JP6888722B2 - リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池 - Google Patents
リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池 Download PDFInfo
- Publication number
- JP6888722B2 JP6888722B2 JP2020133260A JP2020133260A JP6888722B2 JP 6888722 B2 JP6888722 B2 JP 6888722B2 JP 2020133260 A JP2020133260 A JP 2020133260A JP 2020133260 A JP2020133260 A JP 2020133260A JP 6888722 B2 JP6888722 B2 JP 6888722B2
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- ion secondary
- lithium ion
- secondary battery
- carbon material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/20—Graphite
- C01B32/21—After-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1393—Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/78—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by stacking-plane distances or stacking sequences
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/82—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/11—Powder tap density
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Description
さらに、本発明の一態様では、入出力特性及び高温保存特性に優れるリチウムイオン二次電池を提供することを目的とする。
上記課題を解決するための具体的手段は、以下の態様を含む。
(1)平均粒子径(D50)が22μm以下である。
(2)粒子径のD90/D10が2.2以下である。
(3)亜麻仁油吸油量が50mL/100g以下である。
(1)平均粒子径(D50)が22μm以下である。
(2)粒子径のD90/D10が2.2以下である。
(4)タップ密度が1.00g/cm3以上である。
(1)平均粒子径(D50)が22μm以下である。
(2)粒子径のD90/D10が2.2以下である。
(5)界面活性剤を含んだ精製水中にて撹拌した後、さらに、超音波洗浄機で15分間超音波を照射したときに、超音波照射前のD10に対する超音波照射後のD10の割合(超音波照射後のD10/超音波照射前のD10)が0.90以上である。
(4)タップ密度が1.00g/cm3以上である。
(5)界面活性剤を含んだ精製水中にて撹拌した後、さらに、超音波洗浄機で15分間超音波を照射したときに、超音波照射前のD10に対する超音波照射後のD10の割合(超音波照射後のD10/超音波照射前のD10)が0.90以上である。
(3)亜麻仁油吸油量が50mL/100g以下である。
(5)界面活性剤を含んだ精製水中にて撹拌した後、さらに、超音波洗浄機で15分間超音波を照射したときに、超音波照射前のD10に対する超音波照射後のD10の割合(超音波照射後のD10/超音波照射前のD10)が0.90以上である。
(3)亜麻仁油吸油量が50mL/100g以下である。
(4)タップ密度が1.00g/cm3以上である。
単位面積あたりのCO2吸着量(cm3/m2)=A(cm3/g)/B(m2/g)・・・(a)
(6)円形度が0.6〜0.8で粒子径が10μm〜20μmの割合が、炭素材料全体の5個数%以上である。
(7)円形度が0.7以下で粒子径が10μm以下の割合が、炭素材料全体の0.3個数%以下である。
さらに、本発明の一態様では、入出力特性及び高温保存特性に優れるリチウムイオン二次電池を提供することができる。
本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
本開示において「〜」を用いて示された数値範囲には、「〜」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、各試験に示されている値に置き換えてもよい。
本開示において、負極材中及び組成物中における各成分の含有率及び含有量は、負極材中及び組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、負極材中及び組成物中に存在する当該複数種の物質の合計の含有率及び含有量を意味する。
本開示において負極材中及び組成物中の各成分の粒子径は、負極材中及び組成物中に各成分に該当する粒子が複数種存在する場合、特に断らない限り、負極材中及び組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
本開示において「層」との語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
本開示において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
[第1実施形態]
本発明の第1実施形態におけるリチウムイオン二次電池用負極材は、下記(1)〜(3)を満たす炭素材料を含む。
(1)平均粒子径(D50)が22μm以下である。
(2)粒子径のD90/D10が2.2以下である。
(3)亜麻仁油吸油量が50mL/100g以下である。
第1実施形態のリチウムイオン二次電池用負極材(以下、単に「負極材」とも称する。)は、上記(1)〜(3)を満たす炭素材料を含む。負極材中における炭素材料の含有率は、特に限定されず、例えば、50質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、100質量%であることが特に好ましい。
負極材は、上記(1)〜(3)を満たす炭素材料以外のその他の炭素材料を含んでもよい。その他の炭素材料としては、特に制限されず、例えば、鱗状、土状、球状等の天然黒鉛、人造黒鉛などの黒鉛、非晶質炭素、カーボンブラック、繊維状炭素、ナノカーボンなどが挙げられる。その他の炭素材料は、1種単独で用いてもよく、2種以上併用してもよい。また、負極材はリチウムイオンを吸蔵・放出可能な元素を含む粒子を含んでいてもよい。リチウムイオンを吸蔵・放出可能な元素としては、特に限定されず、Si、Sn、Ge、In等が挙げられる。
