JP6886046B2 - 多段・高度還元による高融点金属粉末の製造方法 - Google Patents
多段・高度還元による高融点金属粉末の製造方法 Download PDFInfo
- Publication number
- JP6886046B2 JP6886046B2 JP2019561878A JP2019561878A JP6886046B2 JP 6886046 B2 JP6886046 B2 JP 6886046B2 JP 2019561878 A JP2019561878 A JP 2019561878A JP 2019561878 A JP2019561878 A JP 2019561878A JP 6886046 B2 JP6886046 B2 JP 6886046B2
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- powder
- refractory metal
- low
- hydrochloric acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000843 powder Substances 0.000 title claims description 196
- 230000009467 reduction Effects 0.000 title claims description 147
- 239000003870 refractory metal Substances 0.000 title claims description 141
- 238000004519 manufacturing process Methods 0.000 title claims description 51
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 343
- 238000006243 chemical reaction Methods 0.000 claims description 189
- 239000000047 product Substances 0.000 claims description 179
- 238000002386 leaching Methods 0.000 claims description 170
- 239000000463 material Substances 0.000 claims description 157
- 239000013067 intermediate product Substances 0.000 claims description 138
- 229910052751 metal Inorganic materials 0.000 claims description 126
- 239000002184 metal Substances 0.000 claims description 126
- 238000002844 melting Methods 0.000 claims description 106
- 238000000034 method Methods 0.000 claims description 101
- 239000011159 matrix material Substances 0.000 claims description 78
- 239000002243 precursor Substances 0.000 claims description 78
- 238000005406 washing Methods 0.000 claims description 73
- 229910044991 metal oxide Inorganic materials 0.000 claims description 66
- 150000004706 metal oxides Chemical class 0.000 claims description 66
- 230000008018 melting Effects 0.000 claims description 65
- 239000002245 particle Substances 0.000 claims description 58
- 239000012535 impurity Substances 0.000 claims description 57
- 239000011575 calcium Substances 0.000 claims description 56
- 238000001914 filtration Methods 0.000 claims description 53
- 239000011777 magnesium Substances 0.000 claims description 48
- 239000000706 filtrate Substances 0.000 claims description 47
- 239000000203 mixture Substances 0.000 claims description 46
- 229910052760 oxygen Inorganic materials 0.000 claims description 41
- 239000001301 oxygen Substances 0.000 claims description 38
- 238000002156 mixing Methods 0.000 claims description 34
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 33
- 239000000126 substance Substances 0.000 claims description 33
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 30
- 229910052791 calcium Inorganic materials 0.000 claims description 30
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 29
- 238000001816 cooling Methods 0.000 claims description 25
- 230000008569 process Effects 0.000 claims description 22
- 239000007788 liquid Substances 0.000 claims description 19
- 229910052726 zirconium Inorganic materials 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 229910052735 hafnium Inorganic materials 0.000 claims description 11
- 229910052758 niobium Inorganic materials 0.000 claims description 11
- 229910052721 tungsten Inorganic materials 0.000 claims description 11
- 229910052720 vanadium Inorganic materials 0.000 claims description 11
- 229910052750 molybdenum Inorganic materials 0.000 claims description 10
- 229910052715 tantalum Inorganic materials 0.000 claims description 10
- 230000007935 neutral effect Effects 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 6
- 239000013505 freshwater Substances 0.000 claims description 5
- 229910052702 rhenium Inorganic materials 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 4
- 238000001291 vacuum drying Methods 0.000 claims description 4
- 238000010981 drying operation Methods 0.000 claims 1
- 238000006722 reduction reaction Methods 0.000 description 142
- 238000013329 compounding Methods 0.000 description 33
- 239000010955 niobium Substances 0.000 description 24
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 14
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 14
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 13
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 13
- 230000001603 reducing effect Effects 0.000 description 12
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 11
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 11
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 11
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 11
- 229910001936 tantalum oxide Inorganic materials 0.000 description 11
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 11
- 206010021143 Hypoxia Diseases 0.000 description 9
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 9
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 9
- 230000001146 hypoxic effect Effects 0.000 description 9
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 9
- 229910000484 niobium oxide Inorganic materials 0.000 description 9
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 9
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 9
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 9
- 239000002994 raw material Substances 0.000 description 9
- 239000010937 tungsten Substances 0.000 description 9
- 229910001930 tungsten oxide Inorganic materials 0.000 description 9
- 229910001935 vanadium oxide Inorganic materials 0.000 description 9
- 229910001928 zirconium oxide Inorganic materials 0.000 description 9
- 238000004140 cleaning Methods 0.000 description 8
- 239000011733 molybdenum Substances 0.000 description 8
- 230000001939 inductive effect Effects 0.000 description 7
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 7
- GEIAQOFPUVMAGM-UHFFFAOYSA-N Oxozirconium Chemical compound [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 6
- UOTBHSCPQOFPDJ-UHFFFAOYSA-N [Hf]=O Chemical compound [Hf]=O UOTBHSCPQOFPDJ-UHFFFAOYSA-N 0.000 description 6
- VVRQVWSVLMGPRN-UHFFFAOYSA-N oxotungsten Chemical compound [W]=O VVRQVWSVLMGPRN-UHFFFAOYSA-N 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 238000003825 pressing Methods 0.000 description 5
- 230000000996 additive effect Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- GWPLDXSQJODASE-UHFFFAOYSA-N oxotantalum Chemical compound [Ta]=O GWPLDXSQJODASE-UHFFFAOYSA-N 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- BFRGSJVXBIWTCF-UHFFFAOYSA-N niobium monoxide Chemical compound [Nb]=O BFRGSJVXBIWTCF-UHFFFAOYSA-N 0.000 description 3
- DYIZHKNUQPHNJY-UHFFFAOYSA-N oxorhenium Chemical compound [Re]=O DYIZHKNUQPHNJY-UHFFFAOYSA-N 0.000 description 3
- 229910003449 rhenium oxide Inorganic materials 0.000 description 3
- IBYSTTGVDIFUAY-UHFFFAOYSA-N vanadium monoxide Chemical compound [V]=O IBYSTTGVDIFUAY-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 238000011946 reduction process Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910001080 W alloy Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- -1 and renium Chemical compound 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 239000012702 metal oxide precursor Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229910000753 refractory alloy Inorganic materials 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000005477 sputtering target Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/10—Obtaining titanium, zirconium or hafnium
- C22B34/14—Obtaining zirconium or hafnium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/20—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/20—Obtaining niobium, tantalum or vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/20—Obtaining niobium, tantalum or vanadium
- C22B34/24—Obtaining niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/30—Obtaining chromium, molybdenum or tungsten
- C22B34/34—Obtaining molybdenum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/30—Obtaining chromium, molybdenum or tungsten
- C22B34/36—Obtaining tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B5/00—General methods of reducing to metals
- C22B5/02—Dry methods smelting of sulfides or formation of mattes
- C22B5/04—Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B5/00—General methods of reducing to metals
- C22B5/02—Dry methods smelting of sulfides or formation of mattes
- C22B5/18—Reducing step-by-step
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B61/00—Obtaining metals not elsewhere provided for in this subclass
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/045—Alloys based on refractory metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/045—Alloys based on refractory metals
- C22C1/0458—Alloys based on titanium, zirconium or hafnium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
- B22F2003/241—Chemical after-treatment on the surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2201/00—Treatment under specific atmosphere
- B22F2201/01—Reducing atmosphere
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2201/00—Treatment under specific atmosphere
- B22F2201/20—Use of vacuum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/20—Refractory metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Description
高融点金属酸化物粉末を乾燥して、乾燥した高融点金属酸化物粉末を得、乾燥した高融点金属酸化物粉末をマグネシウム粉末と混合し、混合材料を得、混合材料を自己伝播反応炉に加えて、自己伝播反応を行い、冷却した後、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を得、そのうち、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物は非化学量論比の低次・高融点金属酸化物の混合物であり、xは0.2〜1であり、
前記高融点金属Meは、具体的にW、Mo、Ta、Nb、V、Zr、Hf或いはReの中の1種又は2種以上であり、
前記高融点金属酸化物は、WO3、MoO3、Ta2O5、Nb2O5、V2O5、ZrO2、HfO2、Re2O7中の1種又は2種以上の混合物であり、
高融点金属の酸化物がWO3である場合、材料混合割合はモル比でWO3:Mg=1:(0.8〜1.2)であり、高融点金属の酸化物がMoO3である場合、材料混合割合はモル比でMoO3:Mg=1:(0.8〜1.2)であり、高融点金属の酸化物がTa2O5である場合、材料混合割合はモル比でTa2O5:Mg=1:(2.7〜3.3)であり、高融点金属の酸化物がNb2O5である場合、材料混合割合はモル比でNb2O5:Mg=1:(2.7〜3.3)であり、高融点金属の酸化物がV2O5である場合、材料混合割合はモル比でV2O5:Mg=1:(2.7〜3.3)であり、高融点金属の酸化物がZrO2である場合、材料混合割合はモル比でZrO2:Mg=1:(0.8〜1.2)であり、高融点金属の酸化物がHfO2である場合、材料混合割合はモル比でHfO2:Mg=1:(0.8〜1.2)であり、高融点金属の酸化物がRe2O7である場合、材料混合割合はモル比でRe2O7:Mg=1:(2.7〜3.3)であり、
ステップ2、一次浸出
MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を密閉反応釜に入れ、塩酸を浸出液として中間生成物に対し浸出を行って、浸出液及び浸出生成物を得、浸出液を除去し、浸出生成物を洗浄し、真空乾燥して、低次・高融点金属の低次酸化物MexO前駆体を得、そのうち、塩酸のモル濃度は1〜6mol/Lであり、
ステップ3、多段・高度還元
低次・高融点金属の低次酸化物MexO前駆体をカルシウム粉末と均一に混合し、2〜20MPaでプレスして、ブロック状のブランク材料を得、ブロック状のブランク材料を真空還元炉に入れて、700〜1200℃まで加熱昇温し、二次で1〜6時間高度に還元し、二次・高度還元した後、ブロックブランクを得、ブロックブランクを炉と一緒に冷却させて、高度還元生成物を得、そのうち、モル比でMexO:Ca=1:(1.5〜3)であり、
ステップ4、二次浸出
高度還元生成物を密閉反応釜に入れ、塩酸を浸出液として高度還元生成物に対し浸出を行って、ろ過液及びろ過残渣を得、ろ過液を除去し、ろ過残渣を洗浄、真空乾燥して、低酸素の高融点金属粉末を得、そのうち、塩酸のモル濃度は1〜6mol/Lであり、
前記低酸素・高融点金属粉末が含有した成分及びその質量パーセントは、O:≦0.8%、高融点金属Me:≧99%、残量は不可避的不純物であり、その粒度は5〜60μmである。
第1方法、混合材料を10〜60MPaでプレスして、ブロック状のブランク材料を得、ブロック状のブランク材料を自己伝播反応炉に加えて、自己伝播反応を行い、
第2方法、処理することなく、自己伝播反応炉に直接に加えて、自己伝播反応を行う。
前記洗浄は水で洗浄し、具体的には動的洗浄であり、即ち、洗浄過程において洗浄槽内の洗浄液は一定の水位を維持し、洗浄液が排出されただけ新鮮な水を補給して、中性になるまで洗浄する。
前記洗浄は水で洗浄し、具体的には動的洗浄であり、即ち、洗浄過程において洗浄槽内の洗浄液は一定の水位を維持し、洗浄液が排出されただけ新鮮な水を補給して、中性になるまで洗浄する。
MeaOb+yMg=a/x MexO+(b−a/x)MgO+(y+a/x−b)Mg
多段・高度還元による高融点金属粉末の製造方法は、以下のステップに従って行われる。
酸化タングステン粉末をオーブン内に入れ、100〜150℃で24時間乾燥して、乾燥した酸化タングステン粉末を得、乾燥した酸化タングステン粉末とマグネシウム粉末をモル比WO3:Mg=1:1で混合し、混合材料を得、混合材料を20MPaでプレスして、ブロック状のブランク材料を得、自己伝播反応炉に加えて、部分点火方式で自己伝播反応を誘導し、温度を500℃に制御し、冷却した後、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を得、そのうち、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物は非化学量論比の低次・高融点金属酸化物の混合物であり、xは0.2〜1である。
MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を密閉反応釜に入れ、塩酸を浸出液として中間生成物に対し浸出を行い、浸出温度は25℃であり、浸出時間は120分(min)であり、浸出液及び浸出生成物を得、浸出液を除去し、浸出生成物を動的洗浄方式で処理し、20℃で24時間真空乾燥して、低次・高融点金属の酸化物WxO前駆体を得、そのうち、塩酸のモル濃度は2mol/Lであり、希塩酸及び中間生成物の添加量は、反応理論に必要な量に比べて、過剰の10〜40%配合比の塩酸が必要である。
低次・高融点金属の酸化物WxO前駆体をカルシウム粉末と均一に混合し、5MPaでプレスして、ブロック状のブランク材料を得、ブロック状のブランク材料を真空還元炉に入れ、真空度≦10Paの条件下で1000℃まで加熱昇温し、二次・高度還元を2時間行い、二次・高度還元した後、ブロックブランクを得、ブロックブランクを炉と一緒に冷却させて、高度還元生成物を得、そのうち、モル比でWxO:Ca=1:2である。
高度還元生成物を密閉反応釜に入れ、塩酸を浸出液として高度還元生成物に対し浸出を行い、浸出温度は25℃であり、浸出時間は30分(min)であり、ろ過液及びろ過残渣を得、ろ過液を除去し、ろ過残渣を動的洗浄方式で処理し、30℃で24時間真空乾燥して、低酸素のタングステン粉末を得、そのうち、塩酸のモル濃度は1mol/Lであり、希塩酸と高度還元生成物の添加量は、反応理論に必要な量に比べて、過剰の5〜30%配合比の塩酸が必要である。
多段・高度還元による高融点金属粉末の製造方法は、以下のステップに従って行われる。
酸化タングステン粉末をオーブン内に入れ、100〜150℃で24時間乾燥して、乾燥した酸化タングステン粉末を得、乾燥した酸化タングステン粉末とマグネシウム粉末をモル比WO3:Mg=1:1.2で混合し、混合材料を得、混合材料を10MPaでプレスして、ブロック状のブランク材料を得、自己伝播反応炉に加えて、部分点火方式で自己伝播反応を誘導し、温度を750℃に制御し、冷却した後、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を得、そのうち、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物は非化学量論比の低次・高融点金属酸化物の混合物であり、xは0.2〜1である。
MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を密閉反応釜に入れ、塩酸を浸出液として中間生成物に対し浸出を行い、浸出温度は25℃であり、浸出時間は120分であり、浸出液及び浸出生成物を得、浸出液を除去し、浸出生成物を動的洗浄方式で処理し、20℃で24時間真空乾燥して、低次・高融点金属の酸化物WxO前駆体を得、そのうち、塩酸のモル濃度は1mol/Lであり、希塩酸及び中間生成物の添加量は、反応理論に必要な量に比べて、過剰の10%配合比の塩酸が必要である。
低次・高融点金属の酸化物WxO前駆体をカルシウム粉末と均一に混合し、10MPaでプレスして、ブロック状のブランク材料を得、ブロック状のブランク材料を真空還元炉に入れ、真空度≦10Paの条件下で900℃まで加熱昇温し、二次・高度還元を3時間行い、二次・高度還元した後、ブロックブランクを得、ブロックブランクを炉と一緒に冷却させて、高度還元生成物を得、そのうち、モル比でWxO:Ca=1:2.2である。
高度還元生成物を密閉反応釜に入れ、塩酸を浸出液として高度還元生成物に対し浸出を行い、浸出温度は25℃であり、浸出時間は15分であり、ろ過液及びろ過残渣を得、ろ過液を除去し、ろ過残渣を動的洗浄方式で処理し、30℃で24時間真空乾燥して、低酸素のタングステン粉末を得、そのうち、塩酸のモル濃度は2mol/Lであり、希塩酸と高度還元生成物の添加量は、反応理論に必要な量に比べて、過剰の10%配合比の塩酸が必要であり、
酸化タングステン粉末をオーブン内に入れ、100〜150℃で24時間乾燥して、乾燥した酸化タングステン粉末を得、乾燥した酸化タングステン粉末とマグネシウム粉末をモル比WO3:Mg=1:0.8で混合し、混合材料を得、混合材料を60MPaでプレスして、ブロック状のブランク材料を得、自己伝播反応炉に加えて、部分点火方式で自己伝播反応を誘導し、温度を650℃に制御し、冷却した後、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を得、そのうち、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物は非化学量論比の低次・高融点金属酸化物の混合物であり、xは0.2〜1である。
MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を密閉反応釜に入れ、塩酸を浸出液として中間生成物に対し浸出を行い、浸出温度は25℃であり、浸出時間は60分であり、浸出液及び浸出生成物を得、浸出液を除去し、浸出生成物を動的洗浄方式で処理し、30℃で24時間真空乾燥して、低次・高融点金属の酸化物WxO前駆体を得、そのうち、塩酸のモル濃度は6mol/Lであり、希塩酸及び中間生成物の添加量は、反応理論に必要な量に比べて、過剰の10%配合比の塩酸が必要である。
低次・高融点金属の酸化物WxO前駆体をカルシウム粉末と均一に混合し、15MPaでプレスして、ブロック状のブランク材料を得、ブロック状のブランク材料を真空還元炉に入れ、真空度≦10Paの条件下で1100℃まで加熱昇温し、二次・高度還元を2時間行い、二次・高度還元した後、ブロックブランクを得、ブロックブランクを炉と一緒に冷却させて、高度還元生成物を得、そのうち、モル比でWxO:Ca=1:3である。
高度還元生成物を密閉反応釜に入れ、塩酸を浸出液として高度還元生成物に対し浸出を行い、浸出温度は20℃であり、浸出時間は30分であり、ろ過液及びろ過残渣を得、ろ過液を除去し、ろ過残渣を動的洗浄方式で処理し、25℃で24時間真空乾燥し、低酸素のタングステン粉末を得、そのうち、塩酸のモル濃度は1mol/Lであり、希塩酸と高度還元生成物の添加量は、反応理論に必要な量に比べて、過剰の30%配合比の塩酸が必要である。
多段・高度還元による高融点金属粉末の製造方法は、以下のステップに従って行われる。
酸化モリブデン粉末をオーブン内に入れ、100〜150℃で24時間乾燥して、乾燥した酸化モリブデン粉末を得、乾燥した酸化モリブデン粉末とマグネシウム粉末をモル比MoO3:Mg=1:1.1で混合し、混合材料を得、混合材料を20MPaでプレスして、ブロック状のブランク材料を得、自己伝播反応炉に加えて、部分点火方式で自己伝播反応を誘導し、温度を550℃に制御し、冷却した後、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を得、そのうち、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物は非化学量論比の低次・高融点金属酸化物の混合物であり、xは0.2〜1である。
MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を密閉反応釜に入れ、塩酸を浸出液として中間生成物に対し浸出を行い、浸出温度は25℃であり、浸出時間は90分であり、浸出液及び浸出生成物を得、浸出液を除去し、浸出生成物を動的洗浄方式で処理し、30℃で24時間真空乾燥して、低次・高融点金属の酸化物MoxO前駆体を得、そのうち、塩酸のモル濃度は4mol/Lであり、希塩酸及び中間生成物の添加量は、反応理論に必要な量に比べて、過剰の10%配合比の塩酸が必要である。
低次・高融点金属の酸化物MoxO前駆体をカルシウム粉末と均一に混合し、5MPaでプレスして、ブロック状のブランク材料を得、ブロック状のブランク材料を真空還元炉に入れ、真空度≦10Paの条件下で900℃まで加熱昇温し、二次・高度還元を3時間行い、二次・高度還元した後、ブロックブランクを得、ブロックブランクを炉と一緒に冷却させて、高度還元生成物を得、そのうち、モル比でMoxO:Ca=1:2.4である。
高度還元生成物を密閉反応釜に入れ、塩酸を浸出液として高度還元生成物に対し浸出を行い、浸出温度は30℃であり、浸出時間は20分であり、ろ過液及びろ過残渣を得、ろ過液を除去し、ろ過残渣を動的洗浄方式で処理し、25℃で24時間真空乾燥し、低酸素のモリブデン粉末を得、そのうち、塩酸のモル濃度は2mol/Lであり、希塩酸と高度還元生成物の添加量は、反応理論に必要な量に比べて、過剰の5〜30%配合比の塩酸が必要である。
多段・高度還元による高融点金属粉末の製造方法は、以下のステップに従って行われる。
MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を密閉反応釜に入れ、塩酸を浸出液として中間生成物に対し浸出を行い、浸出温度は25℃であり、浸出時間は100分であり、浸出液及び浸出生成物を得、浸出液を除去し、浸出生成物を動的洗浄方式で処理し、20℃で24時間真空乾燥して、低次・高融点金属の酸化物MoxO前駆体を得、そのうち、塩酸のモル濃度は2mol/Lであり、希塩酸及び中間生成物の添加量は、反応理論に必要な量に比べて、過剰の10%配合比の塩酸が必要である。
低次・高融点金属の酸化物MoxO前駆体をカルシウム粉末と均一に混合し、15MPaでプレスして、ブロック状のブランク材料を得、ブロック状のブランク材料を真空還元炉に入れ、真空度≦10Paの条件下で1000℃まで加熱昇温し、二次・高度還元を2時間行い、二次・高度還元した後、ブロックブランクを得、ブロックブランクを炉と一緒に冷却させて、高度還元生成物を得、そのうち、モル比でMoxO:Ca=1:2である。
高度還元生成物を密閉反応釜に入れ、塩酸を浸出液として高度還元生成物に対し浸出を行い、浸出温度は20〜30℃であり、浸出時間は30分であり、ろ過液及びろ過残渣を得、ろ過液を除去し、浸出生成物を動的洗浄方式で処理し、25℃で24時間真空乾燥し、低酸素のモリブデン粉末を得、そのうち、塩酸のモル濃度は1mol/Lであり、希塩酸と高度還元生成物の添加量は、反応理論に必要な量に比べて、過剰の5〜30%配合比の塩酸が必要である。
多段・高度還元による高融点金属粉末の製造方法は、以下のステップに従って行われる。
酸化モリブデン粉末をオーブン内に入れ、100〜150℃で24時間乾燥して、乾燥した酸化モリブデン粉末を得、乾燥した酸化モリブデン粉末とマグネシウム粉末をモル比MoO3:Mg=1:1で混合し、混合材料を得、混合材料を30MPaでプレスして、ブロック状のブランク材料を得、自己伝播反応炉に加えて、部分点火方式で自己伝播反応を誘導し、温度を520℃に制御し、冷却した後、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を得、そのうち、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物は非化学量論比の低次・高融点金属酸化物の混合物であり、xは0.2〜1である。
MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を密閉反応釜に入れ、塩酸を浸出液として中間生成物に対し浸出を行い、浸出温度は30℃であり、浸出時間は120分であり、浸出液及び浸出生成物を得、浸出液を除去し、浸出生成物を動的洗浄方式で処理し、20℃で24時間真空乾燥して、低次・高融点金属の酸化物MoxO前駆体を得、そのうち、塩酸のモル濃度は1mol/Lであり、希塩酸及び中間生成物の添加量は、反応理論に必要な量に比べて、過剰の35%配合比の塩酸が必要である。
低次・高融点金属の酸化物MoxO前駆体をカルシウム粉末と均一に混合し、5MPaでプレスして、ブロック状のブランク材料を得、ブロック状のブランク材料を真空還元炉に入れ、真空度≦10Paの条件下で1100℃まで加熱昇温し、二次・高度還元を2時間行い、二次・高度還元した後、ブロックブランクを得、ブロックブランクを炉と一緒に冷却させて、高度還元生成物を得、そのうち、モル比でMoxO:Ca=1:3である。
高度還元生成物を密閉反応釜に入れ、塩酸を浸出液として高度還元生成物に対し浸出を行い、浸出温度は20〜30℃であり、浸出時間は15分であり、ろ過液及びろ過残渣を得、ろ過液を除去し、ろ過残渣を動的洗浄方式で処理し、25℃で24時間真空乾燥し、低酸素のモリブデン粉末を得、そのうち、塩酸のモル濃度は3mol/Lであり、希塩酸と高度還元生成物の添加量は、反応理論に必要な量に比べて、過剰の5〜30%配合比の塩酸が必要である。
多段・高度還元による高融点金属粉末の製造方法は、以下のステップに従って行われる。
酸化タンタル粉末をオーブン内に入れ、100〜150℃で24時間乾燥し、乾燥した酸化タンタル粉末を得、乾燥した酸化タンタル粉末とマグネシウム粉末をモル比Ta2O5:Mg=1:3で混合し、混合材料を得、混合材料を20MPaでプレスして、ブロック状のブランク材料を得、自己伝播反応炉に加えて、部分点火方式で自己伝播反応を誘導し、温度を720℃に制御し、冷却した後、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を得、そのうち、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物は非化学量論比の低次・高融点金属酸化物の混合物であり、xは0.2〜1である。
MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を密閉反応釜に入れ、塩酸を浸出液として中間生成物に対し浸出を行い、浸出温度は20℃であり、浸出時間は60分であり、浸出液及び浸出生成物を得、浸出液を除去し、浸出生成物を動的洗浄方式で処理し、20℃で24時間真空乾燥して、低次・高融点金属の酸化物TaxO前駆体を得、そのうち、塩酸のモル濃度は6mol/Lであり、希塩酸及び中間生成物の添加量は、反応理論に必要な量に比べて、過剰の15%配合比の塩酸が必要であり、
低次・高融点金属の酸化物TaxO前駆体をカルシウム粉末と均一に混合し、20MPaでプレスして、ブロック状のブランク材料を得、ブロック状のブランク材料を真空還元炉に入れ、真空度≦10Paの条件下で800℃まで加熱昇温し、二次・高度還元を3時間行い、二次・高度還元した後、ブロックブランクを得、ブロックブランクを炉と一緒に冷却させて、高度還元生成物を得、そのうち、モル比でTaxO:Ca=1:1.5である。
高度還元生成物を密閉反応釜に入れ、塩酸を浸出液として高度還元生成物に対し浸出を行い、浸出温度は30℃であり、浸出時間は15分であり、ろ過液及びろ過残渣を得、ろ過液を除去し、ろ過残渣を動的洗浄方式で処理し、25℃で24時間真空乾燥し、低酸素のタンタル粉末を得、そのうち、塩酸のモル濃度は3mol/Lであり、希塩酸と高度還元生成物の添加量は、反応理論に必要な量に比べて、過剰の25%配合比の塩酸が必要であり、
多段・高度還元による高融点金属粉末の製造方法は、以下のステップに従って行われる。
酸化タンタル粉末をオーブン内に入れ、100〜150℃で24時間乾燥し、乾燥した酸化タンタル粉末を得、乾燥した酸化タンタル粉末とマグネシウム粉末をモル比Ta2O5:Mg=1:3.2で混合し、混合材料を得、混合材料を40MPaでプレスして、ブロック状のブランク材料を得、自己伝播反応炉に加えて、部分点火方式で自己伝播反応を誘導し、温度を600℃に制御し、冷却した後、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を得、そのうち、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物は非化学量論比の低次・高融点金属酸化物の混合物であり、xは0.2〜1である。
MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を密閉反応釜に入れ、塩酸を浸出液として中間生成物に対し浸出を行い、浸出温度は24℃であり、浸出時間は90分であり、浸出液及び浸出生成物を得、浸出液を除去し、浸出生成物を動的洗浄方式で処理し、20℃で24時間真空乾燥して、低次・高融点金属の酸化物TaxO前駆体を得、そのうち、塩酸のモル濃度は3mol/Lであり、希塩酸及び中間生成物の添加量は、反応理論に必要な量に比べて、過剰の15%配合比の塩酸が必要である。
低次・高融点金属の酸化物TaxO前駆体をカルシウム粉末と均一に混合し、10MPaでプレスして、ブロック状のブランク材料を得、ブロック状のブランク材料を真空還元炉に入れ、真空度≦10Paの条件下で900℃まで加熱昇温し、二次・高度還元を3時間行い、二次・高度還元した後、ブロックブランクを得、ブロックブランクを炉と一緒に冷却させて、高度還元生成物を得、そのうち、モル比でTaxO:Ca=1:2である。
高度還元生成物を密閉反応釜に入れ、塩酸を浸出液として高度還元生成物に対し浸出を行い、浸出温度は20℃であり、浸出時間は30分であり、ろ過液及びろ過残渣を得、ろ過液を除去し、ろ過残渣を動的洗浄方式で処理し、20℃で24時間真空乾燥し、低酸素のタンタル粉末を得、そのうち、塩酸のモル濃度は2mol/Lであり、希塩酸と高度還元生成物の添加量は、反応理論に必要な量に比べて、過剰の20%配合比の塩酸が必要である。
多段・高度還元による高融点金属粉末の製造方法は、以下のステップに従って行われる。
酸化タンタル粉末をオーブン内に入れ、100〜150℃で24時間乾燥し、乾燥した酸化タンタル粉末を得、乾燥した酸化タンタル粉末とマグネシウム粉末をモル比Ta2O5:Mg=1:2.8で混合し、混合材料を得、混合材料を20MPaでプレスして、ブロック状のブランク材料を得、自己伝播反応炉に加えて、部分点火方式で自己伝播反応を誘導し、温度を650℃に制御し、冷却した後、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を得、そのうち、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物は非化学量論比の低次・高融点金属酸化物の混合物であり、xは0.2〜1である。
MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を密閉反応釜に入れ、塩酸を浸出液として中間生成物に対し浸出を行い、浸出温度は24℃であり、浸出時間は120分であり、浸出液及び浸出生成物を得、浸出液を除去し、浸出生成物を動的洗浄方式で処理し、20℃で24時間真空乾燥して、低次・高融点金属の酸化物TaxO前駆体を得、そのうち、塩酸のモル濃度は1mol/Lであり、希塩酸及び中間生成物の添加量は、反応理論に必要な量に比べて、過剰の30%配合比の塩酸が必要であり、
低次・高融点金属の酸化物TaxO前駆体をカルシウム粉末と均一に混合し、5MPaでプレスして、ブロック状のブランク材料を得、ブロック状のブランク材料を真空還元炉に入れ、真空度≦10Paの条件下で1000℃まで加熱昇温し、二次・高度還元を2時間行い、二次・高度還元した後、ブロックブランクを得、ブロックブランクを炉と一緒に冷却させて、高度還元生成物を得、そのうち、モル比でTaxO:Ca=1:2.5である。
高度還元生成物を密閉反応釜に入れ、塩酸を浸出液として高度還元生成物に対し浸出を行い、浸出温度は20℃であり、浸出時間は30分であり、ろ過液及びろ過残渣を得、ろ過液を除去し、ろ過残渣を動的洗浄方式で処理し、20℃で24時間真空乾燥し、低酸素のタンタル粉末を得、そのうち、塩酸のモル濃度は6mol/Lであり、希塩酸と高度還元生成物の添加量は、反応理論に必要な量に比べて、過剰の5%配合比の塩酸が必要であり、
多段・高度還元による高融点金属粉末の製造方法は、以下のステップに従って行われる。
酸化ニオブ粉末をオーブン内に入れ、100〜150℃で24時間乾燥し、乾燥した酸化ニオブ粉末を得、乾燥した酸化ニオブ粉末とマグネシウム粉末をモル比Nb2O5:Mg=1:3で混合し、混合材料を得、混合材料を10MPaでプレスして、ブロック状のブランク材料を得、自己伝播反応炉に加えて、部分点火方式で自己伝播反応を誘導し、温度を580℃に制御し、冷却した後、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を得、そのうち、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物は非化学量論比の低次・高融点金属酸化物の混合物であり、xは0.2〜1である。
MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を密閉反応釜に入れ、塩酸を浸出液として中間生成物に対し浸出を行い、浸出温度は24℃であり、浸出時間は90分であり、浸出液及び浸出生成物を得、浸出液を除去し、浸出生成物を動的洗浄方式で処理し、20℃で24時間真空乾燥して、低次・高融点金属の酸化物NbxO前駆体を得、そのうち、塩酸のモル濃度は3mol/Lであり、希塩酸及び中間生成物の添加量は、反応理論に必要な量に比べて、過剰の30%配合比の塩酸が必要である。
低次・高融点金属の酸化物NbxO前駆体をカルシウム粉末と均一に混合し、5MPaでプレスして、ブロック状のブランク材料を得、ブロック状のブランク材料を真空還元炉に入れ、真空度≦10Paの条件下で900℃まで加熱昇温し、二次・高度還元を3時間行い、二次・高度還元した後、ブロックブランクを得、ブロックブランクを炉と一緒に冷却させて、高度還元生成物を得、そのうち、モル比でNbxO:Ca=1:2である。
高度還元生成物を密閉反応釜に入れ、塩酸を浸出液として高度還元生成物に対し浸出を行い、浸出温度は20℃であり、浸出時間は90分であり、ろ過液及びろ過残渣を得、ろ過液を除去し、ろ過残渣を動的洗浄方式で処理し、25℃で24時間真空乾燥し、低酸素のニオブ粉末を得、そのうち、塩酸のモル濃度は2mol/Lであり、希塩酸と高度還元生成物の添加量は、反応理論に必要な量に比べて、過剰の20%配合比の塩酸が必要である。
多段・高度還元による高融点金属粉末の製造方法は、以下のステップに従って行われる。
酸化ニオブ粉末をオーブン内に入れ、100〜150℃で24時間乾燥し、乾燥した酸化ニオブ粉末を得、乾燥した酸化ニオブ粉末とマグネシウム粉末をモル比Nb2O5:Mg=1:3.1で混合し、混合材料を得、混合材料を50MPaでプレスして、ブロック状のブランク材料を得、自己伝播反応炉に加えて、部分点火方式で自己伝播反応を誘導し、温度を700℃に制御し、冷却した後、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を得、そのうち、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物は非化学量論比の低次・高融点金属酸化物の混合物であり、xは0.2〜1である。
MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を密閉反応釜に入れ、塩酸を浸出液として中間生成物に対し浸出を行い、浸出温度は24℃であり、浸出時間は80分であり、浸出液及び浸出生成物を得、浸出液を除去し、浸出生成物を動的洗浄方式で処理し、20℃で24時間真空乾燥して、低次・高融点金属の酸化物NbxO前駆体を得、そのうち、塩酸のモル濃度は4mol/Lであり、希塩酸及び中間生成物の添加量は、反応理論に必要な量に比べて、過剰の30%配合比の塩酸が必要である。
低次・高融点金属の酸化物NbxO前駆体をカルシウム粉末と均一に混合し、5MPaでプレスして、ブロック状のブランク材料を得、ブロック状のブランク材料を真空還元炉に入れ、真空度≦10Paの条件下で900℃まで加熱昇温し、二次・高度還元を3時間行い、二次・高度還元した後、ブロックブランクを得、ブロックブランクを炉と一緒に冷却させて、高度還元生成物を得、そのうち、モル比でNbxO:Ca=1:3である。
高度還元生成物を密閉反応釜に入れ、塩酸を浸出液として高度還元生成物に対し浸出を行い、浸出温度は30℃であり、浸出時間は15分であり、ろ過液及びろ過残渣を得、ろ過液を除去し、ろ過残渣を動的洗浄方式で処理し、20℃で24時間真空乾燥し、低酸素のニオブ粉末を得、そのうち、塩酸のモル濃度は3mol/Lであり、希塩酸と高度還元生成物の添加量は、反応理論に必要な量に比べて、過剰の20%配合比の塩酸が必要である。
多段・高度還元による高融点金属粉末の製造方法は、以下のステップに従って行われる。
酸化バナジウム粉末をオーブン内に入れ、100〜150℃で24時間乾燥し、乾燥した酸化バナジウム粉末を得、乾燥した酸化バナジウム粉末とマグネシウム粉末をモル比V2O5:Mg=1:3で混合し、混合材料を得、混合材料を10MPaでプレスして、ブロック状のブランク材料を得、自己伝播反応炉に加えて、部分点火方式で自己伝播反応を誘導し、温度を500℃に制御し、冷却した後、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を得、そのうち、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物は非化学量論比の低次・高融点金属酸化物の混合物であり、xは0.2〜1である。
MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を密閉反応釜に入れ、塩酸を浸出液として中間生成物に対し浸出を行い、浸出温度は24℃であり、浸出時間は120分であり、浸出液及び浸出生成物を得、浸出液を除去し、浸出生成物を動的洗浄方式で処理し、25℃で24時間真空乾燥し、低次・高融点金属の酸化物VxO前駆体を得、そのうち、塩酸のモル濃度は1mol/Lであり、希塩酸及び中間生成物の添加量は、反応理論に必要な量に比べて、過剰の40%配合比の塩酸が必要である。
低次・高融点金属の酸化物VxO前駆体をカルシウム粉末と均一に混合し、5MPaでプレスして、ブロック状のブランク材料を得、ブロック状のブランク材料を真空還元炉に入れ、真空度≦10Paの条件下で1000℃まで加熱昇温し、二次・高度還元を3時間行い、二次・高度還元した後、ブロックブランクを得、ブロックブランクを炉と一緒に冷却させて、高度還元生成物を得、そのうち、モル比でVxO:Ca=1:2.2である。
高度還元生成物を密閉反応釜に入れ、塩酸を浸出液として高度還元生成物に対し浸出を行い、浸出温度は30℃であり、浸出時間は30分であり、ろ過液及びろ過残渣を得、ろ過液を除去し、ろ過残渣を動的洗浄方式で処理し、20℃で24時間真空乾燥し、低酸素のバナジウム粉末を得、そのうち、塩酸のモル濃度は1mol/Lであり、希塩酸と高度還元生成物の添加量は、反応理論に必要な量に比べて、過剰の30%配合比の塩酸が必要である。
多段・高度還元による高融点金属粉末の製造方法は、以下のステップに従って行われる。
酸化バナジウム粉末をオーブン内に入れ、100〜150℃で24時間乾燥し、乾燥した酸化バナジウム粉末を得、乾燥した酸化バナジウム粉末とマグネシウム粉末をモル比V2O5:Mg=1:2.7で混合し、混合材料を得、混合材料を30MPaでプレスして、ブロック状のブランク材料を得、自己伝播反応炉に加えて、部分点火方式で自己伝播反応を誘導し、温度を750℃に制御し、冷却した後、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を得、そのうち、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物は非化学量論比の低次・高融点金属酸化物の混合物であり、xは0.2〜1である。
MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を密閉反応釜に入れ、塩酸を浸出液として中間生成物に対し浸出を行い、浸出温度は25℃であり、浸出時間は90分であり、浸出液及び浸出生成物を得、浸出液を除去し、浸出生成物を動的洗浄方式で処理し、20℃で24時間真空乾燥して、低次・高融点金属の酸化物VxO前駆体を得、そのうち、塩酸のモル濃度は3mol/Lであり、希塩酸及び中間生成物の添加量は、反応理論に必要な量に比べて、過剰の40%配合比の塩酸が必要である。
低次・高融点金属の酸化物VxO前駆体をカルシウム粉末と均一に混合し、5MPaでプレスして、ブロック状のブランク材料を得、ブロック状のブランク材料を真空還元炉に入れ、真空度≦10Paの条件下で900℃まで加熱昇温し、二次・高度還元を3時間行い、二次・高度還元した後、ブロックブランクを得、ブロックブランクを炉と一緒に冷却させて、高度還元生成物を得、そのうち、モル比でVxO:Ca=1:2である。
高度還元生成物を密閉反応釜に入れ、塩酸を浸出液として高度還元生成物に対し浸出を行い、浸出温度は30℃であり、浸出時間は20分であり、ろ過液及びろ過残渣を得、ろ過液を除去し、ろ過残渣を動的洗浄方式で処理し、25℃で24時間真空乾燥し、低酸素のバナジウム粉末を得、そのうち、塩酸のモル濃度は2mol/Lであり、希塩酸と高度還元生成物の添加量は、反応理論に必要な量に比べて、過剰の30%配合比の塩酸が必要であり、
多段・高度還元による高融点金属粉末の製造方法は、以下のステップに従って行われる。
酸化バナジウム粉末をオーブン内に入れ、100〜150℃で24時間乾燥し、乾燥した酸化バナジウム粉末を得、乾燥した酸化バナジウム粉末とマグネシウム粉末をモル比V2O5:Mg=1:2.8で混合し、混合材料を得、混合材料を50MPaでプレスして、ブロック状のブランク材料を得、自己伝播反応炉に加えて、部分点火方式で自己伝播反応を誘導し、温度を550℃に制御し、冷却した後、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を得、そのうち、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物は非化学量論比の低次・高融点金属酸化物の混合物であり、xは0.2〜1である。
MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を密閉反応釜に入れ、塩酸を浸出液として中間生成物に対し浸出を行い、浸出温度は25℃であり、浸出時間は80分であり、浸出液及び浸出生成物を得、浸出液を除去し、浸出生成物を動的洗浄方式で処理し、20℃で24時間真空乾燥して、低次・高融点金属の酸化物VxO前駆体を得、そのうち、塩酸のモル濃度は4mol/Lであり、希塩酸及び中間生成物の添加量は、反応理論に必要な量に比べて、過剰の40%配合比の塩酸が必要である。
低次・高融点金属の酸化物VxO前駆体をカルシウム粉末と均一に混合し、5MPaでプレスして、ブロック状のブランク材料を得、ブロック状のブランク材料を真空還元炉に入れ、真空度≦10Paの条件下で900℃まで加熱昇温し、二次・高度還元を3時間行い、二次・高度還元した後、ブロックブランクを得、ブロックブランクを炉と一緒に冷却させて、高度還元生成物を得、そのうち、モル比でVxO:Ca=1:3である。
高度還元生成物を密閉反応釜に入れ、塩酸を浸出液として高度還元生成物に対し浸出を行い、浸出温度は30℃であり、浸出時間は15分であり、ろ過液及びろ過残渣を得、ろ過液を除去し、ろ過残渣を動的洗浄方式で処理し、25℃で24時間真空乾燥し、低酸素のバナジウム粉末を得、そのうち、塩酸のモル濃度は3mol/Lであり、希塩酸と高度還元生成物の添加量は、反応理論に必要な量に比べて、過剰の30%配合比の塩酸が必要である。
多段・高度還元による高融点金属粉末の製造方法は、以下のステップに従って行われる。
酸化ハフニウム粉末をオーブン内に入れ、100〜150℃で24時間乾燥し、乾燥した酸化ハフニウム粉末を得、乾燥した酸化ハフニウム粉末とマグネシウム粉末をモル比HfO2:Mg=1:1で混合し、混合材料を得、混合材料を30MPaでプレスして、ブロック状のブランク材料を得、自己伝播反応炉に加えて、部分点火方式で自己伝播反応を誘導し、温度を600℃に制御し、冷却した後、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を得、そのうち、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物は非化学量論比の低次・高融点金属酸化物の混合物であり、xは0.2〜1である。
MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を密閉反応釜に入れ、塩酸を浸出液として中間生成物に対し浸出を行い、浸出温度は20℃であり、浸出時間は180分であり、浸出液及び浸出生成物を得、浸出液を除去し、浸出生成物を動的洗浄方式で処理し、20℃で24時間真空乾燥して、低次・高融点金属の酸化物HfxO前駆体を得、そのうち、塩酸のモル濃度は1mol/Lであり、希塩酸及び中間生成物の添加量は、反応理論に必要な量に比べて、過剰の40%配合比の塩酸が必要である。
低次・高融点金属の酸化物HfxO前駆体をカルシウム粉末と均一に混合し、10MPaでプレスして、ブロック状のブランク材料を得、ブロック状のブランク材料を真空還元炉に入れ、真空度≦10Paの条件下で1000℃まで加熱昇温し、二次・高度還元を2時間行い、二次・高度還元した後、ブロックブランクを得、ブロックブランクを炉と一緒に冷却させて、高度還元生成物を得、そのうち、モル比でHfxO:Ca=1:1.6である。
高度還元生成物を密閉反応釜に入れ、塩酸を浸出液として高度還元生成物に対し浸出を行い、浸出温度は30℃であり、浸出時間は30分であり、ろ過液及びろ過残渣を得、ろ過液を除去し、ろ過残渣を動的洗浄方式で処理し、25℃で24時間真空乾燥し、低酸素のハフニウム粉末を得、そのうち、塩酸のモル濃度は1mol/Lであり、希塩酸と高度還元生成物の添加量は、反応理論に必要な量に比べて、過剰の30%配合比の塩酸が必要である。
多段・高度還元による高融点金属粉末の製造方法は、以下のステップに従って行われる。
酸化ハフニウム粉末をオーブン内に入れ、100〜150℃で24時間乾燥し、乾燥した酸化ハフニウム粉末を得、乾燥した酸化ハフニウム粉末とマグネシウム粉末をモル比HfO2:Mg=1:1.2で混合し、混合材料を得、混合材料を10MPaでプレスして、ブロック状のブランク材料を得、自己伝播反応炉に加えて、部分点火方式で自己伝播反応を誘導し、温度を600℃に制御し、冷却した後、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を得、そのうち、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物は非化学量論比の低次・高融点金属酸化物の混合物であり、xは0.2〜1である。
MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を密閉反応釜に入れ、塩酸を浸出液として中間生成物に対し浸出を行い、浸出温度は20℃であり、浸出時間は120分であり、浸出液及び浸出生成物を得、浸出液を除去し、浸出生成物を動的洗浄方式で処理し、24℃で24時間真空乾燥し、低次・高融点金属の酸化物HfxO前駆体を得、そのうち、塩酸のモル濃度は2mol/Lであり、希塩酸及び中間生成物の添加量は、反応理論に必要な量に比べて、過剰の40%配合比の塩酸が必要であり、
低次・高融点金属の酸化物HfxO前駆体をカルシウム粉末と均一に混合し、15MPaでプレスして、ブロック状のブランク材料を得、ブロック状のブランク材料を真空還元炉に入れ、真空度≦10Paの条件下で900℃まで加熱昇温し、二次・高度還元を3時間行い、二次・高度還元した後、ブロックブランクを得、ブロックブランクを炉と一緒に冷却させて、高度還元生成物を得、そのうち、モル比でHfxO:Ca=1:2である。
高度還元生成物を密閉反応釜に入れ、塩酸を浸出液として高度還元生成物に対し浸出を行い、浸出温度は30℃であり、浸出時間は20分であり、ろ過液及びろ過残渣を得、ろ過液を除去し、ろ過残渣を動的洗浄方式で処理し、30℃で24時間真空乾燥して、低酸素のハフニウム粉末を得、そのうち、塩酸のモル濃度は2mol/Lであり、希塩酸と高度還元生成物の添加量は、反応理論に必要な量に比べて、過剰の20%配合比の塩酸が必要である。
多段・高度還元による高融点金属粉末の製造方法は、以下のステップに従って行われる。
酸化ハフニウム粉末をオーブン内に入れ、100〜150℃で24時間乾燥し、乾燥した酸化ハフニウム粉末を得、乾燥した酸化ハフニウム粉末とマグネシウム粉末をモル比HfO2:Mg=1:0.9で混合し、混合材料を得、混合材料を50MPaでプレスして、ブロック状のブランク材料を得、自己伝播反応炉に加えて、部分点火方式で自己伝播反応を誘導し、温度を650℃に制御し、冷却した後、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を得、そのうち、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物は非化学量論比の低次・高融点金属酸化物の混合物であり、xは0.2〜1である。
MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を密閉反応釜に入れ、塩酸を浸出液として中間生成物に対し浸出を行い、浸出温度は30℃であり、浸出時間は60分であり、浸出液及び浸出生成物を得、浸出液を除去し、浸出生成物を動的洗浄方式で処理し、20℃で24時間真空乾燥して、低次・高融点金属の酸化物HfxO前駆体を得、そのうち、塩酸のモル濃度は6mol/Lであり、希塩酸及び中間生成物の添加量は、反応理論に必要な量に比べて、過剰の10%配合比の塩酸が必要である。
低次・高融点金属の酸化物HfxO前駆体をカルシウム粉末と均一に混合し、5MPaでプレスして、ブロック状のブランク材料を得、ブロック状のブランク材料を真空還元炉に入れ、真空度≦10Paの条件下で1200℃まで加熱昇温し、二次・高度還元を1時間行い、二次・高度還元した後、ブロックブランクを得、ブロックブランクを炉と一緒に冷却させて、高度還元生成物を得、そのうち、モル比でHfxO:Ca=1:1.8である。
多段・高度還元による高融点金属粉末の製造方法は、以下のステップに従って行われる。
酸化ジルコニウム粉末をオーブン内に入れ、100〜150℃で24時間乾燥し、乾燥した酸化ジルコニウム粉末を得、乾燥した酸化ジルコニウム粉末とマグネシウム粉末をモル比ZrO2:Mg=1:1で混合し、混合材料を得、混合材料を30MPaでプレスして、ブロック状のブランク材料を得、自己伝播反応炉に加えて、部分点火方式で自己伝播反応を誘導し、温度を650℃に制御し、冷却した後、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を得、そのうち、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物は非化学量論比の低次・高融点金属酸化物の混合物であり、xは0.2〜1である。
MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を密閉反応釜に入れ、塩酸を浸出液として中間生成物に対し浸出を行い、浸出温度は30℃であり、浸出時間は180分であり、浸出液及び浸出生成物を得、浸出液を除去し、浸出生成物を動的洗浄方式で処理し、22℃で24時間真空乾燥し、低次・高融点金属の酸化物ZrxO前駆体を得、そのうち、塩酸のモル濃度は1mol/Lであり、希塩酸及び中間生成物の添加量は、反応理論に必要な量に比べて、過剰の40%配合比の塩酸が必要である。
低次・高融点金属の酸化物ZrxO前駆体をカルシウム粉末と均一に混合し、10MPaでプレスして、ブロック状のブランク材料を得、ブロック状のブランク材料を真空還元炉に入れ、真空度≦10Paの条件下で1000℃まで加熱昇温し、二次・高度還元を2時間行い、二次・高度還元した後、ブロックブランクを得、ブロックブランクを炉と一緒に冷却させて、高度還元生成物を得、そのうち、モル比でZrxO:Ca=1:1.5である。
高度還元生成物を密閉反応釜に入れ、塩酸を浸出液として高度還元生成物に対し浸出を行い、浸出温度は30℃であり、浸出時間は30分であり、ろ過液及びろ過残渣を得、ろ過液を除去し、ろ過残渣を動的洗浄方式で処理し、24℃で24時間真空乾燥し、低酸素のジルコニウム粉末を得、そのうち、塩酸のモル濃度は1mol/Lであり、希塩酸と高度還元生成物の添加量は、反応理論に必要な量に比べて、過剰の30%配合比の塩酸が必要である。
多段・高度還元による高融点金属粉末の製造方法は、以下のステップに従って行われる。
酸化ジルコニウム粉末をオーブン内に入れ、100〜150℃で24時間乾燥し、乾燥した酸化ジルコニウム粉末を得、乾燥した酸化ジルコニウム粉末とマグネシウム粉末をモル比ZrO2:Mg=1:1.2で混合し、混合材料を得、混合材料を自己伝播反応炉に直接に加えて、全体加熱方式で自己伝播反応を誘導し、温度を550℃に制御し、冷却した後、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を得、そのうち、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物は非化学量論比の低次・高融点金属酸化物の混合物であり、xは0.2〜1である。
MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を密閉反応釜に入れ、塩酸を浸出液として中間生成物に対し浸出を行い、浸出温度は30℃であり、浸出時間は120分であり、浸出液及び浸出生成物を得、浸出液を除去し、浸出生成物を動的洗浄方式で処理し、20℃で24時間真空乾燥して、低次・高融点金属の酸化物ZrxO前駆体を得、そのうち、塩酸のモル濃度は2mol/Lであり、希塩酸及び中間生成物の添加量は、反応理論に必要な量に比べて、過剰の26%配合比の塩酸が必要である。
低次・高融点金属の酸化物ZrxO前駆体をカルシウム粉末と均一に混合し、20MPaでプレスして、ブロック状のブランク材料を得、ブロック状のブランク材料を真空還元炉に入れ、真空度≦10Paの条件下で900℃まで加熱昇温し、二次・高度還元を3時間行い、二次・高度還元した後、ブロックブランクを得、ブロックブランクを炉と一緒に冷却させて、高度還元生成物を得、そのうち、モル比でZrxO:Ca=1:2である。
高度還元生成物を密閉反応釜に入れ、塩酸を浸出液として高度還元生成物に対し浸出を行い、浸出温度は30℃であり、浸出時間は20分であり、ろ過液及びろ過残渣を得、ろ過液を除去し、ろ過残渣を動的洗浄方式で処理し、22℃で24時間真空乾燥し、低酸素のジルコニウム粉末を得、そのうち、塩酸のモル濃度は2mol/Lであり、希塩酸と高度還元生成物の添加量は、反応理論に必要な量に比べて、過剰の15%配合比の塩酸が必要である。
多段・高度還元による高融点金属粉末の製造方法は、以下のステップに従って行われる。
酸化ジルコニウム粉末をオーブン内に入れ、100〜150℃で24時間乾燥し、乾燥した酸化ジルコニウム粉末を得、乾燥した酸化ジルコニウム粉末とマグネシウム粉末をモル比ZrO2:Mg=1:0.8で混合し、混合材料を得、混合材料を50MPaでプレスして、ブロック状のブランク材料を得、自己伝播反応炉に加えて、部分点火方式で自己伝播反応を誘導し、温度を570℃に制御し、冷却した後、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を得、そのうち、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物は非化学量論比の低次・高融点金属酸化物の混合物であり、xは0.2〜1である。
MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を密閉反応釜に入れ、塩酸を浸出液として中間生成物に対し浸出を行い、浸出温度は30℃であり、浸出時間は60分であり、浸出液及び浸出生成物を得、浸出液を除去し、浸出生成物を動的洗浄方式で処理し、30℃で24時間真空乾燥して、低次・高融点金属の酸化物ZrxO前駆体を得、そのうち、塩酸のモル濃度は6mol/Lであり、希塩酸及び中間生成物の添加量は、反応理論に必要な量に比べて、過剰の12%配合比の塩酸が必要である。
低次・高融点金属の酸化物ZrxO前駆体をカルシウム粉末と均一に混合し、5MPaでプレスして、ブロック状のブランク材料を得、ブロック状のブランク材料を真空還元炉に入れ、真空度≦10Paの条件下で1100℃まで加熱昇温し、二次・高度還元を2時間行い、二次・高度還元した後、ブロックブランクを得、ブロックブランクを炉と一緒に冷却させて、高度還元生成物を得、そのうち、モル比でZrxO:Ca=1:1.8である。
高度還元生成物を密閉反応釜に入れ、塩酸を浸出液として高度還元生成物に対し浸出を行い、浸出温度は30℃であり、浸出時間は15分であり、ろ過液及びろ過残渣を得、ろ過液を除去し、ろ過残渣を動的洗浄方式で処理し、24℃で24時間真空乾燥し、低酸素のジルコニウム粉末を得、そのうち、塩酸のモル濃度は3mol/Lであり、希塩酸と高度還元生成物の添加量は、反応理論に必要な量に比べて、過剰の25%配合比の塩酸が必要である。
多段・高度還元による高融点金属粉末の製造方法は、以下のステップに従って行われる。
酸化レニウム粉末をオーブン内に入れ、100〜150℃で24時間乾燥し、乾燥した酸化レニウム粉末を得、乾燥した酸化レニウム粉末とマグネシウム粉末をモル比Re2O7:Mg=1:3で混合し、混合材料を得、混合材料を40MPaでプレスして、ブロック状のブランク材料を得、自己伝播反応炉に加えて、部分点火方式で自己伝播反応を誘導し、温度を650℃に制御し、冷却した後、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を得、そのうち、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物は非化学量論比の低次・高融点金属酸化物の混合物であり、xは0.2〜1である。
MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を密閉反応釜に入れ、塩酸を浸出液として中間生成物に対し浸出を行い、浸出温度は30℃であり、浸出時間は180分であり、浸出液及び浸出生成物を得、浸出液を除去し、浸出生成物を動的洗浄方式で処理し、20℃で24時間真空乾燥して、低次・高融点金属の酸化物RexO前駆体を得、そのうち、塩酸のモル濃度は1mol/Lであり、希塩酸及び中間生成物の添加量は、反応理論に必要な量に比べて、過剰の12%配合比の塩酸が必要である。
低次・高融点金属の酸化物RexO前駆体をカルシウム粉末と均一に混合し、10MPaでプレスして、ブロック状のブランク材料を得、ブロック状のブランク材料を真空還元炉に入れ、真空度≦10Paの条件下で700℃まで加熱昇温し、二次・高度還元を6時間行い、二次・高度還元した後、ブロックブランクを得、ブロックブランクを炉と一緒に冷却させて、高度還元生成物を得、そのうち、モル比でRexO:Ca=1:1.5である。
高度還元生成物を密閉反応釜に入れ、塩酸を浸出液として高度還元生成物に対し浸出を行い、浸出温度は30℃であり、浸出時間は30分であり、ろ過液及びろ過残渣を得、ろ過液を除去し、ろ過残渣を動的洗浄方式で処理し、20℃で24時間真空乾燥し、低酸素のレニウム粉末を得、そのうち、塩酸のモル濃度は2mol/Lであり、希塩酸と高度還元生成物の添加量は、反応理論に必要な量に比べて、過剰の15%配合比の塩酸が必要である。
多段・高度還元による高融点金属粉末の製造方法は、以下のステップに従って行われる。
酸化レニウム粉末をオーブン内に入れ、100〜150℃で24時間乾燥し、乾燥した酸化レニウム粉末を得、乾燥した酸化レニウム粉末とマグネシウム粉末をモル比Re2O7:Mg=1:2.9で混合し、混合材料を得、混合材料を30MPaでプレスして、ブロック状のブランク材料を得、自己伝播反応炉に加えて、部分点火方式で自己伝播反応を誘導し、温度を650℃に制御し、冷却した後、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を得、そのうち、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物は非化学量論比の低次・高融点金属酸化物の混合物であり、xは0.2〜1である。
MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を密閉反応釜に入れ、塩酸を浸出液として中間生成物に対し浸出を行い、浸出温度は30℃であり、浸出時間は100分であり、浸出液及び浸出生成物を得、浸出液を除去し、浸出生成物を動的洗浄方式で処理し、30℃で24時間真空乾燥して、低次・高融点金属の酸化物RexO前駆体を得、そのうち、塩酸のモル濃度は4mol/Lであり、希塩酸及び中間生成物の添加量は、反応理論に必要な量に比べて、過剰の30%配合比の塩酸が必要である。
低次・高融点金属の酸化物RexO前駆体をカルシウム粉末と均一に混合し、2MPaでプレスして、ブロック状のブランク材料を得、ブロック状のブランク材料を真空還元炉に入れ、真空度≦10Paの条件下で900℃まで加熱昇温し、二次・高度還元を4時間行い、二次・高度還元した後、ブロックブランクを得、ブロックブランクを炉と一緒に冷却させて、高度還元生成物を得、そのうち、モル比でRexO:Ca=1:2である。
高度還元生成物を密閉反応釜に入れ、塩酸を浸出液として高度還元生成物に対し浸出を行い、浸出温度は30℃であり、浸出時間は30分であり、ろ過液及びろ過残渣を得、ろ過液を除去し、ろ過残渣を動的洗浄方式で処理し、26℃で24時間真空乾燥し、低酸素のレニウム粉末を得、そのうち、塩酸のモル濃度は2mol/Lであり、希塩酸と高度還元生成物の添加量は、反応理論に必要な量に比べて、過剰の25%配合比の塩酸が必要である。
多段・高度還元による高融点金属粉末の製造方法は、以下のステップに従って行われる。
酸化レニウム粉末をオーブン内に入れ、100〜150℃で24時間乾燥し、乾燥した酸化レニウム粉末を得、乾燥した酸化レニウム粉末とマグネシウム粉末をモル比Re2O7:Mg=1:3.3で混合し、混合材料を得、混合材料を40MPaでプレスして、ブロック状のブランク材料を得、自己伝播反応炉に加えて、部分点火方式で自己伝播反応を誘導し、温度を650℃に制御し、冷却した後、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を得、そのうち、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物は非化学量論比の低次・高融点金属酸化物の混合物であり、xは0.2〜1である。
MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を密閉反応釜に入れ、塩酸を浸出液として中間生成物に対し浸出を行い、浸出温度は30℃であり、浸出時間は80分であり、浸出液及び浸出生成物を得、浸出液を除去し、浸出生成物を動的洗浄方式で処理し、30℃で24時間真空乾燥して、低次・高融点金属の酸化物RexO前駆体を得、そのうち、塩酸のモル濃度は6mol/Lであり、希塩酸及び中間生成物の添加量は、反応理論に必要な量に比べて、過剰の12%配合比の塩酸が必要である。
Claims (8)
- 多段・高度還元による高融点金属粉末の製造方法であって、
ステップ1、自己伝播反応
高融点金属酸化物粉末を乾燥して、乾燥した高融点金属酸化物粉末を得、乾燥した高融点金属酸化物粉末をマグネシウム粉末と混合し、混合材料を得、混合材料を自己伝播反応炉に加えて、自己伝播反応を行い、冷却した後、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を得、MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物は非化学量論比の低次・高融点金属酸化物の混合物であり、xは0.2〜1であり、
前記高融点金属Meは、W、Mo、Ta、Nb、V、Zr、Hf或いはReの中の1種であり、
前記高融点金属酸化物は、WO3、MoO3、Ta2O5、Nb2O5、V2O5、ZrO2、HfO2、Re2O7中の1種の混合物であり、
高融点金属の酸化物がWO3である場合、材料混合割合はモル比でWO3:Mg=1:(0.8〜1.2)であり、高融点金属の酸化物がMoO3である場合、材料混合割合はモル比でMoO3:Mg=1:(0.8〜1.2)であり、高融点金属の酸化物がTa2O5である場合、材料混合割合はモル比でTa2O5:Mg=1:(2.7〜3.3)であり、高融点金属の酸化物がNb2O5である場合、材料混合割合はモル比でNb2O5:Mg=1:(2.7〜3.3)であり、高融点金属の酸化物がV2O5である場合、材料混合割合はモル比でV2O5:Mg=1:(2.7〜3.3)であり、高融点金属の酸化物がZrO2である場合、材料混合割合はモル比でZrO2:Mg=1:(0.8〜1.2)であり、高融点金属の酸化物がHfO2である場合、材料混合割合はモル比でHfO2:Mg=1:(0.8〜1.2)であり、高融点金属の酸化物がRe2O7である場合、材料混合割合はモル比でRe2O7:Mg=1:(2.7〜3.3)であり、
ステップ2、一次浸出
MgOマトリックス中に高融点金属の低次酸化物MexOが分散された中間生成物を密閉反応釜に入れ、塩酸を浸出液として中間生成物に対し浸出を行い、浸出液及び浸出生成物を得、浸出液を除去し、浸出生成物を洗浄し、真空乾燥し、低次・高融点金属の低次酸化物MexO前駆体を得、塩酸のモル濃度は1〜6mol/Lであり、
ステップ3、多段・高度還元
低次・高融点金属の低次酸化物MexO前駆体をカルシウム粉末と均一に混合し、2〜20MPaでプレスしてブロック状のブランク材料を得、ブロック状のブランク材料を真空還元炉に入れて、700〜1200℃まで加熱昇温し、二次で1〜6時間高度に還元し、二次・高度還元した後、ブロックブランクを得、ブロックブランクを炉と一緒に冷却させて高度還元生成物を得、モル比でMexO:Ca=1:(1.5〜3)であり、
ステップ4、二次浸出
高度還元生成物を密閉反応釜に入れ、塩酸を浸出液として高度還元生成物に対し浸出を行って、ろ過液及びろ過残渣を得、ろ過液を除去し、ろ過残渣を洗浄、真空乾燥して、低酸素の高融点金属粉末を得、塩酸のモル濃度は1〜6mol/Lであり、
前記低酸素・高融点金属粉末が含有した成分及びその質量パーセントは、O≦0.8%、高融点金属Me≧99%、残量は不可避的不純物であり、その粒度は5〜60μmである、ステップに従って行われ、
前記ステップ1において、次の二つの方法の一つで処理する、
第1方法、混合材料を10〜60MPaでプレスして、ブロック状のブランク材料を得、ブロック状のブランク材料を自己伝播反応炉に加えて、自己伝播反応炉内において混合材料の一部を加熱して自己伝播反応を誘導する部分点火方式で自己伝播反応を誘導し、温度を500〜750℃に制御する、または
第2方法、混合材料を自己伝播反応炉に直接加えて、自己伝播反応が起こるまで混合材料全体を自己伝播反応炉内で加熱する全体加熱方式で温度を550℃に制御する
ことを特徴とする、多段・高度還元による高融点金属粉末の製造方法。 - 前記ステップ1において、前記乾燥の操作ステップは、高融点金属酸化物粉末をオーブン内に入れて、100〜150℃で24時間以上乾燥することを特徴とする、請求項1に記載の多段・高度還元による高融点金属粉末の製造方法。
- 前記ステップ2において、前記中間生成物に対し浸出を行う場合、希塩酸及び中間生成物の添加量は、反応理論に必要な量に比べて、過剰の10〜40%配合比の塩酸が必要であり、
前記ステップ2において、中間生成物の浸出温度は20〜30℃であり、浸出時間は60〜180分であることを特徴とする、請求項1に記載の多段・高度還元による高融点金属粉末の製造方法。 - 前記ステップ2において、前記低次・高融点金属の低次酸化物MexO前駆体が含有した成分及びその質量パーセントは、O:5〜20%、不可避的不純物≦0.5%、残量は高融点金属であり、その粒度は0.8〜15μmであることを特徴とする、請求項1に記載の多段・高度還元による高融点金属粉末の製造方法。
- 前記ステップ2において、前記の洗浄、真空乾燥のステップは、浸出液が除去された浸出生成物を洗浄液が中性になるまで水で洗浄し、次いで真空オーブンで、真空条件の下で乾燥し、乾燥温度は20〜30℃であり、時間は少なくとも24時間であり、
前記洗浄は水での洗浄であり、動的洗浄であり、即ち、洗浄過程において洗浄槽内の洗浄液は一定の水位を維持し、洗浄液が排出されただけ新鮮な水を補給して、中性になるまで洗浄することを特徴とする、請求項1に記載の多段・高度還元による高融点金属粉末の製造方法。 - 前記ステップ3において、前記二次・高度還元の反応パラメータは、真空度≦10Paの条件下で温度を上昇させることを特徴とする、請求項1に記載の多段・高度還元による高融点金属粉末の製造方法。
- 前記ステップ4において、前記高度還元生成物を浸出する場合、希塩酸と高度還元生成物の添加量は、反応理論に必要な量に比べて、過剰の5〜30%配合比の塩酸が必要であり、
前記ステップ4において、前記高度還元生成物を浸出する浸出温度は20〜30℃であり、浸出時間は15〜90分であることを特徴とする、請求項1に記載の多段・高度還元による高融点金属粉末の製造方法。 - 前記ステップ4において、前記の洗浄、真空乾燥のステップは、浸出液が除去された浸出生成物を洗浄液が中性になるまで水で洗浄し、次いで真空オーブンで、真空条件の下で乾燥し、乾燥温度は20〜30℃であり、時間は少なくとも24時間であり、
前記洗浄は水での洗浄であり、動的洗浄であり、即ち、洗浄過程において洗浄槽内の洗浄液は一定の水位を維持し、洗浄液が排出されただけ新鮮な水を補給して、中性になるまで洗浄することを特徴とする、請求項1に記載の多段・高度還元による高融点金属粉末の製造方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710365992.1 | 2017-05-23 | ||
CN201710365992.1A CN107236868B (zh) | 2017-05-23 | 2017-05-23 | 一种多级深度还原制备高熔点金属粉的方法 |
PCT/CN2018/087587 WO2018214830A1 (zh) | 2017-05-23 | 2018-05-21 | 一种多级深度还原制备高熔点金属粉的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020519761A JP2020519761A (ja) | 2020-07-02 |
JP6886046B2 true JP6886046B2 (ja) | 2021-06-16 |
Family
ID=59984375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019561878A Active JP6886046B2 (ja) | 2017-05-23 | 2018-05-21 | 多段・高度還元による高融点金属粉末の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11241740B2 (ja) |
JP (1) | JP6886046B2 (ja) |
CN (1) | CN107236868B (ja) |
DE (1) | DE112018002691B4 (ja) |
WO (1) | WO2018214830A1 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107236868B (zh) | 2017-05-23 | 2019-02-26 | 东北大学 | 一种多级深度还原制备高熔点金属粉的方法 |
CN110340374A (zh) * | 2019-08-06 | 2019-10-18 | 攀钢集团研究院有限公司 | 钒铬钛粉的制备方法 |
CN112125315B (zh) * | 2020-09-25 | 2022-08-05 | 辽宁中色新材科技有限公司 | 一种低成本高纯六硼化硅生产工艺 |
EP4384337A1 (en) * | 2021-08-11 | 2024-06-19 | University of Bradford | Method for metal production |
CN113718131A (zh) * | 2021-09-03 | 2021-11-30 | 立中四通轻合金集团股份有限公司 | 一种钛钼中间合金短流程低成本制备方法 |
CN114985753A (zh) * | 2022-04-29 | 2022-09-02 | 淄博晟钛复合材料科技有限公司 | 一种钙热自蔓延反应制备还原球形钛粉的方法 |
CN116623031B (zh) * | 2023-05-29 | 2024-11-05 | 重庆润际远东新材料科技股份有限公司 | 一种可缩短高熔点金属熔化时间的钒添加剂及其制备方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5460642A (en) * | 1994-03-21 | 1995-10-24 | Teledyne Industries, Inc. | Aerosol reduction process for metal halides |
JP2002180145A (ja) * | 2000-12-11 | 2002-06-26 | Sumitomo Metal Mining Co Ltd | 高純度金属バナジウムの製造方法 |
US20080011124A1 (en) | 2004-09-08 | 2008-01-17 | H.C. Starck Gmbh & Co. Kg | Deoxidation of Valve Metal Powders |
DE102004049039B4 (de) | 2004-10-08 | 2009-05-07 | H.C. Starck Gmbh | Verfahren zur Herstellung feinteiliger Ventilmetallpulver |
CN1330572C (zh) * | 2005-09-29 | 2007-08-08 | 东北大学 | 自蔓延冶金法制备CaB6粉末 |
CN100497685C (zh) * | 2007-06-08 | 2009-06-10 | 东北大学 | 自蔓延熔铸-电渣重熔制备CuCr合金触头材料的方法 |
CN103466649B (zh) * | 2013-08-28 | 2016-01-20 | 东北大学 | 一种自蔓延冶金法制备超细硼化物粉体的清洁生产方法 |
CN103466648B (zh) * | 2013-08-28 | 2015-07-29 | 东北大学 | 一种自蔓延冶金法制备超细粉体的清洁生产方法 |
CN104131178B (zh) * | 2014-07-21 | 2015-07-15 | 东北大学 | 一种基于铝热自蔓延-喷吹深度还原制备金属钛的方法 |
CN104131128B (zh) * | 2014-07-21 | 2016-04-06 | 东北大学 | 一种基于铝热自蔓延-喷吹深度还原制备钛铁合金的方法 |
RU2649099C2 (ru) * | 2016-06-27 | 2018-03-29 | Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "Кольский научный центр Российской академии наук" (ФИЦ КНЦ РАН) | Способ получения порошка вентильного металла |
CN107236868B (zh) * | 2017-05-23 | 2019-02-26 | 东北大学 | 一种多级深度还原制备高熔点金属粉的方法 |
CN107236869B (zh) * | 2017-05-23 | 2019-02-26 | 东北大学 | 一种多级深度还原制备还原钛粉的方法 |
-
2017
- 2017-05-23 CN CN201710365992.1A patent/CN107236868B/zh active Active
-
2018
- 2018-05-21 JP JP2019561878A patent/JP6886046B2/ja active Active
- 2018-05-21 DE DE112018002691.4T patent/DE112018002691B4/de active Active
- 2018-05-21 US US16/498,151 patent/US11241740B2/en active Active
- 2018-05-21 WO PCT/CN2018/087587 patent/WO2018214830A1/zh active Application Filing
Also Published As
Publication number | Publication date |
---|---|
US20200276648A1 (en) | 2020-09-03 |
DE112018002691B4 (de) | 2024-02-01 |
CN107236868B (zh) | 2019-02-26 |
DE112018002691T5 (de) | 2020-02-13 |
WO2018214830A1 (zh) | 2018-11-29 |
US11241740B2 (en) | 2022-02-08 |
JP2020519761A (ja) | 2020-07-02 |
CN107236868A (zh) | 2017-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6886046B2 (ja) | 多段・高度還元による高融点金属粉末の製造方法 | |
JP6788097B2 (ja) | 多段階の強還元による還元チタン粉末の製造方法 | |
EP3414035B1 (en) | Method of deoxygenating titanium or titanium alloy having oxygen dissolved therein in a solid solution | |
CN104550964B (zh) | 一种beta-gamma TiAl预合金粉末制备TiAl合金板材的方法 | |
CN102534334B (zh) | 一种高强高韧钼合金的制备方法 | |
CN103045886B (zh) | 一种稀土钨电极材料的制备方法 | |
CN102277525A (zh) | 氧化物弥散强化型不锈钢粉末制备方法及不锈钢 | |
CN103950946B (zh) | 一种硼化铌纳米粉体的制备方法 | |
CN102925780A (zh) | 钛镍铝合金材料及其制备工艺 | |
KR101542607B1 (ko) | 자전연소반응을 이용한 티타늄 합금의 제조방법 | |
CN101831568A (zh) | 粉末冶金法制备耐超高温铱合金的方法 | |
WO2018228142A1 (zh) | 基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法 | |
CN112662929A (zh) | 难熔高熵合金及其制备方法 | |
JP5837636B2 (ja) | フェライト系酸化物分散強化合金及びその製造方法 | |
CN103498060B (zh) | 一种制备金属钒的方法 | |
CN103979567B (zh) | 一种低温制备CrB或CrB2粉体的方法 | |
CN101891217B (zh) | 一种高纯reb6纳米粉的制备方法 | |
CN112756621B (zh) | 一种制备低氧钛粉的方法 | |
CN104475747A (zh) | 碳还原法烧结制备高纯钽锭用钽粉的方法 | |
CN111621659A (zh) | 一种粉末冶金法制备Ti2AlNb合金的方法 | |
KR20130133376A (ko) | 자전연소합성법을 이용한 저산소 티타늄 분말 제조방법 | |
CN103663482B (zh) | LaB6的制备方法 | |
Nersisyan et al. | Shape-controlled synthesis of titanium microparticles using calciothermic reduction concept | |
CN1772609A (zh) | 自蔓延冶金法制备CaB6粉末 | |
CN114309621B (zh) | 一种含有难熔金属元素的微细TiAl合金球形粉体的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191108 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201222 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210203 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210511 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210513 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6886046 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |