JP6881666B2 - Manufacturing method of ferritic stainless steel sheet - Google Patents
Manufacturing method of ferritic stainless steel sheet Download PDFInfo
- Publication number
- JP6881666B2 JP6881666B2 JP2020501406A JP2020501406A JP6881666B2 JP 6881666 B2 JP6881666 B2 JP 6881666B2 JP 2020501406 A JP2020501406 A JP 2020501406A JP 2020501406 A JP2020501406 A JP 2020501406A JP 6881666 B2 JP6881666 B2 JP 6881666B2
- Authority
- JP
- Japan
- Prior art keywords
- rolled
- steel sheet
- hot
- cold
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims description 33
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 229910000831 Steel Inorganic materials 0.000 claims description 79
- 239000010959 steel Substances 0.000 claims description 79
- 238000010438 heat treatment Methods 0.000 claims description 62
- 238000000137 annealing Methods 0.000 claims description 59
- 238000001816 cooling Methods 0.000 claims description 29
- 238000000465 moulding Methods 0.000 claims description 29
- 238000005098 hot rolling Methods 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 11
- 239000010960 cold rolled steel Substances 0.000 claims description 9
- 238000010586 diagram Methods 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 7
- 229910000859 α-Fe Inorganic materials 0.000 description 60
- 238000012360 testing method Methods 0.000 description 41
- 239000002184 metal Substances 0.000 description 34
- 229910052751 metal Inorganic materials 0.000 description 34
- 229910001566 austenite Inorganic materials 0.000 description 20
- 239000006104 solid solution Substances 0.000 description 15
- 229910052799 carbon Inorganic materials 0.000 description 14
- 238000005260 corrosion Methods 0.000 description 13
- 230000007797 corrosion Effects 0.000 description 13
- 230000000694 effects Effects 0.000 description 13
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- 238000005096 rolling process Methods 0.000 description 10
- 239000007921 spray Substances 0.000 description 9
- 238000004220 aggregation Methods 0.000 description 8
- 230000002776 aggregation Effects 0.000 description 8
- 229910000734 martensite Inorganic materials 0.000 description 8
- 239000002244 precipitate Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 238000001953 recrystallisation Methods 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- 239000011800 void material Substances 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- 238000000354 decomposition reaction Methods 0.000 description 6
- 229910052748 manganese Inorganic materials 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 238000004804 winding Methods 0.000 description 6
- 229910052804 chromium Inorganic materials 0.000 description 5
- 238000005097 cold rolling Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 230000001737 promoting effect Effects 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 238000005554 pickling Methods 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000001226 reprecipitation Methods 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical class [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229940069428 antacid Drugs 0.000 description 2
- 239000003159 antacid agent Substances 0.000 description 2
- 230000001458 anti-acid effect Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000003595 mist Substances 0.000 description 2
- 238000009828 non-uniform distribution Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000000441 X-ray spectroscopy Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- -1 carbon nitrides Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、十分な耐食性を有するとともに、成形性、特には張り出し成形性に優れたフェライト系ステンレス鋼板およびその製造方法に関するものである。 The present invention relates to a ferritic stainless steel sheet having sufficient corrosion resistance and excellent moldability, particularly overhang moldability, and a method for producing the same.
SUS430(16〜18mass%Cr)系のフェライト系ステンレス鋼板は、経済的で耐食性にも優れているため、建材、輸送機器、家電製品、厨房機器および自動車部品などの種々の用途に適用されており、その適用範囲は、近年さらに拡大している。 Since SUS430 (16-18 mass% Cr) -based ferritic stainless steel sheets are economical and have excellent corrosion resistance, they are applied to various applications such as building materials, transportation equipment, home appliances, kitchen equipment and automobile parts. , Its scope of application has expanded further in recent years.
これらの用途に適用される鋼板には、耐食性だけでなく、プレス成形等により、所定の形状に加工できる十分な成形性が求められる。
このようなフェライト系ステンレス鋼板として、例えば、特許文献1には、
「mass%で、C:0.02〜0.06%、Si:1.0%以下、Mn:1.0%以下、P:0.05%以下、S:0.01%以下、Al:0.005%以下、Ti:0.005%以下、Cr:11〜30%以下、Ni:0.7%以下を含み、かつNを、C含有量との関係で0.06≦(C+N)≦0.12および1≦N/Cを満足するように含有し、さらにVを、N含有量との関係で1.5×10−3≦(V×N)≦1.5×10−2を満足するように含有し、残部Feおよび不可避的不純物からなることを特徴とする成形性に優れたフェライト系ステンレス鋼板。」
が開示されている。Steel sheets applied to these applications are required to have not only corrosion resistance but also sufficient formability that can be processed into a predetermined shape by press molding or the like.
As such a ferritic stainless steel sheet, for example, Patent Document 1
"In mass%, C: 0.02 to 0.06%, Si: 1.0% or less, Mn: 1.0% or less, P: 0.05% or less, S: 0.01% or less, Al: 0.005% or less, Ti: 0.005% or less, Cr: It contains 11 to 30% or less, Ni: 0.7% or less, and contains N so as to satisfy 0.06 ≦ (C + N) ≦ 0.12 and 1 ≦ N / C in relation to the C content, and further contains V. contained so as to satisfy 1.5 × 10 -3 ≦ (V × N) ≦ 1.5 × 10 -2 in relation to the N content, excellent in formability, characterized in that the balance Fe and unavoidable impurities Ferritic stainless steel sheet. "
Is disclosed.
また、特許文献2には、
「mass%で、C:0.010〜0.045%、N:0.01〜0.05%、Mn:1%以下、Cr:13〜20%、Al:0.01%以下を含み、かつC、NをCr炭窒化物の体積率vが0.09%以下となるように含み、さらにSi:0.4%以下、P:0.05%以下、S:0.010%以下を含有し、残部Feおよび不可避的不純物からなる組成を有し、さらにフェライト粒の平均結晶粒径が10μm以上で、Cr炭窒化物がフェライト粒1個当たり50個以下分散したフェライト単一組織を有することを特徴とするプレス成形性に優れたフェライト系ステンレス冷延鋼板。」
が開示されている。Further, in Patent Document 2,
"In mass%, C: 0.010 to 0.045%, N: 0.01 to 0.05%, Mn: 1% or less, Cr: 13 to 20%, Al: 0.01% or less, and C and N are Cr carbonitrides. It contains so that the volume ratio v is 0.09% or less, Si: 0.4% or less, P: 0.05% or less, S: 0.010% or less, has a composition consisting of the balance Fe and unavoidable impurities, and further ferrite. A ferritic stainless cold-rolled steel sheet having excellent press formability, characterized in that the average crystal grain size of the grains is 10 μm or more and that Cr carbonitride has a ferrite single structure in which 50 or less are dispersed per ferrite grain. "
Is disclosed.
ところで、プレス成形は、張り出し成形、深絞り成形、伸びフランジ成形および曲げ成形といった4種類の成形モードに大別される。
近年、プレス成形における成形モードが主に張り出し成形となるような部材、例えば、排気ダクトや、換気口等に用いられる丸型ルーバーの屋外フードといったエクステリア部材、および、エンボス加工による意匠性あるいは機能性の向上を図った内装パネル部材等へのフェライト系ステンレス鋼の適用が進んでいる。このため、このような部材形状に加工できる優れた張り出し成形性を有するフェライト系ステンレス鋼板の開発が望まれている。By the way, press forming is roughly classified into four types of forming modes such as overhang forming, deep drawing forming, stretch flange forming and bending forming.
In recent years, members whose molding mode in press molding is mainly overhang molding, for example, exterior members such as exhaust ducts and outdoor hoods of round louvers used for ventilation openings, and design or functionality by embossing. Ferritic stainless steel is being applied to interior panel members, etc. Therefore, it is desired to develop a ferritic stainless steel sheet having excellent overhang formability that can be processed into such a member shape.
しかし、特許文献1および2に開示されるフェライト系ステンレス鋼板は、十分な張り出し成形性を有するとは言えなかった。 However, it cannot be said that the ferritic stainless steel sheets disclosed in Patent Documents 1 and 2 have sufficient overhang formability.
そこで、発明者らは先に、特許文献3において、
「質量%で、C:0.005〜0.025%、Si:0.02〜0.50%、Mn:0.55〜1.00%、P:0.04%以下、S:0.01%以下、Al:0.001〜0.10%、Cr:15.5〜18.0%、Ni:0.1〜1.0%、N:0.005〜0.025%を含有し、残部がFeおよび不可避的不純物からなり、破断伸びが28%以上、平均r値が0.75以上、かつ、FLD(成形限界線図)に基づく成形限界の最大対数ひずみの最小値が0.15以上であるフェライト系ステンレス鋼板。」
を開発した。
これにより、特許文献1および2に開示されるフェライト系ステンレス鋼板に比べて、張り出し成形性が大幅に向上したフェライト系ステンレス鋼板が得られるようになった。Therefore, the inventors first described in Patent Document 3.
"In mass%, C: 0.005 to 0.025%, Si: 0.02 to 0.50%, Mn: 0.55 to 1.00%, P: 0.04% or less, S: 0. Contains 01% or less, Al: 0.001 to 0.10%, Cr: 15.5 to 18.0%, Ni: 0.1 to 1.0%, N: 0.005 to 0.025%. The balance consists of Fe and unavoidable impurities, the elongation at break is 28% or more, the average r value is 0.75 or more, and the minimum value of the maximum logarithmic strain of the molding limit based on FLD (ferritic stainless steel) is 0. Ferritic stainless steel plate of 15 or more. "
Was developed.
As a result, a ferritic stainless steel sheet having significantly improved overhang formability can be obtained as compared with the ferritic stainless steel sheets disclosed in Patent Documents 1 and 2.
しかし、特許文献3のフェライト系ステンレス鋼板を、排気ダクトのような特に高い張り出し成形性が求められる部材に成形しようとすると、なおも割れが生じる場合があり、そのため、張り出し成形性の一層の向上が求められているのが現状である。 However, when an attempt is made to form a ferritic stainless steel sheet of Patent Document 3 into a member such as an exhaust duct that requires particularly high overhang formability, cracks may still occur, and therefore, overhang formability is further improved. Is currently required.
本発明は、上記の現状に鑑み開発されたものであって、十分な耐食性を有するとともに、張り出し成形性に優れるフェライト系ステンレス鋼板を、その有利な製造方法とともに提供することを目的とする。 The present invention has been developed in view of the above situation, and an object of the present invention is to provide a ferritic stainless steel sheet having sufficient corrosion resistance and excellent overhang formability, together with an advantageous manufacturing method thereof.
ここで、「十分な耐食性」とは、JIS H 8502に規定された塩水噴霧サイクル試験を、塩水噴霧(35℃、5質量%NaCl、噴霧時間:2時間)→乾燥(60℃、相対湿度40%、保持時間:4時間)→湿潤(50℃、相対湿度≧95%、保持時間:2時間)を1サイクルとして8サイクル行ったときの、鋼板表面における発錆面積率(鋼板表面の発錆面積/鋼板表面の全面積)×100(%))が25%以下であることを意味する。
また、「優れた張り出し成形性」とは、ISO12004−2:2008に準拠して測定される成形限界線図(Forming Limit Di■gram、以下、FLDともいう)に基づいて決定される成形限界の最大対数ひずみの最小値が0.20以上であることを意味する。Here, "sufficient corrosion resistance" means that the salt spray cycle test specified in JIS H8502 is performed by salt spray (35 ° C, 5% by mass NaCl, spray time: 2 hours) → drying (60 ° C, relative humidity 40). %, Retention time: 4 hours) → Wetness (50 ° C, relative humidity ≥ 95%, Retention time: 2 hours) as one cycle for 8 cycles, the rust area ratio on the steel sheet surface (rust on the steel sheet surface) Area / total area of steel sheet surface) × 100 (%)) means that it is 25% or less.
Further, "excellent overhang formability" means a molding limit determined based on a molding limit diagram (Forming Limit Di ■ gram, hereinafter also referred to as FLD) measured in accordance with ISO12004-2: 2008. It means that the minimum value of the maximum logarithmic strain is 0.20 or more.
さて、発明者らは、上記の課題を解決すべく、種々検討を重ねた。
まず、発明者らは、成分組成や製造方法が異なる種々のフェライト系ステンレス鋼板を準備し、これらの鋼板を用いて、等二軸張り出しおよび不等二軸張り出しとなる部位が含まれる部材へのプレス加工試験を行った。
一般的に、張り出し成形性は伸びが高い方が優位と考えられているが、このプレス加工試験では、破断伸びが高い鋼板であっても割れが生じる場合があり、この試験結果から、張り出し成形性の優劣が、必ずしも破断伸びの大きさだけでは決まらないことが分かった。Now, the inventors have repeated various studies in order to solve the above-mentioned problems.