(4)タップ密度が1.00g/cm3以上である。
(5)界面活性剤を含んだ精製水中にて撹拌した後、さらに、超音波洗浄機で15分間超音波を照射したときに、超音波照射前のD10(前述の(2)における炭素材料の粒子径(D10)と同様)に対する超音波照射後のD10の割合(超音波照射後のD10/超音波照射前のD10)が0.90以上である。
なお、超音波照射後のD10/超音波照射前のD10の上限は、特に限定されず、例えば1.0以下であればよい。
炭素材料0.06gと、質量比0.2%の界面活性剤(商品名:リポノールT/15、ライオン株式会社製)を含む精製水とを、試験管(12mm×120mm、株式会社マルエム製)に入れ、試験管ミキサー(Pasolina NS−80、アズワン株式会社製)で20秒間撹拌する。その後、超音波洗浄機(US−102、株式会社エスエヌディ製)に前記試験管が動かないように設置し、試験管内の溶液が浸かる程度まで超音波洗浄機に精製水を入れ、15分間超音波を照射(高周波出力100W及び発振周波数38kHz)する。これにより、超音波照射後のD10の測定に用いる試料が得られる。
炭素材料において、超音波照射前のD10及び超音波照射後のD10の測定方法は、前述の炭素材料の粒子径(D10)の測定方法と同様である。
(6)円形度が0.6〜0.8で粒子径が10μm〜20μmの割合が、炭素材料全体の5個数%以上である。
(7)円形度が0.7以下で粒子径が10μm以下の割合が、炭素材料全体の0.3個数%以下である。
上記(6)を満たす場合、円形度が0.6〜0.8の炭素材料が所定量存在するため、粒子間の接触面積を増加させることができ、電気抵抗の低い電極が得られる傾向にある。電気抵抗の低い電極が得られることにより、入出力特性に優れるリチウムイオン二次電池が得られる傾向にある。また、粒子径が10μm〜20μmの炭素材料が所定量存在するため、電極を製造する際のプレスの圧力が塗布面の表面から集電体付近の粒子まで均一性が高い状態にて伝わり、電極密度の均一性に優れる電極が得られる傾向にある。電極密度の均一性に優れることにより、入出力特性に優れるリチウムイオン二次電池が得られる傾向にある。
上記(7)を満たす場合、負極材と集電体との密着性が低下しにくく、負極材と集電体との密着性に優れた電極が得られる傾向にある。負極材と集電体との密着性が良好となることで、入出力特性、高温貯蔵特性、サイクル特性等の寿命特性に優れるリチウムイオン二次電池が得られる傾向にある。
測定器としては、FPIA−3000(マルバーン社製)を用いて測定することができる。本測定の前処理として、炭素材料0.06gと、質量比0.2%の界面活性剤(商品名:リポノールT/15、ライオン株式会社製)を含む精製水とを、試験管(12mm×120mm、株式会社マルエム製)に入れ、試験管ミキサー(Pasolina NS−80、アズワン株式会社製)で20秒間撹拌した後、1分間超音波で撹拌してもよい。超音波洗浄機としては、株式会社エスエヌディ製US102(高周波出力100W、発振周波数38kHz)を用いることができる。
平均面間隔d002の値は、0.3354nmが黒鉛結晶の理論値であり、この値に近いほどエネルギー密度が大きくなる傾向にある。
炭素材料のラマン分光測定のR値は、0.1〜1.0であることが好ましく、0.2〜0.8であることがより好ましく、0.3〜0.7であることがさらに好ましい。R値が0.1以上であると、リチウムイオンの出し入れに用いられる黒鉛格子欠陥が充分存在し、入出力特性の低下が抑制される傾向にある。R値が1.0以下であると、電解液の分解反応が充分に抑制され、初回効率の低下が抑制される傾向にある。
アルゴンレーザー光の波長:532nm
波数分解能:2.56cm−1
測定範囲:1180cm−1〜1730cm−1
ピークリサーチ:バックグラウンド除去
単位面積あたりのCO2吸着量(cm3/m2)=A(cm3/g)/B(m2/g)・・・(a)
また、球形の黒鉛粒子を用いることにより、黒鉛粒子同士の凝集を抑制でき、黒鉛粒子をより結晶性の低い炭素材(例えば、非晶質炭素)で被覆する場合に、好適に黒鉛粒子を被覆することができる。さらに、被覆時に凝集した炭素材料を用いて負極材組成物を作製するときに、撹拌により炭素材料の凝集がほぐれた際、前述の炭素材で被覆されていない領域が露出することが抑制される。その結果、リチウムイオン二次電池を作製した際、炭素材料の表面における電解液の分解反応が抑制されて初回効率の低下が抑制される傾向にある。
負極材に含まれる炭素材料は、1種単独であっても2種以上であってもよい。
第一炭素材の表面に第二炭素材が存在することは、透過型電子顕微鏡観察で確認することができる。
また、第2実施形態及び第3実施形態にて用いる炭素材料としては、第1実施形態と同様、空気気流中における示差熱分析(DTA分析)において、300℃〜1000℃の温度範囲に二つ以上の発熱ピークを有さないことが好ましい。また、第2実施形態及び第3実施形態にて用いる炭素材料としては、第1実施形態にて具体的に説明した炭素材料であってもよい。
本発明の第2実施形態におけるリチウムイオン二次電池用負極材は、下記(1)、(2)及び(4)を満たす炭素材料を含む。
(1)平均粒子径(D50)が22μm以下である。
(2)粒子径のD90/D10が2.2以下である。
(4)タップ密度が1.00g/cm3以上である。
(3)亜麻仁油吸油量が50mL/100g以下である。
(5)界面活性剤を含んだ精製水中にて撹拌した後、さらに、超音波洗浄機で15分間超音波を照射したときに、超音波照射前のD10(前述の(2)における炭素材料の粒子径(D10)と同様)に対する超音波照射後のD10の割合(超音波照射後のD10/超音波照射前のD10)が0.90以上である。
炭素材料が、上記(3)及び(5)の少なくとも一方を満たすことにより、入出力特性及びサイクル特性により優れるリチウムイオン二次電池を製造可能となる。
(6)円形度が0.6〜0.8で粒子径が10μm〜20μmの割合が、炭素材料全体の5個数%以上である。
(7)円形度が0.7以下で粒子径が10μm以下の割合が、炭素材料全体の0.3個数%以下である。
炭素材料が上記(6)を満たすことにより、入出力特性に優れるリチウムイオン二次電池が得られる傾向にある。
炭素材料が上記(7)を満たす場合、入出力特性及び高温貯蔵特性、サイクル特性等の寿命特性に優れるリチウムイオン二次電池が得られる傾向にある。
本発明の第3実施形態におけるリチウムイオン二次電池用負極材は、下記(1)、(2)及び(5)を満たす炭素材料を含む。
(1)平均粒子径(D50)が22μm以下である。
(2)粒子径のD90/D10が2.2以下である。
(5)界面活性剤を含んだ精製水中にて撹拌した後、さらに、超音波洗浄機で15分間超音波を照射したときに、超音波照射前のD10(前述の(2)における炭素材料の粒子径(D10)と同様)に対する超音波照射後のD10の割合(超音波照射後のD10/超音波照射前のD10)が0.90以上である。
(3)亜麻仁油吸油量が50mL/100g以下である。
(4)タップ密度が1.00g/cm3以上である。
炭素材料が、上記(3)及び(4)の少なくとも一方を満たすことにより、入出力特性及びサイクル特性により優れるリチウムイオン二次電池を製造可能となる。
(6)円形度が0.6〜0.8で粒子径が10μm〜20μmの割合が、炭素材料全体の5個数%以上である。
(7)円形度が0.7以下で粒子径が10μm以下の割合が、炭素材料全体の0.3個数%以下である。
炭素材料が上記(6)を満たすことにより、入出力特性に優れるリチウムイオン二次電池が得られる傾向にある。
炭素材料が上記(7)を満たす場合、入出力特性及び高温貯蔵特性、サイクル特性等の寿命特性に優れるリチウムイオン二次電池が得られる傾向にある。
本発明の一実施形態におけるリチウムイオン二次電池用負極材の製造方法は、核となる第一炭素材と、第一炭素材よりも結晶性の低い第二炭素材の前駆体と、を含む混合物を熱処理して炭素材料を製造する工程を含む。
上記方法において、第一炭素材、第二炭素材の前駆体及び炭素材料の詳細ならびに好ましい態様は、前述のリチウムイオン二次電池用負極材の項目にて説明したものと同様である。
本開示のリチウムイオン二次電池用負極は、上述した本開示のリチウムイオン二次電池用負極材を含む負極材層と、集電体と、を含む。リチウムイオン二次電池用負極は、前述した負極材を含む負極材層及び集電体の他、必要に応じて他の構成要素を含んでもよい。
本開示のリチウムイオン二次電池は、上述した本開示のリチウムイオン二次電池用負極(以下、単に「負極」とも称する。)と、正極と、電解液とを含む。
リチウム塩としては、LiClO4、LiPF6、LiAsF6、LiBF4、LiSO3CF3等が挙げられる。リチウム塩は、1種単独であっても2種以上であってもよい。
非水系溶媒としては、エチレンカーボネート、フルオロエチレンカーボネート、クロロエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、シクロペンタノン、シクロヘキシルベンゼン、スルホラン、プロパンスルトン、3−メチルスルホラン、2,4−ジメチルスルホラン、3−メチル−1,3−オキサゾリジン−2−オン、γ−ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチルメチルカーボネート、エチルプロピルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、酢酸メチル、酢酸エチル、トリメチルリン酸エステル、トリエチルリン酸エステル等が挙げられる。非水系溶媒は、1種単独であっても2種以上であってもよい。
(負極材の作製)
平均粒子径10μmの球形天然黒鉛(d002=0.336nm)100質量部とコールタールピッチ(軟化点90℃、残炭率(炭化率)50%)1質量部を混合した。次いで窒素流通下、20℃/時間の昇温速度で1100℃まで昇温し、1100℃(焼成処理温度)にて1時間保持して炭素層被覆黒鉛粒子(炭素材料)とした。得られた炭素層被覆炭素粒子をカッターミルで解砕した後、350メッシュ篩で篩分けを行い、その篩下分を本試験の負極材とした。得られた負極材については、下記方法により、平均面間隔d002の測定、R値の測定、N2比表面積の測定、平均粒子径(50%D)の測定、D90/D10の測定、タップ密度の測定及び超音波照射後のD10/超音波照射前のD10の測定を行った。
各物性値を表2に示す。なお、表2中の炭素被覆量(%)は、球形天然黒鉛に対するコールタールピッチを使用した割合(質量%)を意味する。
平均面間隔d002の測定は、X線回折法により行った。具体的には、負極材試料を石英製の試料ホルダーの凹部分に充填して測定ステージにセットし、広角X線回折装置(株式会社リガク製)を用いて以下の測定条件で行った。結果は表2に示す。
線源:CuKα線(波長=0.15418nm)
出力:40kV、20mA
サンプリング幅:0.010°
走査範囲:10°〜35°
スキャンスピード:0.5°/分
R値は、下記の条件でラマン分光測定を行い、得られたラマン分光スペクトルにおいて、1580cm−1付近の最大ピークの強度Igと、1360cm−1付近の最大ピークの強度Idの強度比(Id/Ig)とした。
ラマン分光測定は、レーザーラマン分光光度計(型番:NRS−1000、日本分光株式会社製)を用い、負極材試料が平らになるようにセットした試料板にアルゴンレーザー光を照射して行った。測定条件は以下の通りである。結果は表2に示す。
アルゴンレーザー光の波長:532nm
波数分解能:2.56cm−1
測定範囲:1180cm−1〜1730cm−1
ピークリサーチ:バックグラウンド除去
N2比表面積は、高速比表面積/細孔分布測定装置(FlowSorbIII 株式会社島津製作所製)を用いて、液体窒素温度(77K)での窒素吸着を一点法で測定してBET法により算出した。結果は表2に示す。
CO2吸着量は、マイクロトラックベル株式会社製のBelsorpIIを使用して測定した。また、前処理装置として、マイクロトラックベル社製のBelprepIIを用いて測定した。なお、CO2吸着量は、測定温度273K、相対圧P/P0=0.98〜0.99(P=平衡圧、P0=飽和蒸気圧)での値を用いた。前処理は真空度1Pa以下で、250℃まで5℃/分で昇温し、10分間保持し、その後、350℃まで3℃/分で昇温し、210分間保持した。その後、加熱を中止し、室温になるまで冷却した。吸着量測定の測定相対圧は以下の表1の通り実施した。結果は表2に示す。
上記方法で標準物質のアルミナ粉(BCR−171、No0446、Institute for Reference Materials and Measurements 製)のCO2吸着量を測定すると、0.40cm3/gであった。
負極材試料について、前述の方法で単位面積あたりのCO2吸着量を算出した。結果は表2に示す。
負極材試料を質量比0.2%の界面活性剤(商品名:リポノールT/15、ライオン株式会社製)とともに精製水中に分散させた溶液を、レーザー回折式粒度分布測定装置(SALD−3000J、株式会社島津製作所製)の試料水槽に入れた。次いで、溶液に超音波をかけながらポンプで循環させ(ポンプ流量は最大値から65%)、吸光度を0.10〜0.15となるように水量を調整し、得られた粒度分布の体積累積50%粒子径(D50)を平均粒子径とした。さらに、得られた粒度分布の体積累積10%粒子径(D10)及び得られた粒度分布の体積累積90%粒子径(D90)から、D90/D10を求めた。結果は表2に示す。
容量150cm3の目盛付き平底試験管(株式会社蔵持科学器械製作所製KRS−406)に試料粉末100cm3を投入し、目盛付き平底試験管に栓をする。この目盛付き平底試験管を5cmの高さから250回落下させた後の試料粉末の重量及び容積から求められる値をタップ密度とした。結果は表2に示す。
負極材試料について、前述の方法で超音波照射前のD10に対する超音波照射後のD10の割合(超音波照射後のD10/超音波照射前のD10)を求めた。
負極材試料について、前述の方法で亜麻仁油吸油量を測定した。結果は表2に示す。
試験1において炭素被覆量を表2に示す値に変更し、かつ原料として用いる球形天然黒鉛を適宜変更して平均粒子径(D50)及びD90/D10の測定を表2に示す値としたこと以外は試験1と同様にして負極材を作製した。作製した負極材について、試験1と同様に各物性値を測定した。
各物性値を表2に示す。
試験1において炭素被覆量を表2に示す値に変更し、かつ原料として用いる球形天然黒鉛を適宜変更して平均粒子径(D50)及びD90/D10を表2に示す値としたこと以外は試験1と同様にして負極材を作製した。作製した負極材について、試験1と同様に各物性値を測定した。
各物性値を表2に示す。
各試験にて作製した負極材を用いて以下の手順で入出力特性評価用のリチウムイオン二次電池をそれぞれ作製した。
まず、負極材98質量部に対し、増粘剤としてCMC(カルボキシメチルセルロース、ダイセルファインケム株式会社製、品番2200)の水溶液(CMC濃度:2質量%)を、CMCの固形分量が1質量部となるように加え、10分間混練を行った。次いで、負極材とCMCの合計の固形分濃度が40質量%〜50質量%となるように精製水を加え、10分間混練を行った。続いて、結着剤としてスチレンブタジエン共重合体ゴムであるSBR(BM400−B、日本ゼオン株式会社)の水分散液(SBR濃度:40質量%)を、SBRの固形分量が1質量部となるように加え、10分間混合してペースト状の負極材組成物を作製した。次いで、負極材組成物を、厚さ11μmの電解銅箔に単位面積当りの塗布量が10.0mg/cm2となるようにクリアランスを調整したコンマコーターで塗工して、負極材層を形成した。その後、ハンドプレスで1.3g/cm3に電極密度を調整した。負極材層が形成された電解銅箔を直径14mmの円盤状に打ち抜き、試料電極(負極)を作製した。
(初回充放電特性の評価)
作製したリチウムイオン二次電池を、電流値0.2Cで電圧0V(V vs. Li/Li+)まで定電流充電し、次いで電流値が0.02Cとなるまで0Vで定電圧充電を行った。このときの容量を初回充電容量とした。
次いで、30分間休止後、電流値0.2Cで電圧1.5V(V vs. Li/Li+)まで定電流放電を行った。このときの容量を初回放電容量とした。
また、初回充電容量の値から初回放電容量の値を差し引いて不可逆容量を求めた。
各物性値を表3に示す。
なお、電流値の単位として用いた「C」とは、「電流値(A)/電池容量(Ah)」を意味する。
また、各物性値を表3及び図4に示す。
上記リチウムイオン二次電池を25℃に設定した恒温槽内に入れ、充電:CC/CV 0.2C 0V 0.02C Cut、放電:CC 0.2C 1.5V Cutの条件にて1サイクル充放電を行った。
次いで、電流値0.2CでSOC 50%まで定電流充電を行った。
また、上記リチウムイオン二次電池を25℃に設定した恒温槽内に入れ、1C、3C、5Cの条件にて定電流充電を各10秒間ずつ行い、各定電流の電圧降下(ΔV)を測定し、下式を用いて、直流抵抗(DCR)を測定し、初期DCRとした。
DCR[Ω]={(3C電圧降下ΔV−1C電圧降下ΔV)+(5C電圧降下ΔV−3C電圧降下ΔV)}/4
上記リチウムイオン二次電池を25℃に設定した恒温槽内に入れ、充電:CC/CV 0.2C 0V 0.02C Cut、放電:CC 0.2C 1.5V Cutの条件にて1サイクル充放電を行った。
次いで、電流値0.2CでSOC 50%まで定電流充電を行った。
また、上記リチウムイオン二次電池を−30℃に設定した恒温槽内に入れ、0.1C、0.3C、0.5Cの条件にて定電流充電を各10秒間ずつ行い、各定電流の電圧降下(ΔV)を測定し、下式を用いて、直流抵抗(DCR)を測定し、初期DCRとした。
DCR[Ω]={(0.3C電圧降下ΔV−0.1C電圧降下ΔV)+(0.5C電圧降下ΔV−0.3C電圧降下ΔV)}/0.4
作製したリチウムイオン二次電池を、25℃に設定した恒温槽内に入れ、電流値0.2Cで電圧0V(V vs. Li/Li+)まで定電流充電し、次いで電流値が0.02Cとなるまで0Vで定電圧充電を行った。次いで、30分間休止後、電流値0.2Cで電圧1.5V(V vs. Li/Li+)まで定電流放電を行った。この充放電を2回繰り返し後、電流値0.2Cで電圧0V(V vs. Li/Li+)まで定電流充電し、次いで電流値が0.02Cとなるまで0Vで定電圧充電を行い、この電池を60℃に設定した恒温槽に入れ、5日間保存した。
その後、25℃に設定した恒温槽内に入れ、60分間放置し、電流値0.2Cで電圧1.5V(V vs. Li/Li+)まで定電流放電を行った。次いで、上記条件で充放電を1回繰り返した。
高温貯蔵維持率及び高温貯蔵回復率を次式から算出した。
高温貯蔵維持率(%)=(60℃、5日間保存後、25℃にて1回目の放電容量)/(25℃にて2回目の放電容量)×100
高温貯蔵回復率(%)=(60℃、5日間保存後、25℃にて2回目の放電容量)/(25℃にて2回目の放電容量)×100
試験2及び試験12にて作製した負極材を用いて以下の手順でサイクル特性評価用のリチウムイオン二次電池をそれぞれ作製した。
まず、負極材98質量部に対し、増粘剤としてCMC(カルボキシメチルセルロース、第一工業製薬株式会社、セロゲンWS−C)の水溶液(CMC濃度:2質量%)を、CMCの固形分量が1質量部となるように加え、10分間混練を行った。次いで、負極材とCMCの合計の固形分濃度が40質量%〜50質量%となるように精製水を加え、10分間混練を行った。続いて、結着剤としてSBR(BM400−B、日本ゼオン株式会社)の水分散液(SBR濃度:40質量%)を、SBRの固形分量が1質量部となるように加え、10分間混合してペースト状の負極材組成物を作製した。次いで、負極材組成物を、厚さ11μmの電解銅箔に単位面積当りの塗布量が10.0mg/cm2となるようにクリアランスを調整したコンマコーターで塗工して、負極材層を形成した。その後、ハンドプレスで1.3g/cm3に電極密度を調整した。負極材層が形成された電解銅箔を2.5cm×12cmとなるように打ち抜き、試料電極(負極)を作製した。
試験2及び試験12において、前述のように作製したリチウムイオン電池を用いて、以下のようにしてサイクル特性を評価した。
まず、45℃において電流値2C、充電終止電圧4.2Vで定電流充電し、4.2Vに到達した時からその電圧で電流値が0.02Cになるまで定電圧充電した。30分間休止後、45℃で電流値2C、終止電圧2.7Vの定電流放電を行い、放電容量を測定した(1サイクル目の放電容量)。上記充放電を300サイクル行い、100サイクル後、200サイクル後、及び300サイクル後のそれぞれにおいて、放電容量を測定した。そして、以下の式から放電容量維持率(%)を算出した。
放電容量維持率(%)=(100サイクル後、200サイクル後又は300サイクル後の放電容量/1サイクル目の放電容量)×100
結果を図3に示す。図3に示すように、試験2において、試験12よりも放電容量維持率が高く、サイクル特性に優れていることが示された。
試験2及び試験12にて得られた負極材を用いて負極材組成物を作製し、その負極材組成物を電解銅箔に塗布して負極材層を形成し、電界銅箔と負極材層との密着性について評価した。
まず、試験2及び試験12にて得られた負極材について前述と同様の方法により、負極材組成物を作製した。次いで、負極材組成物を、厚さ20μmの電解銅箔に単位面積当りの塗布量が10.0mg/cm2となるようにクリアランスを調整したコンマコーターで塗工して、負極材層を形成した。その後、ハンドプレスで1.3g/cm3に電極密度を調整した。負極材層が形成された電解銅箔を2.5cm×12cmとなるように打ち抜き、密着性評価用の負極材層付き銅箔を得た。
次に、横方向に移動可能な台座上にデクセリアルズ株式会社製の両面テープG9000を貼り付けた後、負極材層付き銅箔の銅箔側をこの両面テープの台座に貼り付けられている側の反対面に貼り付けた。そして、3M社製の粘着テープ(18mm幅)を負極材層付き銅箔の負極材層側に粘着テープの端部が露出するように貼り付け、負極材層剥離評価用のサンプルを準備した。
結果を表4に示す。なお、表4中の数値は相対値である。
次に、横方向に移動可能な台座上にデクセリアルズ株式会社製の両面テープG9000を貼り付けた後、負極材層付き銅箔の負極材層側をこの両面テープの台座に貼り付けられている側の反対面に貼り付けて銅箔剥離評価用のサンプルを準備した。なお、銅箔剥離評価用のサンプルでは、負極材層の端部から銅箔の一部が露出するように作製した負極材層付き銅箔を用いた。
結果を表4に示す。
本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
Claims (11)
- 下記(1)、(2)、(5)及び(6)を満たす炭素材料を含み、
ラマン分光測定のR値が0.1〜1.0であり、前記炭素材料は、黒鉛粒子を前記黒鉛粒子よりも結晶性の低い炭素材で被覆してなる材料である、リチウムイオン二次電池用負極材。
(1)平均粒子径(D50)が22μm以下である。
(2)粒子径のD90/D10が2.2以下である。
(5)界面活性剤を含んだ精製水中にて撹拌した後、さらに、超音波洗浄機で15分間超音波を照射したときに、超音波照射前のD10に対する超音波照射後のD10の割合(超音波照射後のD10/超音波照射前のD10)が0.90以上である。
(6)円形度が0.6〜0.8で粒子径が10μm〜20μmの割合が、炭素材料全体の5個数%以上である。 - 下記(1)、(2)、(5)及び(6)を満たす炭素材料を含み、
ラマン分光測定のR値が0.1〜1.0であり、前記炭素材料は、黒鉛粒子を前記黒鉛粒子よりも結晶性の低い炭素材で被覆してなる材料である、リチウムイオン二次電池用負極材。
(1)平均粒子径(D50)が22μm以下である。
(2)粒子径のD90/D10が2.0以下である。
(5)界面活性剤を含んだ精製水中にて撹拌した後、さらに、超音波洗浄機で15分間超音波を照射したときに、超音波照射前のD10に対する超音波照射後のD10の割合(超音波照射後のD10/超音波照射前のD10)が0.90以上である。
(6)円形度が0.6〜0.8で粒子径が10μm〜20μmの割合が、炭素材料全体の5個数%以上である。 - 前記炭素材料は、下記(3)及び(4)の少なくとも一方を満たす、請求項1又は請求項2に記載のリチウムイオン二次電池用負極材。
(3)亜麻仁油吸油量が50mL/100g以下である。
(4)タップ密度が1.00g/cm3以上である。 - X線回折法より求めた平均面間隔d002が0.334nm〜0.338nmである、請求項1〜請求項3のいずれか1項に記載のリチウムイオン二次電池用負極材。
- 前記炭素材料は、空気気流中における示差熱分析において、300℃〜1000℃の温度範囲に二つ以上の発熱ピークを有さない、請求項1〜請求項4のいずれか1項に記載のリチウムイオン二次電池用負極材。
- 前記炭素材料の77Kでの窒素吸着測定より求めた比表面積が2m2/g〜8m2/gである、請求項1〜請求項5のいずれか1項に記載のリチウムイオン二次電池用負極材。
- 前記炭素材料の273Kでの二酸化炭素吸着より求めたCO2吸着量の値をA、前記炭素材料の77Kでの窒素吸着測定より求めた比表面積の値をBとしたとき、下記(a)式で算出される単位面積あたりのCO2吸着量が0.01cm3/m2〜0.10cm3/m2である、請求項6に記載のリチウムイオン二次電池用負極材。
単位面積あたりのCO2吸着量(cm3/m2)=A(cm3/g)/B(m2/g)・・・(a) - 請求項1〜請求項7のいずれか1項に記載のリチウムイオン二次電池用負極材を製造するリチウムイオン二次電池用負極材の製造方法であって、核となる第一炭素材と、第一炭素材よりも結晶性の低い第二炭素材の前駆体と、を含む混合物を熱処理して前記炭素材料を製造する工程を含む、リチウムイオン二次電池用負極材の製造方法。
- 前記工程では、950℃〜1500℃にて前記混合物を熱処理する、請求項8に記載のリチウムイオン二次電池用負極材の製造方法。
- 請求項1〜請求項7のいずれか1項に記載のリチウムイオン二次電池用負極材を含む負極材層と、集電体と、を含む、リチウムイオン二次電池用負極。
- 請求項10に記載のリチウムイオン二次電池用負極と、正極と、電解液とを含むリチウムイオン二次電池。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPPCT/JP2017/017959 | 2017-05-11 | ||
PCT/JP2017/017959 WO2018207333A1 (ja) | 2017-05-11 | 2017-05-11 | リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019516891A Division JP6747587B2 (ja) | 2017-05-11 | 2018-01-29 | リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2020177931A JP2020177931A (ja) | 2020-10-29 |
JP2020177931A5 JP2020177931A5 (ja) | 2021-03-11 |
JP6888722B2 true JP6888722B2 (ja) | 2021-06-16 |
Family
ID=64104422
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019516891A Active JP6747587B2 (ja) | 2017-05-11 | 2018-01-29 | リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池 |
JP2019517707A Active JP6747588B2 (ja) | 2017-05-11 | 2018-05-10 | リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池 |
JP2020133260A Active JP6888722B2 (ja) | 2017-05-11 | 2020-08-05 | リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池 |
JP2020133261A Active JP6888723B2 (ja) | 2017-05-11 | 2020-08-05 | リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池 |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019516891A Active JP6747587B2 (ja) | 2017-05-11 | 2018-01-29 | リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池 |
JP2019517707A Active JP6747588B2 (ja) | 2017-05-11 | 2018-05-10 | リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020133261A Active JP6888723B2 (ja) | 2017-05-11 | 2020-08-05 | リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11605818B2 (ja) |
JP (4) | JP6747587B2 (ja) |
KR (2) | KR102741826B1 (ja) |
CN (3) | CN115939379B (ja) |
TW (2) | TWI750373B (ja) |
WO (3) | WO2018207333A1 (ja) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018207333A1 (ja) * | 2017-05-11 | 2018-11-15 | 日立化成株式会社 | リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池 |
JP7022525B2 (ja) * | 2017-07-04 | 2022-02-18 | 第一工業製薬株式会社 | 電極塗工液組成物、該電極塗工液組成物を用いて作製された蓄電デバイス用電極、および該電極を備える蓄電デバイス |
KR20210092217A (ko) * | 2018-11-22 | 2021-07-23 | 쇼와덴코머티리얼즈가부시끼가이샤 | 리튬 이온 이차 전지용 음극재, 리튬 이온 이차 전지용 음극재의 제조 방법, 리튬 이온 이차 전지용 음극재 슬러리, 리튬 이온 이차 전지용 음극, 및 리튬 이온 이차 전지 |
US11881584B2 (en) * | 2019-04-02 | 2024-01-23 | Lg Energy Solution, Ltd. | Negative electrode active material, preparation method thereof, negative electrode and secondary battery both including same |
JP7580384B2 (ja) * | 2019-10-31 | 2024-11-11 | 三洋電機株式会社 | 非水電解質二次電池 |
KR20210071836A (ko) * | 2019-12-06 | 2021-06-16 | 주식회사 엘지에너지솔루션 | 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이차전지 |
WO2021166359A1 (ja) * | 2020-02-19 | 2021-08-26 | Jfeケミカル株式会社 | リチウムイオン二次電池の負極用炭素材料およびその製造方法並びにそれを用いた負極およびリチウムイオン二次電池 |
CN112930610B (zh) * | 2020-02-19 | 2024-08-23 | 杰富意化学株式会社 | 锂离子二次电池的负极用碳材料及其制造方法以及使用该碳材料的负极和锂离子二次电池 |
WO2021174480A1 (zh) * | 2020-03-05 | 2021-09-10 | 宁德新能源科技有限公司 | 正极材料和包括其的电化学装置及电子装置 |
JP7263284B2 (ja) * | 2020-03-24 | 2023-04-24 | 東海カーボン株式会社 | リチウムイオン二次電池用負極材の製造方法 |
EP4141987B1 (en) * | 2020-04-24 | 2024-10-09 | Ningde Amperex Technology Limited | Negative electrode active material, and electrochemical apparatus and electronic apparatus using said material |
CN112687869A (zh) * | 2020-12-25 | 2021-04-20 | 宁德新能源科技有限公司 | 正极材料、电化学装置和电子装置 |
CN119208600A (zh) * | 2021-04-05 | 2024-12-27 | 株式会社力森诺科 | 锂离子二次电池用负极材料、锂离子二次电池用负极和锂离子二次电池 |
WO2024065596A1 (zh) * | 2022-09-30 | 2024-04-04 | 宁德新能源科技有限公司 | 负极材料、二次电池和电子装置 |
KR20250004368A (ko) * | 2022-11-25 | 2025-01-07 | 컨템포러리 엠퍼렉스 테크놀로지 (홍콩) 리미티드 | 탄소 재료 및 그 제조 방법, 이를 포함하는 이차 전지 및 전기 장치 |
WO2024195011A1 (ja) * | 2023-03-20 | 2024-09-26 | 株式会社レゾナック | リチウムイオン二次電池負極用黒鉛質炭素材、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池 |
CN119032439A (zh) * | 2023-03-20 | 2024-11-26 | 株式会社力森诺科 | 锂离子二次电池负极用石墨质碳材料、锂离子二次电池用负极材料、锂离子二次电池用负极和锂离子二次电池 |
JP7444322B1 (ja) | 2023-07-12 | 2024-03-06 | 株式会社レゾナック | リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3335366B2 (ja) | 1991-06-20 | 2002-10-15 | 三菱化学株式会社 | 二次電池用電極 |
JP3395200B2 (ja) | 1992-04-28 | 2003-04-07 | 三洋電機株式会社 | 非水系二次電池 |
JP2000090930A (ja) | 1998-09-14 | 2000-03-31 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池およびその負極の製造法 |
JP3871518B2 (ja) * | 2001-03-13 | 2007-01-24 | 松下電器産業株式会社 | アルカリ蓄電池用正極活物質、正極および正極の製造法 |
WO2006025377A1 (ja) * | 2004-08-30 | 2006-03-09 | Mitsubishi Chemical Corporation | 非水系二次電池用負極材料、非水系二次電池用負極、および非水系二次電池 |
JP2008204886A (ja) * | 2007-02-22 | 2008-09-04 | Matsushita Electric Ind Co Ltd | 負極活物質およびその評価方法ならびにそれを用いた非水電解液二次電池用負極板および非水電解液二次電池 |
JP5458689B2 (ja) * | 2008-06-25 | 2014-04-02 | 三菱化学株式会社 | 非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池 |
KR101641749B1 (ko) * | 2009-03-27 | 2016-07-21 | 미쓰비시 가가꾸 가부시키가이샤 | 비수 전해액 2 차 전지용 부극 재료 및 이것을 사용한 비수 전해액 2 차 전지 |
KR101878129B1 (ko) * | 2009-10-27 | 2018-07-12 | 히타치가세이가부시끼가이샤 | 리튬 이온 이차전지 음극용 탄소 입자, 리튬 이온 이차전지용 음극 및 리튬 이온 이차전지 |
CN107528053B (zh) * | 2010-07-30 | 2021-07-02 | 昭和电工材料株式会社 | 锂离子二次电池用负极材料、锂离子二次电池用负极以及锂离子二次电池 |
US20140093781A1 (en) * | 2011-04-08 | 2014-04-03 | Chuo Denki Kogyo Co., Ltd. | Modified Natural Graphite Particles |
WO2014050097A1 (ja) | 2012-09-27 | 2014-04-03 | 昭和電工株式会社 | リチウムイオン二次電池負極用炭素材およびその製造方法並びに用途 |
JP2014165156A (ja) | 2013-02-28 | 2014-09-08 | Panasonic Corp | 非水電解液二次電池、および非水電解液二次電池の負極板の製造方法 |
JP6098275B2 (ja) * | 2013-03-25 | 2017-03-22 | 三菱化学株式会社 | 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池 |
WO2015037551A1 (ja) * | 2013-09-13 | 2015-03-19 | 日本ゼオン株式会社 | 電気化学素子用複合粒子の製造方法 |
JP5821932B2 (ja) * | 2013-11-12 | 2015-11-24 | 三菱化学株式会社 | 黒鉛負極材料及びその製造方法、並びにそれを用いたリチウム二次電池用負極及びリチウム二次電池 |
JP6160770B2 (ja) * | 2014-03-25 | 2017-07-12 | 日立化成株式会社 | リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池 |
JP2016113952A (ja) * | 2014-12-15 | 2016-06-23 | 谷川 浩保 | 各種エネルギ保存サイクル合体機関 |
KR102500915B1 (ko) * | 2015-01-16 | 2023-02-16 | 미쯔비시 케미컬 주식회사 | 탄소재 및 탄소재를 사용한 비수계 2 차 전지 |
JP6627221B2 (ja) * | 2015-01-29 | 2020-01-08 | 三菱ケミカル株式会社 | 非水系二次電池用炭素材、非水系二次電池用負極、非水系二次電池、及び非水系二次電池用炭素材の製造方法 |
JP6370274B2 (ja) | 2015-08-11 | 2018-08-08 | 株式会社藤商事 | 遊技機 |
RS62361B1 (sr) | 2016-05-19 | 2021-10-29 | Valiant Yuk Yuen Leung | Sinergijska saobraćajna raskrsnica |
WO2018207333A1 (ja) * | 2017-05-11 | 2018-11-15 | 日立化成株式会社 | リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池 |
-
2017
- 2017-05-11 WO PCT/JP2017/017959 patent/WO2018207333A1/ja active Application Filing
-
2018
- 2018-01-29 CN CN202211700355.2A patent/CN115939379B/zh active Active
- 2018-01-29 WO PCT/JP2018/002799 patent/WO2018207410A1/ja active Application Filing
- 2018-01-29 CN CN201880030675.7A patent/CN110612626B/zh active Active
- 2018-01-29 JP JP2019516891A patent/JP6747587B2/ja active Active
- 2018-01-29 KR KR1020237031648A patent/KR102741826B1/ko active Active
- 2018-01-29 US US16/611,983 patent/US11605818B2/en active Active
- 2018-01-29 KR KR1020197032853A patent/KR102580763B1/ko active Active
- 2018-05-10 CN CN201880045741.8A patent/CN110892571B/zh active Active
- 2018-05-10 JP JP2019517707A patent/JP6747588B2/ja active Active
- 2018-05-10 TW TW107115998A patent/TWI750373B/zh active
- 2018-05-10 WO PCT/JP2018/018220 patent/WO2018207896A1/ja active Application Filing
- 2018-05-10 TW TW107115988A patent/TWI751332B/zh active
-
2020
- 2020-08-05 JP JP2020133260A patent/JP6888722B2/ja active Active
- 2020-08-05 JP JP2020133261A patent/JP6888723B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
WO2018207896A1 (ja) | 2018-11-15 |
KR20230140595A (ko) | 2023-10-06 |
JPWO2018207410A1 (ja) | 2020-05-14 |
CN115939379B (zh) | 2024-02-02 |
KR102580763B1 (ko) | 2023-09-20 |
JP6747588B2 (ja) | 2020-08-26 |
JP2020177932A (ja) | 2020-10-29 |
JPWO2018207896A1 (ja) | 2020-05-14 |
KR20190141172A (ko) | 2019-12-23 |
US20210135220A1 (en) | 2021-05-06 |
CN115939379A (zh) | 2023-04-07 |
CN110612626A (zh) | 2019-12-24 |
TWI751332B (zh) | 2022-01-01 |
JP6888723B2 (ja) | 2021-06-16 |
TW201902013A (zh) | 2019-01-01 |
TWI750373B (zh) | 2021-12-21 |
US11605818B2 (en) | 2023-03-14 |
CN110892571B (zh) | 2023-05-23 |
KR102741826B1 (ko) | 2024-12-13 |
WO2018207333A1 (ja) | 2018-11-15 |
CN110892571A (zh) | 2020-03-17 |
JP6747587B2 (ja) | 2020-08-26 |
CN110612626B (zh) | 2023-05-12 |
TW201902014A (zh) | 2019-01-01 |
JP2020177931A (ja) | 2020-10-29 |
WO2018207410A1 (ja) | 2018-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6888722B2 (ja) | リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池 | |
US12176539B2 (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP7371735B2 (ja) | リチウムイオン二次電池用負極材の製造方法、及びリチウムイオン二次電池用負極材 | |
JP2024138433A (ja) | リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池 | |
JP7004093B2 (ja) | リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池 | |
WO2017191820A1 (ja) | リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池 | |
WO2020105196A1 (ja) | リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池 | |
JP2023073103A (ja) | リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池 | |
WO2024195011A1 (ja) | リチウムイオン二次電池負極用黒鉛質炭素材、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池 | |
WO2024195012A1 (ja) | リチウムイオン二次電池負極用黒鉛質炭素材、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池 | |
JP2023047223A (ja) | リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池 | |
WO2021059444A1 (ja) | リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池 | |
JP2019087460A (ja) | リチウムイオン二次電池用負極材の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210129 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210129 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20210215 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20210218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210302 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210331 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210420 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210503 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6888722 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |