[go: up one dir, main page]

JP6874803B2 - Gnawing resistance evaluation method - Google Patents

Gnawing resistance evaluation method Download PDF

Info

Publication number
JP6874803B2
JP6874803B2 JP2019153623A JP2019153623A JP6874803B2 JP 6874803 B2 JP6874803 B2 JP 6874803B2 JP 2019153623 A JP2019153623 A JP 2019153623A JP 2019153623 A JP2019153623 A JP 2019153623A JP 6874803 B2 JP6874803 B2 JP 6874803B2
Authority
JP
Japan
Prior art keywords
evaluation
sliding
mold
galling resistance
metal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019153623A
Other languages
Japanese (ja)
Other versions
JP2020082190A (en
Inventor
三宅 弘人
弘人 三宅
新宮 豊久
豊久 新宮
雄司 山▲崎▼
雄司 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2020082190A publication Critical patent/JP2020082190A/en
Application granted granted Critical
Publication of JP6874803B2 publication Critical patent/JP6874803B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Description

本発明は、プレス成形用金型の表面の型かじりに対する耐久性を評価する、金型の耐かじり性評価方法に関する。 The present invention relates to a method for evaluating the galling resistance of a die for evaluating the durability of the surface of a press molding die against galling.

自動車部品などの金属板の加工には、主にプレス装置とプレス金型を用いたプレス成形が用いられている。その際、成形材料、プレス金型の材質や形状、金型表面の被膜の有無、プレス成形時の潤滑状態などの条件によっては、型かじり現象が発生し、金型が損傷する場合がある。そして、損傷した金型でプレス成形を続けることによって成形材料に傷が付いてしまうため、製品品質の低下につながる。
近年、自動車の車体には、衝突安全性の向上や車体軽量化によるCO排出削減が求められており、それらの要求を達成すべく、自動車骨格部品等の自動車車体には、材料強度の高いハイテン材が多く適用されるようになっている。
Press molding using a press device and a press die is mainly used for processing a metal plate such as an automobile part. At that time, the mold galling phenomenon may occur and the mold may be damaged depending on the conditions such as the molding material, the material and shape of the press die, the presence or absence of a coating on the surface of the die, and the lubrication state at the time of press molding. Then, by continuing press molding with the damaged mold, the molding material is damaged, which leads to deterioration of product quality.
In recent years, automobile bodies have been required to improve collision safety and reduce CO 2 emissions by reducing the weight of the vehicle bodies. In order to meet these demands, automobile bodies such as automobile skeleton parts have high material strength. High-tensile materials are often applied.

しかし、被加工材である金属板の材料強度が上昇すると、成形時に被加工材(金属板)と金型の間で高い接触面圧が発生し、その状態で金型との摺動を伴いながら被加工材が成形されるため、金型表面に型かじりが発生しやすい。そのため、非常に高い頻度で金型の交換やメンテナンスを行う必要があり、型かじり対策は、自動車車体へのハイテン材適用の課題となっていた。
これらの問題を解決するため、金型の表面に被膜を形成することで被加工材と金型の摩擦係数を低下させ、型かじりを抑制することが行われる。金型の表面被膜の形成方法には、DLC(Diamond Like Carbon)法、PVD(Physical Vapor Deposition)法、CVD(Chemical Vapor Deposition)法などがあり、多くのメーカーで様々な種類の表面被膜が開発されている。そのため、これらの金型表面に形成する被膜のなかから、金型の耐かじり性(耐型かじり性とも記載する)に優れたものを選定するための耐かじり評価の方法が必要となる。
However, when the material strength of the metal plate to be processed increases, a high contact surface pressure is generated between the material to be processed (metal plate) and the mold during molding, and in that state, sliding with the mold is accompanied. However, since the material to be processed is molded, galling is likely to occur on the surface of the mold. Therefore, it is necessary to replace and maintain the mold very frequently, and measures against galling have been an issue of applying high-tensile steel to the automobile body.
In order to solve these problems, the friction coefficient between the work material and the mold is reduced by forming a film on the surface of the mold, and galling is suppressed. Mold surface coatings include DLC (Diamond Like Carbon) method, PVD (Physical Vapor Deposition) method, and CVD (Chemical Vapor Deposition) method, and many manufacturers have developed various types of surface coatings. Has been done. Therefore, a method for evaluating the galling resistance is required to select a coating having excellent galling resistance (also referred to as mold galling resistance) of the mold from among the coatings formed on the surface of the mold.

金型の耐かじり性評価方法として、例えば、非特許文献1に記載の評価方法が提案されている。非特許文献1で提案されている型かじり評価方法では、いずれも被加工材の面直方向に力を作用させ、防錆油や灯油、日本工作油等の潤滑条件下で評価する方法である。
また、特許文献1に記載の耐かじり評価方法もある。特許文献1では、プレス機を用いて、プレス方向平行視にて外周に3つ以上の複数の凹部を有するパンチブロックと所定のクリアランスで嵌め込まれる嵌合部を有するダイブロックを用いて金属板を成形する。このとき、特許文献1では、金属板に摺動を生じさせて、耐かじり性を評価する。
また、特許文献2では、金属板を上下からプレス金型に相当する試験ブロックで挟み込んだ状態で、繰り返し摺動を行い、試験後の試験ブロックの摺動面を観察して、摺動回数の増加に伴う凝着発生状況の推移から耐かじり性を評価する。
As a method for evaluating the galling resistance of a mold, for example, the evaluation method described in Non-Patent Document 1 has been proposed. All of the mold galling evaluation methods proposed in Non-Patent Document 1 are methods in which a force is applied in the direction perpendicular to the surface of the work material to evaluate under lubricating conditions such as rust preventive oil, kerosene, and Japanese working oil. ..
There is also a galling resistance evaluation method described in Patent Document 1. In Patent Document 1, a metal plate is formed by using a press machine and using a punch block having three or more recesses on the outer circumference and a die block having a fitting portion to be fitted with a predetermined clearance in parallel view in the pressing direction. Mold. At this time, in Patent Document 1, the metal plate is made to slide to evaluate the galling resistance.
Further, in Patent Document 2, in a state where a metal plate is sandwiched between test blocks corresponding to a press die from above and below, sliding is repeated, and the sliding surface of the test block after the test is observed to determine the number of times of sliding. The galling resistance is evaluated from the transition of the adhesion occurrence situation with the increase.

薄鋼板成形技術研究会[編]、「プレス成形難易ハンドブック−第4版−」、日刊工業新聞社、2017年2月20日、p.452−453Thin Steel Sheet Molding Technology Study Group [ed.], "Press Molding Difficulty Handbook-4th Edition-", Nikkan Kogyo Shimbun, February 20, 2017, p. 452-453

特開2010−167437号公報Japanese Unexamined Patent Publication No. 2010-167437 特開2006−255741号公報Japanese Unexamined Patent Publication No. 2006-255741

しかし、非特許文献1で提案されている型かじり評価方法では、防錆油や灯油、日本工作油等の潤滑条件下で評価する方法であるため、表面に被膜を施した金型を評価する場合に、金型にかじりが発生しない可能性が高い。
また、特許文献1で提案されている評価方法では、ダイブロックとパンチブロックの位置がずれることで、摺動される際のクリアランスが変動しやすく、摺動時に被加工材の面直方向に作用する力も変動しやすい。このため、特許文献1の方法では、再現性が低く、摺動時の動摩擦係数といった定量的な評価数値も取得することが出来ない。また、ダイブロックとパンチブロックによって、ハイテン材等の延性の低い材料の被加工材を成形すると、成形途中で被加工材に割れが生じる可能性があり、金型の耐かじり性を評価する際における阻害要因と成り得る。
However, since the mold galling evaluation method proposed in Non-Patent Document 1 is a method of evaluating under lubricating conditions such as rust preventive oil, kerosene, and Japanese working oil, a mold having a coating on the surface is evaluated. In that case, there is a high possibility that galling does not occur in the mold.
Further, in the evaluation method proposed in Patent Document 1, the clearance between the die block and the punch block is easily changed due to the displacement of the die block and the punch block, and the clearance acts in the direction perpendicular to the surface of the work piece during sliding. The force to do is also liable to fluctuate. Therefore, the method of Patent Document 1 has low reproducibility, and it is not possible to obtain a quantitative evaluation value such as a dynamic friction coefficient during sliding. Further, when a work material having a low ductility such as a high-tensile material is molded by a die block and a punch block, the work material may be cracked during molding, and when evaluating the galling resistance of the mold. Can be an inhibitory factor in.

また、特許文献2で提案されている評価方法では、試験条件によって、摺動面に凝着物が付着し、型かじりが発生したと判定されるまでに膨大な繰り返しの摺動回数を要する可能性がある。さらに、耐かじり性を評価するために、試験を行った全ての摺動面を観察する必要があるため、評価に要する手間が多くなる可能性がある。 Further, in the evaluation method proposed in Patent Document 2, depending on the test conditions, there is a possibility that an enormous number of repeated slidings may be required until it is determined that the adhesive has adhered to the sliding surface and the mold galling has occurred. There is. Further, in order to evaluate the galling resistance, it is necessary to observe all the sliding surfaces tested, which may increase the time and effort required for the evaluation.

本発明は、上記のような課題に着目してなされたものであり、プレス成形用金型の表面のかじりに対する耐久性をより精度良く評価する方法を提供することを目的とする。 The present invention has been made focusing on the above-mentioned problems, and an object of the present invention is to provide a method for more accurately evaluating the durability of the surface of a press molding die against galling.

本発明者は、プレス成形用金型の表面のかじり性に対する耐久性(耐かじり性)を高い再現性で、且つ、簡易的に評価する方法について鋭意検討を行った。その結果、摺動する面が脱脂処理済みの被摺動板の表裏平坦部を、平坦な面を有する表面に被膜処理を施した一対の金型で挟み込み、金型により、被摺動板の面直方向に一定の荷重をかけた状態で、プレス成形で想定される摺動速度よりも遅い速度で被摺動材を繰り返し引抜いたときの動摩擦係数及び金型の表面状態を観察することにより、金型の耐かじり性の評価が可能であるという知見を得た。特に、被摺動板の摺動面を脱脂処理し、さらに、プレス成形で想定される摺動速度よりも遅い速度することで、金型の耐かじり性評価を精度良く、より簡便に行うことができるという知見を得た。
本発明は、このような知見に基づきなされたものである。
The present inventor has diligently studied a method for easily evaluating the durability (galling resistance) of the surface of a press molding die with respect to galling with high reproducibility. As a result, the front and back flat portions of the sliding plate whose sliding surface has been degreased are sandwiched between a pair of dies whose surface has a flat surface and which has been coated. By observing the dynamic friction coefficient and the surface condition of the die when the material to be slid is repeatedly pulled out at a speed slower than the sliding speed assumed in press molding while a constant load is applied in the direction perpendicular to the surface. , We obtained the finding that it is possible to evaluate the galling resistance of the mold. In particular, the sliding surface of the plate to be slid is degreased, and the sliding speed is slower than the sliding speed assumed in press molding, so that the galling resistance of the die can be evaluated more accurately and more easily. I got the knowledge that it can be done.
The present invention has been made based on such findings.

そして、課題を解決するために、本発明の一態様は、被膜が形成された平坦面からなる評価面が対向する一対の金型における、引張強度が1180MPa以上の金属板に対する、上記評価面の耐かじり性を評価する耐かじり性評価方法であって、上記一対の金型の対向する評価面で、脱脂処理済みの上記金属板を板厚方向から、上記評価面と上記金属板の間の面圧が0MPaを超える値、且つ上記金属板の引張強さの10%以下になるような一定荷重で挟み込んだ状態で、プレス成形時の加工速度よりも遅い摺動速度で、上記金属板を面内方向に複数回繰り返して摺動させ、その合計の摺動距離が500mm以上となるまで摺動させた際の、上記評価面と上記金属板の間の動摩擦係数の値の大小関係から耐かじり性を評価し、複数の評価面の評価を行った場合に、2つの評価面の上記動摩擦係数の差が±0.02以内であった場合には、動摩擦係数の値の大小関係の代わりに、各評価面の試験後の面状態によって、上記2つの評価面の間の相対的な耐かじり性を評価することを要旨とする。 Then, in order to solve the problem, one aspect of the present invention relates to a metal plate having a tensile strength of 1180 MPa or more in a pair of molds having an evaluation surface made of a flat surface on which a film is formed facing each other. This is a galling resistance evaluation method for evaluating galling resistance, in which the metal plate that has been degreased is placed on the facing evaluation surfaces of the pair of molds from the plate thickness direction, and the surface pressure between the evaluation surface and the metal plate. The metal plate is in-plane at a sliding speed slower than the processing speed at the time of press molding in a state where the metal plate is sandwiched with a constant load such that the value exceeds 0 MPa and the tensile strength of the metal plate is 10% or less. The galling resistance is evaluated from the magnitude relationship of the value of the dynamic friction coefficient between the evaluation surface and the metal plate when the metal plate is repeatedly slid in the direction a plurality of times and slid until the total sliding distance becomes 500 mm or more. However, when the evaluation of a plurality of evaluation surfaces is performed and the difference between the above dynamic friction coefficients of the two evaluation surfaces is within ± 0.02, each evaluation is performed instead of the magnitude relationship of the dynamic friction coefficient values. The gist is to evaluate the relative galling resistance between the above two evaluation surfaces based on the surface condition after the surface test.

本発明の態様によれば、プレス成形用金型の表面のかじりに対する耐久性(耐かじり性)を高い再現性で、且つ、簡易的に評価することが可能となる。 According to the aspect of the present invention, it is possible to easily evaluate the durability (galling resistance) of the surface of the press molding die against galling with high reproducibility.

耐かじり性評価試験を実施する試験装置の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the test apparatus which carries out the galling resistance evaluation test. 金型の先端部形状の一例を示す斜視図である。It is a perspective view which shows an example of the tip part shape of a mold. 被摺動板の平面形状の一例を示す図である。It is a figure which shows an example of the planar shape of the sliding plate. 耐かじり性評価方法の処理例を示すフローチャートである。It is a flowchart which shows the processing example of the galling resistance evaluation method. 1回摺動時の動摩擦係数とストロークの関係を示す図である。It is a figure which shows the relationship between the dynamic friction coefficient and stroke at the time of sliding once. 繰り返し摺動時の動摩擦係数とストロークの関係を示す図である。It is a figure which shows the relationship between the dynamic friction coefficient and stroke at the time of repeated sliding. 繰り返し摺動時の金型表面の面状態を観察した結果の図である。It is a figure of the result of observing the surface state of the mold surface at the time of repeated sliding. レーザ顕微鏡での観察範囲を示す図である。It is a figure which shows the observation range with a laser microscope. 実施例における、繰り返し摺動時の動摩擦係数とストロークの関係を示す図である。It is a figure which shows the relationship between the dynamic friction coefficient and stroke at the time of repeated sliding in an Example. 各被膜処理の金型の平均摩擦係数を示す図である。It is a figure which shows the average friction coefficient of the mold of each film treatment. 油が付着した被摺動板を使用した場合の金型の平均摩擦係数の結果を示す図である。It is a figure which shows the result of the average friction coefficient of a mold when the sliding plate to which oil is attached is used. 繰り返し摺動時の金型表面の面状態を観察した結果の図である。It is a figure of the result of observing the surface state of the mold surface at the time of repeated sliding.

次に、本発明の実施形態について図面を参照しつつ説明する。
<試験装置>
ここで、以下の説明では、図1に示すような構成の試験装置を用いた場合の金型1の耐かじり評価方法について説明する。
試験装置は、図1に示すように、一対の金型1と、金属板からなる被摺動板3と、押付け装置4と、引抜き装置7とを有する。
Next, an embodiment of the present invention will be described with reference to the drawings.
<Test equipment>
Here, in the following description, a galling resistance evaluation method of the mold 1 when a test apparatus having the configuration shown in FIG. 1 is used will be described.
As shown in FIG. 1, the test device includes a pair of dies 1, a sliding plate 3 made of a metal plate, a pressing device 4, and a drawing device 7.

<金型1>
一対の金型1は、剛性の高い金型フレーム2の内部に配置されている。本実施形態では、一対の金型1が上下で対向配置される場合を例示する。ただし、一対の金型1の対向方向は上下に限定されない。例えば、一対の金型1が左右方向で対向するように配置され、被摺動板3が上下方向若しくは横方向に摺動するような構成であっても良い。
上側の金型1Aは、金型フレーム2に着脱可能に固定されている。
下側の金型1Bは、上側の金型1Aに対し下方から対向配置されている。下側の金型1Bの下部は、押付け装置4の可動部に対し着脱可能に連結している。下側の金型1Bは、押付け装置4によって、上下に昇降可能となっている。
<Mold 1>
The pair of molds 1 are arranged inside the highly rigid mold frame 2. In this embodiment, a case where a pair of molds 1 are arranged vertically facing each other will be illustrated. However, the facing directions of the pair of molds 1 are not limited to the top and bottom. For example, the pair of dies 1 may be arranged so as to face each other in the left-right direction, and the sliding plate 3 may be slid in the vertical direction or the horizontal direction.
The upper mold 1A is detachably fixed to the mold frame 2.
The lower mold 1B is arranged to face the upper mold 1A from below. The lower portion of the lower mold 1B is detachably connected to the movable portion of the pressing device 4. The lower mold 1B can be moved up and down by the pressing device 4.

一対の金型1は、対向する平坦面1aからなる評価面を有する。すなわち、上側の金型1Aの下面及び下側の金型1Bの上面は、それぞれ平坦面1aを有し、その一対の平坦面1aで被摺動板3を上下から所定荷重で挟み込み可能となっている。
一対の金型1における各先端部での金型形状の一例を図2に示す。各金型1A、1Bの先端面は、図2に示すように、摺動方向に交差する方向に延びる中央の平坦面1a(評価面)と、その平坦面1aの左右両側に形成された左右のフィレット部1bとからなる。この例では、平坦面1aが摺動方向と直交する方向に延在する場合を例示している。一対の平坦面1aが被摺動板3と接触可能な領域であり、例えば一対の平坦面1aの長手方向中央部が被摺動板3と接触する領域とする。
The pair of molds 1 have an evaluation surface composed of facing flat surfaces 1a. That is, the lower surface of the upper mold 1A and the upper surface of the lower mold 1B each have a flat surface 1a, and the sliding plate 3 can be sandwiched between the pair of flat surfaces 1a from above and below with a predetermined load. ing.
FIG. 2 shows an example of the mold shape at each tip of the pair of molds 1. As shown in FIG. 2, the tip surfaces of the molds 1A and 1B are a central flat surface 1a (evaluation surface) extending in a direction intersecting the sliding direction and left and right formed on the left and right sides of the flat surface 1a. It is composed of a fillet portion 1b of. In this example, a case where the flat surface 1a extends in a direction orthogonal to the sliding direction is illustrated. The pair of flat surfaces 1a is a region that can come into contact with the sliding plate 3, and for example, the central portion of the pair of flat surfaces 1a in the longitudinal direction is a region that comes into contact with the sliding plate 3.

図2に示す寸法は一例である。平坦面1aの幅や金型1A、1Bの長さ等は使用する被摺動板3のサイズ等に応じて変更しても構わない。この例では、フィレット部1bは半径3mm程度に設定している。このフィレット部1bの半径が極端に小さい場合や直角の場合は、摺動時に被摺動板3が過度に引っかかってしまうため、動摩擦係数を適切に評価することが出来ないおそれがあるので、フィレット部1bの半径は3mm以上とすることが望ましい。
上下の両評価面である各平坦面1aは、被覆処理が施されて被膜が形成されている。
The dimensions shown in FIG. 2 are examples. The width of the flat surface 1a, the lengths of the molds 1A and 1B, and the like may be changed according to the size and the like of the sliding plate 3 to be used. In this example, the fillet portion 1b is set to have a radius of about 3 mm. If the radius of the fillet portion 1b is extremely small or at a right angle, the sliding plate 3 may be excessively caught during sliding, and the dynamic friction coefficient may not be evaluated appropriately. Therefore, the fillet may not be evaluated properly. It is desirable that the radius of the portion 1b is 3 mm or more.
Each flat surface 1a, which is both the upper and lower evaluation surfaces, is coated to form a coating.

<被摺動板3>
被摺動板3は、平板形状の金属板から構成される。本実施形態の評価試験は、曲げ成形などのプレス変形が発生しないので、被摺動板3を構成する金属板としては、プレス部品に供される金属板と同じ板材である必要はない。引抜き荷重Fの自由度を考慮すると、高強度鋼板などの高強度の金属板が好ましい。金属板は、鋼板で無くても良く、アルミ合金などの板材であってもよい。
ここで、発明者は、圧延鋼板を被圧延材に使用し、圧延方向と試験の摺動方向とが、同方向となるように構成した場合と、互いに直交するように構成した場合とで耐かじり性の評価に影響が出るか確認をした。確認の結果、被摺動板3の引張強さの10%以下の引抜き荷重Fであれば、特に違いはなかった。
ここで圧延鋼板等は、一般に、表面に防錆油などの油が付着している。
<Sliding plate 3>
The sliding plate 3 is composed of a flat metal plate. In the evaluation test of the present embodiment, press deformation such as bending molding does not occur, so that the metal plate constituting the sliding plate 3 does not have to be the same metal plate as the metal plate used for the pressed parts. Considering the degree of freedom of the pull-out load F, a high-strength metal plate such as a high-strength steel plate is preferable. The metal plate does not have to be a steel plate, and may be a plate material such as an aluminum alloy.
Here, the inventor uses a rolled steel sheet as a material to be rolled, and withstands the case where the rolling direction and the sliding direction of the test are configured to be the same direction and the case where the rolled steel sheet is configured to be orthogonal to each other. It was confirmed whether the evaluation of galling property would be affected. As a result of confirmation, there was no particular difference if the pull-out load F was 10% or less of the tensile strength of the sliding plate 3.
Here, oil such as rust preventive oil generally adheres to the surface of rolled steel sheets and the like.

これに対し、本実施形態の被摺動板3は、試験に使用する前に(一対の金型1で挟み込む前に)、アルコールやアセトン、トルエン等の有機溶剤で被摺動板3の表面に付着している防錆油や洗浄油等を脱脂してから評価試験に使用される。
被摺動板3の試験片形状の一例を図3に示す。試験片形状は基本的には短冊状が好ましいが、試験装置への取り付け上問題無く、十分な摺動距離が確保できる長さLを有していれば、摺動する面(摺動する方向に直交する方向の幅)が一定幅Wであること以外、板形状に制約はない。
On the other hand, the sliding plate 3 of the present embodiment is subjected to an organic solvent such as alcohol, acetone, or toluene before being used for the test (before being sandwiched between the pair of molds 1) on the surface of the sliding plate 3. It is used for evaluation tests after degreasing rust preventive oil, cleaning oil, etc. adhering to.
FIG. 3 shows an example of the shape of the test piece of the sliding plate 3. The shape of the test piece is basically preferably a strip shape, but if there is no problem in mounting on the test device and the test piece has a length L that can secure a sufficient sliding distance, the sliding surface (sliding direction). There are no restrictions on the plate shape except that the width in the direction orthogonal to) is a constant width W.

<押付け装置4>
本実施形態の押付け装置4は、軸を上下方向に向けた押付け用油圧シリンダ装置から構成される。押付け装置4は、油圧シリンダ装置に限定されず、一方の金型1を進退可能で且つ、押付け荷重Pを発生可能な装置であれば、特に限定されない。
押付け用油圧シリンダ装置の場合、油圧シリンダ装置の油圧やロードセルを用いることで、押付け用油圧シリンダ装置が発生する押付け荷重Pを求めることが出来る。本実施形態ではロードセルで測定するとする。
押付け装置4を駆動することで、一対の金型1で被摺動板3を上下から挟み込むことで、被摺動板3の面直方向に荷重を負荷することが出来る。
<Pressing device 4>
The pressing device 4 of the present embodiment is composed of a pressing hydraulic cylinder device whose axis is directed in the vertical direction. The pressing device 4 is not limited to the hydraulic cylinder device, and is not particularly limited as long as it is a device capable of advancing and retreating one mold 1 and generating a pressing load P.
In the case of a pressing hydraulic cylinder device, the pressing load P generated by the pressing hydraulic cylinder device can be obtained by using the hydraulic pressure of the hydraulic cylinder device or the load cell. In this embodiment, it is assumed that the measurement is performed by a load cell.
By driving the pressing device 4, the sliding plate 3 is sandwiched between the pair of dies 1 from above and below, so that a load can be applied in the direction perpendicular to the surface of the sliding plate 3.

<引抜き装置7>
本実施形態の引抜き装置7は、引抜き用油圧シリンダ装置5と、引抜き用油圧シリンダ装置5のピストン部先端に設けられたチャック6とを備える。
チャック6は、被摺動板3を上下から挟み込むことで、引抜き用油圧シリンダ装置5のピストン部に被摺動板3を連結する装置である。
引抜き用油圧シリンダ装置5は、被摺動板3を摺動方向に引っ張る装置である。
引抜き用油圧シリンダ装置5の油圧やロードセルを用いることで、被摺動板3の引抜き荷重Fを求めることが出来る。
<Pulling device 7>
The pull-out device 7 of the present embodiment includes a pull-out hydraulic cylinder device 5 and a chuck 6 provided at the tip of a piston portion of the pull-out hydraulic cylinder device 5.
The chuck 6 is a device that connects the sliding plate 3 to the piston portion of the pull-out hydraulic cylinder device 5 by sandwiching the sliding plate 3 from above and below.
The pull-out hydraulic cylinder device 5 is a device that pulls the sliding plate 3 in the sliding direction.
By using the pull-out hydraulic cylinder device 5 or the load cell, the pull-out load F of the sliding plate 3 can be obtained.

<変位計8>
変位計8は、被摺動板3の摺動距離を測定する装置である。
変位計8は、例えば、引抜き用油圧シリンダ装置5のピストン部のストローク量を測定することで、被摺動板3の摺動距離を測定する。
そして、変位計8の測定した摺動距離が予め設定した設定ストローク量となったら、引抜き用油圧シリンダ装置5による引抜きを停止する。
設定ストローク量は、例えば100mmとする。
<Displacement meter 8>
The displacement meter 8 is a device that measures the sliding distance of the sliding plate 3.
The displacement meter 8 measures the sliding distance of the sliding plate 3 by measuring the stroke amount of the piston portion of the pull-out hydraulic cylinder device 5, for example.
Then, when the sliding distance measured by the displacement meter 8 reaches a preset set stroke amount, the drawing by the pull-out hydraulic cylinder device 5 is stopped.
The set stroke amount is, for example, 100 mm.

<評価試験方法>
試験装置は、図1のように、剛性の高い金型フレーム2の内部に評価対象となる一対の金型1を上下に対向させて配置する。このとき、下側の金型1Bは押付け用油圧シリンダ装置からなる押付け装置4に固定されている。
一対の金型1間に板厚を上下に向けて被摺動板3を配置し、押付け装置4を駆動することで、下側の金型1Bを上昇させて、上下の金型1で被摺動板3を設定押付け荷重Pで上下から挟み込む。これによって、被摺動板3に対し、被摺動板3の面直方向に荷重を負荷した状態となる。
ここで、評価試験に先立って、上下一対の金型1で感圧紙を押圧することで、上下金型1A、1Bの平坦面1aが均一に当たるかどうかを確認するとよい。このとき、上下金型1A、1Bの平坦面1a同士が均一に当たっていなければシム板等を使用して、金型1の平坦面1aの傾きを調整する。
<Evaluation test method>
As shown in FIG. 1, the test apparatus arranges a pair of molds 1 to be evaluated vertically opposed to each other inside a highly rigid mold frame 2. At this time, the lower mold 1B is fixed to the pressing device 4 including the pressing hydraulic cylinder device.
By arranging the sliding plate 3 with the plate thickness facing up and down between the pair of dies 1 and driving the pressing device 4, the lower die 1B is raised and covered by the upper and lower dies 1. The sliding plate 3 is sandwiched from above and below by the set pressing load P. As a result, a load is applied to the sliding plate 3 in the direction perpendicular to the surface of the sliding plate 3.
Here, prior to the evaluation test, it is advisable to press the pressure-sensitive paper with the pair of upper and lower dies 1 to confirm whether or not the flat surfaces 1a of the upper and lower dies 1A and 1B hit uniformly. At this time, if the flat surfaces 1a of the upper and lower molds 1A and 1B are not uniformly in contact with each other, the inclination of the flat surface 1a of the mold 1 is adjusted by using a shim plate or the like.

また、上下の金型1から被摺動板3が負荷を受ける面積は、被摺動板3の幅Wに金型平坦面1aの幅を乗じた値となる。被摺動板3に負荷する面圧は0MPaよりは大きく、被摺動板3の引張強さの10%以下となるように負荷することが望ましい。被摺動板3の引張強さの10%以下であれば、被摺動板3に発生する伸びは許容範囲に収まる。引張強度1500Mpaの金属板を使用する場合は、150Mpa以下の押付け荷重Pとする。
引抜き速度、すなわち摺動速度は、プレス成形時のプレス速度よりも遅い方が好ましい。摺動速度は、例えば、150mm/min以上300mm/min以下とする。
The area where the sliding plate 3 is loaded from the upper and lower molds 1 is a value obtained by multiplying the width W of the sliding plate 3 by the width of the flat surface 1a of the mold. It is desirable that the surface pressure applied to the sliding plate 3 is larger than 0 MPa and is 10% or less of the tensile strength of the sliding plate 3. If it is 10% or less of the tensile strength of the sliding plate 3, the elongation generated in the sliding plate 3 falls within an allowable range. When a metal plate having a tensile strength of 1500 Mpa is used, the pressing load P is 150 Mpa or less.
The pull-out speed, that is, the sliding speed is preferably slower than the press speed at the time of press molding. The sliding speed is, for example, 150 mm / min or more and 300 mm / min or less.

下側の金型1Bの上昇による挟み込みに前後して、被摺動板3の長手方向の端部を、チャック6で把持させる。これによって、被摺動板3が引抜き用油圧シリンダ装置5に連結された状態となる。なお、引抜き用油圧シリンダ装置5のピストン部の進退方向を、被摺動板3の長手方向にそった面内方向となるように設定しておく。すなわち、ピストン部の軸と被摺動板3の長手方向とが一致するように設定する。図1においては、引抜き用油圧シリンダ装置5は被摺動板3の長手方向にスライドして動くことが可能であり、被摺動板3を右から左に引抜くことで被摺動板3を摺動する構成となっている。
ここで、押付け装置4及び引抜き用油圧シリンダ装置5で発生した荷重は、例えばロードセルによって所定サンプリング周期で取得する。また、接触式若しくは非接触式の変位計8にて、引抜き用油圧シリンダ装置5により引き抜かれた被摺動板3の移動距離を取得する。
The chuck 6 grips the end portion of the sliding plate 3 in the longitudinal direction before and after the pinching due to the raising of the lower mold 1B. As a result, the sliding plate 3 is connected to the pull-out hydraulic cylinder device 5. The direction of advance / retreat of the piston portion of the pull-out hydraulic cylinder device 5 is set to be in-plane along the longitudinal direction of the sliding plate 3. That is, the shaft of the piston portion and the longitudinal direction of the sliding plate 3 are set to coincide with each other. In FIG. 1, the pull-out hydraulic cylinder device 5 can slide and move in the longitudinal direction of the sliding plate 3, and the sliding plate 3 is pulled out from right to left. It is configured to slide.
Here, the load generated by the pressing device 4 and the pull-out hydraulic cylinder device 5 is acquired by, for example, a load cell at a predetermined sampling cycle. Further, the moving distance of the sliding plate 3 pulled out by the pull-out hydraulic cylinder device 5 is acquired by the contact type or non-contact type displacement meter 8.

以上のように設定したら、引抜き用油圧シリンダ装置5を作動させ、被摺動板3を金型1から被摺動板3の面内方向(この実施形態では長手方向)に引き抜く。このとき、押付け荷重P、引抜き荷重F及び被摺動板3の移動距離のデータはそれぞれ、ロードセルや変位計8によって所定サンプリング周期で取得される。
ここで、引抜き時に被摺動板3の片面(上面若しくは下面)に作用する動摩擦係数μは、押付け荷重をP、引抜き荷重をFとすると、「μ=F/2P」で算出することが出来る。
After setting as described above, the pull-out hydraulic cylinder device 5 is operated to pull out the sliding plate 3 from the mold 1 in the in-plane direction (longitudinal direction in this embodiment) of the sliding plate 3. At this time, the data of the pressing load P, the pulling load F, and the moving distance of the sliding plate 3 are acquired by the load cell and the displacement meter 8 at predetermined sampling cycles, respectively.
Here, the dynamic friction coefficient μ acting on one side (upper surface or lower surface) of the sliding plate 3 at the time of pulling out can be calculated by “μ = F / 2P”, where P is the pressing load and F is the pulling load. ..

押付け荷重P、及び引抜き荷重Fは、それぞれ、所定サンプリング周期で取得され、摺動時に取得した取得値の平均値とする。ここで、摺動開始時は値が不安定となっているため、押付け荷重P、及び引抜き荷重Fとして、例えば、摺動ストロークの途中位置(例えば1/2の位置)から摺動ストローク終了直前までの間の平均値を使用することが好ましい。
上記の試験後に、取得した動摩擦係数、又は試験後の評価面となる平坦面1aの面状態の少なくとも一方によって、評価面の耐かじり性、つまり金型1の耐かじり性(耐型かじり性)を評価する。
The pressing load P and the pulling load F are each acquired at a predetermined sampling cycle, and are taken as the average value of the acquired values acquired at the time of sliding. Here, since the values are unstable at the start of sliding, the pressing load P and the pulling load F are set from, for example, an intermediate position of the sliding stroke (for example, a position of 1/2) to immediately before the end of the sliding stroke. It is preferable to use the average value between.
After the above test, the galling resistance of the evaluation surface, that is, the galling resistance of the mold 1 (mold galling resistance), depends on at least one of the obtained dynamic friction coefficient and the surface state of the flat surface 1a which is the evaluation surface after the test. To evaluate.

評価は原則として、動摩擦係数で評価する。この場合には、動摩擦係数が小さい方が金型1の耐かじり性が高いと判定する(第1の評価)。第1の評価は、動摩擦係数の値による絶対評価でもよい。
ただし、複数の評価面間の評価において、2つの評価面の動摩擦係数の差が±0.02以内の場合には、動摩擦係数の大小での評価の代わりに、試験後の評価面の表面状態を観察し、評価面への被摺動板3の凝着物の付着が少ない、もしくは、評価面の摩耗が少ない評価面の方が、耐かじり性に優れていると判定する(第2の評価)。
As a general rule, evaluation is based on the coefficient of dynamic friction. In this case, it is determined that the smaller the coefficient of dynamic friction is, the higher the galling resistance of the mold 1 is (first evaluation). The first evaluation may be an absolute evaluation based on the value of the coefficient of dynamic friction.
However, in the evaluation between a plurality of evaluation surfaces, if the difference between the dynamic friction coefficients of the two evaluation surfaces is within ± 0.02, the surface condition of the evaluation surfaces after the test is replaced with the evaluation based on the magnitude of the dynamic friction coefficients. It is determined that the evaluation surface having less adhesion of the sliding plate 3 to the evaluation surface or less wear on the evaluation surface has better galling resistance (second evaluation). ).

評価は、例えば、予め基準とする金型1で試験を行う等によって動摩擦係数の値や面状態を取得し、それを評価基準データとし、その評価基準データと比較することで行う。
又は、比較したい複数の被膜がある場合には、その各被膜を設けた金型1で上記の試験を行って、動摩擦係数や面状態の比較を行って、複数の被膜間における、相対的な金型1の耐かじり性の判定を行う。この場合、被膜以外は同一条件で試験を行うことが好ましい。
The evaluation is performed by, for example, acquiring the value of the dynamic friction coefficient and the surface condition by conducting a test with the mold 1 as a reference in advance, using it as the evaluation reference data, and comparing it with the evaluation reference data.
Or, if there are multiple coatings to be compared, perform the above test with the mold 1 provided with each coating, compare the dynamic friction coefficient and surface condition, and compare the relative coatings among the plurality of coatings. The galling resistance of the mold 1 is determined. In this case, it is preferable to carry out the test under the same conditions except for the coating film.

次に、上記の耐かじり性評価方法の処理の一例について、図4を参照して説明する。
上記の試験機に、被膜が形成されている評価面を有する一対の金型を取り付ける(ステップS10)。その後、感圧紙等を挟み込むことによって、金型の評価面の平坦度を確認する(ステップS20)。
その後、摺動試験を、合計の摺動距離が500mm以上となるまで繰り返し実施して、金型が有する評価面と被摺動板3との間の動摩擦係数を取得する(ステップS30)。
この摺動試験を行う前に、被摺動板3の表面の脱脂処理を行う。
Next, an example of the processing of the above-mentioned galling resistance evaluation method will be described with reference to FIG.
A pair of molds having an evaluation surface on which a coating is formed are attached to the above testing machine (step S10). After that, the flatness of the evaluation surface of the mold is confirmed by sandwiching a pressure-sensitive paper or the like (step S20).
After that, the sliding test is repeated until the total sliding distance becomes 500 mm or more, and the coefficient of dynamic friction between the evaluation surface of the mold and the sliding plate 3 is obtained (step S30).
Before performing this sliding test, the surface of the plate to be slid 3 is degreased.

また、摺動試験の条件として、次の条件に設定を行う。
・押付面圧P:0MPa<P≦被摺動板3を構成する金属板の引張強さの10%
・摺動速度:プレス加工より低速
・摺動距離:合計500mm以上
また、ステップS10〜ステップS20による摺動試験を、複数の金型に対し実施したり、同一の平坦面に形成する被膜を変えたりして(評価面を変えて)、複数回実施する。
また、同一条件の評価面について、ステップS10〜ステップS20による摺動試験を、複数回実施してもよい。この場合、取得した複数の動摩擦係数の平均値を評価に使用する。
In addition, the following conditions are set as the conditions for the sliding test.
Pressing surface pressure P: 0 MPa <P ≦ 10% of the tensile strength of the metal plate constituting the sliding plate 3
-Sliding speed: slower than press working-Sliding distance: 500 mm or more in total In addition, a sliding test according to steps S10 to S20 may be performed on a plurality of dies, or the coating formed on the same flat surface may be changed. Or (change the evaluation side) and carry out multiple times.
Further, the sliding test according to steps S10 to S20 may be performed a plurality of times on the evaluation surface under the same conditions. In this case, the obtained average value of the plurality of dynamic friction coefficients is used for the evaluation.

上記の試験後に、評価面の評価を行う。
第1の評価(ステップS50)では、取得した動摩擦係数の値をもって評価を行う。動摩擦係数による第1の評価においては、動摩擦係数が小さい方が金型1の耐かじり性が高いと判定する。
ただし、2つの評価面の動摩擦係数の差が、±0.02以内か否かを判定し(ステップS40)、差が±0.02以内と判定した場合には、動摩擦係数に差異が見られない評価面と認定して(ステップS60)、第2の評価によって耐かじり性を評価する(ステップS70)を行う。
After the above test, the evaluation surface is evaluated.
In the first evaluation (step S50), the evaluation is performed using the acquired value of the dynamic friction coefficient. In the first evaluation based on the dynamic friction coefficient, it is determined that the smaller the dynamic friction coefficient, the higher the galling resistance of the mold 1.
However, it is determined whether or not the difference between the dynamic friction coefficients of the two evaluation surfaces is within ± 0.02 (step S40), and when it is determined that the difference is within ± 0.02, a difference is observed in the dynamic friction coefficients. It is determined that there is no evaluation surface (step S60), and the galling resistance is evaluated by the second evaluation (step S70).

第2の評価において、試験後の平坦面1aの面状態で評価する場合には、面の粗さの変化で判定する。摺動後の表面の凹凸の高さが大きくなっているほど、すなわち、摺動後の面形状が粗く変化しているほど、金型1の耐かじり性が低いと判定する。ここで、被摺動板3が摺動で擦れて発生した微小な粉体が平坦面1a表面に一時的に付着することで、その部分だけが凸となる。また、その粉体が取り除かれる際に、耐かじり性が悪いと、被膜の一部が粉体の取り除きと一緒に取り除かれて凹となることもある。
なお、第2の評価における、試験後の面状態の評価は、粗さの観察による感応評価に限定されず、粗さ計によって表面粗さを測定し、その粗さの度合いや、粗さの変化で耐かじり性を評価しても良い。
In the second evaluation, when the evaluation is made in the surface state of the flat surface 1a after the test, it is determined by the change in the roughness of the surface. It is determined that the larger the height of the unevenness of the surface after sliding, that is, the rougher the surface shape after sliding is, the lower the galling resistance of the mold 1. Here, the minute powder generated by rubbing the sliding plate 3 by sliding temporarily adheres to the surface of the flat surface 1a, so that only that portion becomes convex. Further, when the powder is removed, if the galling resistance is poor, a part of the coating film may be removed together with the removal of the powder to form a recess.
The evaluation of the surface condition after the test in the second evaluation is not limited to the sensitivity evaluation by observing the roughness, and the surface roughness is measured by a roughness meter to determine the degree of roughness and the roughness. The galling resistance may be evaluated by the change.

同じ性状の被摺動板3を使用し、性質の異なる2つの被膜処理を施した金型1を使用した上述の評価試験を行うことで取得した動摩擦係数とストローク量(摺動距離)の関係を図5に示す。
この図5では、被膜処理Aよりも被膜処理Bの方が低い動摩擦係数を示しており、被膜処理Bの方が耐型かじり性に優れていることが分かる。ここで、動摩擦係数の値により評価する場合、例えば、設定ストローク量を100mmに設定し、50mm以上100mm未満で取得した動摩擦係数の平均値同士を比較するようにすればよい。
The relationship between the dynamic friction coefficient and the stroke amount (sliding distance) obtained by performing the above-mentioned evaluation test using the die 1 which has been subjected to two coating treatments having the same properties and the sliding plate 3 having the same properties. Is shown in FIG.
In FIG. 5, the film treatment B shows a lower dynamic friction coefficient than the film treatment A, and it can be seen that the film treatment B is superior in mold galling resistance. Here, when evaluating by the value of the dynamic friction coefficient, for example, the set stroke amount may be set to 100 mm, and the average values of the dynamic friction coefficients acquired at 50 mm or more and less than 100 mm may be compared with each other.

また、金型1の使用回数による耐型かじり性を評価したい場合には、上述の一対の金型1で被摺動板3を挟み込んだ状態で被摺動板3を面内方向に摺動させる工程を、複数回繰り返し、工程毎(摺動させる毎)の動摩擦係数又は評価面での摺動後の面状態の少なくとも一方を取得して、耐かじり性を評価すると良い。
また、一対の金型1で脱脂処理済みの金属板である被摺動板3を挟み込んだ状態で被摺動板3を面内方向に摺動させる工程を複数回繰り返す際に、合計の摺動距離が500mm以上となるように設定することが好ましい。合計の摺動距離を500mm以上とすることで、より確実に耐かじり性を評価することが可能となる。合計の摺動距離の上限は特に無いが、例えば1000mm以下とする。
Further, when it is desired to evaluate the mold galling resistance according to the number of times the mold 1 is used, the sliding plate 3 is slid in the in-plane direction with the sliding plate 3 sandwiched between the pair of molds 1 described above. It is preferable to repeat the step of making the die a plurality of times and acquire at least one of the coefficient of dynamic friction for each step (each time of sliding) or the surface state after sliding on the evaluation surface to evaluate the galling resistance.
Further, when the step of sliding the sliding plate 3 in the in-plane direction while sandwiching the sliding plate 3 which is a metal plate that has been degreased by a pair of dies 1 is repeated a plurality of times, the total sliding is performed. It is preferable to set the moving distance to be 500 mm or more. By setting the total sliding distance to 500 mm or more, it is possible to more reliably evaluate the galling resistance. There is no particular upper limit on the total sliding distance, but it is, for example, 1000 mm or less.

図6に、図5と同様の被摺動板3及び被膜処理を施した金型1を使用した繰り返し平板引抜摺動試験より取得した動摩擦係数とストローク量の関係を示す。この例は、1回毎に新しい被摺動板3に交換して試験を実施した。また、1回の摺動距離を100mmとし、且つ繰り返し回数を20回とした結果である。図6の場合には、繰り返し平板引抜摺動試験においても、表面被膜Aよりも表面被膜Bの方が低摩擦係数であり、耐型かじり性に優れていることが判別することが出来る。 FIG. 6 shows the relationship between the dynamic friction coefficient and the stroke amount obtained from the repeated flat plate pull-out sliding test using the sliding plate 3 and the die 1 which has been subjected to the coating treatment as in FIG. In this example, the test was carried out by replacing the sliding plate 3 with a new sliding plate 3 each time. Further, it is a result that the sliding distance at one time is 100 mm and the number of repetitions is 20 times. In the case of FIG. 6, even in the repeated flat plate pull-out sliding test, it can be determined that the surface coating B has a lower friction coefficient than the surface coating A and is excellent in mold galling resistance.

図6に示した結果では、総ストロークを通じて動摩擦係数がほとんど一定となっていて、動摩擦係数が安定している。このため、総ストロークを通しての動摩擦係数の平均値の大小関係から、耐型かじり性の優劣を判定することが出来る。この場合の動摩擦係数の平均値は、各工程での平均値を求め、更に各工程での平均値の平均値をとった値である。
一方で、総ストロークを通じて、動摩擦係数が徐々に増加、減少、変動して安定しない場合が想定される。その場合には、総ストロークの内、各工程の動摩擦係数の平均値が最小だったストロークに対して、最大だったストロークの動摩擦係数が50%以上乖離している場合は耐型かじり性が劣っていると判定する。なお、総ストロークを通じて、動摩擦係数が安定している方が耐型かじり性は高い。
In the results shown in FIG. 6, the coefficient of kinetic friction is almost constant throughout the total stroke, and the coefficient of kinetic friction is stable. Therefore, it is possible to determine the superiority or inferiority of the mold galling resistance from the magnitude relation of the average value of the dynamic friction coefficient over the total stroke. The average value of the dynamic friction coefficient in this case is a value obtained by obtaining the average value in each step and further taking the average value of the average values in each step.
On the other hand, it is assumed that the coefficient of dynamic friction gradually increases, decreases, and fluctuates throughout the total stroke and is not stable. In that case, the mold galling resistance is inferior when the dynamic friction coefficient of the maximum stroke deviates by 50% or more from the stroke in which the average value of the dynamic friction coefficient of each process is the minimum among the total strokes. It is determined that it is. It should be noted that the mold galling resistance is higher when the coefficient of dynamic friction is stable throughout the total stroke.

次に、各被膜処理において、図6の結果を得た試験における、合計20回の摺動(工程)のうち、摺動前、1回摺動後、10回摺動後、20回摺動後における金型1表面をレーザ顕微鏡で観察した。図7に、平坦面での凹凸の高さの状態を示す。このとき、レーザ顕微鏡で観察した金型1の範囲を図8に模式的に示す。図8において、符号Sが摺動領域であり、符号Kが面状態を観察した範囲である。すなわち、被摺動板3の幅方向中央位置での表面の粗さの状態を評価した。被摺動板3の幅方向中央位置が一番安定していると推定される。
ここで、面状態を、レーザ顕微鏡により金型1表面の凹凸を観察したが、走査電子顕微鏡(SEM)や電子線マイクロアナライザ(EPMA)といった観察装置を用いて、金型1表面を観察し、耐型かじり性の優劣を判定しても良い。
Next, in each coating treatment, out of a total of 20 slidings (processes) in the test obtained in FIG. 6, before sliding, after sliding once, after sliding 10 times, and sliding 20 times. The surface of the mold 1 later was observed with a laser microscope. FIG. 7 shows the state of the height of the unevenness on the flat surface. At this time, the range of the mold 1 observed with the laser microscope is schematically shown in FIG. In FIG. 8, reference numeral S is a sliding region, and reference numeral K is a range in which the surface state is observed. That is, the state of the surface roughness of the sliding plate 3 at the center position in the width direction was evaluated. It is estimated that the center position of the sliding plate 3 in the width direction is the most stable.
Here, the surface condition was observed by observing the unevenness of the surface of the mold 1 with a laser microscope, but the surface of the mold 1 was observed using an observation device such as a scanning electron microscope (SEM) or an electron probe microanalyzer (EPMA). The superiority or inferiority of the mold galling resistance may be determined.

図7に示した被膜処理A及びBを施した金型1の表面観察結果において、被膜処理Aの金型1の表面には凸部、すなわち、表面に被摺動板3である金属板の微小な粉体が凝着している。これに対して、被膜処理Bの金型1表面は、総ストロークに亘って、ほとんど平坦であり、被摺動板3の微小な粉体が凝着していないことが分かる。
通常、耐型かじり性が低い金型表面は、被摺動板3である金属板の微小な粉体が凝着しやすい。金型表面に凝着した金属板の小片は繰り返し摺動することで、金型表面から剥離や、再凝着を繰り返す。そのため繰り返し摺動試験の最終試験後の金型1の表面状態だけではなく、繰り返し摺動試験の初期〜中期〜後期を通して測定した金型1の表面状態の履歴から耐型かじり性を判定するのが望ましい。
In the surface observation results of the mold 1 subjected to the coating treatments A and B shown in FIG. 7, the surface of the mold 1 of the coating treatment A has a convex portion, that is, a metal plate having a sliding plate 3 on the surface. Fine powder is stuck. On the other hand, it can be seen that the surface of the mold 1 of the coating treatment B is almost flat over the total stroke, and the fine powder of the sliding plate 3 is not adhered.
Normally, fine powder of a metal plate, which is a sliding plate 3, tends to adhere to the surface of a mold having low mold galling resistance. The small pieces of the metal plate adhered to the mold surface repeatedly slide to peel off from the mold surface and re-adhere repeatedly. Therefore, the mold galling resistance is determined not only from the surface condition of the mold 1 after the final test of the repeated sliding test but also from the history of the surface condition of the mold 1 measured throughout the initial to middle to late stages of the repeated sliding test. Is desirable.

以上のように、各種被膜処理を施した金型1を用いて、1回若しくは繰り返しの摺動試験から取得した動摩擦係数の値及び、摺動試験後の金型1の表面状態の観察結果から総合的に判断して被膜処理Aよりも被膜処理Bの方が耐型かじり性に優れていることを評価することが出来る。
ここで、本実施形態にあっては、被摺動板3となる金属板に対し予め脱脂処理を行っている。後述のように、脱脂処理を行わない金属板を使用すると、脱脂処理をした場合に比べて、動摩擦係数の差が小さくなって、評価精度が悪くなる。このため、本実施形態では、被摺動板3となる金属板に対し予め脱脂処理を行って評価精度を向上させている。
As described above, from the value of the dynamic friction coefficient obtained from the one-time or repeated sliding test using the mold 1 subjected to various coating treatments and the observation result of the surface state of the mold 1 after the sliding test. Comprehensively judging, it can be evaluated that the coating treatment B is superior to the coating treatment A in the mold galling resistance.
Here, in the present embodiment, the metal plate to be the sliding plate 3 is degreased in advance. As will be described later, when a metal plate not subjected to the degreasing treatment is used, the difference in the dynamic friction coefficient becomes smaller than that in the case of the degreasing treatment, and the evaluation accuracy deteriorates. Therefore, in the present embodiment, the metal plate to be the sliding plate 3 is degreased in advance to improve the evaluation accuracy.

次に、本実施形態に基づく実施例について説明する。
評価を行う金型1は、冷間金型用鋼であるSKD11を母材とした。平坦面1aの表面にはC、D、E、Fの4種類のタイプの被膜処理を行った。金型1の形状は図2に示したものと同形状であり、図1に示した構成の試験装置を用いて摺動試験を行った。被摺動板3となる金属板は、1320MPa級の冷延鋼板とし、板厚は1.6mmのものを使用した。
金属板はアセトンにより表面を脱脂処理した。なお、比較として、脱脂処理後に、一般洗浄油であるプレトンR352Lを塗布した被摺動板3も別途、用意して評価した。
Next, an example based on this embodiment will be described.
The mold 1 to be evaluated uses SKD11, which is a steel for cold molds, as a base material. The surface of the flat surface 1a was subjected to four types of coating treatments, C, D, E, and F. The shape of the mold 1 is the same as that shown in FIG. 2, and a sliding test was performed using the test apparatus having the configuration shown in FIG. The metal plate to be the sliding plate 3 was a 1320 MPa class cold-rolled steel plate, and a plate thickness of 1.6 mm was used.
The surface of the metal plate was degreased with acetone. For comparison, a sliding plate 3 coated with Preton R352L, which is a general cleaning oil, was also separately prepared and evaluated after the degreasing treatment.

上記C〜Fの被膜処理を施した金型1を被摺動板3に上下方向から押し当て、20MPaの面圧が付与されるよう、押付け用油圧シリンダ装置を作動させた。そして、1回の摺動距離を100mm、摺動速度を200mm/minとなるように引抜き用油圧シリンダ装置5を作動させ、繰り返し20回で、被摺動板3の引抜きの工程を実施した。摺動速度は低速度だと動摩擦係数が増加するため、耐型かじり性の判定がしやすくなる。本試験では、プレスストロークの速度よりも遅い200mm/minとした。これより低速度で試験してもよいが、試験時間が長くなるため、200mm/min程度が好ましい。 The die 1 coated with the coatings C to F was pressed against the sliding plate 3 from above and below, and the pressing hydraulic cylinder device was operated so that a surface pressure of 20 MPa was applied. Then, the pull-out hydraulic cylinder device 5 was operated so that the sliding distance was 100 mm and the sliding speed was 200 mm / min, and the step of pulling out the sliding plate 3 was carried out 20 times repeatedly. If the sliding speed is low, the coefficient of kinetic friction increases, so it becomes easier to determine the mold galling resistance. In this test, the speed was set to 200 mm / min, which is slower than the press stroke speed. The test may be performed at a lower speed than this, but since the test time becomes long, about 200 mm / min is preferable.

このときに取得した各被膜処理を施した金型1における脱脂処理した被摺動板3の引抜きストロークと動摩擦係数の関係を図9に示す。また、この時の各被膜処理における動摩擦係数の平均値(平均摩擦係数)を図10に示す。
また、プレトンR352Lを塗布した被摺動板3を用いた1工程目の摺動試験における動摩擦係数の平均値(平均摩擦係数)を図11に示す。
更に、脱脂状態の金属板を使用した、各摺動後の金型表面における、図8に示す範囲Kについてレーザ顕微鏡で観察した。観察した表面の凹凸の状態を図12に示す。
FIG. 9 shows the relationship between the pull-out stroke of the degreased sliding plate 3 and the coefficient of dynamic friction in the die 1 obtained at this time. Further, FIG. 10 shows an average value (average friction coefficient) of the dynamic friction coefficient in each coating treatment at this time.
Further, FIG. 11 shows an average value (average friction coefficient) of the dynamic friction coefficient in the sliding test of the first step using the sliding plate 3 coated with Preton R352L.
Further, the range K shown in FIG. 8 on the surface of the mold after each sliding using the metal plate in the degreased state was observed with a laser microscope. The state of the unevenness of the observed surface is shown in FIG.

<評価結果>
図9から分かるように、脱脂状態の金属板を使用した被膜処理C〜Fは、総ストロークを通して動摩擦係数がいずれの被膜処理も安定していた。このため、総ストロークにおける動摩擦係数の平均値(平均摩擦係数)で評価した。
各被膜処理での平均摩擦係数を示す図10から分かるように、各被膜処理における脱脂処理した被摺動板3の動摩擦係数の平均値では、被膜処理Fが最も動摩擦係数が低く、被膜処理Cが最も動摩擦係数が高い。また、本発明に基づく第1の評価において、この時点で被膜処理Fが最も耐かじり性が高く、被膜処理Cが最も耐かじり性が低いと評価することができる。
また、被膜処理D及びEは、おおよそ同程度の近似した平均摩擦係数を示しているため、動摩擦係数の大小関係による耐かじり性の評価が難しい。前記被膜処理Dと被膜処理Eの動摩擦係数の平均値は0.349であり、前記平均値から±0.02以内であることから、第2の評価によって耐かじり性を評価する。
<Evaluation result>
As can be seen from FIG. 9, in the coating treatments C to F using the degreased metal plate, the dynamic friction coefficient was stable in all the coating treatments throughout the total stroke. Therefore, it was evaluated by the average value (average friction coefficient) of the dynamic friction coefficient in the total stroke.
As can be seen from FIG. 10 showing the average friction coefficient in each coating treatment, the coating treatment F has the lowest dynamic friction coefficient in the average value of the dynamic friction coefficient of the degreased plate 3 in each coating treatment, and the coating treatment C. Has the highest coefficient of dynamic friction. Further, in the first evaluation based on the present invention, it can be evaluated that the coating treatment F has the highest galling resistance and the coating treatment C has the lowest galling resistance at this point.
Further, since the coating treatments D and E show approximately the same approximate average friction coefficient, it is difficult to evaluate the galling resistance based on the magnitude relationship of the dynamic friction coefficient. Since the average value of the dynamic friction coefficients of the film treatment D and the film treatment E is 0.349, which is within ± 0.02 from the average value, the galling resistance is evaluated by the second evaluation.

次に、図12に示した各摺動後の金型1の表面観察の結果から、被膜処理C〜Fの面形状は、平均摩擦係数が最も高かった被膜処理Cでは凸部すなわち、被摺動板3が金型表面に凝着している痕跡が確認されたため、耐型かじり性は最も悪いと評価した。また、平均摩擦係数が最も低かった被膜処理Fでは、金型表面はほぼ平坦であり、被摺動板3の凝着や被膜の摩耗といった損傷は確認されなかったため、耐型かじり性は最も良いと評価出来る。このように、面状態だけの評価からも、耐かじり性が評価出来ることが分かる。 Next, from the results of surface observation of the mold 1 after each sliding shown in FIG. 12, the surface shape of the coating treatments C to F is a convex portion, that is, a sliding surface in the coating treatment C having the highest average friction coefficient. Since traces of the moving plate 3 adhering to the surface of the mold were confirmed, it was evaluated that the mold galling resistance was the worst. Further, in the coating treatment F having the lowest average friction coefficient, the mold surface was almost flat, and no damage such as adhesion of the sliding plate 3 or wear of the coating was confirmed, so that the mold galling resistance was the best. Can be evaluated. In this way, it can be seen that the galling resistance can be evaluated from the evaluation of only the surface condition.

一方、第1の評価による耐かじり性の判定が困難であった被膜処理D及びEの金型表面については、被膜処理Dでは表面に被摺動板3の凝着や摩耗が確認出来ないが、被膜処理Eでは被摺動板3の凝着が認められる。このように、第1の評価によって耐かじり性の判定が困難な場合は、試験後の評価面の面状態を評価する第2の評価によって精度良く評価出来ることが分かる。 On the other hand, with respect to the mold surfaces of the coating treatments D and E, for which it was difficult to determine the galling resistance by the first evaluation, adhesion or wear of the sliding plate 3 could not be confirmed on the surface by the coating treatment D. In the coating treatment E, adhesion of the sliding plate 3 is observed. As described above, when it is difficult to determine the galling resistance by the first evaluation, it can be seen that the second evaluation, which evaluates the surface condition of the evaluation surface after the test, can evaluate it accurately.

以上の結果を総合的に判断することにより、被膜処理Fが最も耐型かじり性が良く、続いて被膜処理D、被膜処理Eで、被膜処理Cが最も耐型かじり性が悪いと評価することが出来る。
一方で、図11に示すように、プレトンR352Lを塗布した条件で摺動試験した場合、摺動後の動摩擦係数の平均値をみると、被膜処理の種類が変化しても、動摩擦係数の平均値はおおよそ0.10〜0.11の範囲となっている。すなわち、被膜処理の違いによる金型の耐かじり性の性能差を精度良く評価することが出来ない。そのため、被摺動板3を脱脂処理した後に摺動評価を行うことでで、金型表面に被膜が形成されていても、精度良く耐かじり性を評価出来る。
By comprehensively judging the above results, it is evaluated that the coating treatment F has the best mold galling resistance, and then the coating treatment D and the coating treatment E have the worst mold galling resistance. Can be done.
On the other hand, as shown in FIG. 11, when the sliding test was performed under the condition that Preton R352L was applied, the average value of the dynamic friction coefficient after sliding was found to be the average of the dynamic friction coefficient even if the type of coating treatment changed. The value is in the range of approximately 0.10 to 0.11. That is, it is not possible to accurately evaluate the performance difference in the galling resistance of the mold due to the difference in the coating treatment. Therefore, by performing a sliding evaluation after degreasing the sliding plate 3, even if a film is formed on the mold surface, the galling resistance can be evaluated with high accuracy.

1 金型
1A 上側の金型
1B 下側の金型
1a 平坦面
1b フィレット部
2 金型フレーム
3 被摺動板
4 押付け装置
5 引抜き用油圧シリンダ装置
6 チャック
7 引抜き装置
8 変位計
1 Die 1A Upper mold 1B Lower mold 1a Flat surface 1b Fillet part 2 Mold frame 3 Sliding plate 4 Pushing device 5 Pull-out hydraulic cylinder device 6 Chuck 7 Pull-out device 8 Displacement meter

Claims (1)

被膜が形成された平坦面からなる評価面が対向する一対の金型における、引張強度が1180MPa以上の金属板に対する、上記評価面の耐かじり性を評価する耐かじり性評価方法であって、
上記一対の金型の対向する評価面で、脱脂処理済みの上記金属板を板厚方向から、上記評価面と上記金属板の間の面圧が0MPaを超える値、且つ上記金属板の引張強さの10%以下になるような一定荷重で挟み込んだ状態で、プレス成形時の加工速度よりも遅い摺動速度で、上記金属板を面内方向に複数回繰り返して摺動させ、その合計の摺動距離が500mm以上となるまで摺動させた際の、上記評価面と上記金属板の間の動摩擦係数の値の大小関係から耐かじり性を評価し、
複数の評価面の評価を行った場合に、2つの評価面の上記動摩擦係数の差が±0.02以内であった場合には、動摩擦係数の値の大小関係の代わりに、各評価面の試験後の面状態によって、上記2つの評価面の間の相対的な耐かじり性を評価することを特徴とする耐かじり性評価方法。
This is a galling resistance evaluation method for evaluating the galling resistance of the evaluation surface with respect to a metal plate having a tensile strength of 1180 MPa or more in a pair of molds having the evaluation surfaces of flat surfaces on which a film is formed facing each other.
On the facing evaluation surfaces of the pair of dies, the surface pressure between the evaluation surface and the metal plate exceeds 0 MPa from the thickness direction of the degreased metal plate, and the tensile strength of the metal plate The metal plate is repeatedly slid in the in-plane direction a plurality of times at a sliding speed slower than the processing speed at the time of press molding in a state of being sandwiched with a constant load of 10% or less, and the total sliding is performed. The galling resistance was evaluated from the magnitude relationship of the value of the dynamic friction coefficient between the evaluation surface and the metal plate when the metal plate was slid until the distance was 500 mm or more.
When the evaluation of a plurality of evaluation surfaces is performed and the difference between the dynamic friction coefficients of the two evaluation surfaces is within ± 0.02, instead of the magnitude relationship of the dynamic friction coefficient values, the evaluation surfaces of each evaluation surface are evaluated. A galling resistance evaluation method, characterized in that the relative galling resistance between the two evaluation surfaces is evaluated according to the surface condition after the test.
JP2019153623A 2018-11-19 2019-08-26 Gnawing resistance evaluation method Active JP6874803B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018216743 2018-11-19
JP2018216743 2018-11-19

Publications (2)

Publication Number Publication Date
JP2020082190A JP2020082190A (en) 2020-06-04
JP6874803B2 true JP6874803B2 (en) 2021-05-19

Family

ID=70905475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019153623A Active JP6874803B2 (en) 2018-11-19 2019-08-26 Gnawing resistance evaluation method

Country Status (1)

Country Link
JP (1) JP6874803B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240123700A1 (en) * 2021-03-16 2024-04-18 Jfe Steel Corporation Damage evaluation device and damage evaluation method for press-forming die

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154859A (en) * 2003-11-27 2005-06-16 Jfe Seimitsu Kk Coat film, and method of producing the same
JP4677804B2 (en) * 2005-03-16 2011-04-27 Jfeスチール株式会社 Method for evaluating squeezing property of press mold and test apparatus therefor
JP4873617B2 (en) * 2006-03-30 2012-02-08 地方独立行政法人 東京都立産業技術研究センター Hard film covering member with low friction characteristics and peel resistance
JP4975481B2 (en) * 2007-02-27 2012-07-11 トーヨーエイテック株式会社 Die for press
JP5530751B2 (en) * 2010-02-23 2014-06-25 Dowaサーモテック株式会社 LAMINATED COATING COATED MEMBER AND METHOD FOR PRODUCING THE SAME
KR102174803B1 (en) * 2015-04-23 2020-11-05 히타치 긴조쿠 가부시키가이샤 Covering mold and its manufacturing method
JP6512204B2 (en) * 2015-12-04 2019-05-15 Jfeスチール株式会社 Lubricating paint for stainless steel plates and lubricated stainless steel plates
JP6478331B2 (en) * 2016-04-28 2019-03-06 日本コーテイングセンター株式会社 Hard vanadium composite coating tool
JP6512413B2 (en) * 2016-07-29 2019-05-15 Jfeスチール株式会社 Zinc phosphate treated galvanized steel sheet and method for producing the same

Also Published As

Publication number Publication date
JP2020082190A (en) 2020-06-04

Similar Documents

Publication Publication Date Title
Trzepieciński et al. On the influence of deformation of deep drawing quality steel sheet on surface topography and friction
JP2016003951A (en) Method and device for tension-compression test
Pereira et al. The effect of the die radius profile accuracy on wear in sheet metal stamping
Chen et al. The evaluation of formability of the 3rd generation advanced high strength steels QP980 based on digital image correlation method
Wang et al. Investigation of die radius arc profile on wear behaviour in sheet metal processing of advanced high strength steels
JP7140132B2 (en) Manufacturing method and manufacturing apparatus for skin panel having character lines
JP6874803B2 (en) Gnawing resistance evaluation method
JP5672215B2 (en) Surface processing crack sensitivity evaluation method and apparatus
Weiss et al. Roll formability of aluminium foam sandwich panels
KR100702422B1 (en) Evaluation Method of Mechanical Properties of Coating Layer of Electro-Galvanized Steel Sheet
Yangui et al. Failure analysis of a cold work tool material slides against carbon steel in sheet metal forming process—a case study of hinges production
Choi et al. Experimental investigation on galling performance of tool steel in stamping of UHSS sheets
JP4677804B2 (en) Method for evaluating squeezing property of press mold and test apparatus therefor
Jeon et al. Indirect prediction of surface damage for a press die with wear characteristics and finite element stamping analysis
Pepelnjak et al. Computer-assisted engineering determination of the formability limit for thin sheet metals by a modified Marciniak method
Deole et al. Analysis of fracture in sheet bending and roll forming
RU2397475C1 (en) Procedure for evaluating efficiency of lubricating materials for sheet stamping
Abdelbarr et al. Optimum process parameters for increasing the drawability of square cup though conical die
Aravind et al. Investigation of a modified fine piercing process on extra deep drawing grade steel
Nanu et al. Influence of material properties on the interaction between residual stress and springback in the case of in plane sheets forming
Trzepieciński et al. Experimental evaluation of value of friction coefficient in the drawbead region
Jaber et al. Evaluating the influence of geometrical factors and process parameters on steel alloy formed cup produced by hydroforming with die process
Mahmood et al. Experimental and simulation investigations of micro flexible deep drawing using floating ring technique
Bhattacharya et al. Wear of D2 tool steel dies during trimming DP980-type Advanced High Strength Steel (AHSS) for automotive parts
JP4093486B2 (en) Damage evaluation test method and damage evaluation test apparatus during ironing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210405

R150 Certificate of patent or registration of utility model

Ref document number: 6874803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250