * 2004-12-07 2006-06-22 Kurita Water Ind Ltd Wastewater biological treatment method and biological treatment apparatus
TWI284119B (en) * 2004-12-22 2007-07-21 Ind Tech Res Inst Biological membrane filtration system for water treatment and water treatment process using the same
JP2007289941A (en) * 2006-03-31 2007-11-08 Toray Ind Inc Method and apparatus for treating organic waste water
KR100789275B1 (en) * 2006-11-30 2008-01-02 삼성엔지니어링 주식회사 High concentration organic wastewater treatment device and organic wastewater treatment method using the same
JP2008264772A (en) * 2007-03-27 2008-11-06 Asahi Kasei Chemicals Corp Membrane separation activated sludge apparatus and method for treating water containing organic matter
DE102007042529A1 (en) * 2007-09-07 2009-03-12 Man Turbo Ag Turbomachine and manufacturing method for such a turbomachine
JP4914855B2 (en) * 2008-03-18 2012-04-11 株式会社イノアックコーポレーション Water treatment carrier
JP5519128B2 (en) * 2008-07-10 2014-06-11 株式会社イノアックコーポレーション Polyurethane foam used as a carrier for water treatment
JP5053952B2 (en) * 2008-07-29 2012-10-24 株式会社イノアックコーポレーション Polyurethane foam used as a carrier for water treatment
JP6072535B2 (en) * 2012-12-26 2017-02-01 前澤化成工業株式会社 Water treatment carrier, method for producing the same, and waste water treatment system

Also Published As

Publication number Publication date
JP2016190203A (en) 2016-11-10

Similar Documents

Publication Publication Date Title
EP1957413B1 (en) Membrane for the treatment of sewage
JP5194771B2 (en) Biological treatment method and apparatus for water containing organic matter
KR20160106333A (en) WasteWater High-Class Treatment System to remove High-Density Pollutant and Method thereof
TWI596063B (en) Method for treating organic waste water and treating waste containing organic matter
JP4492268B2 (en) Biological treatment equipment
JP2004261711A (en) Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
WO2011136043A1 (en) Wastewater treatment device and wastewater treatment method
JP6899104B2 (en) Wastewater treatment method and wastewater treatment equipment
JP6184541B2 (en) Sewage treatment apparatus and sewage treatment method using the same
JP6136699B2 (en) Biological treatment method for organic wastewater
JP2014000495A (en) Sewage treatment apparatus, and sewage treatment method using the same
JP2010207657A (en) Wastewater treatment apparatus and wastewater treatment method
TW201500298A (en) Method and device for treating organic wastewater
CN107973400A (en) Utilize the sewage highly processing unit of sequencing batch reactor technique
TW201307215A (en) Processing device of drained water with organic matters
CN105307984B (en) The bioremediation of organic wastewater
JP2009189943A (en) Water treatment method and apparatus
JP2005319360A (en) Anaerobic ammonia oxidation method and apparatus
CN101376540A (en) Active sludge device and processing method
JP5194484B2 (en) Biological treatment apparatus and biological treatment method for water containing organic matter
JP4611334B2 (en) Organic wastewater treatment method and apparatus
JP2005074357A (en) Membrane washing method in membrane separation activated sludge method
TWI764935B (en) Aerobic biological treatment method
JP6618327B2 (en) Carrier anaerobic treatment device startup method, carrier anaerobic treatment startup device
JP2015006643A (en) Method and apparatus for treating water containing organic matter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190827

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191126

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201006

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210323

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210406

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210511

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210601

R150 Certificate of patent or registration of utility model

Ref document number: 6899104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250