First, the inventors prepare various ferritic stainless steel sheets having different composition and manufacturing method, and use these steel sheets to form a member including a portion having equal biaxial overhang and unequal biaxial overhang. A press working test was conducted.
Generally, it is considered that the one with high elongation is superior in overhang formability, but in this press working test, even a steel sheet with high breaking elongation may crack, and from this test result, overhang molding is performed. It was found that the superiority or inferiority of sex is not necessarily determined only by the magnitude of elongation at break.
そこで、発明者らは、先の試験で割れが生じた鋼板を別途用意し、当該鋼板を用いて、再度、同じ条件でプレス加工試験を行い、先の試験で割れが発生した上金型の押し込み終了位置直前(下死点+2mm)でプレス加工を停止し、当該鋼板から試験片を採取して、その金属組織を詳細に観察した。具体的には、上記のプレス加工の停止後、金型から当該鋼板を抜き出し、ついで、当該鋼板の断面を鏡面研磨した後、飽和ピクリン酸−5質量%塩酸水溶液により腐食処理を行って金属組織観察用試験片を作製し、走査型電子顕微鏡(二次電子像)により、倍率500倍で当該試験片を観察した。
その結果、先の試験で割れが生じた鋼板ではいずれも、プレス加工の途中段階ですでに多量のボイドがCr系炭窒化物とフェライト母相の界面に生成しており、一部のボイドは、近傍のボイドと連結して微小亀裂へと成長していることが確認された。Therefore, the inventors separately prepared a steel plate in which the crack occurred in the previous test, and again performed a press working test using the steel plate under the same conditions, and used the upper mold in which the crack occurred in the previous test. The press working was stopped immediately before the pushing end position (bottom dead center + 2 mm), a test piece was collected from the steel sheet, and the metal structure was observed in detail. Specifically, after the above-mentioned press working is stopped, the steel sheet is extracted from the mold, and then the cross section of the steel sheet is mirror-polished and then corroded with a saturated picric acid-5% by mass hydrochloric acid aqueous solution to carry out a metallographic structure. An observation test piece was prepared, and the test piece was observed with a scanning electron microscope (secondary electron image) at a magnification of 500 times.
As a result, in all the steel sheets that were cracked in the previous test, a large amount of voids were already formed at the interface between the Cr-based carbonitride and the ferrite matrix in the middle of the press working, and some voids were generated. , It was confirmed that it was connected to nearby voids and grew into microcracks.
これに対して、先の試験で割れなくプレス加工できた鋼板のプレス加工後の金属組織では、Cr系炭窒化物とフェライト母相の界面にボイドが生成していたものの、ボイド同士の連結による微小亀裂の発生は認められなかった。 On the other hand, in the metal structure of the steel sheet that was press-processed without cracking in the previous test, voids were formed at the interface between the Cr-based carbonitride and the ferrite matrix, but the voids were connected to each other. No microcracks were observed.
上記のことから、発明者らは、張り出し成形性の優劣は鋼板の金属組織に大きく影響を受けていると考え、先のプレス加工試験において割れが生じた鋼板と割れなく成形できた鋼板両方のプレス加工前の金属組織を調査し、両者の詳細な比較を行った。
その結果、金属組織は、両者ともにCr系炭窒化物が分散するフェライト組織であったが、先のプレス加工試験において割れが生じた鋼板では、Cr系炭窒化物間の距離が比較的短い傾向にあることを知見した。From the above, the inventors consider that the superiority or inferiority of the overhang formability is greatly influenced by the metal structure of the steel sheet, and both the steel sheet with cracks and the steel sheet that can be formed without cracks in the previous press working test. The metallographic structure before press working was investigated, and a detailed comparison was made between the two.
As a result, both of the metal structures were ferrite structures in which Cr-based carbonitrides were dispersed, but in the steel sheet in which cracks occurred in the previous press working test, the distance between Cr-based carbonitrides tended to be relatively short. It was found that it is in.
そこで、発明者らは、張り出し成形性とCr系炭窒化物間の距離の関係に着目して実験・検討を重ねた。その結果、張り出し成形性と一定以上の大きさのCr系炭窒化物間の平均距離とは相関があることが認められた。特に、円相当直径で0.05μm以上のCr系炭窒化物間の平均距離を3.0μm以上とすることにより、優れた張り出し成形性が得られた。具体的には、成形限界線図(FLD)に基づいて決定される成形限界の最大対数ひずみの最小値が0.20以上となる優れた張り出し成形性が得られた。これにより、排気ダクトのような特に高い張り出し成形性が求められる部材を、割れなく、プレス成形できるようになるとの知見を得た。 Therefore, the inventors have repeated experiments and studies focusing on the relationship between the overhang formability and the distance between Cr-based carbonitrides. As a result, it was found that there is a correlation between the overhang formability and the average distance between Cr-based carbonitrides having a certain size or more. In particular, excellent overhang formability was obtained by setting the average distance between Cr-based carbonitrides having a diameter equivalent to a circle of 0.05 μm or more to 3.0 μm or more. Specifically, excellent overhang formability was obtained in which the minimum value of the maximum logarithmic strain of the molding limit determined based on the molding limit diagram (FLD) was 0.20 or more. As a result, it has been found that members such as exhaust ducts, which require particularly high overhang formability, can be press-molded without cracking.
ここで、円相当直径で0.05μm以上のCr系炭窒化物間の平均距離を長くすることによって、優れた張り出し成形性が得られる理由について、発明者らは次のように考えている。
すなわち、鋼板を加工する場合、ひずみ量の増大に伴って金属組織中のフェライト母相とCr系炭窒化物の界面にボイドが生成する。このボイドはひずみ量の増加および/または応力集中の増大に伴って増加および成長して、近接する他のボイドと連結することで亀裂となり、最終的に鋼板を破断に至らしめる。
このように、ボイドはひずみ量の増大に伴って応力集中を受けることで成長し、近傍のボイドと連結することで微小亀裂へと成長する。特に、応力が2次元あるいは3次元的に作用する多軸応力下の変形では、3軸応力度が高くなることによって、亀裂の成長が一層助長される。このような多軸応力下の変形の場合には、単軸応力下の変形(単軸応力下の変形は、伸びの評価に用いられ、引張試験に代表される)と比べて、ボイドが成長しやすい。そのため、材料の破壊限界が単軸応力下に比べて低くなる(つまり、破断しやすくなる)ものと考えられる。
張り出し成形は、通常、多軸応力下での変形であり、鋼板中で全方位的なボイドの連結が生じやすくなるため、単軸応力下の変形に比べて破断が生じやすくなる。
このため、引張試験のような単軸応力下の変形において高い破断伸びを示す鋼板であっても、一定以上の大きさのCr系炭窒化物間の平均距離が短いと、多軸応力下の変形ではボイドの連結が生じて、ボイドの連結に起因した微小亀裂の発生ならびにその進展が助長される。
一方、一定以上の大きさのCr系炭窒化物の平均距離を十分に長くすると、多軸応力下での変形となる張り出し成形を行う場合であっても、ボイドの連結が生じ難く、このために、ボイドの連結に起因した微小亀裂の発生ならびにその進展が抑制される。
このような理由から、円相当直径で0.05μm以上のCr系炭窒化物間の平均距離を長くすることによって、張り出し成形性が大幅に向上するものと、発明者らは考えている。Here, the inventors consider the reason why excellent overhang formability can be obtained by increasing the average distance between Cr-based carbonitrides having a diameter equivalent to a circle of 0.05 μm or more as follows.
That is, when processing a steel sheet, voids are generated at the interface between the ferrite matrix and the Cr-based carbonitride in the metal structure as the amount of strain increases. This void increases and grows as the amount of strain increases and / or the stress concentration increases, and when it is connected to other adjacent voids, it becomes a crack, which eventually leads to the fracture of the steel sheet.
In this way, the void grows by receiving stress concentration as the strain amount increases, and grows into a microcrack by connecting with a nearby void. In particular, in deformation under multiaxial stress in which stress acts two-dimensionally or three-dimensionally, the growth of cracks is further promoted by increasing the degree of triaxial stress. In the case of such deformation under multiaxial stress, the void grows as compared with the deformation under uniaxial stress (deformation under uniaxial stress is used for evaluation of elongation and is represented by a tensile test). It's easy to do. Therefore, it is considered that the fracture limit of the material is lower than that under uniaxial stress (that is, it is easily fractured).
Overhang molding is usually deformation under multiaxial stress, and omnidirectional void connection is likely to occur in the steel sheet, so that fracture is more likely to occur than deformation under uniaxial stress.
Therefore, even if the steel sheet shows high breaking elongation in deformation under uniaxial stress such as a tensile test, if the average distance between Cr-based carbonitrides having a certain size or more is short, it will be under multiaxial stress. The deformation causes void connection, which promotes the generation and growth of microcracks due to the void connection.
On the other hand, if the average distance of a Cr-based carbonitride having a size of a certain size or more is sufficiently long, voids are unlikely to be connected even in the case of overhang molding in which deformation occurs under multiaxial stress. In addition, the generation and growth of microcracks due to the connection of voids are suppressed.
For this reason, the inventors believe that the overhang formability is significantly improved by increasing the average distance between Cr-based carbonitrides having a diameter equivalent to a circle of 0.05 μm or more.
また、発明者らが、さらに検討を重ねたところ、円相当直径で0.05μm以上のCr系炭窒化物間の平均距離を3.0μm以上とするには、所定の温度域で一定時間以上保持する熱延板焼鈍を行って、熱延板焼鈍後の金属組織を、一旦、Cr系炭窒化物が析出したフェライト単相組織とし、その上で、冷間圧延後の冷延板焼鈍において、
(1)500℃〜加熱温度までの加熱速度を遅くして、Cr系炭窒化物の凝集・粗大化、および、Cr系炭窒化物のフェライト相への固溶を同時に促進すること(なお、Cr系炭窒化物のフェライト相への固溶とは、Cr系炭窒化物がCr、炭素および窒素に原子単位に分解し、それぞれの元素がフェライト相中に含有される現象である)、
(2)加熱温度および保持時間を適正に制御して、Cr系炭窒化物のフェライト相への固溶をさらに促すこと、ならびに、
(3)加熱温度〜500℃までの冷却速度を早くして、固溶したCr系炭窒化物の再析出を抑制すること、
が重要であり、これらの条件を全て同時に満足させることにより、円相当直径で0.05μm以上のCr系炭窒化物間の平均距離を3.0μm以上とすることが可能になる、との知見を得た。
本発明は、上記の知見に基づき、さらに検討を加えた末に完成されたものである。Further studies by the inventors revealed that in order for the average distance between Cr-based carbonitides having a diameter equivalent to a circle of 0.05 μm or more to be 3.0 μm or more, a certain period of time or more is required in a predetermined temperature range. The hot-rolled plate is annealed to be retained, and the metal structure after the hot-rolled plate is annealed to be a ferrite single-phase structure in which Cr-based carbonitrides are once precipitated, and then in the cold-rolled plate annealing after cold rolling. ,
(1) By slowing down the heating rate from 500 ° C. to the heating temperature, the aggregation and coarsening of Cr-based carbonitoxide and the solid solution of Cr-based carbonitride into the ferrite phase are promoted at the same time. Solid solution of Cr-based carbonitoxide into the ferrite phase is a phenomenon in which Cr-based carbonitride is decomposed into Cr, carbon and nitrogen in atomic units, and each element is contained in the ferrite phase).
(2) Appropriately controlling the heating temperature and holding time to further promote the solid solution of Cr-based carbonitride into the ferrite phase, and
(3) Accelerate the cooling rate from the heating temperature to 500 ° C. to suppress the reprecipitation of the solid-dissolved Cr-based carbonitride.
Is important, and by satisfying all of these conditions at the same time, it is possible to set the average distance between Cr-based carbonitrides having a diameter equivalent to a circle of 0.05 μm or more to 3.0 μm or more. Got
The present invention has been completed after further studies based on the above findings.
すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、
C:0.025〜0.050%、
Si:0.10〜0.40%、
Mn:0.45〜1.00%、
P:0.04%以下、
S:0.010%以下、
Cr:16.0〜18.0%、
Al:0.001〜0.010%、
N:0.025〜0.060%および
Ni:0.05〜0.60%
を含有し、残部がFeおよび不可避的不純物からなる成分組成を有するとともに、
円相当直径で0.05μm以上のCr系炭窒化物間の平均距離が3.0μm以上であり、
成形限界線図に基づく成形限界の最大対数ひずみの最小値が0.20以上である、フェライト系ステンレス鋼板。That is, the gist structure of the present invention is as follows.
1. 1. By mass%
C: 0.025 to 0.050%,
Si: 0.10 to 0.40%,
Mn: 0.45-1.00%,
P: 0.04% or less,
S: 0.010% or less,
Cr: 16.0 to 18.0%,
Al: 0.001 to 0.010%,
N: 0.025 to 0.060% and Ni: 0.05 to 0.60%
Has a component composition in which the balance is composed of Fe and unavoidable impurities, and
The average distance between Cr-based carbonitrides with a diameter equivalent to a circle of 0.05 μm or more is 3.0 μm or more.
A ferritic stainless steel sheet in which the minimum value of the maximum logarithmic strain of the forming limit based on the forming limit diagram is 0.20 or more.
2.前記1に記載の成分組成を有する鋼素材を熱間圧延して熱延鋼板とし、該熱延鋼板に、加熱温度:800〜900℃、保持時間:1時間以上の熱延板焼鈍を施したのち、冷間圧延して冷延鋼板とし、ついで、該冷延鋼板に、加熱温度:800〜900℃、保持時間:5〜300秒の冷延板焼鈍を施し、
上記冷延板焼鈍において、500℃〜加熱温度における平均加熱速度を20℃/s以下とし、かつ、加熱温度〜500℃における平均冷却速度を10℃/s以上とする、フェライト系ステンレス鋼板の製造方法。2. The steel material having the component composition described in 1 was hot-rolled to obtain a hot-rolled steel sheet, and the hot-rolled steel sheet was annealed with a hot-rolled sheet at a heating temperature of 800 to 900 ° C. and a holding time of 1 hour or more. After that, it is cold-rolled to obtain a cold-rolled steel sheet, and then the cold-rolled steel sheet is annealed with a heating temperature of 800 to 900 ° C. and a holding time of 5 to 300 seconds.
Manufacture of ferritic stainless steel sheets in which the average heating rate from 500 ° C. to heating temperature is 20 ° C./s or less and the average cooling rate from heating temperature to 500 ° C. is 10 ° C./s or more in the above-mentioned cold rolled sheet annealing. Method.
本発明によれば、十分な耐食性を有するとともに、張り出し成形性に優れるフェライト系ステンレス鋼板が得られる。
また、本発明のフェライト系ステンレス鋼板を用いれば、排気ダクトのような特に高い張り出し成形性が求められる部材をプレス成形により製造できるので、産業上極めて有益である。According to the present invention, a ferritic stainless steel sheet having sufficient corrosion resistance and excellent overhang formability can be obtained.
Further, if the ferritic stainless steel sheet of the present invention is used, a member such as an exhaust duct that requires particularly high overhang formability can be manufactured by press molding, which is extremely advantageous in industry.
以下、本発明を具体的に説明する。
まず、本発明のフェライト系ステンレス鋼板の成分組成について説明する。なお、成分組成における単位はいずれも「質量%」であるが、以下、特に断らない限り、単に「%」で示す。Hereinafter, the present invention will be specifically described.
First, the component composition of the ferritic stainless steel sheet of the present invention will be described. The unit in the component composition is "mass%", but hereinafter, unless otherwise specified, it is simply indicated by "%".
C:0.025〜0.050%
Cは、熱間圧延時のオーステナイト相の生成を促進し、リジングの発生を抑制するのに有効な元素である。このような効果を得る観点から、C含有量は0.025%以上とする。
しかし、C含有量が0.050%を超えると、熱間圧延および熱延板焼鈍時のCr系炭窒化物の析出量が過度に多くなり、Cr系炭窒化物間の平均距離を長くすることが困難となる。そのため、張り出し成形時に、ボイドの連結に起因した亀裂の発生および進展による破断を防止することができず、所望の張り出し成形性が得られない。また、鋼が過度に硬質化して延性が低下する。
そのため、C含有量は0.025〜0.050%の範囲とする。C含有量の下限は、好ましくは0.030%、より好ましくは0.035%である。また、C含有量の上限は、好ましくは0.045%である。C: 0.025 to 0.050%
C is an element effective for promoting the formation of an austenite phase during hot rolling and suppressing the occurrence of rigging. From the viewpoint of obtaining such an effect, the C content is set to 0.025% or more.
However, when the C content exceeds 0.050%, the amount of Cr-based carbonitrides precipitated during hot rolling and hot-rolled sheet annealing becomes excessively large, and the average distance between Cr-based carbonitrides becomes long. Becomes difficult. Therefore, at the time of overhang molding, it is not possible to prevent the occurrence and breakage of cracks due to the connection of voids, and the desired overhang moldability cannot be obtained. In addition, the steel becomes excessively hard and the ductility decreases.
Therefore, the C content is set in the range of 0.025 to 0.050%. The lower limit of the C content is preferably 0.030%, more preferably 0.035%. The upper limit of the C content is preferably 0.045%.
Si:0.10〜0.40%
Siは、鋼溶製時に脱酸剤として作用する元素である。このような効果を得る観点から、Si含有量は0.10%以上とする。
しかし、Si含有量が0.40%を超えると、鋼が過度に硬質化して熱間圧延時の圧延負荷が増大する。また、冷延板焼鈍後に得られる鋼板の延性が低下する。
そのため、Si含有量は0.10〜0.40%の範囲とする。Si含有量の下限は、好ましくは0.20%である。Si含有量の上限は、好ましくは0.30%である。Si: 0.10 to 0.40%
Si is an element that acts as an antacid during melting of steel. From the viewpoint of obtaining such an effect, the Si content is set to 0.10% or more.
However, when the Si content exceeds 0.40%, the steel becomes excessively hard and the rolling load during hot rolling increases. In addition, the ductility of the steel sheet obtained after annealing the cold-rolled sheet is reduced.
Therefore, the Si content is in the range of 0.10 to 0.40%. The lower limit of the Si content is preferably 0.20%. The upper limit of the Si content is preferably 0.30%.
Mn:0.45〜1.00%
MnはCと同様にオーステナイト相の生成を促進し、リジングの発生を抑制するのに有効な元素である。このような効果を得る観点から、Mn含有量は0.45%以上とする。
しかし、Mn含有量が1.00%を超えると、鋼が過度に硬質化して熱間圧延時の圧延負荷が増大する。また、冷延板焼鈍後に得られる鋼板の延性が低下する。
そのため、Mn含有量は0.45〜1.00%の範囲とする。Mn含有量の下限は、好ましくは0.60%である。Mn含有量の上限は、好ましくは0.75%、より好ましくは0.70%である。Mn: 0.45-1.00%
Like C, Mn is an element effective in promoting the formation of an austenite phase and suppressing the occurrence of rigging. From the viewpoint of obtaining such an effect, the Mn content is set to 0.45% or more.
However, if the Mn content exceeds 1.00%, the steel becomes excessively hard and the rolling load during hot rolling increases. In addition, the ductility of the steel sheet obtained after annealing the cold-rolled sheet is reduced.
Therefore, the Mn content is set in the range of 0.45 to 1.00%. The lower limit of the Mn content is preferably 0.60%. The upper limit of the Mn content is preferably 0.75%, more preferably 0.70%.
P:0.04%以下
Pは、粒界偏析による粒界破壊を助長する元素である。そのため、P含有量は少ない方が望ましく、上限を0.04%とする。好ましくは0.03%以下である。より好ましくは0.01%以下である。P含有量の下限については特に限定されるものではないが、過度の脱Pはコストの増加を招く。そのため、P含有量の下限は0.005%とすることが好ましい。P: 0.04% or less P is an element that promotes grain boundary fracture due to grain boundary segregation. Therefore, it is desirable that the P content is low, and the upper limit is 0.04%. It is preferably 0.03% or less. More preferably, it is 0.01% or less. The lower limit of the P content is not particularly limited, but excessive de-P causes an increase in cost. Therefore, the lower limit of the P content is preferably 0.005%.
S:0.010%以下
Sは、MnSなどの硫化物系介在物として鋼中に存在して、延性や耐食性等を低下させる元素であり、特にS含有量が0.010%を超えた場合に、その悪影響が顕著に生じる。そのため、S含有量は極力低い方が望ましく、S含有量の上限は0.010%とする。好ましくは0.007%以下である。より好ましくは0.005%以下である。S含有量の下限については特に限定されるものではないが、過度の脱Sはコストの増加を招く。そのため、S含有量の下限は0.001%とすることが好ましい。S: 0.010% or less S is an element that exists in steel as a sulfide-based inclusion such as MnS and lowers ductility, corrosion resistance, etc., especially when the S content exceeds 0.010%. In addition, the adverse effect is remarkable. Therefore, it is desirable that the S content is as low as possible, and the upper limit of the S content is 0.010%. It is preferably 0.007% or less. More preferably, it is 0.005% or less. The lower limit of the S content is not particularly limited, but excessive de-S causes an increase in cost. Therefore, the lower limit of the S content is preferably 0.001%.
Cr:16.0〜18.0%
Crは、鋼板表面に不動態皮膜を形成して耐食性を向上させる効果を有する元素である。このような効果を得る観点から、Cr含有量は16.0%以上とする。
しかし、Cr含有量が18.0%を超えると、熱間圧延時のオーステナイト相の生成量が減少して耐リジング性が低下するおそれがある。
そのため、Cr含有量は16.0〜18.0%の範囲とする。Cr含有量の上限は、好ましくは17.0%、より好ましくは16.5%である。Cr: 16.0 to 18.0%
Cr is an element having the effect of forming a passivation film on the surface of a steel sheet to improve corrosion resistance. From the viewpoint of obtaining such an effect, the Cr content is set to 16.0% or more.
However, if the Cr content exceeds 18.0%, the amount of austenite phase formed during hot rolling may decrease and the rigging resistance may decrease.
Therefore, the Cr content is in the range of 16.0 to 18.0%. The upper limit of the Cr content is preferably 17.0%, more preferably 16.5%.
Al:0.001〜0.010%
Alは、Siと同様に、脱酸剤として作用する元素である。このような効果を得る観点から、Al含有量は0.001%以上とする。
しかし、Al含有量が0.010%を超えると、Al2O3等のAl系介在物が増加し、表面性状の低下を招き易くなる。
そのため、Al含有量は0.001〜0.010%の範囲とする。Al含有量の下限は、好ましくは0.002%である。Al含有量の上限は、好ましくは0.007%、より好ましくは0.005%である。Al: 0.001 to 0.010%
Al is an element that acts as an antacid, like Si. From the viewpoint of obtaining such an effect, the Al content is set to 0.001% or more.
However, when the Al content exceeds 0.010% , Al-based inclusions such as Al 2 O 3 increase, and the surface texture tends to deteriorate.
Therefore, the Al content is in the range of 0.001 to 0.010%. The lower limit of the Al content is preferably 0.002%. The upper limit of the Al content is preferably 0.007%, more preferably 0.005%.
N:0.025〜0.060%
Nは、CおよびMnと同様に、熱間圧延時のオーステナイト相の生成を促進し、リジングの発生を抑制するのに有効な元素である。このような効果を得る観点から、N含有量は0.025%以上とする。
しかし、N含有量が0.060%を超えると、冷延板焼鈍後に得られる鋼板の延性が大幅に低下する。また、熱間圧延および熱延板焼鈍時のCr系炭窒化物の析出量が過度に多くなり、Cr系炭窒化物間の平均距離を長くすることが困難となる。このため、張り出し成形を行う場合に、ボイドの連結に起因した亀裂の発生および進展による破断を防止することができず、所望の張り出し成形性が得られない。
そのため、N含有量は0.025〜0.060%の範囲とする。N含有量の下限は、好ましくは0.030%、より好ましくは0.040%である。N含有量の上限は、好ましくは0.055%、より好ましくは0.050%である。N: 0.025 to 0.060%
Like C and Mn, N is an element effective in promoting the formation of an austenite phase during hot rolling and suppressing the occurrence of rigging. From the viewpoint of obtaining such an effect, the N content is set to 0.025% or more.
However, when the N content exceeds 0.060%, the ductility of the steel sheet obtained after annealing the cold-rolled sheet is significantly reduced. Further, the amount of Cr-based carbonitrides precipitated during hot rolling and hot-rolled sheet annealing becomes excessively large, and it becomes difficult to increase the average distance between Cr-based carbonitrides. Therefore, when the overhang molding is performed, it is not possible to prevent the occurrence and breakage due to the expansion of cracks due to the connection of the voids, and the desired overhang moldability cannot be obtained.
Therefore, the N content is in the range of 0.025 to 0.060%. The lower limit of the N content is preferably 0.030%, more preferably 0.040%. The upper limit of the N content is preferably 0.055%, more preferably 0.050%.
Ni:0.05〜0.60%
Niは、オーステナイト相の生成を促進して熱間圧延時のオーステナイト相の生成量を増加させ、耐リジング性を向上させる効果がある元素である。また、Niは、耐食性の向上にも有効な元素である。このような効果を得る観点から、Ni含有量は0.05%以上とする。しかし、Ni含有量が0.60%を超えると、鋼が過度に硬質化して成形性が低下する。そのため、Ni含有量は0.05〜0.60%の範囲とする。Ni含有量の下限は、好ましくは0.10%である。Ni含有量の上限は、好ましくは0.50%、より好ましくは0.30%である。Ni: 0.05 to 0.60%
Ni is an element that promotes the formation of an austenite phase, increases the amount of austenite phase formed during hot rolling, and has the effect of improving rigging resistance. Ni is also an element effective for improving corrosion resistance. From the viewpoint of obtaining such an effect, the Ni content is set to 0.05% or more. However, when the Ni content exceeds 0.60%, the steel becomes excessively hard and the formability deteriorates. Therefore, the Ni content is in the range of 0.05 to 0.60%. The lower limit of the Ni content is preferably 0.10%. The upper limit of the Ni content is preferably 0.50%, more preferably 0.30%.
なお、上記以外の成分はFeおよび不可避的不純物である。 The components other than the above are Fe and unavoidable impurities.
次に、本発明のフェライト系ステンレス鋼板の金属組織について説明する。
本発明のフェライト系ステンレス鋼板の金属組織は、フェライト相を主体とした組織、具体的には、組織全体に対する体積率で90%以上のフェライト相を有し、フェライト相以外の残部組織が組織全体に対する体積率で10%以下となる組織となる。さらに、フェライト単相であってもよい。なお、残部組織としては、主にマルテンサイト相が挙げられ、析出物および介在物の体積率は含まないものとする。
ここで、フェライト相の体積率は、ステンレス鋼板から断面観察用の試験片を作製し、鏡面研磨後に飽和ピクリン酸−5質量%塩酸水溶液によるエッチング処理を施してから、板厚1/4位置における任意の10視野について倍率100倍で光学顕微鏡による観察を行い、金属組織の形態からマルテンサイト相とフェライト相とを区別した後、画像処理によりフェライト相の体積率を求め、その平均値を算出することで求める。Next, the metal structure of the ferritic stainless steel sheet of the present invention will be described.
The metal structure of the ferrite-based stainless steel plate of the present invention has a structure mainly composed of a ferrite phase, specifically, a ferrite phase having a volume ratio of 90% or more with respect to the entire structure, and the remaining structure other than the ferrite phase is the entire structure. The structure has a volume ratio of 10% or less. Further, it may be a ferrite single phase. The residual structure mainly includes the martensite phase, and does not include the volume fraction of precipitates and inclusions.
Here, the volume fraction of the ferrite phase is determined by preparing a test piece for cross-sectional observation from a stainless steel plate, mirror-polishing it, and then etching it with a saturated aqueous solution of picrinic acid-5 mass% hydrochloric acid, and then at a plate thickness of 1/4. After observing an arbitrary 10 fields with an optical microscope at a magnification of 100 times and distinguishing between the martensite phase and the ferrite phase from the morphology of the metal structure, the volume fraction of the ferrite phase is obtained by image processing and the average value is calculated. Ask for it.
そして、本発明のフェライト系ステンレス鋼板の金属組織では、上述したとおり、鋼中に析出する円相当直径で0.05μm以上のCr系炭窒化物間の平均距離を3.0μm以上とすることが肝要である。
ここで、円相当直径とは、
上記の断面観察用の試験片の金属組織に現出したCr系炭窒化物が撮影されたデジタル写真(倍率500倍)について、画像処理を行って当該Cr系炭窒化物の面積を測定し、
当該測定されたCr系炭窒化物の面積から、当該Cr系炭窒化物の形状が真円であるとの仮定に基づき算出される円直径(={(4×[測定されたCr系炭窒化物の面積])/π}0.5)、
を意味する。In the metal structure of the ferritic stainless steel sheet of the present invention, as described above, the average distance between Cr-based carbonitides having a diameter equivalent to a circle deposited in the steel of 0.05 μm or more can be set to 3.0 μm or more. It is essential.
Here, the diameter equivalent to a circle is
The area of the Cr-based carbonitride was measured by performing image processing on a digital photograph (magnification of 500 times) in which the Cr-based carbonitride that appeared in the metal structure of the test piece for cross-sectional observation was taken.
From the measured area of Cr-based carbonitride, the circle diameter calculated based on the assumption that the shape of the Cr-based carbonitride is a perfect circle (= {(4 × [measured Cr-based carbonitride] Area of object]) / π} 0.5 ),
Means.
円相当直径で0.05μm以上のCr系炭窒化物間の平均距離:3.0μm以上
円相当直径で0.05μm以上のCr系炭窒化物の平均距離を3.0μm以上に長くすると、多軸応力下での変形となる張り出し成形を行う場合であっても、ボイド同士の連結が生じ難く、その結果、ボイドの連結に起因した微小亀裂の発生およびにその進展が抑制される。
このため、円相当直径で0.05μm以上のCr系炭窒化物の平均距離は3.0μm以上とする。好ましくは4.0μm以上である。なお、上限については特に限定されず、通常6.0μm程度である。
なお、円相当直径で0.05μm未満のCr系炭窒化物を対象としないのは、円相当直径で0.05μm未満の極めて微細なCr系炭窒化物は、母相であるフェライト相と接する面積が小さいので、プレス加工等による塑性変形を加えたとしても、フェライト相と当該Cr系炭窒化物との界面にボイドをほとんど発生させず、よって、成形性、特には張り出し成形性への影響をほぼ無視できるためである。Average distance between Cr-based carbonitrides with a circle-equivalent diameter of 0.05 μm or more: 3.0 μm or more When the average distance between Cr-based carbonitrides with a circle-equivalent diameter of 0.05 μm or more is increased to 3.0 μm or more, many Even in the case of overhang molding that deforms under axial stress, it is difficult for voids to be connected to each other, and as a result, the generation and growth of microcracks due to the connection of voids are suppressed.
Therefore, the average distance of Cr-based carbonitrides having a diameter equivalent to a circle of 0.05 μm or more is set to 3.0 μm or more. It is preferably 4.0 μm or more. The upper limit is not particularly limited, and is usually about 6.0 μm.
The reason why Cr-based carbonitrides with a circle-equivalent diameter of less than 0.05 μm are not targeted is that extremely fine Cr-based carbonitrides with a circle-equivalent diameter of less than 0.05 μm are in contact with the ferrite phase, which is the matrix phase. Since the area is small, even if plastic deformation is applied by press working or the like, voids are hardly generated at the interface between the ferrite phase and the Cr-based carbonitride, and thus the effect on moldability, especially overhang formability. This is because can be almost ignored.
また、ここでいうCr系炭窒化物とは、Cr炭化物およびCr窒化物の総称である。Cr炭化物としては、例えばCr23C6が、Cr窒化物としては、例えばCr2Nが挙げられる。また、Cr炭化物およびCr窒化物における一部のCrが、FeやMn等の元素に置換されたものも、ここでいうCr系炭窒化物に含むものとする。Further, the Cr-based carbonitride referred to here is a general term for Cr carbides and Cr nitrides. Examples of the Cr carbide include Cr 23 C 6 , and examples of the Cr nitride include Cr 2 N. Further, the Cr carbide and Cr nitride in which a part of Cr is replaced with an element such as Fe and Mn are also included in the Cr-based carbonitride.
また、円相当直径で0.05μm以上のCr系炭窒化物を対象としたのは、ひずみ量の増大に伴い生じるボイドは、主にフェライト母相と円相当直径で0.05μm以上のCr系炭窒化物の界面に生成しており、円相当直径で0.05μm以上のCr系炭窒化物間の距離が、ボイドの連結、ひいては、張り出し成形性に特に影響するからである。
なお、Cr系炭窒化物の大きさは、通常、円相当直径で0.5μm程度である。In addition, the Cr-based carbonitrides with a circle-equivalent diameter of 0.05 μm or more were targeted because the voids generated as the strain amount increased were mainly ferrite matrix and Cr-based with a circle-equivalent diameter of 0.05 μm or more. This is because the distance between Cr-based carbonitrides having a diameter equivalent to a circle of 0.05 μm or more, which is formed at the interface of the carbonitride, particularly affects the connection of voids and, by extension, the overhang formability.
The size of the Cr-based carbonitride is usually about 0.5 μm in diameter equivalent to a circle.
また、円相当直径で0.05μm以上のCr系炭窒化物間の平均距離は、以下のようにして測定したものである。
すなわち、鋼板の圧延平行断面について、鏡面研磨後にピクリン酸飽和塩酸溶液によりエッチングを行って金属組織を現出させ、板厚1/4位置の金属組織を倍率500倍の光学顕微鏡で一枚撮影する。
なお、当該金属組織写真に捉えられている析出物がCr系炭窒化物であることは、走査電子顕微鏡下におけるエネルギー分散型X線分光法により析出物の成分分析を行うことで、確認することができる。具体的には、該析出物からエネルギー分散型X線分光法により取得した元素スペクトルにおけるCrのピークが、同手法によって母相から得られる元素スペクトルにおけるCrのピークよりも高く、かつ該析出物の各元素のスペクトル強度比から算出される各元素の定量分析値において、該析出物の主成分がCr、Fe、CおよびNであった場合に、該析出物をCr系炭窒化物と判断することができる。
ついで、得られた金属組織写真において、円相当直径で0.05μm以上の任意のCr系炭窒化物(以下、基準炭窒化物ともいう)を選択し、基準炭窒化物からの距離が近い順に、円相当直径で0.05μm以上のCr系炭窒化物(対象炭窒化物ともいう)を10個選択して、基準炭窒化物と各対象炭窒化物との距離(中心間の距離)を金属組織写真上で測定する。
この測定を、基準炭窒化物を任意に変えて20回行い、測定した全ての基準炭窒化物と対象炭窒化物との距離を算術平均することで、Cr系炭窒化物間の平均距離を求める。
なお、上記の測定は単一フェライト粒内に限定されず、粒界をまたいでも良い。また、代表性のある測定を行うため、先の測定で選択された基準炭窒化物および対象炭窒化物が、別の測定における基準炭窒化物または対象炭窒化物とならないように、各測定箇所は、互いに十分に離れた箇所を選択する。The average distance between Cr-based carbonitrides having a diameter equivalent to a circle of 0.05 μm or more is measured as follows.
That is, the rolled parallel cross section of the steel sheet is mirror-polished and then etched with a saturated hydrochloric acid solution of picrinate to reveal the metal structure, and the metal structure at the plate thickness of 1/4 is photographed with an optical microscope at a magnification of 500 times. ..
It should be confirmed that the precipitate captured in the metallographic photograph is Cr-based carbonitride by analyzing the components of the precipitate by energy dispersive X-ray spectroscopy under a scanning electron microscope. Can be done. Specifically, the peak of Cr in the element spectrum obtained from the precipitate by energy dispersion type X-ray spectroscopy is higher than the peak of Cr in the element spectrum obtained from the parent phase by the same method, and the precipitate In the quantitative analysis value of each element calculated from the spectral intensity ratio of each element, when the main components of the precipitate are Cr, Fe, C and N, the precipitate is determined to be a Cr-based carbonitride. be able to.
Then, in the obtained metallographic photograph, any Cr-based carbonitride having a diameter equivalent to a circle of 0.05 μm or more (hereinafter, also referred to as a reference carbonitride) is selected, and the distances from the standard carbonitride are in ascending order. , Select 10 Cr-based carbonitrides (also referred to as target carbonitrides) having a diameter equivalent to a circle of 0.05 μm or more, and determine the distance (distance between centers) between the reference carbonitride and each target carbonitride. Measure on the metallographic photograph.
This measurement is performed 20 times with the reference carbonitride changed arbitrarily, and the average distance between the Cr-based carbonitrides is calculated by arithmetically averaging the distances between all the measured reference carbonitrides and the target carbonitrides. Ask.
The above measurement is not limited to single ferrite grains, and may straddle grain boundaries. In addition, in order to make a representative measurement, each measurement point is made so that the reference carbonitride and the target carbonitride selected in the previous measurement do not become the reference carbonitride or the target carbonitride in another measurement. Selects locations that are sufficiently distant from each other.
このように、本発明のフェライト系ステンレス鋼板は、上記の成分組成とし、かつ、円相当直径で0.05μm以上のCr系炭窒化物間の平均距離を3.0μm以上とすることにより、成形限界線図(FLD)に基づいて決定される成形限界の最大対数ひずみの最小値を0.20以上、好ましくは0.23以上として、優れた張り出し成形性を得ることができる。 As described above, the ferritic stainless steel sheet of the present invention is formed by using the above-mentioned composition and setting the average distance between Cr-based carbonitides having a diameter equivalent to a circle of 0.05 μm or more to 3.0 μm or more. Excellent overhang formability can be obtained by setting the minimum value of the maximum logarithmic strain of the molding limit determined based on the limit diagram (FLD) to 0.20 or more, preferably 0.23 or more.
なお、本発明の一実施形態に係るフェライト系ステンレス鋼板の板厚は特に限定されるものではないが、例えば、0.8〜2.0mmである。 The thickness of the ferritic stainless steel sheet according to the embodiment of the present invention is not particularly limited, but is, for example, 0.8 to 2.0 mm.
次に、本発明のフェライト系ステンレス鋼板の製造方法について、説明する。
本発明のフェライト系ステンレス鋼板は、上記の成分組成を有する鋼素材を熱間圧延して熱延鋼板とし、該熱延鋼板に、加熱温度:800〜900℃、保持時間:1時間以上の熱延板焼鈍を施したのち、該熱延鋼板を冷間圧延して冷延鋼板とし、該冷延鋼板に、加熱温度:800〜900℃、保持時間:5〜300秒の冷延板焼鈍を施すものとし、上記冷延板焼鈍において、500℃〜加熱温度における平均加熱速度を20℃/s以下とし、かつ、加熱温度〜500℃における平均冷却速度を10℃/s以上とすることで製造することができる。
すなわち、本発明の一実施形態に係るフェライト系ステンレス鋼板は、フェライト系ステンレス冷延焼鈍鋼板である。Next, the method for manufacturing the ferritic stainless steel sheet of the present invention will be described.
The ferrite-based stainless steel plate of the present invention is obtained by hot-rolling a steel material having the above-mentioned composition to obtain a hot-rolled steel sheet, and the hot-rolled steel sheet is heated at a heating temperature of 800 to 900 ° C. and a holding time of 1 hour or more. After the rolled-rolled plate is annealed, the hot-rolled steel sheet is cold-rolled to obtain a cold-rolled steel sheet, and the cold-rolled steel sheet is subjected to cold-rolled sheet annealing at a heating temperature of 800 to 900 ° C. and a holding time of 5 to 300 seconds. In the cold-rolled sheet baking, the average heating rate from 500 ° C. to heating temperature is 20 ° C./s or less, and the average cooling rate from heating temperature to 500 ° C. is 10 ° C./s or more. can do.
That is, the ferritic stainless steel sheet according to the embodiment of the present invention is a ferritic stainless cold-rolled annealed steel sheet.
まず、上記の成分組成からなる溶鋼を、転炉、電気炉、真空溶解炉等の公知の方法で溶製し、連続鋳造法あるいは造塊−分塊法により鋼素材(スラブ)とする。
ついで、得られた鋼素材を、好適には、1100〜1250℃で1〜24時間加熱するか、または高温のスラブを直接加熱したのち、この鋼素材に熱間圧延を施して、熱延鋼板とする。なお、熱間圧延条件については、常法に従えばよい。
ついで、得られた熱延鋼板に、以下の条件で熱延板焼鈍を施す。First, molten steel having the above-mentioned composition is melted by a known method such as a converter, an electric furnace, a vacuum melting furnace, etc., and a steel material (slab) is obtained by a continuous casting method or an ingot-packing method.
Then, the obtained steel material is preferably heated at 1100 to 1250 ° C. for 1 to 24 hours, or a high-temperature slab is directly heated, and then the steel material is hot-rolled to be a hot-rolled steel sheet. And. The hot rolling conditions may be in accordance with a conventional method.
Then, the obtained hot-rolled steel sheet is annealed by hot-rolled sheet under the following conditions.
<熱延板焼鈍の加熱温度:800〜900℃、保持時間:1時間以上>
熱延鋼板の金属組織は、熱間圧延時の巻取温度が高い場合には、フェライト相と、高温で生成したオーステナイト相が分解することによって生成したフェライト相とが層状に積層した金属組織、熱間圧延時の巻取温度が低い場合には、フェライト相と、高温で生成したオーステナイト相が変態して生成したマルテンサイト相とが層状に積層した金属組織となっている。
なお、巻取温度が高い場合にオーステナイト相が分解することによって生成したフェライト相の近傍には、オーステナイト相の分解に伴って析出したCr系炭窒化物が偏在しており、金属組織全体でのCr系炭窒化物の分布は不均一である。
また、巻取温度は特に限定されるものではないが、巻取温度を450℃〜500℃とした場合、475℃脆化に起因した熱延鋼板の著しい靭性低下が生じる場合がある。そのため、巻取温度は500℃超または450℃未満とすることが好ましい。さらに、熱延板焼鈍後に所定の金属組織をより容易に得るという観点からは、熱間圧延後で、かつ、熱延板焼鈍前の段階で、Cr系炭窒化物が十分に析出していたほうが有利となる。このため、巻取温度は、オーステナイト相のCr系炭窒化物およびフェライト相への分解がより促進される600℃以上とすることがより好ましい。
このような金属組織を有する熱延鋼板に、800〜900℃の温度範囲で1時間以上保持する熱延板焼鈍を行うことにより、金属組織では再結晶とCr系炭窒化物の析出が生じ、熱延板焼鈍後に得られる鋼板では、フェライト単相組織中にCr系炭窒化物が、十分かつ均一に分散した金属組織が得られる。<Heating temperature for hot-rolled sheet annealing: 800-900 ° C, holding time: 1 hour or more>
The metal structure of a hot-rolled steel sheet is a metal structure in which a ferrite phase and a ferrite phase generated by decomposition of an austenite phase generated at a high temperature are laminated in layers when the winding temperature during hot rolling is high. When the take-up temperature during hot rolling is low, the ferrite phase and the martensite phase generated by transformation of the austenite phase generated at high temperature are laminated in layers to form a metal structure.
In the vicinity of the ferrite phase formed by the decomposition of the austenite phase when the winding temperature is high, Cr-based carbonitrides precipitated by the decomposition of the austenite phase are unevenly distributed in the entire metal structure. The distribution of Cr-based carbonitride is non-uniform.
The winding temperature is not particularly limited, but when the winding temperature is 450 ° C. to 500 ° C., the toughness of the hot-rolled steel sheet may be significantly reduced due to embrittlement at 475 ° C. Therefore, the winding temperature is preferably more than 500 ° C or less than 450 ° C. Further, from the viewpoint of more easily obtaining a predetermined metal structure after hot rolling plate annealing, Cr-based carbonitride was sufficiently precipitated after hot rolling and before hot rolling plate annealing. Is more advantageous. Therefore, the winding temperature is more preferably 600 ° C. or higher, which further promotes the decomposition of the austenite phase into Cr-based carbonitride and ferrite phases.
By performing hot-rolled sheet annealing in which the hot-rolled steel sheet having such a metal structure is held in a temperature range of 800 to 900 ° C. for 1 hour or more, recrystallization and precipitation of Cr-based carbonitride occur in the metal structure. In the steel sheet obtained after hot-rolled sheet annealing, a metal structure in which Cr-based carbonitrides are sufficiently and uniformly dispersed in the ferrite single-phase structure can be obtained.
ここで、熱延板焼鈍の加熱温度を800℃未満とした場合、Cr系炭窒化物の凝集・粗大化およびフェライト相への固溶が不十分となって、所定の金属組織が得られない。また、再結晶が不十分となって熱間圧延時に形成された層状組織が、特に板厚中央部に残存する。そのため、冷延板焼鈍後に板厚中央部に著しい展伸粒を有する不均一な金属組織が生じて、耐リジング性が低下するおそれがある。
一方、熱延板焼鈍温度が900℃を超えると、熱延板焼鈍の保持中にオーステナイト相が再生成して、熱間圧延工程で析出したCr系炭窒化物がオーステナイト相に固溶する。このため、熱延板焼鈍後に得られる鋼板の金属組織において、Cr系炭窒化物を十分に析出させることができない。また、熱延板焼鈍の冷却中に、オーステナイト相においてフェライト相とCr系炭窒化物への分解反応が生じる。その結果、熱延板焼鈍後の金属組織が、フェライト相と、オーステナイト相が分解することによって生成したフェライト相、つまり、その周囲に多量のCr系炭窒化物が分布したフェライト相との混粒組織となり、Cr系炭窒化物の分布が不均一となる。このため、この後の工程で所定の条件で冷延板焼鈍を行ったとしても、Cr系炭窒化物間の平均距離が十分ではない領域が局所的に生成し、所定の張り出し成形性が得られない。
従って、熱延板焼鈍における加熱温度は800〜900℃の範囲とする。好ましくは800〜860℃の範囲である。Here, when the heating temperature of the hot-rolled sheet annealing is set to less than 800 ° C., the aggregation and coarsening of Cr-based carbonitride and the solid solution to the ferrite phase become insufficient, and a predetermined metal structure cannot be obtained. .. In addition, the layered structure formed during hot rolling due to insufficient recrystallization remains particularly in the central portion of the plate thickness. Therefore, after the cold-rolled plate is annealed, a non-uniform metal structure having remarkably expanded grains may be formed in the central portion of the plate thickness, and the rigging resistance may be lowered.
On the other hand, when the hot-rolled plate annealing temperature exceeds 900 ° C., the austenite phase is regenerated during the holding of the hot-rolled plate annealing, and the Cr-based carbonitride precipitated in the hot rolling step is solid-solved in the austenite phase. Therefore, Cr-based carbonitrides cannot be sufficiently precipitated in the metal structure of the steel sheet obtained after hot-rolled sheet annealing. Further, during the cooling of the hot-rolled sheet annealing, a decomposition reaction between the ferrite phase and the Cr-based carbonitride occurs in the austenite phase. As a result, the metallographic structure after annealing the hot-rolled plate is a mixture of the ferrite phase and the ferrite phase formed by the decomposition of the austenite phase, that is, the ferrite phase in which a large amount of Cr-based carbonitride is distributed around the ferrite phase. It becomes a structure and the distribution of Cr-based carbonitride becomes non-uniform. Therefore, even if the cold-rolled sheet is annealed under predetermined conditions in the subsequent step, a region where the average distance between Cr-based carbonitrides is not sufficient is locally generated, and a predetermined overhang formability can be obtained. I can't.
Therefore, the heating temperature in the hot-rolled sheet annealing is in the range of 800 to 900 ° C. It is preferably in the range of 800 to 860 ° C.
また、熱延板焼鈍における保持時間を1時間未満とした場合、Cr系炭窒化物の析出が不十分となり、この後の工程で所定の条件で冷延板焼鈍を行ったとしても、Cr系炭窒化物間の平均距離を十分に長くできず、やはり所定の張り出し成形性が得られない。
従って、熱延板焼鈍における保持時間は1時間以上とする。好ましくは3時間以上、より好ましくは5時間以上である。なお、保持時間の上限に特に限定はないが、生産性の観点から24時間以下とすることが好ましい。Further, when the holding time in the hot-rolled plate annealing is less than 1 hour, the precipitation of Cr-based carbonitride becomes insufficient, and even if the cold-rolled plate annealing is performed under predetermined conditions in the subsequent steps, the Cr-based carbonitride is obtained. The average distance between the carbonitrides cannot be made sufficiently long, and the predetermined overhang formability cannot be obtained.
Therefore, the holding time in hot-rolled sheet annealing is set to 1 hour or more. It is preferably 3 hours or more, more preferably 5 hours or more. The upper limit of the holding time is not particularly limited, but is preferably 24 hours or less from the viewpoint of productivity.
ついで、熱延板焼鈍後に得られた鋼板(熱延焼鈍鋼板)に、必要に応じて酸洗を施し、冷間圧延を行って冷延鋼板とする。冷間圧延は、伸び性、曲げ性および形状矯正の観点から、50%以上の圧下率で行うことが好ましい。また、後述する冷延板焼鈍条件を満足する範囲で、冷延−冷延板焼鈍を2回以上繰り返しても良い。さらに、表面性状を向上させるために、熱延板焼鈍後に得られた鋼板に研削や研磨等を施しても良い。
かくして得られた冷延鋼板に、以下の条件で冷延板焼鈍を施す。Then, the steel sheet (hot-rolled annealed steel sheet) obtained after the hot-rolled sheet is annealed, if necessary, pickled and cold-rolled to obtain a cold-rolled steel sheet. Cold rolling is preferably performed at a rolling reduction of 50% or more from the viewpoint of extensibility, bendability and shape correction. Further, the cold-rolled-cold-rolled plate annealing may be repeated twice or more as long as the cold-rolled plate annealing conditions described later are satisfied. Further, in order to improve the surface texture, the steel sheet obtained after annealing the hot-rolled sheet may be ground or polished.
The cold-rolled steel sheet thus obtained is annealed by cold-rolled sheet under the following conditions.
<冷延板焼鈍の500℃〜加熱温度における平均加熱速度:20℃/s以下>
冷延板焼鈍は、冷間圧延により形成された圧延加工組織を再結晶させるとともに、Cr系炭窒化物間の平均距離を十分に長くするための工程であり、そのためには、500℃〜加熱温度における平均加熱速度を20℃/s以下とすることが重要である。
すなわち、500℃〜加熱温度における平均加熱速度を遅くすると、再結晶の駆動力が小さくなるために、再結晶が開始する温度が高温化し、冷間圧延によって導入された転位あるいはせん断帯がより高温まで維持される。
また、加熱温度に近い高温域では、熱延板焼鈍時に生成したCr系炭窒化物の凝集・粗大化(体積率がほぼ一定のまま個々のCr系炭窒化物が大きくなり、Cr系炭窒化物の個数密度が小さくなる現象)およびフェライト相への固溶が生じる。この凝集・粗大化はCr系炭窒化物の主要構成元素であるCrの拡散に律速される。前述のように転位あるいはせん断帯が高温まで維持されると、転位あるいはせん断帯を介したCrの高速拡散が生じ、Cr系炭窒化物の凝集・粗大化が促進される。
さらに、加熱温度に近い高温域でCr系炭窒化物の固溶が生じるのは、フェライト相中に固溶できるCおよびNの上限(固溶限)が上昇することによる。これらのCr系炭窒化物の凝集・粗大化の促進効果ならびにフェライト相への固溶により、Cr系炭窒化物間の平均距離は長くなる。すなわち、加熱速度を遅く、具体的には、500℃〜加熱温度における平均加熱速度を20℃/s以下に制御することにより、Cr系炭窒化物間の平均距離を長くすることが可能となる。
一方、500℃〜加熱温度における平均加熱速度が20℃/sを超えると、フェライト相の再結晶の駆動力が過度に大きくなり、加熱過程の比較的低温域からフェライト相の再結晶が生じて、冷間圧延によって導入された転位あるいはせん断帯等の加工組織が低温域で再結晶粒に置き換わる。その結果、Cr系炭窒化物の凝集・粗大化の促進効果が不十分となって冷延板焼鈍後に得られる鋼板におけるCr系炭窒化物間の平均距離が短くなるため、所望の張り出し成形性が得られない。
従って、500℃〜加熱温度における平均加熱速度は20℃/s以下とする。好ましくは15℃/s以下、より好ましくは12℃/s以下である。また、平均加熱速度の下限は特に限定はないが、加熱速度を過度に遅くすると、生産性が低下するため、1℃/s以上とすることが好ましい。
なお、加熱速度の制御は、例えば連続焼鈍法の場合、炉温の設定あるいは連続焼鈍ラインの通板速度等によって制御することができる。
また、制御する温度範囲を、500℃以上としたのは、500℃未満の温度域では回復や再結晶が生じないためである。<Average heating rate of cold rolled sheet annealing from 500 ° C to heating temperature: 20 ° C / s or less>
Cold-rolled sheet annealing is a process for recrystallizing a rolled structure formed by cold rolling and sufficiently lengthening the average distance between Cr-based carbonitrides. For that purpose, heating is performed from 500 ° C. It is important that the average heating rate at temperature is 20 ° C./s or less.
That is, when the average heating rate from 500 ° C. to the heating temperature is slowed down, the driving force for recrystallization becomes smaller, so that the temperature at which recrystallization starts becomes higher, and the dislocations or shear bands introduced by cold rolling become higher. Is maintained until.
Further, in a high temperature region close to the heating temperature, the Cr-based carbonitrides produced during the annealing of the hot-rolled plate are aggregated and coarsened (the individual Cr-based carbonitrides become large while the volume ratio remains almost constant, and the Cr-based carbonitrides become large. The phenomenon that the number density of objects decreases) and solid solution to the ferrite phase occur. This aggregation / coarsening is rate-determined by the diffusion of Cr, which is a major constituent element of Cr-based carbonitrides. When the dislocation or shear band is maintained at a high temperature as described above, high-speed diffusion of Cr through the dislocation or shear band occurs, and aggregation and coarsening of Cr-based carbonitride are promoted.
Further, the solid solution of Cr-based carbonitride occurs in a high temperature range close to the heating temperature because the upper limits (solid solution limit) of C and N that can be solid-solved in the ferrite phase increase. The average distance between Cr-based carbonitrides becomes longer due to the effect of promoting aggregation and coarsening of these Cr-based carbonitrides and the solid solution into the ferrite phase. That is, by slowing the heating rate, specifically, controlling the average heating rate from 500 ° C. to the heating temperature to 20 ° C./s or less, it is possible to increase the average distance between Cr-based carbonitrides. ..
On the other hand, when the average heating rate from 500 ° C. to the heating temperature exceeds 20 ° C./s, the driving force for recrystallization of the ferrite phase becomes excessively large, and recrystallization of the ferrite phase occurs from a relatively low temperature region in the heating process. , Processed structures such as dislocations or shear zones introduced by cold rolling are replaced with recrystallized grains in the low temperature region. As a result, the effect of promoting aggregation and coarsening of Cr-based carbonitrides becomes insufficient, and the average distance between Cr-based carbonitrides in the steel sheet obtained after annealing the cold-rolled sheet becomes short, so that the desired overhang formability is obtained. Cannot be obtained.
Therefore, the average heating rate from 500 ° C. to the heating temperature is set to 20 ° C./s or less. It is preferably 15 ° C./s or less, more preferably 12 ° C./s or less. The lower limit of the average heating rate is not particularly limited, but if the heating rate is excessively slowed down, the productivity decreases, so that the average heating rate is preferably 1 ° C./s or more.
The heating rate can be controlled by, for example, in the case of the continuous annealing method, the furnace temperature is set, the plate passing speed of the continuous annealing line, or the like.
Further, the temperature range to be controlled is set to 500 ° C. or higher because recovery and recrystallization do not occur in a temperature range of less than 500 ° C.
<冷延板焼鈍の加熱温度:800〜900℃、保持時間:5〜300秒>
フェライト相中に固溶できるCおよびNの上限(固溶限)は、温度が高くなるほど大きくなる。冷延板焼鈍では、加熱温度:800〜900℃、保持時間:5〜300秒とすることにより、熱延板焼鈍時に生成したCr系炭窒化物の一部をフェライト相へ固溶させてCr系炭窒化物の個数密度を減少させ、Cr系炭窒化物間の平均距離を長くすることができる。
このため、冷延板焼鈍における加熱温度は800〜900℃、保持時間は5〜300秒とする。好ましくは冷延板焼鈍における加熱温度は800〜860℃、保持時間は15秒〜180秒である。
なお、ここでいう保持時間とは、加熱温度±10℃の温度域における滞留時間である。<Heating temperature for cold rolled sheet annealing: 800-900 ° C, holding time: 5-300 seconds>
The upper limit (solid solution limit) of C and N that can be solid-solved in the ferrite phase increases as the temperature rises. In cold-rolled sheet annealing, the heating temperature is 800 to 900 ° C. and the holding time is 5 to 300 seconds, so that a part of the Cr-based carbonitride produced during hot-rolled sheet annealing is dissolved in the ferrite phase to solidify Cr. The number density of the carbon nitrides can be reduced and the average distance between the Cr carbonitrides can be increased.
Therefore, the heating temperature in the cold rolled sheet annealing is 800 to 900 ° C., and the holding time is 5 to 300 seconds. Preferably, the heating temperature in the cold rolled sheet annealing is 800 to 860 ° C., and the holding time is 15 seconds to 180 seconds.
The holding time referred to here is a residence time in a temperature range of a heating temperature of ± 10 ° C.
ここで、加熱温度が800℃未満になると、フェライト相におけるCおよびNの固溶限が十分に大きくならず、フェライト相へ固溶するCr系炭窒化物の量が減少してCr系炭窒化物間の距離が短くなる。そのため、所望の張り出し成形性が得られない。また、未再結晶粒が残存して延性が大きく低下する。
一方、加熱温度が900℃を超えると、保持中にオーステナイト相が生成して、その後の冷却においてオーステナイト相がマルテンサイト相へと変態して鋼板が著しく硬質化する。また、最終製品板の金属組織がフェライト相とマルテンサイト相の二相組織となって、塑性変形能が著しく低下し、所望の張り出し成形性が得られない。Here, when the heating temperature is less than 800 ° C., the solid solution limits of C and N in the ferrite phase do not become sufficiently large, and the amount of Cr-based carbonitrides solid-solved in the ferrite phase decreases, resulting in Cr-based carbonitride. The distance between objects becomes shorter. Therefore, the desired overhang formability cannot be obtained. In addition, unrecrystallized grains remain and the ductility is greatly reduced.
On the other hand, when the heating temperature exceeds 900 ° C., an austenite phase is formed during holding, and the austenite phase is transformed into a martensite phase in the subsequent cooling to remarkably harden the steel sheet. Further, the metal structure of the final product plate becomes a two-phase structure of a ferrite phase and a martensite phase, the plastic deformability is remarkably lowered, and the desired overhang formability cannot be obtained.
また、保持時間が5秒未満になると、当該保持中のCr系炭窒化物のフェライト相への固溶が不完全となってCr系炭窒化物間の距離が短くなり、所望の張り出し成形性が得られない。さらに、未再結晶粒が残存するために延性が大きく低下する。
一方、保持時間が300秒を超えると、結晶粒が著しく粗大化して鋼板の光沢度が低下し、表面品質の観点で好ましくない。Further, when the holding time is less than 5 seconds, the solid solution of the Cr-based carbonitride during holding into the ferrite phase becomes incomplete, the distance between the Cr-based carbonitrides becomes short, and the desired overhang formability is obtained. Cannot be obtained. Further, the ductility is greatly reduced because unrecrystallized grains remain.
On the other hand, if the holding time exceeds 300 seconds, the crystal grains become remarkably coarse and the glossiness of the steel sheet decreases, which is not preferable from the viewpoint of surface quality.
<冷延板焼鈍の加熱温度〜500℃における平均冷却速度:10℃/s以上>
上記の保持後の冷却では、Cr系炭窒化物の再析出が生じる。すなわち、冷延板焼鈍の保持中に、Cr系炭窒化物はフェライト母相へ固溶する。これによりフェライト相中の固溶CおよびNが増加し、冷却中にフェライト相に対して過飽和となって、Cr系炭窒化物として再析出する。
このため、Cr系炭窒化物の平均距離を長くする観点からは、特に、Cr系炭窒化物の析出温度域である500℃以上の温度域における冷却速度を速くすることによってCr系炭窒化物の再析出を抑制し、冷却前までに形成されたCr系炭窒化物間の平均距離が十分に長い金属組織を維持することが重要となる。
ここで、平均冷却速度が10℃/s未満の場合、冷延板焼鈍の保持中に生じたフェライト相中の固溶CおよびNが、Cr系炭窒化物として再析出することを十分に抑制することができないため、Cr系炭窒化物間の平均距離が短くなり、所望の張り出し成形性が得られない
従って、冷延板焼鈍の加熱温度〜500℃における平均冷却速度は10℃/s以上とする。好ましくは15℃/s以上、より好ましくは20℃/s以上である。なお、平均冷却速度の上限は特に限定されないが、冷却を急激に行った場合、鋼板にゆがみが発生するおそれがあるため、平均冷却速度は200℃/s以下が好ましい。<Average cooling rate at heating temperature of cold rolled sheet annealing to 500 ° C: 10 ° C / s or more>
In the above cooling after holding, reprecipitation of Cr-based carbonitride occurs. That is, the Cr-based carbonitride dissolves in the ferrite matrix during the cold-rolled sheet annealing. As a result, the solid solution C and N in the ferrite phase increase, become supersaturated with respect to the ferrite phase during cooling, and reprecipitate as Cr-based carbonitride.
Therefore, from the viewpoint of increasing the average distance of the Cr-based carbonitride, the Cr-based carbonitride is particularly produced by increasing the cooling rate in the temperature range of 500 ° C. or higher, which is the precipitation temperature range of the Cr-based carbonitride. It is important to suppress the reprecipitation of the metal structure and maintain a metal structure in which the average distance between the Cr-based carbonitrides formed before cooling is sufficiently long.
Here, when the average cooling rate is less than 10 ° C./s, the solid solution C and N in the ferrite phase generated during the holding of the cold rolled sheet annealing are sufficiently suppressed from being reprecipitated as Cr-based carbonitridants. Therefore, the average distance between Cr-based carbonitides is shortened and the desired overhang formability cannot be obtained. Therefore, the average cooling rate of cold rolled sheet annealing at a heating temperature of to 500 ° C. is 10 ° C./s or more. And. It is preferably 15 ° C./s or higher, more preferably 20 ° C./s or higher. Although the upper limit of the average cooling rate is not particularly limited, the average cooling rate is preferably 200 ° C./s or less because the steel sheet may be distorted when cooling is performed rapidly.
なお、冷却方法について特に限定はなく、ガスジェット冷却やミスト冷却、ロール冷却等を用いることができる。また、冷延板焼鈍については、より高い光沢を求めるためにBA焼鈍(光輝焼鈍)を行ってもよい。
そして、上記の冷延板焼鈍後、必要に応じて酸洗を施すことで、上記のフェライト系ステンレス鋼板が製造される。The cooling method is not particularly limited, and gas jet cooling, mist cooling, roll cooling, and the like can be used. Further, as for the cold rolled sheet annealing, BA annealing (bright annealing) may be performed in order to obtain higher gloss.
Then, after the cold-rolled sheet is annealed, the above-mentioned ferritic stainless steel sheet is manufactured by pickling if necessary.
実施例1
表1に示す成分成分(残部はFeおよび不可避的不純物)の溶鋼をそれぞれ、容量:150tonの転炉と真空酸素脱炭処理(VOD)法を用いた精錬により溶製し、ついで、連続鋳造により幅:1000mm、厚さ:200mmのスラブとした。
該スラブを1200℃で1時間加熱した後、熱間圧延として、3段のスタンドからなるリバース式圧延機を用いた7パスの粗圧延と、7段のスタンドからなる一方向圧延機を用いた7パスからなる仕上げ圧延とを施し、約750℃で巻取処理を行って、板厚:約5.0mmの熱延鋼板とした。
ついで、これらの熱延鋼板に、表2に記載する条件で箱焼鈍法を用いた熱延板焼鈍を施した後、表面にショットブラスト処理と酸洗による脱スケールを施した。
かくして得られた鋼板を、板厚:1.0mmまで冷間圧延した後、表2に記載の条件で冷延板焼鈍を行った。なお、保持後の冷却は、ガスジェット冷却またはミスト冷却により行った。また、冷却終了後、酸洗による脱スケール処理を行った。
ここで、表2の保持時間は、加熱温度±10℃の温度域における滞留時間である。
なお、表2に記載の平均加熱速度は、500℃〜加熱温度に到達するまでの平均加熱速度である。また、表2に記載の平均冷却速度は、加熱温度〜500℃に到達するまでの平均冷却速度である。Example 1
The molten steel of the components shown in Table 1 (the balance is Fe and unavoidable impurities) is melted by refining using a converter with a capacity of 150 tons and the vacuum oxygen decarburization (VOD) method, and then by continuous casting. A slab having a width of 1000 mm and a thickness of 200 mm was used.
After heating the slab at 1200 ° C. for 1 hour, 7-pass rough rolling using a reverse rolling mill consisting of a 3-stage stand and a unidirectional rolling mill consisting of a 7-stage stand were used for hot rolling. It was subjected to finish rolling consisting of 7 passes and wound at about 750 ° C. to obtain a hot-rolled steel sheet having a plate thickness of about 5.0 mm.
Then, these hot-rolled steel sheets were annealed by hot-rolled sheet using the box annealing method under the conditions shown in Table 2, and then the surface was descaled by shot blasting and pickling.
The steel sheet thus obtained was cold-rolled to a sheet thickness of 1.0 mm, and then cold-rolled sheet was annealed under the conditions shown in Table 2. The cooling after holding was performed by gas jet cooling or mist cooling. In addition, after cooling was completed, descale treatment by pickling was performed.
Here, the holding time in Table 2 is the residence time in the temperature range of the heating temperature ± 10 ° C.
The average heating rate shown in Table 2 is the average heating rate from 500 ° C. to reaching the heating temperature. The average cooling rate shown in Table 2 is the average cooling rate until the heating temperature reaches 500 ° C.
かくして得られた鋼板について、金属組織の同定およびフェライトの体積率の測定、ならびに、円相当直径で0.05μm以上のCr系炭窒化物間の平均距離の測定を行った。
ここで、金属組織の同定およびフェライトの体積率の測定は、前述した方法により行った。すなわち、得られた鋼板から断面観察用の試験片を作製し、ピクリン酸飽和塩酸溶液によるエッチング処理を施してから、板厚1/4位置の10視野について倍率100倍で光学顕微鏡による観察を行い、金属組織の形態からマルテンサイト相とフェライト相とを区別した後、画像処理によりフェライト相の体積率を各視野にて求め、その平均値をフェライト相の体積率とした。なお、析出物および介在物の体積率は除外している。
また、円相当直径で0.05μm以上のCr系炭窒化物間の平均距離の測定も、前述した方法により行った。
これらの結果を同じく表2に示す。また、参考のため、図1および図2に、表2のNo.1およびNo.12についてCr系炭窒化物間の平均距離の測定に使用した金属組織写真を示す。With respect to the steel sheet thus obtained, the metallographic structure was identified, the volume fraction of ferrite was measured, and the average distance between Cr-based carbonitrides having a diameter equivalent to a circle of 0.05 μm or more was measured.
Here, the identification of the metallographic structure and the measurement of the volume fraction of ferrite were carried out by the method described above. That is, a test piece for cross-sectional observation is prepared from the obtained steel plate, subjected to etching treatment with a saturated hydrochloric acid solution of picrinate, and then observed with an optical microscope at a magnification of 100 times for 10 fields at a plate thickness of 1/4. After distinguishing between the martensite phase and the ferrite phase from the morphology of the metal structure, the volume ratio of the ferrite phase was determined in each field by image processing, and the average value was taken as the volume ratio of the ferrite phase. The volume fractions of precipitates and inclusions are excluded.
Further, the average distance between Cr-based carbonitrides having a diameter equivalent to a circle of 0.05 μm or more was also measured by the method described above.
These results are also shown in Table 2. In addition, for reference, No. 1 in Table 2 is shown in FIGS. 1 and 2. 1 and No. A photograph of the metallographic structure used for measuring the average distance between Cr-based carbonitrides is shown for No. 12.
また、以下の方法により、(1)張り出し成形性の評価、および、(2)耐食性の評価を行った。評価結果を表2に併記する。 In addition, (1) overhang formability and (2) corrosion resistance were evaluated by the following methods. The evaluation results are also shown in Table 2.
(1)張り出し成形性の評価
得られた鋼板の圧延平行方向、圧延45°方向および圧延直角方向をそれぞれ最大対数ひずみ方向として、ISO12004−2:2008に準拠した成形試験を行い、成形限界線図(FLD)を作成した。
具体的には、鋼板表面に評点間距離が1mmとなるように直径5mmのスクライブドサークルをマーキングし、種々の条件下における成形試験、すなわち、
・単軸応力下の成形限界については、JIS 5号引張試験片を用いた引張試験、
・平面ひずみ状態における成形限界については、130mm角にせん断した後に円周上にビードを付与した試験片を用いたバルジング試験、
・等二軸応力下における成形限界については、正円形にブランクした試験片を用いたバルジング試験、
・不等二軸応力下における成形限界については、種々の楕円率で楕円形にブランクした試験片を用いたバルジング試験、
をそれぞれ行い、各試験前後の試験片をそれぞれ写真撮影した。ついで、各試験前後での試験片のスクライブドサークルの形状変化量を、写真の画像処理により定量測定して、各試験によって付与されたひずみを測定し、成形限界線図(FLD)を作成した。
得られた成形限界線図(FLD)から成形限界の最大対数ひずみの最小値を求め、最大対数ひずみの最小値が0.20以上の場合を合格(○)、0.20未満の場合を不合格(×)として評価した。(1) Evaluation of overhang formability A molding test in accordance with ISO12004-2: 2008 was performed with the rolling parallel direction, rolling 45 ° direction, and rolling perpendicular direction of the obtained steel sheet as the maximum logarithmic strain directions, respectively, and a molding limit diagram was performed. (FLD) was created.
Specifically, a scribed circle having a diameter of 5 mm is marked on the surface of the steel sheet so that the distance between the scores is 1 mm, and a forming test under various conditions, that is, that is,
-For the molding limit under uniaxial stress, a tensile test using JIS No. 5 tensile test piece,
-For the molding limit in the plane strain state, a bulging test using a test piece with a bead on the circumference after shearing to a 130 mm square.
・ For the molding limit under isobiaxial stress, a bulging test using a test piece blanked in a perfect circle,
-For the molding limit under unequal biaxial stress, a bulging test using test pieces blanked in an elliptical shape with various ellipticity.
Was performed, and the test pieces before and after each test were photographed. Then, the amount of change in the shape of the scribed circle of the test piece before and after each test was quantitatively measured by image processing of photographs, the strain applied by each test was measured, and a molding limit diagram (FLD) was created. ..
The minimum value of the maximum logarithmic strain of the molding limit is obtained from the obtained molding limit diagram (FLD), and the case where the minimum value of the maximum logarithmic strain is 0.20 or more is passed (○), and the case where it is less than 0.20 is not accepted. It was evaluated as a pass (x).
(2)耐食性の評価
得られた鋼板から、60×100mmの試験片を採取し、表面を#600エメリーペーパーにより研磨仕上げした。その後、試験片の端面をシールし、JIS H 8502に規定される塩水噴霧サイクル試験に供した。
ここで、塩水噴霧サイクル試験は、塩水噴霧(35℃、5質量%NaCl、噴霧時間:2時間)→乾燥(60℃、相対湿度40%、保持時間:4時間)→湿潤(50℃、相対湿度≧95%、保持時間:2時間)を1サイクルとして、8サイクル行った。
塩水噴霧サイクル試験後の試験片の表面を写真撮影し、画像解析により試験片表面の発錆面積を測定し、試験片表面の全面積との比率から発錆面積率((試験片表面の発錆面積/試験片表面の全面積)×100(%))を算出した。
そして、算出した発錆面積率が10%以下の場合を合格(◎、特に優れる)、10%超25%以下を合格(○)、25%超の場合を不合格(×)として評価した。(2) Evaluation of Corrosion Resistance From the obtained steel sheet, a test piece having a size of 60 × 100 mm was collected, and the surface was polished and finished with # 600 emery paper. Then, the end face of the test piece was sealed and subjected to a salt spray cycle test specified in JIS H8502.
Here, in the salt spray cycle test, salt spray (35 ° C, 5% by mass NaCl, spray time: 2 hours) → dry (60 ° C, relative humidity 40%, holding time: 4 hours) → wet (50 ° C, relative). Eight cycles were performed with humidity ≥95% and holding time (holding time: 2 hours) as one cycle.
The surface of the test piece after the salt spray cycle test was photographed, the rusted area on the surface of the test piece was measured by image analysis, and the rusted area ratio ((Rust on the surface of the test piece) was calculated from the ratio to the total area of the test piece surface. Rust area / total area of the surface of the test piece) × 100 (%)) was calculated.
Then, the case where the calculated rusted area ratio was 10% or less was evaluated as a pass (⊚, particularly excellent), the case of more than 10% and 25% or less was evaluated as a pass (◯), and the case of more than 25% was evaluated as a fail (x).
発明例ではいずれも、優れた張り出し成形性と優れた耐食性が得られていた。
特に、Niを0.58%含有したNo.6(鋼A6)、および、Crを17.8%含有したNo.8(鋼A8)では、塩水噴霧サイクル試験における発錆面積率が10%以下(◎)であり、一層優れた耐食性が得らていれた。In each of the examples of the invention, excellent overhang moldability and excellent corrosion resistance were obtained.
In particular, No. 1 containing 0.58% of Ni. No. 6 (steel A6) and No. 1 containing 17.8% of Cr. In No. 8 (Steel A8), the rusted area ratio in the salt spray cycle test was 10% or less (⊚), and more excellent corrosion resistance was obtained.
一方、比較例であるNo.12(鋼B1)およびNo.13(鋼B2)は、製造条件は適正であるものの、C含有量およびN含有量がそれぞれ適正範囲を上回るため、Cr系炭窒化物の析出量が過剰となってCr系炭窒化物間の平均距離を十分に確保することができず、所望の張り出し成形性が得られなかった。
No.14(鋼B3)は、Si含有量が適正範囲を上回るため、鋼板が硬質化して塑性変形能が低下し、所望の張り出し成形性が得られなかった。
No.15およびNo.16は、冷延板焼鈍の平均加熱速度が適正範囲を上回るため、Cr系炭窒化物間の平均距離を十分に確保することができず、所望の張り出し成形性が得られなかった。
No.17およびNo.18は、冷延板焼鈍の加熱温度が適正範囲を上回るため、冷延板焼鈍の保持中にオーステナイト相が生成し、保持後の冷却においてオーステナイト相からマルテンサイト相に変態して、鋼板が著しく硬質化した。また、最終製品板の金属組織がフェライト相とマルテンサイト相からなる二相組織となったために、鋼板の塑性変形能が著しく低下した。このため、所望の張り出し成形性が得られなかった。
No.19およびNo.20は、冷延板焼鈍の加熱温度が適正範囲を下回るため、Cr系炭窒化物間の平均距離を十分に確保することができず、また、未再結晶粒が残存した金属組織となって、所望の張り出し成形性が得られなかった。
No.21およびNo.22は、冷延板焼鈍の保持時間が適正範囲を下回るため、Cr系炭窒化物間の平均距離を十分に確保することができず、また、未再結晶粒が残存した金属組織となって、所望の張り出し成形性が得られなかった。
No.23およびNo.24は、冷延板焼鈍の冷却速度が適正範囲を下回るため、当該冷却中にCr系炭窒化物が多量かつ微細に再析出して、Cr系炭窒化物間の平均距離を十分に確保することができず、所望の張り出し成形性が得られなかった。
No.28は、熱延板焼鈍の加熱温度が適正範囲を下回るため、熱延板焼鈍におけるCr系炭窒化物の凝集・粗大化ならびにフェライト相への固溶が不十分となって、Cr系炭窒化物の分布の不均一が生じた。そのため、Cr系炭窒化物間の平均距離が十分ではない領域が局所的に形成され、所望の張り出し成形性が得られなかった。
No.29は、熱延板焼鈍の加熱温度が適正範囲を上回るため、熱延板焼鈍においてオーステナイト相が再生成し、その結果、熱延板焼鈍後の金属組織においてCr系炭窒化物の分布の不均一が生じた。そのため、Cr系炭窒化物間の平均距離が十分ではない領域が局所的に形成され、所望の張り出し成形性が得られなかった。
No.30は、熱延板焼鈍の保持時間が適正範囲を下回るため、熱延板焼鈍におけるCr系炭窒化物の凝集・粗大化ならびにフェライト相への固溶が不十分となって、Cr系炭窒化物の分布の不均一が生じた。そのため、Cr系炭窒化物間の平均距離が十分ではない領域が局所的に形成され、所望の張り出し成形性が得られなかった。On the other hand, No. 12 (Steel B1) and No. Although the production conditions of 13 (steel B2) are appropriate, the C content and the N content each exceed the appropriate ranges, so that the amount of Cr-based carbonitrides precipitated becomes excessive and between Cr-based carbonitrides. A sufficient average distance could not be secured, and the desired overhang formability could not be obtained.
No. Since the Si content of 14 (steel B3) exceeds the appropriate range, the steel sheet is hardened and the plastic deformability is lowered, so that the desired overhang formability cannot be obtained.
No. 15 and No. In No. 16, since the average heating rate of cold-rolled sheet annealing exceeded the appropriate range, the average distance between Cr-based carbonitrides could not be sufficiently secured, and the desired overhang formability could not be obtained.
No. 17 and No. In No. 18, since the heating temperature of the cold-rolled sheet annealing exceeds the appropriate range, an austenite phase is generated during the holding of the cold-rolled sheet annealing, and the austenite phase is transformed into the martensite phase in the cooling after the holding, and the steel sheet is remarkably formed. Hardened. In addition, since the metal structure of the final product plate has a two-phase structure consisting of a ferrite phase and a martensite phase, the plastic deformability of the steel sheet is significantly reduced. Therefore, the desired overhang moldability could not be obtained.
No. 19 and No. In No. 20, since the heating temperature of cold-rolled sheet annealing is below the appropriate range, a sufficient average distance between Cr-based carbonitrides cannot be secured, and unrecrystallized grains remain in the metal structure. , The desired overhang moldability could not be obtained.
No. 21 and No. In No. 22, since the holding time for cold-rolled sheet annealing was less than the appropriate range, a sufficient average distance between Cr-based carbonitrides could not be secured, and unrecrystallized grains remained in the metal structure. , The desired overhang moldability could not be obtained.
No. 23 and No. In No. 24, since the cooling rate of the cold rolled sheet annealing is lower than the appropriate range, a large amount and finely reprecipitated Cr-based carbonitride during the cooling ensures a sufficient average distance between Cr-based carbonitrides. It was not possible to obtain the desired overhang formability.
No. In No. 28, since the heating temperature of the hot-rolled sheet annealing is below the appropriate range, the aggregation and coarsening of the Cr-based carbonitride in the hot-rolled sheet annealing and the solid solution to the ferrite phase become insufficient, and the Cr-based carbonitride is insufficient. Non-uniform distribution of objects occurred. Therefore, a region where the average distance between Cr-based carbonitrides is not sufficient is locally formed, and the desired overhang formability cannot be obtained.
No. In No. 29, since the heating temperature of the hot-rolled sheet annealing exceeds the appropriate range, the austenite phase is regenerated in the hot-rolled sheet annealing, and as a result, the distribution of Cr-based carbonitrides is poor in the metal structure after the hot-rolled sheet annealing. Uniformity has occurred. Therefore, a region where the average distance between Cr-based carbonitrides is not sufficient is locally formed, and the desired overhang formability cannot be obtained.
No. In No. 30, since the holding time of the hot-rolled plate annealing is less than the appropriate range, the aggregation and coarsening of the Cr-based carbonitride in the hot-rolled plate annealing and the solid solution to the ferrite phase become insufficient, and the Cr-based carbonitride is insufficient. Non-uniform distribution of objects occurred. Therefore, a region where the average distance between Cr-based carbonitrides is not sufficient is locally formed, and the desired overhang formability cannot be obtained.
本発明のフェライト系ステンレス鋼板は、プレス成形時に高い張り出し成形性が要求される用途、例えば、エクステリア部材や厨房器具、食器へ適用して、特に有利である。
The ferritic stainless steel sheet of the present invention is particularly advantageous when applied to applications that require high overhang formability during press molding, for example, exterior members, kitchen utensils, and tableware.
Claims (1)
質量%で、
C:0.025〜0.050%、
Si:0.10〜0.40%、
Mn:0.45〜1.00%、
P:0.04%以下、
S:0.010%以下、
Cr:16.0〜18.0%、
Al:0.001〜0.010%、
N:0.025〜0.060%および
Ni:0.05〜0.60%
を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼素材を熱間圧延して熱延鋼板とし、該熱延鋼板に、加熱温度:800〜900℃、保持時間:1時間以上の熱延板焼鈍を施したのち、冷間圧延して冷延鋼板とし、ついで、該冷延鋼板に、加熱温度:800〜900℃、保持時間:5〜300秒の冷延板焼鈍を施し、
上記冷延板焼鈍において、500℃〜加熱温度における平均加熱速度を20℃/s以下とし、かつ、加熱温度〜500℃における平均冷却速度を10℃/s以上とする、フェライト系ステンレス鋼板の製造方法。
The average distance between Cr-based ferritics with a diameter equivalent to a circle of 0.05 μm or more is 3.0 μm or more, and the minimum value of the maximum logarithmic strain of the molding limit based on the molding limit diagram is 0.20 or more. , A method for manufacturing ferritic stainless steel sheets,
By mass%
C: 0.025 to 0.050%,
Si: 0.10 to 0.40%,
Mn: 0.45-1.00%,
P: 0.04% or less,
S: 0.010% or less,
Cr: 16.0 to 18.0%,
Al: 0.001 to 0.010%,
N: 0.025 to 0.060% and
Ni: 0.05 to 0.60%
A steel material having a component composition containing Fe and unavoidable impurities is hot-rolled to obtain a hot-rolled steel sheet, and the hot-rolled steel sheet has a heating temperature of 800 to 900 ° C. and a holding time of 1 hour or more. After hot-rolling the hot-rolled sheet, it is cold-rolled to obtain a cold-rolled steel sheet, and then the cold-rolled steel sheet is annealed with a heating temperature of 800 to 900 ° C. and a holding time of 5 to 300 seconds. ,
Manufacture of ferritic stainless steel sheets in which the average heating rate from 500 ° C. to heating temperature is 20 ° C./s or less and the average cooling rate from heating temperature to 500 ° C. is 10 ° C./s or more in the above-mentioned cold rolled sheet annealing. Method.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018197617 | 2018-10-19 | ||
JP2018197617 | 2018-10-19 | ||
PCT/JP2019/036345 WO2020080015A1 (en) | 2018-10-19 | 2019-09-17 | Ferritic stainless-steel sheet and method for manufacturing same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2020080015A1 JPWO2020080015A1 (en) | 2021-02-15 |
JP6881666B2 true JP6881666B2 (en) | 2021-06-02 |
Family
ID=70283999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020501406A Active JP6881666B2 (en) | 2018-10-19 | 2019-09-17 | Manufacturing method of ferritic stainless steel sheet |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6881666B2 (en) |
KR (1) | KR102517499B1 (en) |
TW (1) | TWI727451B (en) |
WO (1) | WO2020080015A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230059481A (en) * | 2021-10-26 | 2023-05-03 | 주식회사 포스코 | Ferritic stainless steel and the method for manufacturing the same |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS584881B2 (en) | 1978-02-03 | 1983-01-28 | 八鹿鉄工株式会社 | Exhaust culm processing device and its switching operation mechanism |
JP4721761B2 (en) * | 2005-04-25 | 2011-07-13 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel sheet with excellent corrosion resistance and ridging resistance and method for producing the same |
JP4682805B2 (en) * | 2005-10-27 | 2011-05-11 | Jfeスチール株式会社 | Ferritic stainless steel cold-rolled steel sheet excellent in press formability and manufacturing method thereof |
JP4626484B2 (en) * | 2005-10-27 | 2011-02-09 | Jfeスチール株式会社 | Ferritic stainless steel cold-rolled steel sheet excellent in press formability and manufacturing method thereof |
JP4682806B2 (en) * | 2005-10-27 | 2011-05-11 | Jfeスチール株式会社 | Ferritic stainless steel cold-rolled steel sheet excellent in press formability and manufacturing method thereof |
KR20090052958A (en) * | 2007-11-22 | 2009-05-27 | 주식회사 포스코 | Manufacturing method of ferritic stainless steel with excellent elongation |
KR101711317B1 (en) * | 2013-03-25 | 2017-02-28 | 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 | Ferritic stainless steel sheet with excellent blanking workability and process for manufacturing same |
EP3181714B1 (en) * | 2014-09-05 | 2018-10-31 | JFE Steel Corporation | Material for cold-rolled stainless steel sheets |
CN107002200A (en) * | 2014-12-11 | 2017-08-01 | 杰富意钢铁株式会社 | Ferrite-group stainless steel and its manufacture method |
US20180171430A1 (en) | 2015-07-02 | 2018-06-21 | Jfe Steel Corporation | Ferritic stainless steel sheet and method for manufacturing the same |
JP2019081916A (en) * | 2017-10-27 | 2019-05-30 | Jfeスチール株式会社 | Ferritic stainless steel sheet and method for producing the same |
-
2019
- 2019-09-17 WO PCT/JP2019/036345 patent/WO2020080015A1/en active Application Filing
- 2019-09-17 KR KR1020217000769A patent/KR102517499B1/en active Active
- 2019-09-17 JP JP2020501406A patent/JP6881666B2/en active Active
- 2019-10-07 TW TW108136270A patent/TWI727451B/en active
Also Published As
Publication number | Publication date |
---|---|
WO2020080015A1 (en) | 2020-04-23 |
KR20210019519A (en) | 2021-02-22 |
TWI727451B (en) | 2021-05-11 |
KR102517499B1 (en) | 2023-04-03 |
TW202022127A (en) | 2020-06-16 |
JPWO2020080015A1 (en) | 2021-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018026014A1 (en) | Steel sheet and plated steel sheet | |
KR101706485B1 (en) | High-strength cold-rolled steel sheet and method for producing the same | |
JP5387073B2 (en) | Steel plate for hot pressing, method for manufacturing the same, and method for manufacturing steel plate member for hot pressing | |
TWI527910B (en) | Stainless steel cold rolled steel sheet material and its manufacturing method | |
JP5987996B2 (en) | Ferritic stainless steel and manufacturing method thereof | |
CN107709592B (en) | Ferrite series stainless steel plate and its manufacturing method | |
WO1999046418A1 (en) | High strength hot rolled steel sheet excellent in formability | |
JP5924459B1 (en) | Stainless steel for cold rolled steel | |
JPWO2018151273A1 (en) | Hot rolled steel sheet and manufacturing method thereof | |
WO2016035236A1 (en) | Cold-rolled ferritic stainless steel sheet | |
JP2007291514A (en) | Hot-rolled steel sheet with small in-plane anisotropy after cold rolling and recrystallization annealing, cold-rolled steel sheet with small in-plane anisotropy and production method therefor | |
TWI658153B (en) | Ferritic iron-based stainless steel hot-rolled annealed steel sheet and manufacturing method thereof | |
TWI427162B (en) | Cold rolled steel sheet excellent in formability and shape freezing property and method for producing same | |
JP6699310B2 (en) | Cold rolled steel sheet for squeezer and method for manufacturing the same | |
JP6881666B2 (en) | Manufacturing method of ferritic stainless steel sheet | |
JP6098537B2 (en) | High-strength cold-rolled steel sheet and manufacturing method thereof | |
CN109722508B (en) | Ferritic stainless steel sheet and method for producing same | |
JP5958113B2 (en) | Manufacturing method of thick steel plate with excellent scale adhesion | |
JP2016216809A (en) | Low carbon steel sheet excellent in cold moldability and toughness after heat treatment and manufacturing method therefor | |
CN111051554B (en) | High-strength steel sheet and method for producing same | |
JP5644148B2 (en) | Stainless cold-rolled steel sheet with excellent surface appearance after processing and method for producing the same | |
JP7239072B1 (en) | High-strength hot-rolled steel sheet and method for producing high-strength hot-rolled steel sheet | |
JP2007009271A (en) | Steel sheet having low anisotropy, and manufacturing method therefor | |
JP2002294343A (en) | Method for producing ferritic stainless cold rolled steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200110 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210119 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210205 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210406 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210419 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6881666 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |