[go: up one dir, main page]

JP6874468B2 - Polyethylene fiber and products using it - Google Patents

Polyethylene fiber and products using it Download PDF

Info

Publication number
JP6874468B2
JP6874468B2 JP2017065333A JP2017065333A JP6874468B2 JP 6874468 B2 JP6874468 B2 JP 6874468B2 JP 2017065333 A JP2017065333 A JP 2017065333A JP 2017065333 A JP2017065333 A JP 2017065333A JP 6874468 B2 JP6874468 B2 JP 6874468B2
Authority
JP
Japan
Prior art keywords
hard particles
fibers
polyethylene
fiber
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017065333A
Other languages
Japanese (ja)
Other versions
JP2018168488A (en
Inventor
優二 池田
優二 池田
佳史 丸岡
佳史 丸岡
奥山 幸成
幸成 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2017065333A priority Critical patent/JP6874468B2/en
Publication of JP2018168488A publication Critical patent/JP2018168488A/en
Application granted granted Critical
Publication of JP6874468B2 publication Critical patent/JP6874468B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Knitting Of Fabric (AREA)
  • Artificial Filaments (AREA)

Description

本発明は、耐切創性に優れたポリエチレン繊維および該繊維を含む製品に関する。 The present invention relates to polyethylene fibers having excellent cut resistance and products containing the fibers.

従来、天然繊維の綿や一般的な有機繊維が耐切創性素材として用いられてきた。また、それらの繊維などを編みあげた手袋が耐切創性を必要とする分野で多く用いられてきた。そこで耐切創性機能の付与として、アラミド繊維などの高強度繊維の紡績糸からなる編物や織物などが考案されてきた。しかしながら、毛抜けや耐久性の観点で不満が見受けられた。一方、別の手段として、金属繊維を有機繊維や天然繊維と合わせて用いることにより耐切創性を向上させる試みが行われている。しかしながら、金属繊維を合わせることにより、風合いが堅くなり、柔軟性が損なわれるという問題がある。 Conventionally, natural fibers such as cotton and general organic fibers have been used as cut-resistant materials. In addition, gloves made by knitting these fibers have been widely used in fields where cut resistance is required. Therefore, knitted fabrics and woven fabrics made of spun yarns of high-strength fibers such as aramid fibers have been devised to impart a cut resistance function. However, dissatisfaction was seen from the viewpoint of hair loss and durability. On the other hand, as another means, attempts have been made to improve cut resistance by using metal fibers in combination with organic fibers and natural fibers. However, there is a problem that the texture becomes hard and the flexibility is impaired by combining the metal fibers.

そこで、硬質繊維を含む糸により耐切創性に優れる超高分子量ポリエチレン繊維の技術が知られている(例えば、特許文献1および2を参照)。 Therefore, a technique of ultra-high molecular weight polyethylene fiber having excellent cut resistance due to a thread containing a hard fiber is known (see, for example, Patent Documents 1 and 2).

特表2010−507026号公報Special Table 2010-5007026 特表2015−518528号公報Special Table 2015-518528

しかし、近年安全意識の高まりから、従来よりも耐切創性の高い素材が求められている。
また、特許文献1や2に開示の技術を利用すると、添加する硬質繊維が紡糸工程における濾過フィルターを目詰まりさせ、生産性を著しく低下させるという問題がある。
However, due to increasing safety awareness in recent years, there is a demand for materials with higher cut resistance than before.
Further, when the technique disclosed in Patent Documents 1 and 2 is used, there is a problem that the added hard fiber clogs the filtration filter in the spinning process and significantly reduces the productivity.

そこで、本発明は、かかる従来技術の課題を解決するためになされた。すなわち、本発明の目的は、優れた耐切創性を有し、生産性の高い、新規なポリエチレン繊維を開発し、該繊維を用いた製品を提供することにある。 Therefore, the present invention has been made to solve the problems of the prior art. That is, an object of the present invention is to develop a novel polyethylene fiber having excellent cut resistance and high productivity, and to provide a product using the fiber.

本発明者らは鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明を完成するに到った。すなわち、本発明は、以下の構成からなる。 As a result of diligent studies, the present inventors have found that the above problems can be solved by the means shown below, and have completed the present invention. That is, the present invention has the following configuration.

1.極限粘度[η]が4.9dL/g以上40.0dL/g以下のポリエチレンからなる繊維であり、アスペクト比が3未満であり、平均粒径サイズが3.0μm以上15.0μm以下の硬質粒子を含有することを特徴とするポリエチレン繊維。
2.前記硬質粒子を5質量%以上含有する上記1に記載のポリエチレン繊維。
3.上記硬質粒子は、シリカまたはアルミナである上記1または2に記載のポリエチレン繊維。
4.ヨーロッパ規格であるEN388による耐切創性評価において、350g/m±35g/mの布帛にした場合の耐切創性のレベルが4以上である上記1から3のいずれか1つのポリエチレン繊維
5.上記1から4のいずれか1つに記載のポリエチレン繊維を含むことを特徴とする製品。
1. 1. A fiber made of polyethylene having an ultimate viscosity [η] of 4.9 dL / g or more and 40.0 dL / g or less, a hard particle having an aspect ratio of less than 3, and an average particle size of 3.0 μm or more and 15.0 μm or less. Polyethylene fiber characterized by containing.
2. The polyethylene fiber according to 1 above, which contains 5% by mass or more of the hard particles.
3. 3. The polyethylene fiber according to 1 or 2 above, wherein the hard particles are silica or alumina.
4. In the cut resistance evaluation according to the European standard EN388, the level of cut resistance when the fabric is 350 g / m 2 ± 35 g / m 2 is 4 or more. Any one of the above 1 to 3 polyethylene fibers. A product comprising the polyethylene fiber according to any one of 1 to 4 above.

本発明により、優れた耐切創性を有し、生産性の高い、ポリエチレン繊維、および該繊維を用いた製品を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide polyethylene fibers having excellent cut resistance and high productivity, and products using the fibers.

以下、本発明を詳述する。
本発明のポリエチレン繊維は、その極限粘度が4.9dL/g以上であり、好ましくは8.0dL/g以上でありる。また、40.0dL/g以下であり、好ましくは30.0dL/g以下、より好ましくは25.0dL/g以下である。
Hereinafter, the present invention will be described in detail.
The polyethylene fiber of the present invention has an intrinsic viscosity of 4.9 dL / g or more, preferably 8.0 dL / g or more. Further, it is 40.0 dL / g or less, preferably 30.0 dL / g or less, and more preferably 25.0 dL / g or less.

極限粘度が4.9dL/g未満であると、高強度なマルチフィラメントが得られないことがある。一方、極限粘度の上限については、高強度なマルチフィラメントが得られる限り特に問題にならないが、ポリエチレンの極限粘度が高過ぎると、加工性が低下してマルチフィラメントを作製するのが困難になるため上述の範囲であることが好ましい。 If the ultimate viscosity is less than 4.9 dL / g, a high-strength multifilament may not be obtained. On the other hand, the upper limit of the ultimate viscosity does not matter as long as a high-strength multifilament can be obtained, but if the ultimate viscosity of polyethylene is too high, the workability is lowered and it becomes difficult to produce the multifilament. It is preferably in the above range.

本発明のポリエチレン繊維は、アスペクト比が3未満である複数の硬質粒子を含有している。本発明のポリエチレン繊維が含有する硬質粒子のアスペクト比は、3未満であればよいが、好ましくは1以上2以下である。ここで、硬質粒子のアスペクト比とは、JIS8900−1に基づき、硬質粒子の顕微鏡像において、最大長径/最大長径に直交する幅と定義される。硬質粒子のアスペクト比が3以上になると、紡糸時に濾過フィルターが目詰まりし、繊維の生産性を著しく低下させることが懸念される為、好ましくない。 The polyethylene fiber of the present invention contains a plurality of hard particles having an aspect ratio of less than 3. The aspect ratio of the hard particles contained in the polyethylene fiber of the present invention may be less than 3, but is preferably 1 or more and 2 or less. Here, the aspect ratio of the hard particles is defined as a width orthogonal to the maximum major axis / maximum major axis in the microscope image of the hard particles based on JIS8900-1. If the aspect ratio of the hard particles is 3 or more, the filtration filter may be clogged during spinning, which may significantly reduce the productivity of the fibers, which is not preferable.

本発明のポリエチレン繊維が含有する複数の硬質粒子の形状は、真球状、扁球状であることが好ましい。硬質粒子が繊維状の場合、紡糸時に濾過フィルターが目詰まりし、繊維の生産性を著しく低下させることが懸念されるため、好ましくない。本発明のポリエチレン繊維が含有する硬質粒子の主たる原料としては特に限定されないが、シリカ、アルミナ等でポリマー中で凝集し難いものであれば用いることができる。なかでも、シリカからなるものが好ましい。 The shape of the plurality of hard particles contained in the polyethylene fiber of the present invention is preferably spherical or oblate. If the hard particles are fibrous, the filtration filter may be clogged during spinning, which may significantly reduce the productivity of the fibers, which is not preferable. The main raw material for the hard particles contained in the polyethylene fiber of the present invention is not particularly limited, but silica, alumina or the like that does not easily aggregate in the polymer can be used. Of these, those made of silica are preferable.

本発明のポリエチレン繊維が含有する複数の硬質粒子は、そのまま用いてもよいし、
表面を修飾したものを用いてもよい、表面修飾としては、ジメチル基、エポキシ基、ヘキシル基、フェニル基、メタクリル基、ビニル基、イソシアネート基、等が適用できる。
The plurality of hard particles contained in the polyethylene fiber of the present invention may be used as they are, or may be used as they are.
A surface-modified one may be used. As the surface modification, a dimethyl group, an epoxy group, a hexyl group, a phenyl group, a methacryl group, a vinyl group, an isocyanate group, or the like can be applied.

本発明のポリエチレン繊維が含有する複数の硬質粒子の平均粒子径は、3.0μm以上であり、好ましくは5.0μm以上である。硬質粒子の平均粒子径が15.0μmよりも大きくなると、紡糸時に濾過フィルターが目詰まりし、繊維の生産性を著しく低下させ、特に延伸性を大幅に低下させる。 The average particle size of the plurality of hard particles contained in the polyethylene fiber of the present invention is 3.0 μm or more, preferably 5.0 μm or more. When the average particle size of the hard particles is larger than 15.0 μm, the filtration filter is clogged during spinning, and the productivity of the fibers is significantly reduced, and in particular, the stretchability is significantly reduced.

本発明のポリエチレン繊維が含有する複数の硬質粒子の含有量は、5質量%以上であり、好ましくは10質量%以上30質量%以下である。硬質粒子の含有量が5質量%未満であると、繊維中に存在する硬質粒子と刃の接触頻度が少なく、耐切創性を向上させる効果を得ることができ難い。 The content of the plurality of hard particles contained in the polyethylene fiber of the present invention is 5% by mass or more, preferably 10% by mass or more and 30% by mass or less. When the content of the hard particles is less than 5% by mass, the frequency of contact between the hard particles existing in the fiber and the blade is low, and it is difficult to obtain the effect of improving the cut resistance.

本発明のポリエチレン繊維を紡糸する際に用いる溶液と混合する際は、分散剤を硬質粒子に対して、0.1質量%以上30質量%未満添加することが望ましい。なお、分散剤としては、非イオン性、または、アニオン性界面活性剤が好ましい。分散剤を添加することにより、硬質粒子の沈降速度が低減し、粒子の分散性が向上する。また30質量%以上添加することにより、紡糸時において糸切れが発生する。 When mixing with the solution used for spinning the polyethylene fiber of the present invention, it is desirable to add a dispersant in an amount of 0.1% by mass or more and less than 30% by mass with respect to the hard particles. As the dispersant, a nonionic or anionic surfactant is preferable. By adding the dispersant, the sedimentation rate of the hard particles is reduced and the dispersibility of the particles is improved. Further, when 30% by mass or more is added, yarn breakage occurs during spinning.

本発明のポリエチレン繊維は、単糸あたりの繊維径が45μm以下であるのが好ましく、37μm以下であるのがより好ましい。単糸あたりの繊維径が45μmよりも太くなると、織物または編物(織編物)に形成した際の風合いが堅くなり、柔軟性が損なわれる。なお、単糸あたりの繊維径は、例えば、dtexと繊維の比重より求める方法や、顕微鏡を用いて求める方法を用いることで求めることができる。 The polyethylene fiber of the present invention preferably has a fiber diameter per single yarn of 45 μm or less, more preferably 37 μm or less. When the fiber diameter per single yarn is larger than 45 μm, the texture when formed into a woven fabric or knitted fabric (woven or knitted fabric) becomes hard, and the flexibility is impaired. The fiber diameter per single yarn can be obtained, for example, by using a method of obtaining dtex and the specific gravity of the fiber, or a method of obtaining using a microscope.

本発明のポリエチレン繊維の平均強度は、10cN/dtex以上であることが望ましく、好ましくは、15cN/dtex以上である。平均強度が10cN/dtex未満の場合、応用製品を作成したとき、強度が不足する可能性がある。 The average strength of the polyethylene fiber of the present invention is preferably 10 cN / dtex or more, preferably 15 cN / dtex or more. If the average strength is less than 10 cN / dtex, the strength may be insufficient when the applied product is prepared.

本発明のポリエチレン繊維を得るための方法については、高強度を確保する観点から例えば、ゲル紡糸法を用いることができる。溶融紡糸でも生産可能であるが、硬質粒子を添加することにより強度が低下するため、応用製品を作成したとき適用範囲が限られる。 As for the method for obtaining the polyethylene fiber of the present invention, for example, a gel spinning method can be used from the viewpoint of ensuring high strength. Although it can be produced by melt spinning, the range of application is limited when an applied product is produced because the strength is reduced by adding hard particles.

よって、本発明のポリエチレン繊維の製造には溶融紡糸法を用いるのが好ましい。ゲル紡糸法を用いて本発明のポリエチレン繊維を製造する方法について、具体的に以下に説明する。なお、本発明のポリエチレン繊維を製造する方法は、以下の工程や数値に限定されない。 Therefore, it is preferable to use the melt spinning method for producing the polyethylene fiber of the present invention. The method for producing the polyethylene fiber of the present invention by using the gel spinning method will be specifically described below. The method for producing the polyethylene fiber of the present invention is not limited to the following steps and numerical values.

本発明の製造方法において、溶液中のポリエチレン濃度は、溶媒の性質及びポリエチレンの分子量、分子量分布に依存して変えてもよい。特に非常に高い分子量、例えば測定温度135℃、溶媒としてデカリンを用いた場合の極限粘度[η]が14dL/g以上のポリエチレンを用いた場合、50質量%以上の濃度の混合ドープは、高粘度となるため紡糸時に脆性破断を生じやすくなり紡糸が非常に困難になる。他方、例えば0.5質量%未満の濃度の混合ドープを用いた場合の欠点は、収率が低下し溶媒の分離及び回収の費用が増大することである。 In the production method of the present invention, the polyethylene concentration in the solution may be changed depending on the properties of the solvent, the molecular weight of polyethylene, and the molecular weight distribution. In particular, when polyethylene having a very high molecular weight, for example, a measurement temperature of 135 ° C. and a decalin as a solvent and a limit viscosity [η] of 14 dL / g or more is used, a mixed dope having a concentration of 50% by mass or more has a high viscosity. Therefore, brittle fracture is likely to occur during spinning, which makes spinning very difficult. On the other hand, the disadvantage of using a mixed dope with a concentration of less than 0.5% by mass, for example, is that the yield is reduced and the cost of solvent separation and recovery is increased.

用いられる混合ドープは、種々の方法、例えば、固体ポリエチレンを溶媒中に懸濁させ、継いで高温にて撹拌するか、または該懸濁液を混合及び搬送部を備えた2軸スクリュー押出し機を用いることにより製造できる。用いられる混合ドープは、溶液とポリエチレン樹脂に加えて、硬質粒子を混合したものを用い、分散剤をさらに添加してもよい。 The mixed dope used can be a variety of methods, such as suspending solid polyethylene in a solvent and subsequently stirring at high temperature, or mixing the suspension with a twin-screw extruder equipped with a transport section. It can be manufactured by using it. The mixed dope used may be a mixture of hard particles in addition to the solution and the polyethylene resin, and a dispersant may be further added.

本発明の製造方法において該混合ドープを複数のオリフィスが配列してなる紡糸口金を通してドープフィラメントとする。ドープフィラメントへの変換の際の温度は、溶解点以上で選択しなければならない。この溶解点は、もちろん選択した溶媒、濃度に依存しており、少なくとも140℃以上、好ましくは少なくとも150℃以上であることが望ましい。もちろん、この温度は該ポリエチレンの分解温度以下にて選択する。 In the production method of the present invention, the mixed dope is made into a dope filament through a spinneret formed by arranging a plurality of orifices. The temperature at the time of conversion to the dope filament must be selected above the dissolution point. This dissolution point depends, of course, on the selected solvent and concentration, and is preferably at least 140 ° C. or higher, preferably at least 150 ° C. or higher. Of course, this temperature is selected below the decomposition temperature of the polyethylene.

本発明の製造方法においては、該ドープフィラメントは予め整流された気体、もしくは液体を用いて冷却される。用いる気体としては、空気、もしくは窒素やアルゴン等の不活性ガスが挙げられる。また、用いる液体としては水等が挙げられる。 In the production method of the present invention, the dope filament is cooled using a pre-rectified gas or liquid. Examples of the gas used include air or an inert gas such as nitrogen or argon. Further, examples of the liquid used include water and the like.

本発明の製造方法においては、オリフィス部の吐出速度に対して、少なくとも1段階以上の延伸工程を通過し、30倍以上に400倍以下に延伸されることが好ましい。 In the production method of the present invention, it is preferable that the orifice portion is stretched 30 times or more and 400 times or less by passing through at least one stretching step with respect to the discharge rate of the orifice portion.

本発明のポリエチレン繊維を使用した製品、例えば、織編物は、耐切創性織編物、手袋及びベスト等として好適に用いられる。例えば、手袋は、本発明のポリエチレン繊維を編み機に掛けることで得られる。もしくは、本発明のポリエチレン繊維を織り機に掛けて布帛を得、それを裁断、縫製して手袋とすることもできる。 Products using the polyethylene fibers of the present invention, for example, woven and knitted fabrics, are suitably used as cut resistant woven and knitted fabrics, gloves, vests and the like. For example, gloves can be obtained by hanging the polyethylene fibers of the present invention on a knitting machine. Alternatively, the polyethylene fiber of the present invention can be woven on a loom to obtain a cloth, which can be cut and sewn to make gloves.

このようにして得られた手袋は、例えば、そのまま手袋として使用することもできるが、必要であれば滑り止め性を付与するために、樹脂を塗布することもできる。ここで用いられる樹脂は、例えば、ウレタン系やエチレン系などが挙げられるが、特に限定されるものではない。 The gloves thus obtained can be used as, for example, gloves as they are, but if necessary, a resin can be applied to impart anti-slip properties. Examples of the resin used here include urethane-based and ethylene-based resins, but are not particularly limited.

本発明のポリエチレン繊維は、後述の実施例からも分かるように、耐切創性能に優れている。よって、上記した手袋やベスト以外にも、テープ、ロープ、ネット、釣糸、資材防護カバー、シート、カイト用糸、洋弓弦、セールクロス、幕材として好適に用いられる。もちろん、本発明のポリエチレン繊維を用いた製品はこれらに限定されない。 As can be seen from the examples described later, the polyethylene fiber of the present invention has excellent cut resistance. Therefore, in addition to the gloves and vests described above, they are suitably used as tapes, ropes, nets, fishing lines, material protective covers, sheets, kite threads, bowstrings, sail cloths, and curtain materials. Of course, the products using the polyethylene fibers of the present invention are not limited to these.

また、本発明のポリエチレン繊維は、高い耐切創性を有するため、該耐切創性を活かした材料、例えば、繊維強化樹脂補強材、セメント補強材、繊維強化ゴム補強材、あるいは環境変化が想定される防護材、防弾材、医療用縫合糸、人工腱、人工筋肉、工作機械部品、電池セパレーター、化学フィルターとして好適に用いられる。もちろん、本発明のポリエチレン繊維は、これらの材料として用いられるのに限定されず、様々な材料として用いることができる。 Further, since the polyethylene fiber of the present invention has high cut resistance, a material utilizing the cut resistance, for example, a fiber reinforced resin reinforcing material, a cement reinforcing material, a fiber reinforced rubber reinforcing material, or an environmental change is expected. It is suitably used as a protective material, a bulletproof material, a medical suture, an artificial tendon, an artificial muscle, a machine tool part, a battery separator, and a chemical filter. Of course, the polyethylene fiber of the present invention is not limited to being used as these materials, and can be used as various materials.

以下に、実施例を例示し、本発明を具体的に説明する。しかし、本発明は下記実施例によって限定されるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples, and it is of course possible to carry out the present invention with appropriate modifications within a range that can be adapted to the gist of the above and the following, and all of them are the techniques of the present invention. It is included in the target range.

まず、後述の実施例および比較例で作製した繊維(繊維サンプル)およびそれを用いた筒編み物(編物サンプル)に対して行った特性値の測定及び評価について説明する。 First, the measurement and evaluation of the characteristic values performed on the fibers (fiber samples) produced in Examples and Comparative Examples described later and the tubular knitting (knitted sample) using the fibers will be described.

(1)極限粘度
135℃のデカリンにてウベローデ型毛細粘度管により、種々の希薄溶液の比粘度を測定し、その比粘度を濃度で除した値の濃度に対するプロットの最小2乗近似で得られる直線の原点への外挿点より極限粘度を決定した。測定に際し、サンプルをポリマーに対して1質量%の酸化防止剤(商標名「ヨシノックスBHT」吉富製薬製)を添加し、135℃で24時間攪拌溶解して測定溶液を調整した。
(1) Extreme viscosity The specific viscosities of various dilute solutions are measured with a Ubbelohde-type capillary viscosity tube with decalin at 135 ° C., and the specific viscosity is divided by the concentration to obtain the minimum squared approximation of the plot. The ultimate viscosity was determined from the extrapolation point to the origin of the straight line. At the time of measurement, 1% by mass of an antioxidant (trade name "Yoshinox BHT" manufactured by Yoshitomi Pharmaceutical Co., Ltd.) was added to the polymer, and the sample was stirred and dissolved at 135 ° C. for 24 hours to prepare a measurement solution.

(2)硬質粒子のアスペクト比
硬質粒子のアスペクト比は、SEM写真を用いることによって求めた。繊維サンプルをるつぼの中に入れ、灰と炭素質物質になるまで燃焼をさせた後、電気炉に入れ、ポリエチレンの分解温度以上で加熱した。炭素質物質が完全に灰になったら、デシケータ中で放冷して灰分を得た。灰分のSEM写真を撮影し、無作為に選択した硬質粒子10個の長軸と短軸の長さを測定し、その平均値を求めることで、アスペクト比を算出した。なお、硬質粒子は硬度が高い為、加熱しても形状が変化しないと考えられる。
(2) Aspect ratio of hard particles The aspect ratio of hard particles was determined by using an SEM photograph. The fiber sample was placed in a crucible and burned until it became ash and a carbonaceous substance, then placed in an electric furnace and heated above the decomposition temperature of polyethylene. When the carbonaceous material was completely ashed, it was allowed to cool in a desiccator to obtain ash. The aspect ratio was calculated by taking SEM photographs of the ash, measuring the lengths of the major and minor axes of 10 randomly selected hard particles, and calculating the average value. Since the hard particles have high hardness, it is considered that the shape does not change even when heated.

(3)硬質粒子の含有量
硬質粒子の含有量は、JIS−2272に基づき、灰分測定を用いることによって求めた。繊維サンプル1.0gをるつぼの中に入れ、灰と炭素質物質になるまで燃焼をさせた後、電気炉に入れ、ポリエチレンの分解温度以上で加熱した。炭素質物質が完全に灰になった後、デシケータ中で放冷して質量を測定し、灰分を求めた。得られた灰分量と上記繊維量とから、硬質粒子の含有量を求めた。
(3) Content of hard particles The content of hard particles was determined by using ash content measurement based on JIS-2272. 1.0 g of the fiber sample was placed in a crucible and burned until it became ash and a carbonaceous substance, and then placed in an electric furnace and heated at a temperature equal to or higher than the decomposition temperature of polyethylene. After the carbonaceous substance was completely turned into ash, it was allowed to cool in a desiccator and its mass was measured to determine the ash content. The content of hard particles was determined from the obtained ash content and the fiber content.

(4)耐切創性
耐切創性は、クープテスター(ソドマット(SODMAT)社製)を用い、欧州規格であるEN388法に基づいて測定を行った。この装置の試料台にはアルミ箔が設けられており、この上に編物サンプルを載置した。次いで、装置に備えられた円形の刃を、走行方向とは逆方向に回転させながら試料の上を走らせた。なお、編物サンプルが切断されると、円形刃とアルミ箔とが接触して通電することで、耐切創性試験が終了したことが検知された。円形刃が作動している間中、装置に取り付けられているカウンターがカウントを行うので、その数値を記録した。
(4) Cut resistance The cut resistance was measured using a coup tester (manufactured by SODMAT) based on the EN388 method, which is a European standard. Aluminum foil was provided on the sample table of this device, and the knitted sample was placed on it. Next, the circular blade provided in the device was run over the sample while rotating in the direction opposite to the running direction. When the knitted sample was cut, it was detected that the cut resistance test was completed by the contact between the circular blade and the aluminum foil and energization. The counter attached to the device counts while the circular blade is operating, and the value is recorded.

この試験では、目付け約200g/mの平織りの綿布をブランクとし、編物サンプルの切創レベルを評価した。ブランクからテストを開始し、ブランクのテストと編物サンプルのテストとを交互に行い、編物サンプルを5回テストし、最後に6回目のブランクをテストして、1セットの試験を終了した。以上の試験を5セット行い、5セットの平均のIndex値(インデックス値)を耐切創性の代用評価とした。インデックス値が高いほど、耐切創性に優れることを意味する。 In this test, a plain weave cotton cloth with a basis weight of about 200 g / m 2 was used as a blank, and the cut level of the knitted sample was evaluated. The test was started from the blank, the blank test and the knitted sample test were alternated, the knitted sample was tested 5 times, and finally the 6th blank was tested to complete one set of tests. Five sets of the above tests were performed, and the average Index value (index value) of the five sets was used as a substitute evaluation for cut resistance. The higher the index value, the better the cut resistance.

インデックス値は、次式により算出される。
A=(サンプルテスト前の綿布のカウント値+サンプルテスト後の綿布のカウント値)/2
インデックス値=(サンプルのカウント値+A)/A
The index value is calculated by the following formula.
A = (count value of cotton cloth before sample test + count value of cotton cloth after sample test) / 2
Index value = (sample count value + A) / A

耐切創性の評価に使用したカッターは、OLFA株式会社製のロータリーカッターL型用φ45mmである。材質はSKS−7タングステン鋼であり、刃厚0.3ミリ厚であった。また、テスト時にかかる荷重は3.14N(320gf)にして評価を行った。 The cutter used for the evaluation of cut resistance is a rotary cutter L type φ45 mm manufactured by OLFA Co., Ltd. The material was SKS-7 tungsten steel, and the blade thickness was 0.3 mm. In addition, the load applied during the test was set to 3.14 N (320 gf) for evaluation.

(実施例1)
極限粘度が18.0dL/gであるポリエチレン樹脂88質量%と、アスペクト比が1.4、平均粒子径が3μmである球状シリカ(硬質粒子)12質量%とを混ぜたポリマーを、1デカノールを5%含有したデカリンで3%まで希釈しドープを作製した。なお、硬質粒子のアスペクト比は、上記したように10個の平均であり、その範囲は、1.1から2.3であった。このドープを押出機に供給して190℃でゲル化させ、オリフィス径φ0.8mm、48Hからなる紡糸口金からノズル面温度190℃にて単孔吐出量2.0g/minで吐出させた。
(Example 1)
1-decanol is a polymer obtained by mixing 88% by mass of polyethylene resin having an ultimate viscosity of 18.0 dL / g and 12% by mass of spherical silica (hard particles) having an aspect ratio of 1.4 and an average particle size of 3 μm. A dope was prepared by diluting with decalin containing 5% to 3%. The aspect ratio of the hard particles was an average of 10 particles as described above, and the range was 1.1 to 2.3. This dope was supplied to an extruder to be gelled at 190 ° C., and was discharged from a spinneret having an orifice diameter of φ0.8 mm and 48H at a nozzle surface temperature of 190 ° C. with a single-hole discharge rate of 2.0 g / min.

吐出された糸条を水で冷却させ、乾燥および加熱工程を通過した後、紡糸速度50m/minでチーズ形状に捲き取り、未延伸糸を得た。次いで、145℃の熱風で加熱して安定的に延伸できる最大の倍率で延伸した後、巻き取って全体として880dtex±88dtexとなるように合糸を実施し、実施例1の繊維を得た。なお、本実施例を含め以下の実施例及び比較例では、延伸糸を所望のdtexとなるように合糸を行ったが、分繊を行う場合もある。 The discharged yarn was cooled with water, passed through a drying and heating step, and then wound into a cheese shape at a spinning speed of 50 m / min to obtain an undrawn yarn. Next, the fibers were heated with hot air at 145 ° C. and stretched at the maximum magnification capable of being stably stretched, and then wound up and combined yarn was carried out so as to have a total of 880 dtex ± 88 dtex to obtain the fibers of Example 1. In the following examples and comparative examples including this example, the drawn yarns are combined so as to have a desired dtex, but fiber splitting may also be performed.

得られた繊維の物性、硬質粒子の含有量を表1に示す。また、得られた繊維を用い、島精機製作所社製の丸編み機を用いて、目付が350g/m±35g/mの実施例1の筒編み物を作製した。得られた筒編み物のクープテスターのインデックス値を表1に示す。 Table 1 shows the physical characteristics of the obtained fibers and the content of hard particles. Further, using the obtained fibers, a tubular knitting machine of Example 1 having a basis weight of 350 g / m 2 ± 35 g / m 2 was produced using a circular knitting machine manufactured by Shima Seiki Seisakusho Co., Ltd. Table 1 shows the index values of the obtained tube knitting coup testers.

(実施例2)
実施例1の条件において、アスペクト比が1.5、平均粒子径が7μmであるシリカ粒子(硬質粒子)12質量%を用いた以外は、実施例1と同様にして未延伸糸を得た。得られた未延伸糸から実施例1と同様にして延伸糸を得た。得られた延伸糸から、実施例1と同様に、実施例2の繊維および筒編み物を得た。得られた繊維の物性、硬質粒子の含有量、筒編み物のインデックス値を表1に示す。
(Example 2)
Undrawn yarn was obtained in the same manner as in Example 1 except that 12% by mass of silica particles (hard particles) having an aspect ratio of 1.5 and an average particle size of 7 μm were used under the conditions of Example 1. A drawn yarn was obtained from the obtained undrawn yarn in the same manner as in Example 1. From the obtained drawn yarn, the fibers and the tubular knitting of Example 2 were obtained in the same manner as in Example 1. Table 1 shows the physical characteristics of the obtained fibers, the content of hard particles, and the index value of the tubular knitted fabric.

(実施例3)
実施例1の条件において、極限粘度が18.0dL/gであるポリエチレン樹脂95質量%と、アスペクト比が1.5、平均粒子径が7μmであるシリカ粒子(硬質粒子)5質量%とを用いた以外は、実施例1と同様にして未延伸糸を得た。得られた未延伸糸から実施例1と同様にして延伸糸を得た。得られた延伸糸から、実施例1と同様に、実施例3の繊維および筒編み物を得た。得られた繊維の物性、硬質粒子の含有量、筒編み物のインデックス値を表1に示す。
(Example 3)
Under the conditions of Example 1, 95% by mass of a polyethylene resin having an ultimate viscosity of 18.0 dL / g and 5% by mass of silica particles (hard particles) having an aspect ratio of 1.5 and an average particle diameter of 7 μm are used. An undrawn yarn was obtained in the same manner as in Example 1 except that the undrawn yarn was obtained. A drawn yarn was obtained from the obtained undrawn yarn in the same manner as in Example 1. From the obtained drawn yarn, the fibers and the tubular knitting of Example 3 were obtained in the same manner as in Example 1. Table 1 shows the physical characteristics of the obtained fibers, the content of hard particles, and the index value of the tubular knitted fabric.

(実施例4)
実施例1の条件において、アスペクト比が1.5、平均粒子径が15μmであるシリカ粒子(硬質粒子)12質量%を用いた以外は、実施例1と同様にして未延伸糸を得た。得られた未延伸糸から実施例1と同様にして延伸糸を得た。得られた延伸糸から、実施例1と同様に、実施例4の繊維および筒編み物を得た。得られた繊維の物性、硬質粒子の含有量、筒編み物のインデックス値を表1に示す。
(Example 4)
Undrawn yarn was obtained in the same manner as in Example 1 except that 12% by mass of silica particles (hard particles) having an aspect ratio of 1.5 and an average particle size of 15 μm were used under the conditions of Example 1. A drawn yarn was obtained from the obtained undrawn yarn in the same manner as in Example 1. From the obtained drawn yarn, the fibers and the tubular knitting of Example 4 were obtained in the same manner as in Example 1. Table 1 shows the physical characteristics of the obtained fibers, the content of hard particles, and the index value of the tubular knitted fabric.

(実施例5)
実施例1の条件において、アスペクト比が1.6、平均粒子径が7μmであるアルミナ粒子(硬質粒子)12質量%を用いた以外は、実施例1と同様にして未延伸糸を得た。得られた未延伸糸から実施例1と同様にして延伸糸を得た。得られた延伸糸から、実施例1と同様に、実施例5の繊維および筒編み物を得た。得られた繊維の物性、硬質粒子の含有量、筒編み物のインデックス値を表1に示す。
(Example 5)
Undrawn yarn was obtained in the same manner as in Example 1 except that 12% by mass of alumina particles (hard particles) having an aspect ratio of 1.6 and an average particle size of 7 μm were used under the conditions of Example 1. A drawn yarn was obtained from the obtained undrawn yarn in the same manner as in Example 1. From the obtained drawn yarn, the fibers and the tubular knitting of Example 5 were obtained in the same manner as in Example 1. Table 1 shows the physical characteristics of the obtained fibers, the content of hard particles, and the index value of the tubular knitted fabric.

(比較例1)
実施例1の条件において、アスペクト比が1.5、平均粒子径が2μmであるシリカ粒子(硬質粒子)12質量%を用いた以外は、実施例1と同様にして未延伸糸を得た。得られた未延伸糸から実施例1と同様にして延伸糸を得た。得られた延伸糸から、実施例1と同様に、比較例1の繊維および筒編み物を得た。得られた繊維の物性、硬質粒子の含有量、筒編み物のインデックス値を表1に示す。
(Comparative Example 1)
Undrawn yarn was obtained in the same manner as in Example 1 except that 12% by mass of silica particles (hard particles) having an aspect ratio of 1.5 and an average particle size of 2 μm were used under the conditions of Example 1. A drawn yarn was obtained from the obtained undrawn yarn in the same manner as in Example 1. From the obtained drawn yarn, the fibers of Comparative Example 1 and the tubular knitting were obtained in the same manner as in Example 1. Table 1 shows the physical characteristics of the obtained fibers, the content of hard particles, and the index value of the tubular knitted fabric.

(比較例2)
極限粘度が18.0dL/gであるポリエチレン樹脂65質量%と、アスペクト比が1.5、平均粒子径が7μmであるシリカ粒子(硬質粒子)35質量%とを混ぜてドープを作製したが、十分に混ざり合わず、未延伸糸を得ることができなかった。
(Comparative Example 2)
A dope was prepared by mixing 65% by mass of a polyethylene resin having an ultimate viscosity of 18.0 dL / g and 35% by mass of silica particles (hard particles) having an aspect ratio of 1.5 and an average particle diameter of 7 μm. It was not mixed sufficiently and an undrawn yarn could not be obtained.

(比較例3)
実施例1の条件において、アスペクト比が1.5、平均粒子径が17μmであるシリカ粒子(硬質粒子)12質量%を用いてドープを作製したが、紡糸時、詰まりが発生し、未延伸糸を得ることができなかった。
(Comparative Example 3)
Under the conditions of Example 1, a dope was prepared using 12% by mass of silica particles (hard particles) having an aspect ratio of 1.5 and an average particle size of 17 μm, but clogging occurred during spinning and the undrawn yarn was used. Could not be obtained.

(比較例4)
実施例1の条件において、極限粘度が18.0dL/gであるポリエチレン樹脂97質量%と、アスペクト比が1.5、平均粒子径が7μmであるシリカ粒子(硬質粒子)3質量%とを用いた以外は、実施例1と同様にして未延伸糸を得た。得られた未延伸糸から実施例1と同様にして延伸糸を得た。得られた延伸糸から、実施例1と同様に、比較例4の繊維および筒編み物を得た。得られた繊維の物性、硬質粒子の含有量、筒編み物のインデックス値を表1に示す。
(Comparative Example 4)
Under the conditions of Example 1, 97% by mass of a polyethylene resin having an ultimate viscosity of 18.0 dL / g and 3% by mass of silica particles (hard particles) having an aspect ratio of 1.5 and an average particle diameter of 7 μm were used. An undrawn yarn was obtained in the same manner as in Example 1 except that the undrawn yarn was obtained. A drawn yarn was obtained from the obtained undrawn yarn in the same manner as in Example 1. From the obtained drawn yarn, the fibers of Comparative Example 4 and the tubular knitting were obtained in the same manner as in Example 1. Table 1 shows the physical characteristics of the obtained fibers, the content of hard particles, and the index value of the tubular knitted fabric.

(比較例5)
実施例1の条件において、アスペクト比が18、平均粒子径が7μmであるシリカ粒子(硬質粒子)12質量%を用いてドープを作製したが、紡糸時、詰まりが発生し、未延伸糸を得ることができなかった。
(Comparative Example 5)
Under the conditions of Example 1, a dope was prepared using 12% by mass of silica particles (hard particles) having an aspect ratio of 18 and an average particle size of 7 μm, but clogging occurred during spinning to obtain an undrawn yarn. I couldn't.

(比較例6)
実施例1の条件において、極限粘度が1.5dL/gであるポリエチレン樹脂88質量%と、アスペクト比が1.5、平均粒子径が7μmであるシリカ粒子(硬質粒子)12質量%とを用いた以外は、実施例1と同様にして未延伸糸を得た。得られた未延伸糸から実施例1と同様にして延伸糸を得た。得られた延伸糸から、実施例1と同様に、比較例6の繊維および筒編み物を得た。得られた繊維の物性、硬質粒子の含有量、筒編み物のインデックス値を表1に示す。
(Comparative Example 6)
Under the conditions of Example 1, 88% by mass of a polyethylene resin having an ultimate viscosity of 1.5 dL / g and 12% by mass of silica particles (hard particles) having an aspect ratio of 1.5 and an average particle diameter of 7 μm are used. An undrawn yarn was obtained in the same manner as in Example 1 except that the undrawn yarn was obtained. A drawn yarn was obtained from the obtained undrawn yarn in the same manner as in Example 1. From the obtained drawn yarn, the fibers of Comparative Example 6 and the tubular knitting were obtained in the same manner as in Example 1. Table 1 shows the physical characteristics of the obtained fibers, the content of hard particles, and the index value of the tubular knitted fabric.

Figure 0006874468
このように、上記実施例1〜5および比較例1〜6から、平均粒径サイズが3.0μm以上15.0μm以下複数の硬質粒子を含有するポリエチレン繊維は、耐切創性に優れた繊維であることがわかる。
Figure 0006874468
As described above, from Examples 1 to 5 and Comparative Examples 1 to 6, the polyethylene fiber containing a plurality of hard particles having an average particle size of 3.0 μm or more and 15.0 μm or less is a fiber having excellent cut resistance. It turns out that there is.

以上、本発明の実施の形態および各実施例について説明したが、今回開示された実施の形態および各実施例はすべての点で例示であって制限的なものではない。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれる。 Although the embodiments and the respective examples of the present invention have been described above, the embodiments and the respective embodiments disclosed this time are examples in all respects and are not limiting. The scope of the present invention is indicated by the scope of claims, and includes all modifications within the meaning and scope equivalent to the scope of claims.

本発明のポリエチレン繊維は、高い耐切創性を有するため、該耐切創性を活かした耐切創性織編物、手袋及びベスト等に利用可能である。また、該繊維単独としてテープ、ロープ、ネット、釣糸、資材防護カバー、シート、カイト用糸、洋弓弦、セールクロス、幕材、防護材、防弾材、医療用縫合糸、人工腱、人工筋肉、繊維強化樹脂補強材、セメント補強材、繊維強化ゴム補強材、工作機械部品、電池セパレーター、化学フィルター等の産業用資材に利用可能である。このように、本発明のポリエチレン繊維は、優れた性能を発揮でき、幅広く応用できるため、産業界へ大きく寄与できる。 Since the polyethylene fiber of the present invention has high cut resistance, it can be used for cut resistance woven and knitted fabrics, gloves, vests and the like utilizing the cut resistance. In addition, as the fiber alone, tape, rope, net, fishing thread, material protective cover, sheet, kite thread, western bow string, sail cloth, curtain material, protective material, bulletproof material, medical suture thread, artificial tendon, artificial muscle, It can be used for industrial materials such as fiber reinforced resin reinforcing materials, cement reinforcing materials, fiber reinforced rubber reinforcing materials, machine tool parts, battery separators, and chemical filters. As described above, the polyethylene fiber of the present invention can exhibit excellent performance and can be widely applied, so that it can greatly contribute to the industrial world.

Claims (2)

極限粘度[η]が4.9dL/g以上40.0dL/g以下のポリエチレンからなる繊維であり、アスペクト比が3未満であり、平均粒径サイズが3.0μm以上15.0μm以下のシリカもしくはアルミナである硬質粒子を5質量%以上含有することを特徴とする、ポリエチレン繊維。 Fiber made of polyethylene having an ultimate viscosity [η] of 4.9 dL / g or more and 40.0 dL / g or less, silica having an aspect ratio of less than 3, and an average particle size of 3.0 μm or more and 15.0 μm or less. A polyethylene fiber containing 5% by mass or more of hard particles which are alumina. 請求項1に記載のポリエチレン繊維を含むことを特徴とする製品。 A product comprising the polyethylene fiber according to claim 1.
JP2017065333A 2017-03-29 2017-03-29 Polyethylene fiber and products using it Active JP6874468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017065333A JP6874468B2 (en) 2017-03-29 2017-03-29 Polyethylene fiber and products using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017065333A JP6874468B2 (en) 2017-03-29 2017-03-29 Polyethylene fiber and products using it

Publications (2)

Publication Number Publication Date
JP2018168488A JP2018168488A (en) 2018-11-01
JP6874468B2 true JP6874468B2 (en) 2021-05-19

Family

ID=64020002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017065333A Active JP6874468B2 (en) 2017-03-29 2017-03-29 Polyethylene fiber and products using it

Country Status (1)

Country Link
JP (1) JP6874468B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7268683B2 (en) * 2018-09-27 2023-05-08 東洋紡株式会社 Polyethylene fiber and products using it
CN110241472B (en) * 2019-07-18 2020-05-19 星宇安防科技股份有限公司 Ultrahigh-molecular-weight polyethylene fiber with ultrahigh cutting resistance and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE500362T1 (en) * 2006-10-17 2011-03-15 Dsm Ip Assets Bv CUT-RESISTANT YARN AND PRODUCTS CONTAINING THE YARN
WO2013149990A1 (en) * 2012-04-03 2013-10-10 Dsm Ip Assets B.V. Polymeric yarn and method for manufacturing
BR112015014483A2 (en) * 2012-12-20 2017-07-11 Dsm Ip Assets Bv polyolefin yarn and manufacturing method

Also Published As

Publication number Publication date
JP2018168488A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
JP6760062B2 (en) High-performance multifilament
JP5710593B2 (en) Meta-type wholly aromatic polyamide fiber
Yu et al. Effects of the reaction degree of melamine-formaldehyde resin on the structures and properties of melamine-formaldehyde/polyvinyl alcohol composite fiber
JP6874468B2 (en) Polyethylene fiber and products using it
JP7268683B2 (en) Polyethylene fiber and products using it
KR102401153B1 (en) Method for producing polyether ketone ketone fibers
JP2017179684A (en) Polyethylene fiber having excellent cut resistance, and product using the same
JP6996555B2 (en) Polyethylene fiber and products using it
JP7070667B2 (en) Polyethylene fiber and products using it
TWI227756B (en) Process for manufacturing polypropylene monofilaments, polypropylene monofilaments and their use
JP2011226023A (en) Stretch-broken spun yarn composed of meta-type wholly aromatic polyamide
WO2022014391A1 (en) Polyethylene fiber and product containing said fiber
JP5744505B2 (en) Para-type wholly aromatic polyamide fiber, fabric made of the fiber, hose, fish net, and method for producing the fiber
JP2014122448A (en) Wholly aromatic polyamide modified cross-section fiber
JP2011226006A (en) Meta-type wholly aromatic polyamide fiber fabric
JP2012229509A (en) Meta-type whole aromatic polyamide fiber fabric
JP2003055834A (en) High-strength polyethylene fiber for mesh woven or knitted fabric and mesh woven or knitted fabric
JP2019099954A (en) Colored polyethylene fiber and product using the same
JP2011226029A (en) Spun yarn comprising meta-type wholly aromatic polyamide fiber
CN110832126B (en) Multifilament and monofilament comprising the same
JP2011226028A (en) Meta-type wholly aromatic polyamide fiber
JP2018084000A (en) Meta-type wholly aromatic polyamide fiber and method for producing the same
WO2023127876A1 (en) Ultra-high molecular weight polyethylene fiber
JP2023163446A (en) Colored polyethylene fiber and product containing the same
JP2011226033A (en) Meta-type wholly aromatic polyamide short fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210405

R151 Written notification of patent or utility model registration

Ref document number: 6874468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250