[go: up one dir, main page]

JP6885272B2 - Electrode plate manufacturing method - Google Patents

Electrode plate manufacturing method Download PDF

Info

Publication number
JP6885272B2
JP6885272B2 JP2017174855A JP2017174855A JP6885272B2 JP 6885272 B2 JP6885272 B2 JP 6885272B2 JP 2017174855 A JP2017174855 A JP 2017174855A JP 2017174855 A JP2017174855 A JP 2017174855A JP 6885272 B2 JP6885272 B2 JP 6885272B2
Authority
JP
Japan
Prior art keywords
coating film
current collecting
coating
collecting foil
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017174855A
Other languages
Japanese (ja)
Other versions
JP2019050172A (en
Inventor
尚也 岸本
尚也 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017174855A priority Critical patent/JP6885272B2/en
Publication of JP2019050172A publication Critical patent/JP2019050172A/en
Application granted granted Critical
Publication of JP6885272B2 publication Critical patent/JP6885272B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、帯状の集電箔と、この集電箔上に帯状に形成された電極層とを備える電極板の製造方法に関する。 The present invention relates to a method for manufacturing an electrode plate including a band-shaped current collecting foil and a band-shaped electrode layer formed on the current collecting foil.

リチウムイオン二次電池、リチウムイオンキャパシタ等の蓄電デバイスに用いられる電極板として、帯状の集電箔とこの集電箔上に形成された帯状の電極層とを備える電極板が知られている。このような電極板は、例えば、帯状の集電箔をその長手方向に搬送しつつ、集電箔に活物質、溶媒等を含む電極ペーストを塗布して、集電箔上に帯状に塗膜を形成した後、この塗膜を加熱乾燥させて電極層を形成することにより製造される。なお、これに関連する従来技術として、例えば特許文献1が挙げられる。 As an electrode plate used for a power storage device such as a lithium ion secondary battery and a lithium ion capacitor, an electrode plate including a band-shaped current collecting foil and a band-shaped electrode layer formed on the band-shaped current collecting foil is known. In such an electrode plate, for example, while transporting a band-shaped current collecting foil in the longitudinal direction, an electrode paste containing an active material, a solvent, etc. is applied to the current collecting foil, and a band-shaped coating is applied on the current collecting foil. Is formed, and then the coating film is heat-dried to form an electrode layer. As a prior art related to this, for example, Patent Document 1 can be mentioned.

特開2014−154363号公報Japanese Unexamined Patent Publication No. 2014-154363

ところで、集電箔上に帯状に形成された塗膜の幅方向寸法は、集電箔に塗膜を形成した直後から、塗膜の乾燥が開始されるまでの間に、徐々に減少することが判ってきた。集電箔上に形成された塗膜(電極ペースト)が、集電箔から撥かれるためである。一方、塗膜の乾燥が始まると、塗膜の粘度が上がり塗膜が移動できなくなるため、塗膜の幅方向寸法の減少が止まると考えられる。 By the way, the width direction dimension of the coating film formed in a band shape on the current collecting foil gradually decreases from immediately after the coating film is formed on the current collecting foil to the start of drying of the coating film. I've come to understand. This is because the coating film (electrode paste) formed on the current collector foil is repelled by the current collector foil. On the other hand, when the coating film starts to dry, the viscosity of the coating film increases and the coating film cannot move, so that it is considered that the decrease in the widthwise dimension of the coating film stops.

しかるに、電極ペーストのロットや集電箔のロットによっては、塗膜の幅方向寸法の減少が大きく生じる場合がある。この場合、電極層の幅方向の両端部に切り欠き状の欠陥部分ができるなど、電極層を所定形状に適切に形成できない場合が生じる。そこで、電極ペーストを塗布する塗工ダイから、塗膜を乾燥させる乾燥装置までの搬送距離を短くすることが考えられるが、各装置の配置の制約があり、搬送距離を短くするのは難しい。 However, depending on the lot of the electrode paste and the lot of the current collector foil, the widthwise dimension of the coating film may be significantly reduced. In this case, the electrode layer may not be properly formed into a predetermined shape, for example, notch-shaped defect portions are formed at both ends in the width direction of the electrode layer. Therefore, it is conceivable to shorten the transport distance from the coating die for applying the electrode paste to the drying device for drying the coating film, but it is difficult to shorten the transport distance due to the limitation of the arrangement of each device.

本発明は、かかる現状に鑑みてなされたものであって、電極層の目付量を所定量に保ちつつ、電極ペーストや集電箔のロットによらず、安定した幅方向寸法の電極層を有する電極板を製造できる電極板の製造方法を提供することを目的とする。 The present invention has been made in view of the present situation, and has an electrode layer having stable width direction dimensions regardless of a lot of electrode paste or current collecting foil while maintaining a predetermined amount of the electrode layer. An object of the present invention is to provide a method for manufacturing an electrode plate capable of manufacturing an electrode plate.

上記課題を解決するための本発明の一態様は、帯状の集電箔と、上記集電箔の長手方向に沿って上記集電箔上に帯状に形成された電極層と、を備える電極板の製造方法であって、塗工ダイから電極ペーストを上記集電箔に向けて吐出量Q(m3/sec)で吐出して、上記集電箔上に帯状に塗膜を形成する塗工工程と、上記塗膜を乾燥させて上記電極層を形成する乾燥工程と、を備え、上記塗工工程及び上記乾燥工程は、上記集電箔を上記長手方向に搬送速度V(m/min)で搬送しつつ連続的に行い、上記塗工工程は、予め得た、上記塗膜の形成直後から乾燥開始までの搬送時間T(sec)と、上記電極ペーストの表面張力γ(mN/m)と、上記集電箔に接する上記電極ペーストの接触角θ(°)と、上記塗膜の形成直後から乾燥開始までの間に生じる上記塗膜の幅方向寸法Wの減少量ΔW(mm)との関係式T={ΔW−(A×γ)−(B×θ)+C}/D(但し、A,B,C,Dはそれぞれ定数)に基づき、入力された入力表面張力γi(mN/m)及び入力接触角θi(°)に応じて、上記減少量ΔW(mm)が予め定めた所定値ΔWa(mm)以下となるように、上記搬送速度V(m/min)を制御し、かつ、上記塗膜の目付量M(mg/cm2)が予め定めた所定量Ma(mg/cm2)を保つように、上記吐出量Q(m3/sec)を制御する電極板の製造方法である。 One aspect of the present invention for solving the above problems is an electrode plate including a band-shaped current collecting foil and an electrode layer formed in a band shape on the current collecting foil along the longitudinal direction of the current collecting foil. In this manufacturing method, the electrode paste is discharged from the coating die toward the current collecting foil at a discharge rate of Q (m 3 / sec) to form a band-shaped coating film on the current collecting foil. A step and a drying step of drying the coating film to form the electrode layer are provided, and the coating step and the drying step carry the current collecting foil in the longitudinal direction at a transport speed V (m / min). In the coating process, the transport time T (sec) from immediately after the formation of the coating film to the start of drying and the surface tension γ (mN / m) of the electrode paste obtained in advance are performed. The contact angle θ (°) of the electrode paste in contact with the current collecting foil and the amount of decrease ΔW (mm) in the widthwise dimension W of the coating film that occurs from immediately after the formation of the coating film to the start of drying. Input surface tension γi (mN / mN /) based on the relational expression T = {ΔW- (A × γ) − (B × θ) + C} / D (however, A, B, C, and D are constants). The transport speed V (m / min) is controlled so that the reduction amount ΔW (mm) is equal to or less than a predetermined value ΔWa (mm) according to m) and the input contact angle θi (°). Manufacture of an electrode plate that controls the discharge amount Q (m 3 / sec) so that the coating amount M (mg / cm 2 ) of the coating film maintains a predetermined predetermined amount Ma (mg / cm 2). The method.

本発明者が検討した結果、塗膜の幅方向寸法Wの減少量ΔW(mm)は、塗膜の形成直後から乾燥開始までの搬送時間T(sec)、電極ペーストの表面張力γ(mN/m)、及び、集電箔に接する電極ペーストの接触角θ(°)を用いた関係式で表せることが判ってきた。従って、塗膜の幅方向寸法Wの減少量ΔWを所定値ΔWa(mm)以下に抑制するには、上述の関係式を用いて、用いる集電箔及び電極ペーストの表面張力γ(入力表面張力γi)及び接触角θ(入力接触角θi)に応じて、塗膜の形成直後から乾燥開始までの搬送時間Tの長さを適切な値とすれば良い。 As a result of examination by the present inventor, the amount of decrease ΔW (mm) in the widthwise dimension W of the coating film is the transport time T (sec) from immediately after the formation of the coating film to the start of drying, and the surface tension γ (mN / mN /) of the electrode paste. It has been found that it can be expressed by a relational expression using m) and the contact angle θ (°) of the electrode paste in contact with the current collecting foil. Therefore, in order to suppress the reduction amount ΔW of the widthwise dimension W of the coating film to a predetermined value ΔWa (mm) or less, the surface tension γ (input surface tension) of the current collecting foil and the electrode paste to be used is used by using the above relational expression. Depending on γi) and the contact angle θ (input contact angle θi), the length of the transport time T from immediately after the formation of the coating film to the start of drying may be set to an appropriate value.

この搬送時間Tを変化させるには、集電箔の搬送速度V(m/min)を変化させると良い。但し、搬送速度Vを変えると、塗膜の目付量M(電極層の目付量)(mg/cm2 )も変化する。具体的には、搬送速度Vを速くするほど、塗膜の目付量M(電極層の目付量)が少なくなる。そこで、搬送速度Vを変化させた場合には、塗膜の目付量Mが所定量Ma(mg/cm2 )に維持されるように、搬送速度Vの変化に応じて、塗工ダイからの電極ペーストの吐出量Q(m3/sec)も変化させると良い。 In order to change the transport time T, it is preferable to change the transport speed V (m / min) of the current collector foil. However, when the transport speed V is changed, the basis weight M (the basis weight of the electrode layer) (mg / cm 2 ) of the coating film also changes. Specifically, the faster the transport speed V, the smaller the basis weight M (the basis weight of the electrode layer) of the coating film. Therefore, when the transport speed V is changed, the coating film from the coating die is changed according to the change in the transport speed V so that the basis weight M of the coating film is maintained at a predetermined amount Ma (mg / cm 2). The discharge amount Q (m 3 / sec) of the electrode paste may also be changed.

そこで、上述の電極板の製造方法では、予め得た、搬送時間T、電極ペーストの表面張力γ、集電箔に接する電極ペーストの接触角θ、及び塗膜の幅方向寸法Wの減少量ΔWの関係式に基づき、入力表面張力γiと入力接触角θiに応じて、塗膜の幅方向寸法Wの減少量ΔWが予め定めた所定値ΔWa以下となるように、集電箔の搬送速度Vを制御する。更に、塗膜の目付量Mが予め定めた所定量Maを保つように、塗工ダイからの電極ペーストの吐出量Qを制御する。これにより、電極層の目付量を所定量に保ちつつ、電極ペーストのロットや集電箔のロットによらず、安定した幅方向寸法Wの電極層を有する電極板を製造できる。
更に、上述の電極板の製造方法では、搬送時間T(sec)、表面張力γ(mN/m)、接触角θ(°)及び減少量ΔW(mm)の関係式として、T={ΔW−(A×γ)−(B×θ)+C}/Dを用いるので、安定した幅方向寸法Wの電極層を有する電極板をより適切に製造できる。
Therefore, in the above-mentioned method for manufacturing the electrode plate, the transfer time T, the surface tension γ of the electrode paste, the contact angle θ of the electrode paste in contact with the current collecting foil, and the amount of decrease ΔW in the widthwise dimension W of the coating film obtained in advance are obtained. Based on the relational expression of, the transport speed V of the collecting foil is such that the reduction amount ΔW of the widthwise dimension W of the coating film is equal to or less than a predetermined predetermined value ΔWa according to the input surface tension γi and the input contact angle θi. To control. Further, the discharge amount Q of the electrode paste from the coating die is controlled so that the basis weight M of the coating film maintains a predetermined predetermined amount Ma. As a result, it is possible to manufacture an electrode plate having an electrode layer having a stable width direction dimension W regardless of the lot of the electrode paste or the lot of the current collecting foil while keeping the amount of the electrode layer in a predetermined amount.
Further, in the above-mentioned method for manufacturing the electrode plate, T = {ΔW− as the relational expression of the transport time T (sec), the surface tension γ (mN / m), the contact angle θ (°) and the reduction amount ΔW (mm). Since (A × γ) − (B × θ) + C} / D is used, an electrode plate having an electrode layer having a stable widthwise dimension W can be manufactured more appropriately.

実施形態に係る正極板の斜視図である。It is a perspective view of the positive electrode plate which concerns on embodiment. 実施形態に係る正極板の製造方法のフローチャートである。It is a flowchart of the manufacturing method of the positive electrode plate which concerns on embodiment. 実施形態に係り、塗工装置を用いて塗膜を形成する様子を示す説明図である。It is explanatory drawing which shows the state of forming the coating film by using the coating apparatus which concerns on embodiment. 実施形態に係り、塗工装置を用いて塗膜を形成した後、乾燥装置を用いて塗膜を加熱乾燥させる様子を示す説明図である。It is explanatory drawing which shows the state of forming the coating film by using the coating apparatus, and then heating-drying the coating film by using a drying apparatus which concerns on embodiment.

以下、本発明の実施形態を、図面を参照しつつ説明する。図1に、本実施形態に係る正極板(電極板)1の斜視図を示す。なお、以下では、正極板1の長手方向EH、幅方向FH及び厚み方向GHを図1に示す方向と定めて説明する。この正極板1は、ハイブリッドカーやプラグインハイブリッドカー、電気自動車等の車両などに搭載される角型で密閉型のリチウムイオン二次電池を製造するのに、具体的には、扁平状捲回型の電極体を製造するのに用いられる帯状の正極板である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a perspective view of a positive electrode plate (electrode plate) 1 according to the present embodiment. In the following description, the longitudinal direction EH, the width direction FH, and the thickness direction GH of the positive electrode plate 1 are defined as the directions shown in FIG. The positive electrode plate 1 is specifically used for manufacturing a square and sealed lithium ion secondary battery mounted on a vehicle such as a hybrid car, a plug-in hybrid car, or an electric vehicle. It is a strip-shaped positive electrode plate used for manufacturing a mold electrode body.

正極板1は、長手方向EHに延びる帯状のアルミニウム箔からなる集電箔3を有する。この集電箔3の第1主面3aのうち、幅方向FHの中央でかつ長手方向EHに延びる領域上には、第1電極層5が帯状に形成されている。また、集電箔3の反対側の第2主面3bのうち、幅方向FHの中央でかつ長手方向EHに延びる領域上にも、第2電極層6が帯状に形成されている。これら第1電極層5及び第2電極層6は、正極活物質(本実施形態ではリチウム遷移金属複合酸化物)、導電材(本実施形態ではアセチレンブラック)及び結着剤(本実施形態ではポリフッ化ビニリデン)からなる。本実施形態の第1電極層5及び第2電極層6の幅方向寸法W(mm)は、集電箔3のロットや後述する電極ペーストDPのロットによらず、安定した値となっている。なお、本実施形態では、第1電極層5及び第2電極層6の幅方向寸法Wは、W=200mmである。
正極板1のうち幅方向FHの両端部は、それぞれ、厚み方向GHに第1電極層5及び第2電極層6が存在せず、集電箔3が厚み方向GHに露出した露出部1m,1mとなっている。
The positive electrode plate 1 has a current collecting foil 3 made of a strip-shaped aluminum foil extending in the longitudinal direction EH. The first electrode layer 5 is formed in a band shape on the region extending in the center of the width direction FH and in the longitudinal direction EH in the first main surface 3a of the current collector foil 3. Further, the second electrode layer 6 is formed in a band shape on the region extending in the center of the width direction FH and in the longitudinal direction EH in the second main surface 3b on the opposite side of the current collector foil 3. The first electrode layer 5 and the second electrode layer 6 are a positive electrode active material (lithium transition metal composite oxide in this embodiment), a conductive material (acetylene black in this embodiment), and a binder (polyfluorine in this embodiment). Kabiniriden) consists of. The widthwise dimension W (mm) of the first electrode layer 5 and the second electrode layer 6 of the present embodiment is a stable value regardless of the lot of the current collecting foil 3 or the lot of the electrode paste DP described later. .. In the present embodiment, the width direction dimension W of the first electrode layer 5 and the second electrode layer 6 is W = 200 mm.
At both ends of the positive electrode plate 1 in the width direction FH, the first electrode layer 5 and the second electrode layer 6 are not present in the thickness direction GH, respectively, and the current collecting foil 3 is exposed in the thickness direction GH. It is 1 m.

次いで、上記正極板1の製造方法について説明する(図2〜図4参照)。予め、第1電極層5及び第2電極層6の形成に用いる電極ペーストDPを用意しておく。具体的には、正極活物質(本実施形態ではリチウム遷移金属複合酸化物)、導電材(本実施形態ではアセチレンブラック)及び結着剤(本実施形態ではポリフッ化ビニリデン)を、溶媒(本実施形態では、N−メチル−2−ピロリドン)と共に混練して、電極ペーストDPを得る。 Next, a method for manufacturing the positive electrode plate 1 will be described (see FIGS. 2 to 4). The electrode paste DP used for forming the first electrode layer 5 and the second electrode layer 6 is prepared in advance. Specifically, a positive electrode active material (lithium transition metal composite oxide in this embodiment), a conductive material (acetylene black in this embodiment), and a binder (polyvinylidene fluoride in this embodiment) are used as a solvent (this embodiment). In the form, it is kneaded with N-methyl-2-pyrrolidone) to obtain an electrode paste DP.

そして、まず「第1塗工工程S1」において、塗工装置100(図3及び図4参照)を用いて、電極ペーストDPを集電箔3の第1主面3a上に塗布して第1塗膜5xを形成する。この集電箔3上に第1塗膜5xを有する正極板を「未乾燥片側正極板1x」ともいう。
塗工装置100は、電極ペーストDPを集電箔3上に塗布する塗工ダイ110と、集電箔3を搬送するバックアップロール120と、塗工ダイ110に電極ペーストDPを送出するポンプ130と、電極ペーストDPを貯留しておくタンク140と、集電箔3の搬送速度V(m/min)及び塗工ダイ110からの電極ペーストDPの吐出量Q(m3/sec)を制御する制御部150とを備える。
Then, first, in the "first coating step S1", the electrode paste DP is applied onto the first main surface 3a of the current collector foil 3 by using the coating apparatus 100 (see FIGS. 3 and 4). A coating film 5x is formed. The positive electrode plate having the first coating film 5x on the current collector foil 3 is also referred to as “undried one-side positive electrode plate 1x”.
The coating apparatus 100 includes a coating die 110 that applies the electrode paste DP on the current collecting foil 3, a backup roll 120 that conveys the current collecting foil 3, and a pump 130 that sends the electrode paste DP to the coating die 110. , Control to control the transport speed V (m / min) of the collecting foil 3 and the discharge amount Q (m 3 / sec) of the electrode paste DP from the coating die 110 and the tank 140 for storing the electrode paste DP. A unit 150 is provided.

このうち塗工ダイ110は、ダイ吐出部111、マニホールド113等を有する。ダイ吐出部111は、塗工ダイ110の先端(図4中、右方)に位置し、後述するバックアップロール120により搬送される集電箔3に向けて、電極ペーストDPを吐出する部位である。また、マニホールド113は、タンク140からポンプ130により供給された電極ペーストDPが一旦貯留される部位である。 Of these, the coating die 110 has a die discharge portion 111, a manifold 113, and the like. The die discharge portion 111 is located at the tip of the coating die 110 (on the right side in FIG. 4), and is a portion that discharges the electrode paste DP toward the current collector foil 3 conveyed by the backup roll 120 described later. .. Further, the manifold 113 is a portion where the electrode paste DP supplied from the tank 140 by the pump 130 is temporarily stored.

バックアップロール120は、その直径が250mmであり、塗工ダイ110のダイ吐出部111に対向する位置(図4中、ダイ吐出部111のすぐ右側)に配置されており、塗工時には、このバックアップロール120を図3及び図4中、時計回りに回転させることにより、バックアップロール120に巻き付けた集電箔3を長手方向EHに搬送する。バックアップロール120の回転速度n(rpm)、即ち、集電箔3の搬送速度V(m/min)は、後述する制御部150によって制御される。 The backup roll 120 has a diameter of 250 mm and is arranged at a position facing the die discharge portion 111 of the coating die 110 (in FIG. 4, immediately to the right of the die discharge portion 111). By rotating the roll 120 clockwise in FIGS. 3 and 4, the current collecting foil 3 wound around the backup roll 120 is conveyed in the longitudinal direction EH. The rotation speed n (rpm) of the backup roll 120, that is, the transport speed V (m / min) of the current collector foil 3, is controlled by the control unit 150 described later.

ポンプ130は、塗工ダイ110とタンク140との間を結ぶ電極ペーストDPの供給管160の途中に設置されている。制御部150でこのポンプ130を制御することにより、ポンプ130から塗工ダイ110に供給する電極ペーストDPの供給量、即ち、塗工ダイ110から集電箔3に向けて吐出する電極ペーストDPの吐出量Q(m3/sec)を制御する。 The pump 130 is installed in the middle of the supply pipe 160 of the electrode paste DP connecting the coating die 110 and the tank 140. By controlling the pump 130 with the control unit 150, the supply amount of the electrode paste DP supplied from the pump 130 to the coating die 110, that is, the electrode paste DP discharged from the coating die 110 toward the current collector foil 3. The discharge amount Q (m 3 / sec) is controlled.

制御部150は、入力された入力表面張力γi(mN/m)及び入力接触角θi(°)に応じて、第1塗膜5xの幅方向寸法Wの減少量ΔW(mm)が予め定めた所定値ΔWa(mm)以下となるように、バックアップロール120の回転速度n(rpm)を、従って、集電箔3の搬送速度V(m/min)を制御する。またこれと共に制御部150は、第1塗膜5xの目付量M(mg/cm2 )が予め定めた所定量Ma(mg/cm2 )を保つように、ポンプ130の吐出量Q(塗工ダイ110からの電極ペーストDPの吐出量Q)(m3/sec)を制御する。 In the control unit 150, the amount of decrease ΔW (mm) in the widthwise dimension W of the first coating film 5x is predetermined in accordance with the input input surface tension γi (mN / m) and the input contact angle θi (°). The rotation speed n (rpm) of the backup roll 120 and therefore the transport speed V (m / min) of the current collecting foil 3 are controlled so as to be equal to or less than a predetermined value ΔWa (mm). At the same time, the control unit 150 controls the discharge amount Q (coating) of the pump 130 so that the basis weight M (mg / cm 2 ) of the first coating film 5x maintains a predetermined predetermined amount Ma (mg / cm 2). The discharge amount Q) (m 3 / sec) of the electrode paste DP from the die 110 is controlled.

具体的には、この制御部150は、操作者が、使用する電極ペーストDPの表面張力γ(入力表面張力γi)(mN/m)、及び、使用する集電箔3に接する電極ペーストDPの接触角θ(入力接触角θi)(°)の各値を入力できるように構成されている。
そして、操作者がこれら入力表面張力γi及び入力接触角θiを制御部150に入力すると、制御部150は、予め得ておいた第1塗膜5xの形成直後から乾燥開始までの搬送時間T(sec)と、電極ペーストDPの表面張力γ(mN/m)と、集電箔3に接する電極ペーストDPの接触角θ(°)と、第1塗膜5xの形成直後から乾燥開始までの間に生じる第1塗膜5xの幅方向寸法Wの減少量ΔW(mm)との以下の関係式を用いて、必要な集電箔3の搬送速度V(m/min)を算出する。
(関係式)
T={ΔW−(A×γ)−(B×θ)+C}/D
(但し、A,B,C,Dは、それぞれ定数)
Specifically, the control unit 150 uses the surface tension γ (input surface tension γi) (mN / m) of the electrode paste DP used by the operator and the electrode paste DP in contact with the current collector foil 3 to be used. It is configured so that each value of the contact angle θ (input contact angle θi) (°) can be input.
Then, when the operator inputs the input surface tension γi and the input contact angle θi to the control unit 150, the control unit 150 receives the transport time T (from immediately after the formation of the first coating film 5x obtained in advance to the start of drying). sec), the surface tension γ (mN / m) of the electrode paste DP, the contact angle θ (°) of the electrode paste DP in contact with the current collecting foil 3, and between immediately after the formation of the first coating film 5x and the start of drying. The required transport speed V (m / min) of the current collecting foil 3 is calculated by using the following relational expression with the reduction amount ΔW (mm) of the widthwise dimension W of the first coating film 5x generated in.
(Relational expression)
T = {ΔW- (A × γ)-(B × θ) + C} / D
(However, A, B, C, and D are constants, respectively)

なお、塗工ダイ110により第1塗膜5xが形成される位置から、第1塗膜5xの乾燥が始まる位置(乾燥装置200の入口)までの搬送距離L(mm)は一定としている(本実施形態ではL=1.3m)。更に、この搬送速度V(m/min)から、必要なバックアップロール120の回転速度n(rpm)を算出する。
次いで、制御部150は、算出された搬送速度V(m/min)に応じた塗工ダイ110からの電極ペーストDPの吐出量(ポンプ130の吐出量)Q(m3/sec)を求める。
The transport distance L (mm) from the position where the first coating film 5x is formed by the coating die 110 to the position where the first coating film 5x starts to dry (the inlet of the drying device 200) is constant (this). In the embodiment, L = 1.3 m). Further, the required rotation speed n (rpm) of the backup roll 120 is calculated from the transport speed V (m / min).
Next, the control unit 150 obtains the discharge amount (discharge amount of the pump 130) Q (m 3 / sec) of the electrode paste DP from the coating die 110 according to the calculated transfer speed V (m / min).

本実施形態では、上述の関係式の定数A〜Dを、A=0.0159、B=0.0170、C=1.2482、D=0.1580とした。また、第1塗膜5xの形成直後から乾燥開始までの間に生じる第1塗膜5xの幅方向寸法Wの減少量ΔW(目標減少量ΔWa)を、ΔW=ΔWa=0.2mmとした。即ち、関係式として、以下の関係式を用いた。
T=(0.2000−0.0159×γ−0.0170×θ+1.2482)/0.1580
なお、本実施形態において、定数A〜Dは、予め、第1塗膜5xの形成直後から乾燥開始までの搬送時間T、電極ペーストDPの表面張力γ、及び、集電箔3に接する電極ペーストDPの接触角θをそれぞれ変更し、第1塗膜5xの幅方向寸法Wの減少量ΔWをそれぞれ測定した多数の実験結果を用いて、重回帰分析を行って得た値である。
In the present embodiment, the constants A to D of the above relational expression are set to A = 0.0159, B = 0.0170, C = 1.2482, and D = 0.1580. Further, the reduction amount ΔW (target reduction amount ΔWa) of the widthwise dimension W of the first coating film 5x that occurs from immediately after the formation of the first coating film 5x to the start of drying is set to ΔW = ΔWa = 0.2 mm. That is, the following relational expression was used as the relational expression.
T = (0.2000-0.0159 x γ-0.0170 x θ + 1.2482) /0.1580
In the present embodiment, the constants A to D are the transport time T from immediately after the formation of the first coating film 5x to the start of drying, the surface tension γ of the electrode paste DP, and the electrode paste in contact with the current collecting foil 3. It is a value obtained by performing multiple regression analysis using a large number of experimental results in which the contact angle θ of DP is changed and the amount of decrease ΔW in the width direction dimension W of the first coating film 5x is measured.

操作者が、制御部150に入力表面張力γi及び入力接触角θiの各値を入力すると、制御部150は、上述の関係式から搬送時間T(sec)を、必要な搬送速度V(m/min)をさらには、必要なバックアップロール120の回転速度n(rpm)を算出する。そして、制御部150の指示により、この回転速度n(rpm)でバックアップロール120を回転させる。 When the operator inputs the values of the input surface tension γi and the input contact angle θi to the control unit 150, the control unit 150 sets the transfer time T (sec) from the above relational expression to the required transfer speed V (m / m /). In addition to min), the required rotation speed n (rpm) of the backup roll 120 is calculated. Then, according to the instruction of the control unit 150, the backup roll 120 is rotated at this rotation speed n (rpm).

また、集電箔3の搬送速度V(m/min)を変えると、第1塗膜5xの目付量M(mg/cm2 )も変化する。そこで、第1塗膜5xの目付量M(mg/cm2 )が予め定めた所定量Ma(mg/cm2 )を保つように、搬送速度V(m/min)の変化に応じて、電極ペーストDPの吐出量Q(m3/sec)も変化させる。具体的には、Q=a×V(但し、aは定数)の関係式に基づいて、例えば搬送速度V(m/min)が例えば1.1倍になったら、電極ペーストDPの吐出量Q(m3/sec)も1.1倍とする。そして、制御部150からの指示により、この吐出量Q(m3/sec)となるように、ポンプ130を作動させる。 Further, when the transport speed V (m / min) of the current collector foil 3 is changed, the basis weight M (mg / cm 2 ) of the first coating film 5x also changes. Therefore, the electrodes are subjected to changes in the transport speed V (m / min) so that the textured amount M (mg / cm 2 ) of the first coating film 5x maintains a predetermined predetermined amount Ma (mg / cm 2). The discharge amount Q (m 3 / sec) of the paste DP is also changed. Specifically, based on the relational expression of Q = a × V (where a is a constant), for example, when the transport speed V (m / min) becomes 1.1 times, the discharge amount Q of the electrode paste DP is Q. (M 3 / sec) is also 1.1 times. Then, according to the instruction from the control unit 150, the pump 130 is operated so that the discharge amount Q (m 3 / sec) is obtained.

このような塗工装置100を用いて第1塗工工程S1を行い、電極ペーストDPを集電箔3の第1主面3a上に塗布して第1塗膜5xを形成する。具体的には、塗工ダイ110のダイ吐出部111から、バックアップロール120により搬送速度V(m/min)で搬送される集電箔3の第1主面3aに向けて、電極ペーストDPを吐出量Q(m3/sec)で吐出して、集電箔3の第1主面3a上に帯状に第1塗膜5xを連続的に形成する。 The first coating step S1 is performed using such a coating apparatus 100, and the electrode paste DP is applied onto the first main surface 3a of the current collector foil 3 to form the first coating film 5x. Specifically, the electrode paste DP is applied from the die discharge portion 111 of the coating die 110 toward the first main surface 3a of the current collector foil 3 which is conveyed by the backup roll 120 at a transfer speed V (m / min). The first coating film 5x is continuously formed in a strip shape on the first main surface 3a of the current collector foil 3 by discharging at a discharge rate Q (m 3 / sec).

この第1塗工工程S1に先立ち、製造に用いるロットの電極ペーストDPの表面張力γ(入力表面張力γi)(mN/m)と、製造に用いるロットの集電箔3に上記ロットの電極ペーストDPを接触させたときの接触角θ(入力接触角θi)(°)をそれぞれ調査しておく。そして、これら入力表面張力γi(例えば、γ1=30mN/m)及び入力接触角θi(例えば、θ1=45°)を塗工装置100の制御部150に入力する。 Prior to the first coating step S1, the surface tension γ (input surface tension γi) (mN / m) of the electrode paste DP of the lot used for manufacturing and the electrode paste of the lot above were applied to the current collecting foil 3 of the lot used for manufacturing. The contact angles θ (input contact angles θi) (°) when the DPs are brought into contact with each other are investigated. Then, the input surface tension γi (for example, γ1 = 30 mN / m) and the input contact angle θi (for example, θ1 = 45 °) are input to the control unit 150 of the coating apparatus 100.

すると、前述の関係式、即ち、T=(0.2000−0.0159×γ−0.0170×θ+1.2482)/0.1580から、制御部150で搬送時間T=1.3secが求まる。更に、前述のように、搬送距離Lは、L=1.3mであるため、必要な搬送速度VはV=60m/minと求まる。更に、前述のように、バックアップロール120の直径は250mmであるため、この搬送速度V=60m/minから、必要なバックアップロール120の回転速度nがn=76.4rpmと求まる。そこで、制御部150は、バックアップロール120をこの回転速度n(rpm)で回転させる。 Then, from the above-mentioned relational expression, that is, T = (0.2000-0.0159 × γ-0.0170 × θ + 1.2482) /0.1580, the transfer time T = 1.3 sec can be obtained by the control unit 150. Further, as described above, since the transport distance L is L = 1.3 m, the required transport speed V can be obtained as V = 60 m / min. Further, as described above, since the diameter of the backup roll 120 is 250 mm, the required rotation speed n of the backup roll 120 can be obtained as n = 76.4 rpm from this transport speed V = 60 m / min. Therefore, the control unit 150 rotates the backup roll 120 at this rotation speed n (rpm).

また、第1塗膜5xの目付量M(mg/cm2 )が予め定めた所定量Ma(mg/cm2 )を保つように、本実施形態では、溶媒を除いた固形分基準でMa=5.0mg/cm2 を保つように、搬送速度V(m/min)に応じた電極ペーストDPの吐出量Q(m3/sec)が求まる。本実施形態の例では、電極ペーストDPの吐出量Qは、Q=8.7×10-6 3/secとなる。そして、制御部150は、ポンプ130の吐出量Q(m3/sec)がこの値になるように作動させる。 Further, in the present embodiment, Ma = based on the solid content excluding the solvent so that the coating amount M (mg / cm 2 ) of the first coating film 5x maintains a predetermined predetermined amount Ma (mg / cm 2). The discharge amount Q (m 3 / sec) of the electrode paste DP corresponding to the transport speed V (m / min) can be obtained so as to maintain 5.0 mg / cm 2. In the example of this embodiment, the discharge amount Q of the electrode paste DP is Q = 8.7 × 10 -6 m 3 / sec. Then, the control unit 150 operates so that the discharge amount Q (m 3 / sec) of the pump 130 becomes this value.

なお、製造に用いる電極ペーストDP及び集電箔3のいずれかのロットが新しいロットに切り替わる際には、操作者は、その新しいロットについての入力表面張力γi及び入力接触角θiを制御部150に入力し直す。これにより、新しいロットの電極ペーストDP及び集電箔3についても、適切なバックアップロール120の回転速度n(rpm)及びポンプ130の吐出量Q(m3/sec)により塗工が行われ、幅方向寸法Wの減少量ΔW(mm)が0.2mm以下に制御される。 When any lot of the electrode paste DP and the current collecting foil 3 used for manufacturing is switched to a new lot, the operator sets the input surface tension γi and the input contact angle θi of the new lot to the control unit 150. Re-enter. As a result, the electrode paste DP and the current collector foil 3 of the new lot are also coated with the appropriate rotation speed n (rpm) of the backup roll 120 and the discharge amount Q (m 3 / sec) of the pump 130, and the width is widened. The reduction amount ΔW (mm) of the directional dimension W is controlled to 0.2 mm or less.

第1塗工工程S1が終了したら、次に「第1乾燥工程S2」において、集電箔3の第1主面3a上の第1塗膜5xを乾燥させて第1電極層5を形成する。具体的には、集電箔3上に第1塗膜5xが形成された未乾燥片側正極板1xを乾燥装置200内に搬送し、未乾燥片側正極板1xのうち第1塗膜5xに熱風を吹き付けて、第1塗膜5xを加熱乾燥させて第1電極層5を形成する。これにより、集電箔3の第1主面3a上に第1電極層5を有する片側正極板1yが形成される。 After the first coating step S1 is completed, then in the "first drying step S2", the first coating film 5x on the first main surface 3a of the current collector foil 3 is dried to form the first electrode layer 5. .. Specifically, the undried single-side positive electrode plate 1x on which the first coating film 5x is formed on the current collector foil 3 is conveyed into the drying device 200, and hot air is blown to the first coating film 5x of the undried single-side positive electrode plates 1x. The first coating film 5x is heated and dried to form the first electrode layer 5. As a result, the one-sided positive electrode plate 1y having the first electrode layer 5 is formed on the first main surface 3a of the current collector foil 3.

次に、「第2塗工工程S3」において、電極ペーストDPを、片側正極板1yのうち集電箔3の第2主面3b上に塗布して第2塗膜6xを形成する。この第2塗膜6xの形成も、前述の塗工装置100を用いて、第1塗工工程S1と同様に行う。なお、この時点では、集電箔3の第1主面3a上には乾燥済みの第1電極層5が形成され、集電箔3の第2主面3b上に未乾燥の第2塗膜6xが形成されている。この正極板を、「未乾燥両側正極板1z」ともいう。 Next, in the "second coating step S3", the electrode paste DP is applied on the second main surface 3b of the current collecting foil 3 of the positive electrode plate 1y on one side to form the second coating film 6x. The formation of the second coating film 6x is also performed in the same manner as in the first coating step S1 by using the coating apparatus 100 described above. At this point, the dried first electrode layer 5 is formed on the first main surface 3a of the current collector foil 3, and the undried second coating film is formed on the second main surface 3b of the current collector foil 3. 6x is formed. This positive electrode plate is also referred to as "undried double-sided positive electrode plate 1z".

第2塗工工程S3が終了したら、次に「第2乾燥工程S4」において、第2塗膜6xを乾燥させて第2電極層6を形成する。具体的には、第2塗膜6xが形成された未乾燥両側正極板1zを乾燥装置200内に搬送し、未乾燥両側正極板1zのうち第2塗膜6xに熱風を吹き付け、第2塗膜6xを加熱乾燥させて第2電極層6を形成する。これにより、集電箔3、第1電極層5及び第2電極層6を有する正極板1wが形成される。 After the second coating step S3 is completed, the second coating film 6x is dried to form the second electrode layer 6 in the “second drying step S4”. Specifically, the undried double-sided positive electrode plate 1z on which the second coating film 6x is formed is conveyed into the drying device 200, and hot air is blown to the second coating film 6x of the undried double-sided positive electrode plates 1z to perform the second coating. The film 6x is heated and dried to form the second electrode layer 6. As a result, the positive electrode plate 1w having the current collecting foil 3, the first electrode layer 5, and the second electrode layer 6 is formed.

次に、「プレス工程S5」において、上述の正極板1wをロールプレス機(不図示)でプレスして、第1電極層5及び第2電極層6の密度をそれぞれ高める。かくして、正極板1が完成する。 Next, in the "pressing step S5", the above-mentioned positive electrode plate 1w is pressed by a roll press machine (not shown) to increase the densities of the first electrode layer 5 and the second electrode layer 6, respectively. Thus, the positive electrode plate 1 is completed.

以上で説明したように、正極板1の製造方法では、予め得た、搬送時間T、電極ペーストDPの表面張力γ、集電箔3に接する電極ペーストDPの接触角θ、及び、第1塗膜5x及び第2塗膜6xの幅方向寸法Wの減少量ΔWの関係式に基づき、入力表面張力γiと入力接触角θiに応じて、第1塗膜5x及び第2塗膜6xの幅方向寸法Wの減少量ΔWが、それぞれ予め定めた所定値ΔWa以下となるように、集電箔3の搬送速度Vを制御している。更に、第1塗膜5x及び第2塗膜6xの目付量Mが予め定めた所定量Maを保つように、塗工ダイ110からの電極ペーストDPの吐出量Qを制御している。これにより、第1電極層5及び第2電極層6の目付量Mを所定量Maに保ちつつ、電極ペーストDPのロットや集電箔3のロットによらず、安定した幅方向寸法Wの第1電極層5及び第2電極層6を有する正極板1を製造できる。特に、本実施形態では、上述の関係式として、T={ΔW−(A×γ)−(B×θ)+C}/Dを用いるので、安定した幅方向寸法Wの第1電極層5及び第2電極層6を有する正極板1をより適切に製造できる。 As described above, in the method for manufacturing the positive electrode plate 1, the transport time T, the surface tension γ of the electrode paste DP, the contact angle θ of the electrode paste DP in contact with the current collecting foil 3, and the first coating film obtained in advance are used. Based on the relational expression of the amount of decrease ΔW in the width direction dimension W of the film 5x and the second coating film 6x, the width direction of the first coating film 5x and the second coating film 6x according to the input surface tension γi and the input contact angle θi. The transport speed V of the current collecting foil 3 is controlled so that the reduction amount ΔW of the dimension W is equal to or less than a predetermined value ΔWa, which is set in advance. Further, the discharge amount Q of the electrode paste DP from the coating die 110 is controlled so that the basis weight M of the first coating film 5x and the second coating film 6x maintains a predetermined predetermined amount Ma. As a result, the first electrode layer 5 and the second electrode layer 6 have a stable width direction dimension W, regardless of the lot of the electrode paste DP or the lot of the current collecting foil 3, while keeping the amount M of the first electrode layer 5 and the second electrode layer 6 at a predetermined amount Ma. A positive electrode plate 1 having one electrode layer 5 and a second electrode layer 6 can be manufactured. In particular, in the present embodiment, since T = {ΔW− (A × γ) − (B × θ) + C} / D is used as the above-mentioned relational expression, the first electrode layer 5 having a stable width direction dimension W and The positive electrode plate 1 having the second electrode layer 6 can be manufactured more appropriately.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態では、電極板の製造方法として、正極板1の製造方法を例示したが、負極板の製造方法に本発明を適用することもできる。
Although the present invention has been described above in accordance with the embodiments, it is needless to say that the present invention is not limited to the above-described embodiments and can be appropriately modified and applied without departing from the gist thereof.
For example, in the embodiment, the manufacturing method of the positive electrode plate 1 is exemplified as the manufacturing method of the electrode plate, but the present invention can also be applied to the manufacturing method of the negative electrode plate.

1 正極板(電極板)
3 集電箔
5 第1電極層
5x 第1塗膜
6 第2電極層
6x 第2塗膜
DP 電極ペースト
100 塗工装置
110 塗工ダイ
120 バックアップロール
130 ポンプ
150 制御部
200 乾燥装置
γ (電極ペーストの)表面張力
γi 入力表面張力
θ (集電箔に接する電極ペーストの)接触角
θi 入力接触角
W (第1塗膜及び第2塗膜の)幅方向寸法
ΔW (第1塗膜及び第2塗膜の幅方向寸法の)減少量
ΔWa (減少量の)所定値(目標減少量)
T (集電箔の)搬送時間
L (集電箔の)搬送距離
V (集電箔の)搬送速度
Q (塗工ダイからの電極ペーストの)吐出量
M (第1塗膜及び第2塗膜の)目付量
Ma (目付量の)所定量
S1 第1塗工工程
S2 第1乾燥工程
S3 第2塗工工程
S4 第2乾燥工程
1 Positive electrode plate (electrode plate)
3 Current collector foil 5 1st electrode layer 5x 1st coating 6 2nd electrode layer 6x 2nd coating DP Electrode paste 100 Coating device 110 Coating die 120 Backup roll 130 Pump 150 Control unit 200 Drying device γ (Electrode paste) () Surface tension γi Input surface tension θ (of the electrode paste in contact with the current collecting foil) Contact angle θi Input contact angle W (of the first coating film and the second coating film) Width direction dimension ΔW (first coating film and second coating film) Decrease amount ΔWa (in the width direction dimension of the coating film) Predetermined value (target reduction amount)
T (collecting foil) transport time L (collecting foil) transport distance V (collecting foil) transport speed Q (electrode paste from coating die) discharge amount M (first coating and second coating) Amount of coating (of film) Ma (Amount of coating) Predetermined amount S1 First coating step S2 First drying step S3 Second coating step S4 Second drying step

Claims (1)

帯状の集電箔と、上記集電箔の長手方向に沿って上記集電箔上に帯状に形成された電極層と、を備える電極板の製造方法であって、
塗工ダイから電極ペーストを上記集電箔に向けて吐出量Q(m3/sec)で吐出して、上記集電箔上に帯状に塗膜を形成する塗工工程と、
上記塗膜を乾燥させて上記電極層を形成する乾燥工程と、を備え、
上記塗工工程及び上記乾燥工程は、
上記集電箔を上記長手方向に搬送速度V(m/min)で搬送しつつ連続的に行い、
上記塗工工程は、
予め得た、上記塗膜の形成直後から乾燥開始までの搬送時間T(sec)と、上記電極ペーストの表面張力γ(mN/m)と、上記集電箔に接する上記電極ペーストの接触角θ(°)と、上記塗膜の形成直後から乾燥開始までの間に生じる上記塗膜の幅方向寸法Wの減少量ΔW(mm)との関係式T={ΔW−(A×γ)−(B×θ)+C}/D(但し、A,B,C,Dはそれぞれ定数)に基づき、
入力された入力表面張力γi(mN/m)及び入力接触角θi(°)に応じて、上記減少量ΔW(mm)が予め定めた所定値ΔWa(mm)以下となるように、上記搬送速度V(m/min)を制御し、かつ、
上記塗膜の目付量M(mg/cm2)が予め定めた所定量Ma(mg/cm2)を保つように、上記吐出量Q(m3/sec)を制御する
電極板の製造方法。
A method for manufacturing an electrode plate comprising a band-shaped current collecting foil and an electrode layer formed in a band shape on the current collecting foil along the longitudinal direction of the current collecting foil.
A coating process in which the electrode paste is discharged from the coating die toward the current collecting foil at a discharge rate of Q (m 3 / sec) to form a strip-shaped coating film on the current collecting foil.
A drying step of drying the coating film to form the electrode layer is provided.
The coating process and the drying process
The current collecting foil is continuously transported in the longitudinal direction at a transport speed of V (m / min).
The above coating process is
The transport time T (sec) obtained in advance from immediately after the formation of the coating film to the start of drying, the surface tension γ (mN / m) of the electrode paste, and the contact angle θ of the electrode paste in contact with the current collecting foil. (°) and the relational expression T = {ΔW− (A × γ) − ( Based on B × θ) + C} / D (however, A, B, C, and D are constants)
The transport speed is such that the reduction amount ΔW (mm) is equal to or less than a predetermined value ΔWa (mm) according to the input input surface tension γi (mN / m) and the input contact angle θi (°). Controls V (m / min) and
A method for manufacturing an electrode plate that controls the discharge amount Q (m 3 / sec) so that the basis weight M (mg / cm 2 ) of the coating film maintains a predetermined predetermined amount Ma (mg / cm 2).
JP2017174855A 2017-09-12 2017-09-12 Electrode plate manufacturing method Active JP6885272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017174855A JP6885272B2 (en) 2017-09-12 2017-09-12 Electrode plate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017174855A JP6885272B2 (en) 2017-09-12 2017-09-12 Electrode plate manufacturing method

Publications (2)

Publication Number Publication Date
JP2019050172A JP2019050172A (en) 2019-03-28
JP6885272B2 true JP6885272B2 (en) 2021-06-09

Family

ID=65905107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017174855A Active JP6885272B2 (en) 2017-09-12 2017-09-12 Electrode plate manufacturing method

Country Status (1)

Country Link
JP (1) JP6885272B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220087033A (en) * 2020-12-17 2022-06-24 주식회사 엘지에너지솔루션 Device and method for coating electrode slurry capable of measuring residual oil level

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003190862A (en) * 2001-12-28 2003-07-08 Dainippon Printing Co Ltd Coating method and coating apparatus
JP4034272B2 (en) * 2003-01-30 2008-01-16 奇美實業股▲分▼有限公司 Manufacturing method of liquid crystal display
JP5321770B2 (en) * 2005-03-25 2013-10-23 大日本印刷株式会社 Coating equipment
JP4989909B2 (en) * 2006-03-24 2012-08-01 パナソニック株式会社 Electrode plate coating width control system and control method
JP4983621B2 (en) * 2008-01-24 2012-07-25 トヨタ自動車株式会社 Coating method and coating apparatus
JP2009247964A (en) * 2008-04-04 2009-10-29 Toyo Ink Mfg Co Ltd Manufacturing method of coated article
JP5527636B2 (en) * 2010-11-02 2014-06-18 トヨタ自動車株式会社 Coating method and coating apparatus
JP2015100786A (en) * 2013-11-28 2015-06-04 株式会社豊田自動織機 Coating device

Also Published As

Publication number Publication date
JP2019050172A (en) 2019-03-28

Similar Documents

Publication Publication Date Title
JP4853526B2 (en) Electrode manufacturing apparatus and electrode manufacturing method
JP6036324B2 (en) Storage device manufacturing apparatus and manufacturing method
JP6115380B2 (en) Strip electrode manufacturing method and strip electrode cutting apparatus
CN113261129B (en) Electrode manufacturing method
JP6402555B2 (en) Electrode manufacturing method and electrode manufacturing apparatus
JP5725580B2 (en) Electrode compound coating method
JP2015185453A (en) Manufacturing method of battery electrode, manufacturing device therefor, and electrode structure
JP7154272B2 (en) Electrode manufacturing method and electrode manufacturing apparatus
JP6455403B2 (en) Electrode manufacturing method
JP6885272B2 (en) Electrode plate manufacturing method
JP6724764B2 (en) Method for manufacturing electrode plate
KR20130044160A (en) Electrode, electrode manufacturing apparatus and electrode manufacturing method
JP5535755B2 (en) Electrode sheet manufacturing apparatus and electrode sheet manufacturing method
JP2015044132A (en) Coating film forming device
JP7067426B2 (en) Electrode manufacturing method
JP7024673B2 (en) Drying equipment
JP6417810B2 (en) Drying apparatus and electrode manufacturing method
JP2010212143A (en) Electrode manufacturing method and electrode manufacturing device
CN106953048A (en) Membrane manufacturing method
JP7318583B2 (en) Method for manufacturing strip electrode plate
KR100646550B1 (en) Electrode plate of secondary battery and electrode plate coating apparatus of secondary battery
JP2017191678A (en) Method for manufacturing electrode material
JP5857935B2 (en) Electrode manufacturing method
JP2015046410A (en) Device of manufacturing battery electrode
JP2020170637A (en) Manufacturing method of electrode sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210426

R151 Written notification of patent or utility model registration

Ref document number: 6885272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151