[go: up one dir, main page]

JP6871991B2 - Effervescent thermoplastic resin particles, thermoplastic pre-foamed particles, thermoplastic foam molded products and methods for producing them. - Google Patents

Effervescent thermoplastic resin particles, thermoplastic pre-foamed particles, thermoplastic foam molded products and methods for producing them. Download PDF

Info

Publication number
JP6871991B2
JP6871991B2 JP2019198442A JP2019198442A JP6871991B2 JP 6871991 B2 JP6871991 B2 JP 6871991B2 JP 2019198442 A JP2019198442 A JP 2019198442A JP 2019198442 A JP2019198442 A JP 2019198442A JP 6871991 B2 JP6871991 B2 JP 6871991B2
Authority
JP
Japan
Prior art keywords
weight
thermoplastic resin
resin particles
parts
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019198442A
Other languages
Japanese (ja)
Other versions
JP2020094186A (en
Inventor
敦士 飯田
敦士 飯田
基理人 鈴木
基理人 鈴木
龍哉 逸見
龍哉 逸見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Publication of JP2020094186A publication Critical patent/JP2020094186A/en
Application granted granted Critical
Publication of JP6871991B2 publication Critical patent/JP6871991B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/22Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/224Surface treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/003Pigment pastes, e.g. for mixing in paints containing an organic pigment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • C08J2325/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/16Homopolymers or copolymers of alkyl-substituted styrenes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Molding Of Porous Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、耐熱性に優れた発泡性熱可塑性樹脂粒子に関するものである。 The present invention relates to effervescent thermoplastic resin particles having excellent heat resistance.

発泡性熱可塑性樹脂粒子としては、発泡性ポリスチレン樹脂粒子がよく知られており、該発泡性ポリスチレン系樹脂粒子を用いることによって安価で容易に型内発泡成形体を得ることができる。ところが、該発泡成形体は、重合体を構成する単量体がスチレンである為に比較的温度の高い用途で用いた場合、例えば、配管の保温材、屋根用断熱材、自動車部材、ソーラーシステム用保温材等の高温下で長期間おいた場合の寸法安定性が十分でなく、耐熱性を要求される用途には使用できない欠点がある。また、この分野では、近年、更に高い耐熱性能が要求されている。 As the foamable thermoplastic resin particles, foamable polystyrene resin particles are well known, and by using the foamable polystyrene resin particles, an in-mold foam molded product can be easily obtained at low cost. However, since the monomer constituting the polymer is styrene, the foamed molded product is used in applications where the temperature is relatively high, for example, a heat insulating material for piping, a heat insulating material for roofing, an automobile member, and a solar system. There is a drawback that it cannot be used for applications that require heat resistance due to insufficient dimensional stability when it is left in a high temperature for a long period of time, such as a heat insulating material. Further, in this field, higher heat resistance is required in recent years.

かかる問題に関して、耐熱性を向上させる方法として、特許文献1では、アルファメチルスチレンとアクロニトリル及びスチレンの比率を規定する方法が提案されている。しかし、この方法では、単量体組成中にスチレンが存在しているため、耐熱性能が市場要求品質に対して不十分であった。 Regarding this problem, Patent Document 1 proposes a method for defining the ratio of alpha-methylstyrene to acrylonitrile and styrene as a method for improving heat resistance. However, in this method, since styrene is present in the monomer composition, the heat resistance performance is insufficient for the quality required by the market.

また特許文献2〜4では、アルファメチルスチレンとアクリロニトリル及びスチレン等を共重合させ、更に耐熱性能向上のため平均弦長、易揮発性発泡剤量、可塑剤量を調整する方法が提案されている。この方法では40倍まで発泡が可能であり、また良好な表面性を有した発泡成形体を得ることが出来る。しかし、この方法においても単量体組成中のスチレンの影響で耐熱性能が不十分であり、改良の余地があった。 Further, Patent Documents 2 to 4 propose a method of copolymerizing alpha-methylstyrene with acrylonitrile, styrene, etc., and adjusting the average chord length, the amount of easily volatile foaming agent, and the amount of plasticizer in order to further improve the heat resistance performance. .. With this method, foaming can be performed up to 40 times, and a foamed molded product having good surface properties can be obtained. However, even in this method, the heat resistance performance is insufficient due to the influence of styrene in the monomer composition, and there is room for improvement.

特開2001−181433号公報Japanese Unexamined Patent Publication No. 2001-181433 特開2007−191518号公報JP-A-2007-191518 特開2007−238771号公報Japanese Unexamined Patent Publication No. 2007-2387771 特開2007−246566号公報JP-A-2007-246566

以上のような状況に鑑み、本発明の目的は、耐熱性能を向上させた発泡性熱可塑性樹脂粒子を提供することにある。 In view of the above circumstances, an object of the present invention is to provide foamable thermoplastic resin particles having improved heat resistance.

本発明者らは、上記従来技術の欠点を改善することを目的とし、耐熱性を向上させた発泡性熱可塑性樹脂粒子を得る為に鋭意研究を行った結果、本発明を完成するに至った。 The present inventors have completed the present invention as a result of diligent research in order to obtain foamable thermoplastic resin particles having improved heat resistance for the purpose of improving the above-mentioned drawbacks of the prior art. ..

すなわち、本発明の第1は、重合体を構成する単量体組成がアルファメチルスチレン60〜80重量部と、アクリロニトリル40〜20重量部とからなる発泡性熱可塑性樹脂粒子であって、残存する単量体成分量が0.5重量%以下であることを特徴とする発泡性熱可塑性樹脂粒子。 That is, the first of the present invention is an effervescent thermoplastic resin particle in which the monomer composition constituting the polymer is 60 to 80 parts by weight of alpha-methylstyrene and 40 to 20 parts by weight of acrylonitrile, and remains. Foamable thermoplastic resin particles having a monomer component content of 0.5% by weight or less.

第2の発明は、発泡倍率2〜15倍で使用することを特徴とする第1の発明に記載の発泡性熱可塑性樹脂粒子。 The foamable thermoplastic resin particles according to the first invention, wherein the second invention is used at a foaming ratio of 2 to 15 times.

第3の発明は、前記発泡性熱可塑性樹脂粒子から得られる発泡倍率10倍の発泡成形体の切断面の気泡の平均弦長が20μm以上60μm以下であることを特徴とする第1または2の発明に記載の発泡性熱可塑性樹脂粒子。 The first or second invention is characterized in that the average chord length of bubbles on the cut surface of a foamed molded article having a foaming ratio of 10 times obtained from the foamable thermoplastic resin particles is 20 μm or more and 60 μm or less. Effervescent thermoplastic resin particles according to the invention.

第4の発明は、前記発泡性熱可塑性樹脂粒子から得られる発泡成形体を24時間、90℃で処理した時の寸法変化率が0.15%未満となることを特徴とする第1〜3の発明のいずれかに記載の発泡性熱可塑性樹脂粒子。 The fourth invention is characterized in that the dimensional change rate when the foamed molded product obtained from the foamable thermoplastic resin particles is treated at 90 ° C. for 24 hours is less than 0.15%. The foamable thermoplastic resin particles according to any one of the inventions of.

第5の発明は、前記発泡性熱可塑性樹脂粒子の表層に可塑剤と顔料の混合物がコーティングされていることを特徴とする第1〜4の発明のいずれかに記載の発泡性熱可塑性樹脂粒子。 The foamable thermoplastic resin particles according to any one of the first to fourth inventions, characterized in that the surface layer of the foamable thermoplastic resin particles is coated with a mixture of a plasticizer and a pigment. ..

第6の発明は、第1〜5の発明のいずれかに記載の発泡性熱可塑性樹脂粒子を発泡倍率2〜15倍で発泡したことを特徴とする熱可塑性予備発泡粒子。 A sixth invention is a thermoplastic pre-foamed particle, which comprises foaming the foamable thermoplastic resin particles according to any one of the first to fifth inventions at a foaming ratio of 2 to 15 times.

第7の発明は、第6の発明に記載の熱可塑性予備発泡粒子を型内成形させることにより得られる熱可塑性発泡成形体。 A seventh invention is a thermoplastic foam molded product obtained by in-mold molding of the thermoplastic prefoamed particles according to the sixth invention.

本発明より、耐熱性を向上させた発泡性熱可塑性樹脂粒子を得ることができる。 From the present invention, foamable thermoplastic resin particles having improved heat resistance can be obtained.

本発明は、重合体を構成する単量体組成を100重量部とした場合に、アルファメチルスチレン60〜80重量部と、アクリロニトリル40〜20重量部とからなる発泡性熱可塑性樹脂粒子であって、残存する単量体成分量が0.5重量%以下であることを特徴とする。 The present invention is an effervescent thermoplastic resin particle composed of 60 to 80 parts by weight of alpha-methylstyrene and 40 to 20 parts by weight of acrylonitrile when the monomer composition constituting the polymer is 100 parts by weight. The amount of the remaining monomer component is 0.5% by weight or less.

本発明では、スチレン等の耐熱性を低下させる第三成分が入っていないことが特徴であり、重合体を構成する単量体成分はアルファメチルスチレンとアクリロニトリルからなる。引用特許文献4に示すように、重合体を構成する単量体組成中にスチレンがある場合は、耐熱性が悪くなる。 The present invention is characterized in that it does not contain a third component such as styrene that lowers heat resistance, and the monomer component constituting the polymer is composed of alpha-methylstyrene and acrylonitrile. As shown in Cited Patent Document 4, when styrene is contained in the monomer composition constituting the polymer, the heat resistance is deteriorated.

本発明に使用されるアルファメチルスチレンの量は60〜80重量部である。使用量が60重量部未満であると耐熱性が低下する傾向にある。80重量部を超えると重合転化率が低下し、樹脂中に多量の単量体が残るために耐熱性が悪化する。アルファメチルスチレンの量は、63重量部以上が好ましく、65重量部以上がより好ましい。また77重量部以下が好ましく、75重量部以下がより好ましい。アルファメチルスチレンの割合をさらに適切にすることで、低倍率発泡時の耐熱性や樹脂粒子同士の融着性をより向上できる。 The amount of alpha-methylstyrene used in the present invention is 60-80 parts by weight. If the amount used is less than 60 parts by weight, the heat resistance tends to decrease. If it exceeds 80 parts by weight, the polymerization conversion rate is lowered, and a large amount of monomers remains in the resin, so that the heat resistance is deteriorated. The amount of alpha-methylstyrene is preferably 63 parts by weight or more, more preferably 65 parts by weight or more. Further, 77 parts by weight or less is preferable, and 75 parts by weight or less is more preferable. By further adjusting the ratio of alpha-methylstyrene, the heat resistance during low-magnification foaming and the fusion property between resin particles can be further improved.

また、本発明に使用されるアクリロニトリルの量は、組成物の重合転化率を向上させるために20〜40重量部である。使用量が20重量部未満では組成物の転化率が低下し、樹脂中に多量の単量体が残るために耐熱性が悪化する。40重量部を超えると重合転化率は変わらず、樹脂が黄褐色に着色し、更に内部融着が悪化する傾向にある。アクリロニトリルの量は、37重量部以下が好ましく、35重量部以下がより好ましい。また23重量部以上が好ましく、25重量部以上がより好ましい。 The amount of acrylonitrile used in the present invention is 20 to 40 parts by weight in order to improve the polymerization conversion rate of the composition. If the amount used is less than 20 parts by weight, the conversion rate of the composition decreases, and a large amount of monomer remains in the resin, resulting in deterioration of heat resistance. If it exceeds 40 parts by weight, the polymerization conversion rate does not change, the resin is colored yellowish brown, and the internal fusion tends to be further deteriorated. The amount of acrylonitrile is preferably 37 parts by weight or less, more preferably 35 parts by weight or less. Further, 23 parts by weight or more is preferable, and 25 parts by weight or more is more preferable.

本発明の発泡性熱可塑性樹脂粒子中に含有される単量体成分は、0.5重量%未満である。好ましくは、0.4重量%以下である。残存する単量体成分量が0.5重量%以下であれば良好な耐熱性が得られる。残存する単量体成分量とは、発泡性熱可塑性樹脂粒子を構成する単量体組成物の残存する未反応物の総量をいう。なお単量体成分は、例えば0.1重量%以上、特に0.2重量%以上であっても、本発明に悪影響を与えない。 The monomer component contained in the foamable thermoplastic resin particles of the present invention is less than 0.5% by weight. Preferably, it is 0.4% by weight or less. Good heat resistance can be obtained when the amount of the remaining monomer component is 0.5% by weight or less. The amount of the remaining monomer component means the total amount of the remaining unreacted material of the monomer composition constituting the foamable thermoplastic resin particles. Even if the monomer component is, for example, 0.1% by weight or more, particularly 0.2% by weight or more, it does not adversely affect the present invention.

尚、本発明に言う、良好な耐熱性とは、90℃で24時間後の加熱寸法変化率が±0.15%未満であることを言う。 The good heat resistance referred to in the present invention means that the rate of change in heating dimensions after 24 hours at 90 ° C. is less than ± 0.15%.

本発明の発泡倍率は2〜15倍が好ましい。より好ましい範囲は5倍〜10倍である。この範囲の発泡倍率領域は経日による寸法変化率が小さく、また機械強度が高いという特徴がある。この特徴により、自動車部材、家電機器の断熱部材・構造部材、ロボットライン用パーツトレイなどの用途への使用が可能である。 The foaming ratio of the present invention is preferably 2 to 15 times. A more preferable range is 5 to 10 times. The expansion ratio region in this range is characterized by a small rate of dimensional change over time and high mechanical strength. Due to this feature, it can be used for applications such as automobile members, heat insulating members / structural members of home appliances, and parts trays for robot lines.

本発明の発泡性熱可塑性樹脂粒子は、該発泡性熱可塑性樹脂粒子から得られる発泡成形体の切断面の気泡の平均弦長は15μm以上が好ましく、より好ましくは20μm以上、さらに好ましくは30μm以上であり、80μm以下が好ましく、より好ましくは60μm以下、さらに好ましくは50μm以下である。 In the foamable thermoplastic resin particles of the present invention, the average chord length of bubbles on the cut surface of the foamed molded product obtained from the foamable thermoplastic resin particles is preferably 15 μm or more, more preferably 20 μm or more, still more preferably 30 μm or more. It is preferably 80 μm or less, more preferably 60 μm or less, and further preferably 50 μm or less.

平均弦長が短すぎると、発泡体を構成するセルの膜厚みが薄くなり、表面性、耐熱性が悪化する傾向がある。平均弦長が長すぎると、耐熱性は維持できるが、表面性と内部融着が悪くなる傾向がある。 If the average chord length is too short, the film thickness of the cells constituting the foam tends to be thin, and the surface properties and heat resistance tend to deteriorate. If the average string length is too long, heat resistance can be maintained, but surface properties and internal fusion tend to deteriorate.

発泡体の切断面の気泡の平均弦長は、気泡調整剤(造核剤)の使用量によって制御することもできる。例えば、気泡調整剤(造核剤)を多くすると平均弦長は小さくなり、気泡調整剤(造核剤)を少なくすると平均弦長は大きくなる。 The average chord length of bubbles on the cut surface of the foam can also be controlled by the amount of bubble adjusting agent (nucleating agent) used. For example, increasing the amount of the bubble adjusting agent (nucleating agent) reduces the average chord length, and decreasing the amount of the bubble adjusting agent (nucleating agent) increases the average chord length.

本発明において用いられる気泡調整剤(造核剤)としては、例えば、メタクリル酸メチル系共重合体、ポリエチレンワックス、タルク、脂肪酸ビスアマイド、エチレン−酢酸ビニル共重合体樹脂、等が挙げられる。脂肪酸ビスアマイドの具体的例としては、メチレンビスステアリルアマイド、エチレンビスステアリルアマイド、ヘキサメチレンビスパルミチン酸アマイド、エチレンビスオレイン酸アマイド等である。この中でも、脂肪酸ビスアマイドが好ましく、エチレンビスステアリルアマイドは、平均弦長を調整しやすい点でより好ましい。
気泡調整剤(造核剤)は、重合体を構成する単量体100重量部に対して、0.07重量部以上が好ましく、より好ましくは0.1重量部以上であり、0.3重量部以下が好ましく、より好ましくは0.2重量部以下、さらに好ましくは0.15重量部以下である。
Examples of the bubble adjusting agent (nucleating agent) used in the present invention include methyl methacrylate-based copolymer, polyethylene wax, talc, fatty acid bisamide, ethylene-vinyl acetate copolymer resin, and the like. Specific examples of the fatty acid bisamide include methylene bisstearyl amide, ethylene bisstearyl amide, hexamethylene bispalmitate amide, ethylene bisoleic acid amide, and the like. Among these, fatty acid bisamide is preferable, and ethylene bisstearyl amide is more preferable because the average chord length can be easily adjusted.
The bubble adjusting agent (nucleating agent) is preferably 0.07 parts by weight or more, more preferably 0.1 parts by weight or more, and 0.3 parts by weight, based on 100 parts by weight of the monomer constituting the polymer. It is preferably parts or less, more preferably 0.2 parts by weight or less, still more preferably 0.15 parts by weight or less.

本発明にて用いられる発泡剤としては、例えば、プロパン、ブタン、ペンタン等の炭素数3〜5の脂肪族炭化水素、シクロブタン、シクロペンタン等の炭素数4〜5の脂環族炭化水素、メチルクロライド、ジクロルジフルオロメタン、ジクロルテトラフルオロエタン等のハロゲン化炭化水素が挙げられる。これら発泡剤は、単独で用いてもよいし、2種以上を混合して用いてもよい。これら発泡剤のうちでも、脂肪族炭化水素が好ましく、ブタンが、発泡力が良好である点から、好ましい。更に望ましくはイソブタン比率が50重量%以下のブタンである。イソブタン比率が50重量%を超える場合は、平均弦長が20μm未満となり、発泡体を構成するセルの膜厚みが薄くなり、内部融着、表面性、耐熱性が悪化する傾向がある。 Examples of the effervescent agent used in the present invention include aliphatic hydrocarbons having 3 to 5 carbon atoms such as propane, butane and pentane, alicyclic hydrocarbons having 4 to 5 carbon atoms such as cyclobutane and cyclopentane, and methyl. Examples thereof include halogenated hydrocarbons such as chloride, dichlorodifluoromethane and dichlorotetrafluoroethane. These foaming agents may be used alone or in combination of two or more. Among these foaming agents, aliphatic hydrocarbons are preferable, and butane is preferable because it has good foaming power. More preferably, butane has an isobutane ratio of 50% by weight or less. When the isobutane ratio exceeds 50% by weight, the average chord length is less than 20 μm, the film thickness of the cells constituting the foam becomes thin, and the internal fusion, surface properties, and heat resistance tend to deteriorate.

また本発明では、発泡剤に加えて発泡助剤を併用してもよい。発泡助剤としては、大気圧下における沸点が200℃以下である溶剤などが挙げられ、具体的には、スチレン、トルエン、エチルベンゼン、キシレン等の芳香族有機化合物、シクロヘキサン、メチルシクロヘキサン等の環式脂肪族炭化水素、酢酸エチル、酢酸ブチル等が挙げられる。
発泡助剤は、発泡剤100重量部に対して、1重量部以上が好ましく、より好ましくは5重量部以上、さらに好ましくは10重量部以上であり、40重量部以下が好ましく、より好ましくは30重量部以下、さらに好ましくは25重量部以下である。
Further, in the present invention, a foaming aid may be used in combination with the foaming agent. Examples of the foaming aid include solvents having a boiling point of 200 ° C. or lower under atmospheric pressure, and specifically, aromatic organic compounds such as styrene, toluene, ethylbenzene, and xylene, and cyclic compounds such as cyclohexane and methylcyclohexane. Examples thereof include aliphatic hydrocarbons, ethyl acetate and butyl acetate.
The foaming aid is preferably 1 part by weight or more, more preferably 5 parts by weight or more, further preferably 10 parts by weight or more, preferably 40 parts by weight or less, and more preferably 30 parts by weight, based on 100 parts by weight of the foaming agent. It is less than a part by weight, more preferably 25 parts by weight or less.

本発明における発泡性熱可塑性樹脂粒子における発泡剤の含有量は、4重量%未満が好ましく、3重量%以下がより好ましい。4重量%以上の場合、成形時のサイクルが長くなる傾向にある。発泡剤の含有量は、例えば、1重量%以上、特に2重量%以上としてもよい。 The content of the foaming agent in the foamable thermoplastic resin particles in the present invention is preferably less than 4% by weight, more preferably 3% by weight or less. When it is 4% by weight or more, the cycle at the time of molding tends to be long. The content of the foaming agent may be, for example, 1% by weight or more, particularly 2% by weight or more.

本発明における発泡性熱可塑性樹脂粒子の重量平均分子量Mwとしては、8万以上12万未満が好ましい。 The weight average molecular weight Mw of the foamable thermoplastic resin particles in the present invention is preferably 80,000 or more and less than 120,000.

発泡性スチレン系樹脂粒子の重量平均分子量Mwが8万未満では、表面性、耐熱性が悪くなる傾向があり、また、12万以上では、高い耐熱性は維持できるが発泡性が低くなり、表面性が悪化する傾向がある。 When the weight average molecular weight Mw of the foamable styrene resin particles is less than 80,000, the surface properties and heat resistance tend to deteriorate, and when the weight average molecular weight Mw is 120,000 or more, high heat resistance can be maintained but the foamability becomes low, and the surface surface. Sex tends to worsen.

重量平均分子量Mwは、熱可塑性樹脂粒子を重合する際の開始剤の使用量と重合温度の組み合わせにより、制御することができる。例えば、開始剤の使用量を多くする、および/または、重合温度を高くすることにより、Mwを低くすることができる。 The weight average molecular weight Mw can be controlled by the combination of the amount of the initiator used when polymerizing the thermoplastic resin particles and the polymerization temperature. For example, Mw can be lowered by increasing the amount of the initiator used and / or increasing the polymerization temperature.

ここで、本発明における発泡性熱可塑性樹脂粒子の重量平均分子量Mwは、ゲルパーミェーションクロマトグラフ(以下、「GPC」と略す場合がある)を用いて、後述する条件にて測定した値である。 Here, the weight average molecular weight Mw of the foamable thermoplastic resin particles in the present invention is a value measured under the conditions described later using a gel permeation chromatograph (hereinafter, may be abbreviated as “GPC”). Is.

本発明の発泡性熱可塑性樹脂粒子の製造方法としては、水性媒体中にて懸濁重合法により得られる粒子に発泡剤を含浸する方法、水性媒体中にて塊状重合等により製造されたペレットに発泡剤を含浸する方法、のいずれの方法によっても得ることができる。 Examples of the method for producing the foamable thermoplastic resin particles of the present invention include a method of impregnating particles obtained by a suspension polymerization method in an aqueous medium with a foaming agent, and pellets produced by bulk polymerization in an aqueous medium. It can be obtained by any method of impregnating with a foaming agent.

これらの中でも、真球状の樹脂粒子を得ることができ、さらに、重合工程と発泡剤含浸工程を一貫して行って発泡性熱可塑性樹脂粒子が得られる点から、工業生産性も良い懸濁重合法により製造することが好ましい。
すなわち、発泡性熱可塑性樹脂粒子の製造方法としては、スチレン系単量体およびアクリル酸エステル系単量体を懸濁剤、重合開始剤および、必要に応じて、その他の添加剤の存在下で重合反応を開始し、懸濁重合中に発泡剤を添加する、または、重合後に発泡剤を含浸させる方法が好ましい。
Among these, since spherical resin particles can be obtained and foamable thermoplastic resin particles can be obtained by consistently performing a polymerization step and a foaming agent impregnation step, suspension weight with good industrial productivity is also good. It is preferably manufactured legally.
That is, as a method for producing foamable thermoplastic resin particles, a styrene-based monomer and an acrylic acid ester-based monomer are added in the presence of a suspension agent, a polymerization initiator, and, if necessary, other additives. A method of starting the polymerization reaction and adding a foaming agent during suspension polymerization or impregnating the foaming agent after polymerization is preferable.

本発明における懸濁重合法において用いられる懸濁剤としては、例えば、ポリビニルアルコール、メチルセルロース、ポリアクリルアミド、ポリビニルピロリドン等の水溶性高分子や第三燐酸カルシウム、ビロリン酸マグネシウム等の難溶性無機物質、等が挙げられる。難溶性無機物質を用いる場合は、ドデシルベンゼンスルホン酸ソーダ、α−オレフィンスルホン酸ソーダ等のアニオン界面活性剤を併用することにより、懸濁安定効果は増大させることができる。また、水溶性高分子と難溶性無機物質の併用も効果的である。 Examples of the suspending agent used in the suspension polymerization method in the present invention include water-soluble polymers such as polyvinyl alcohol, methyl cellulose, polyacrylamide and polyvinylpyrrolidone, and sparingly soluble inorganic substances such as calcium tertiary phosphate and magnesium bilophosphate. And so on. When a poorly soluble inorganic substance is used, the suspension stabilizing effect can be increased by using an anionic surfactant such as dodecylbenzenesulfonic acid sodium and α-olefin sulfonic acid sodium in combination. It is also effective to use a water-soluble polymer and a poorly soluble inorganic substance in combination.

本発明における懸濁重合法において用いられる重合開始剤としては、一般に熱可塑性重合体の製造に用いられるラジカル発生型重合開始剤を用いることができる。重合開始剤の代表的なものとしては、例えば、アゾビスイソブチロニトリル等のアゾ系化合物、ベンゾイルパーオキサイド、t−ブチルパーオキシ−2−エチルヘキサノエート、ラウロイルパーオーキサイド−t−ブチルパーオキシイソプロピルカーボネート、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、1,1−ビス(t−アミルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、t−ブチルパーオキシベンゾエート、t−ブチルパーオキシ−2−エチルへキシルカーボネート、ジ−t−ブチルパーオキシヘキサハイドロテレフタレートなどの過酸化物があげられる。これら重合開始剤は、単独で用いてもよいし、2種以上を混合して用いてもよい。 As the polymerization initiator used in the suspension polymerization method of the present invention, a radical-generating polymerization initiator generally used for producing a thermoplastic polymer can be used. Typical polymerization initiators include, for example, azo compounds such as azobisisobutyronitrile, benzoyl peroxide, t-butylperoxy-2-ethylhexanoate, and lauroylperoxide-t-butyl. Peroxyisopropyl carbonate, 1,1-bis (t-butylperoxy) cyclohexane, 1,1-bis (t-amylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-butyl) Peroxy) -3,3,5-trimethylcyclohexane, t-butylperoxybenzoate, t-butylperoxy-2-ethylhexyl carbonate, di-t-butylperoxyhexahydroterephthalate and other peroxides Be done. These polymerization initiators may be used alone or in combination of two or more.

本発明の懸濁重合法における重合開始剤の使用量は、単量体全重量100重量部に対して、0.01重量部以上3重量部未満が好ましい。重合開始剤の使用量が0.01重量部未満では重合速度が遅くなる傾向があり、逆に、3重量部を超えると、重合反応が早く制御が困難になる傾向がある。 The amount of the polymerization initiator used in the suspension polymerization method of the present invention is preferably 0.01 parts by weight or more and less than 3 parts by weight with respect to 100 parts by weight of the total weight of the monomer. If the amount of the polymerization initiator used is less than 0.01 parts by weight, the polymerization rate tends to be slow, and conversely, if it exceeds 3 parts by weight, the polymerization reaction tends to be fast and control becomes difficult.

本発明の懸濁重合時に添加可能な添加物として外添剤、難燃剤、難燃助剤、等を、本発明の効果を阻害しない範囲で使用してもよい。 As an additive that can be added during suspension polymerization of the present invention, an external additive, a flame retardant, a flame retardant aid, etc. may be used as long as the effects of the present invention are not impaired.

本発明において用いられる難燃剤および難燃助剤としては、公知慣用のものが使用できる。難燃剤の具体例としては、例えば、ヘキサブロモシクロドデカン、テトラブロモブタン、ヘキサブロモシクロヘキサン等のハロゲン化脂肪族炭化水素系化合物、テトラブロモビスフェノールA、テトラブロモビスフェノールF、2,4,6−トリブロモフェノール等の臭素化フェノール類、テトラブロモビスフェノールA−ビス(2,3−ジブロモプロピルエーテル)、テトラブロモビスフェノールA−ビス(2,3−ジブロモ−2−メチルプロピルエーテル)、テトラブロモビスフェノールA−ジグリシジルエーテル、2,2−ビス[4'(2”,3”−ジブロモアルコキシ)−3',5'−ジブロモフェニル]−プロパン等の臭素化フェノール誘導体、臭素化スチレン・ブタジエンブロック共重合体、臭素化ランダムスチレン・ブタジエン共重合体、臭素化スチレン・ブタジエングラフと共重合体などの臭素化ブタジエン・ビニル芳香族炭化水素共重合体(例えば、Chemtura社製EMERALD3000、若しくは、特表2009−516019号公報に開示されている)などが挙げられる。これら難燃剤は、単独で用いてもよいし、2種以上を混合して用いてもよい。 As the flame retardant and the flame retardant aid used in the present invention, known and commonly used ones can be used. Specific examples of the flame retardant include halogenated aliphatic hydrocarbon compounds such as hexabromocyclododecane, tetrabromobutane, and hexabromocyclohexane, tetrabromobisphenol A, tetrabromobisphenol F, 2,4,6-tri. Brominated phenols such as bromophenol, tetrabromobisphenol A-bis (2,3-dibromopropyl ether), tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl ether), tetrabromobisphenol A- Brominated phenol derivatives such as diglycidyl ether, 2,2-bis [4'(2 ", 3" -dibromoalkoxy) -3', 5'-dibromophenyl] -propane, brominated styrene-butadiene block copolymer , Brobroinated random styrene / butadiene copolymer, brominated butadiene / vinyl aromatic hydrocarbon copolymer such as brominated styrene / butadiene graph and copolymer (for example, EMERALD3000 manufactured by Chemtura, or Special Table 2009-516019 Disclosed in the Gazette). These flame retardants may be used alone or in combination of two or more.

難燃助剤の具体例としては、例えば、クメンハイドロパーオキサイド、ジクミルパーオキサイド、t−ブチルハイドロパーオキサイド、2,3−ジメチルー2,3−ジフェニルブタン等の開始剤を使用してもよい。 As a specific example of the flame retardant aid, for example, an initiator such as cumene hydroperoxide, dicumyl peroxide, t-butyl hydroperoxide, 2,3-dimethyl-2,3-diphenylbutane may be used. ..

本発明において用いられる外添剤及び添付剤としては、公知慣用のものが使用でき、顔料、可塑剤などが含まれる。 As the external additive and the attachment used in the present invention, known and commonly used ones can be used, and pigments, plasticizers and the like are included.

本発明で使用される顔料としては、フタロシアニン系(フタロシアニンブルー、フタロシアニングリーン等)、アゾ系、縮合アゾ系、アンスラキノン系、ぺリノン・ペリレン系、インジゴ・チオインジコ系、イソインドリンノン系、アゾメチンアゾ系、ジオキサジン系、キナクリドン系、アニリンブラック系、トリフェニルメタン系などの有機顔料が挙げられる。
顔料を使用する場合、顔料は、重合体を構成する単量体100重量部に対して、0.001重量部以上が好ましく、より好ましくは0.003重量部以上であり、0.1重量部以下が好ましく、0.07重量部以下がより好ましい。
Pigments used in the present invention include phthalocyanine-based pigments (phthalocyanine blue, phthalocyanine green, etc.), azo-based, condensed azo-based, anthracinone-based, perinone-perylene-based, indigo-thioindico-based, isoindoline non-based, and azomethine azo-based pigments. , Dioxazine-based, quinacridone-based, aniline black-based, triphenylmethane-based and other organic pigments.
When a pigment is used, the pigment is preferably 0.001 part by weight or more, more preferably 0.003 part by weight or more, and 0.1 part by weight with respect to 100 parts by weight of the monomer constituting the polymer. The following is preferable, and 0.07 parts by weight or less is more preferable.

可塑剤を使用する場合、本発明で使用される可塑剤としては、フタル酸ビス(2−エチルヘキシル)やフタル酸ブチルベンジル等のフタル酸系のエステル化合物、ジエチレングリコールジベンゾエート、ジプロピレングリコールジベンゾエートなどが挙げられる。近年では、環境への影響から、ジエチレングリコールジベンゾエート、ジプロピレングリコールジベンゾエート(これらの混合物も含む)の使用が好ましい。
可塑剤は、重合体を構成する単量体100重量部に対して、0.001重量部以上が好ましく、より好ましくは0.005重量部以上であり、0.1重量部以下が好ましく、0.05重量部以下がより好ましい。
また、可塑剤は、顔料1重量部に対して、0.01重量部以上が好ましく、より好ましくは0.1重量部以上であり、5重量部以下が好ましく、より好ましくは3重量部以下である。
When a plasticizer is used, the plasticizer used in the present invention includes phthalic acid-based ester compounds such as bis (2-ethylhexyl) phthalate and butyl benzyl phthalate, diethylene glycol dibenzoate, dipropylene glycol dibenzoate and the like. Can be mentioned. In recent years, it is preferable to use diethylene glycol dibenzoate and dipropylene glycol dibenzoate (including a mixture thereof) from the viewpoint of environmental influence.
The plasticizer is preferably 0.001 part by weight or more, more preferably 0.005 part by weight or more, preferably 0.1 part by weight or less, and 0, based on 100 parts by weight of the monomer constituting the polymer. More preferably, it is 0.05 parts by weight or less.
The plasticizer is preferably 0.01 parts by weight or more, more preferably 0.1 parts by weight or more, preferably 5 parts by weight or less, and more preferably 3 parts by weight or less with respect to 1 part by weight of the pigment. is there.

本発明の発泡性熱可塑性樹脂粒子の表層は、可塑剤と顔料の混合物がコーティングされていることが好ましい。 The surface layer of the foamable thermoplastic resin particles of the present invention is preferably coated with a mixture of a plasticizer and a pigment.

本発明で発泡性熱可塑性樹脂粒子の表面に顔料と可塑剤を被覆させる方法としては、混合機器内で発泡性熱可塑性樹脂粒子、顔料、可塑剤をブレンドする方法が好ましい。 In the present invention, as a method of coating the surface of the foamable thermoplastic resin particles with the pigment and the plasticizer, a method of blending the foamable thermoplastic resin particles, the pigment and the plasticizer in a mixing device is preferable.

本発明で用いられる混合機器としては、例えば、スーパーミキサー、ナウターミキサー、ユニバーサルミキサー、ヘンシェルミキサー、レーディゲーミキサー等があげられる。これらのうちでも、スーパーミキサーは攪拌混合性が良く、効率的に顔料、可塑剤をブレンドできる点で好ましい。 Examples of the mixing device used in the present invention include a super mixer, a nouter mixer, a universal mixer, a Henschel mixer, a radige mixer and the like. Among these, the super mixer is preferable because it has good stirring and mixing properties and can efficiently blend pigments and plasticizers.

顔料及び可塑剤以外の外添剤及び添付剤の具体例としては、例えば、ラウリン酸トリグリセライド、ステアリン酸トリグリセライド、リノール酸トリグリセライドなどの脂肪酸トリグリセライド、ラウリン酸ジグリセライド、ステアリン酸ジグリセライド、リノール酸ジグリセライドなどの脂肪酸ジグリセライド、ラウリン酸モノグリセライド、ステアリン酸モノグリセライド、リノール酸モノグリセライドなどの脂肪酸モノグリセライド、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸アルミニウム、ラウリン酸亜鉛、ラウリン酸カルシウムなどの脂肪酸金属塩、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンラウレート、ポリオキシエチレンパルミテート、ポリオキシエチレンステアレート、ポリオキシエチレンオレエート等の非イオン界面活性剤などが挙げられる。これら外添剤及び添付剤は単独で用いても良いし、2種以上を混合しても良い。また、これら外添剤及び添付剤は発泡剤含浸時に水系に添加してもよいし、脱水後に若しくは乾燥後に添加し被覆してもよく、被覆方法によらない。好ましい被覆方法は、乾燥後に添付し、混合撹拌することにより被覆する方法である。 Specific examples of external additives and accessories other than pigments and plasticizers include fatty acids such as triglyceride laurate, triglyceride stearate, and triglyceride linoleic acid, and fatty acids such as diglyceride laurate, diglyceride stearate, and diglyceride linoleic acid. Fatty acid monoglyceride such as diglyceride, monoglyceride laurate, monoglyceride stearate, monoglyceride linoleic acid, zinc stearate, calcium stearate, magnesium stearate, aluminum stearate, zinc laurate, calcium laurate and other fatty acid metal salts, polyoxyethylene cetyl ether , Polyoxyethylene oleyl ether, polyoxyethylene stearyl ether, polyoxyethylene laurate, polyoxyethylene palmitate, polyoxyethylene stearate, nonionic surfactants such as polyoxyethylene oleate and the like. These external additives and attachments may be used alone or in combination of two or more. Further, these external additives and attachments may be added to the water system when impregnated with the foaming agent, or may be added and coated after dehydration or drying, regardless of the coating method. A preferred coating method is a method of coating by attaching after drying and mixing and stirring.

本発明の発泡性熱可塑性樹脂粒子は、発泡倍率2〜15倍で予備発泡させ、熱可塑性予備発泡粒子とする。その後、それを加熱発泡させ、発泡成形体とする。 The foamable thermoplastic resin particles of the present invention are pre-foamed at a foaming magnification of 2 to 15 times to obtain thermoplastic pre-foamed particles. Then, it is heated and foamed to obtain a foamed molded product.

予備発泡方法としては、例えば、円筒形の予備発泡装置を用いて、蒸気等で加熱して発泡させる等の、通常の方法を採用することができる。 As the pre-foaming method, for example, a usual method such as heating with steam or the like to foam using a cylindrical pre-foaming device can be adopted.

予備発泡粒子を発泡成形させる方法としては、例えば、金型内に予備発泡粒子を充填し、蒸気等を吹き込んで加熱する方法により発泡成形体を得る、いわゆる型内発泡成形法、等の通常の方法を採用することができる。 As a method for foam-molding the pre-foamed particles, for example, a so-called in-mold foam-molding method, in which a pre-foamed particle is filled in a mold and a foamed molded product is obtained by blowing steam or the like to heat the mold, is common. The method can be adopted.

本願は、2014年9月29日に出願された日本国特許出願第2014−198734号に基づく優先権の利益を主張するものである。2014年9月29日に出願された日本国特許出願第2014−198734号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority under Japanese Patent Application No. 2014-198734 filed on September 29, 2014. The entire contents of the specification of Japanese Patent Application No. 2014-198734 filed on September 29, 2014 are incorporated herein by reference.

以下に、実施例および比較例を挙げるが、本発明は、これらによって制限されるものではない。
なお、測定評価法は、以下の通りに実施した。
Examples and comparative examples are given below, but the present invention is not limited thereto.
The measurement and evaluation method was carried out as follows.

<単量体成分の測定>
得られた発泡性熱可塑性樹脂粒子中の単量体成分は、発泡性熱可塑性樹脂粒子1.0gをジクロロメタン20mlに溶解し、内部標準液(シクロペンタノール)0.005gを加えた後、ガスクロマトグラフィー(GC)を用いて、以下の条件にて測定した。
GC:島津製作所社製 GC−14B
カラム:PEG−20M 25%
Chromosorb W 60/80(3.0m×3.0mmI.D.)
カラム温度:110℃
検出器(FID)温度:170℃。
<Measurement of monomer component>
The monomer component in the obtained foamable thermoplastic resin particles is obtained by dissolving 1.0 g of foamable thermoplastic resin particles in 20 ml of dichloromethane, adding 0.005 g of an internal standard solution (cyclopentanol), and then gas. It was measured under the following conditions using chromatography (GC).
GC: GC-14B manufactured by Shimadzu Corporation
Column: PEG-20M 25%
Chromosorb W 60/80 (3.0m x 3.0mm ID)
Column temperature: 110 ° C
Detector (FID) temperature: 170 ° C.

<分子量測定>
得られた発泡性熱可塑性樹脂粒子に対して、発泡性熱可塑性樹脂粒子0.02gをテトラヒドロフラン(以下、「THF」と略す場合がある)20mlに溶解させた後、ゲルパーミェーションクロマトグラフ(GPC)を用いて、以下の条件にてGPC測定を行い、GPC測定チャートおよび、重量平均分子量(Mw)および数平均分子量(Mn)を得た。尚、得られた値はポリスチレン換算の相対値である。
測定装置:東ソー社製、高速GPC装置 HLC−8220
使用カラム:東ソー社製、SuperHZM−H×2本、SuperH−RC×2本
カラム温度:40℃、移動相:THF(テトラヒドロフラン)
流量:0.35ml/分、注入量:10μL
検出器:RI。
<Molecular weight measurement>
For the obtained foamable thermoplastic resin particles, 0.02 g of the foamable thermoplastic resin particles are dissolved in 20 ml of tetrahydrofuran (hereinafter, may be abbreviated as "THF"), and then a gel permeation chromatograph. Using (GPC), GPC measurement was performed under the following conditions to obtain a GPC measurement chart and a weight average molecular weight (Mw) and a number average molecular weight (Mn). The obtained value is a relative value in terms of polystyrene.
Measuring device: High-speed GPC device HLC-8220 manufactured by Tosoh Corporation
Columns used: Tosoh, SuperHZM-H x 2, SuperH-RC x 2
Column temperature: 40 ° C., mobile phase: THF (tetrahydrofuran)
Flow rate: 0.35 ml / min, injection volume: 10 μL
Detector: RI.

<予備発泡>
攪拌機付き予備発泡機に発泡性熱可塑性樹脂粒子を投入し、水蒸気で加熱することにより発泡させ、見掛け倍率10倍の予備発泡粒子を得た。
<Preliminary foaming>
Effervescent thermoplastic resin particles were put into a pre-foaming machine with a stirrer and foamed by heating with steam to obtain pre-foamed particles having an apparent magnification of 10 times.

<成形性評価>
成形機[ダイセン製、KR−57]を用いて、厚み20mmで縦450mm×横300mmサイズの板状の金型内に充填し、吹き込み蒸気圧力0.8kgf/cm2として型内成形をして、発泡成形体を得た。成形体の表面状態を目視にて観察、評価するとともに以下の評価を実施した。
<Evaluation of moldability>
Using a molding machine [made by Daisen, KR-57], it is filled in a plate-shaped mold with a thickness of 20 mm and a size of 450 mm in length × 300 mm in width, and molded in the mold with a blown steam pressure of 0.8 kgf / cm 2. , A foam molded product was obtained. The surface condition of the molded product was visually observed and evaluated, and the following evaluation was carried out.

(1)融着性評価
得られた熱可塑性樹脂発泡体を破断し、破断面を観察して、粒子界面ではなく、粒子が破断している割合を求めて、以下の基準にて、融着性を判定した。
◎:粒子破断の割合が90%以上。
○:粒子破断の割合が80%以上、90%未満。
△:粒子破断の割合が70%以上、80%未満。
×:粒子破断の割合が70%未満。
(1) Evaluation of fusion property The obtained thermoplastic resin foam was fractured, the fracture surface was observed, and the ratio at which the particles were fractured, not at the particle interface, was determined and fused according to the following criteria. The sex was judged.
⊚: The rate of particle breakage is 90% or more.
◯: The rate of particle breakage is 80% or more and less than 90%.
Δ: The rate of particle breakage is 70% or more and less than 80%.
X: The rate of particle breakage is less than 70%.

(2)表面性評価
得られた熱可塑性樹脂発泡体の表面状態を目視観察し、以下の基準にて表面性を評価した。
◎:表面の溶融、粒間が無く、非常に美麗。
○:表面の溶融、粒間が少なく、美麗。
△:表面の溶融、粒間があり、外観やや不良。
×:表面の溶融、粒間が多く、外観不良。
(2) Evaluation of surface properties The surface condition of the obtained thermoplastic resin foam was visually observed, and the surface properties were evaluated according to the following criteria.
◎: Very beautiful with no melting of the surface and no intergrains.
◯: The surface is melted and there are few intergrains, and it is beautiful.
Δ: The surface is melted and there are intergrains, and the appearance is slightly poor.
X: The surface is melted, there are many grains, and the appearance is poor.

(3)発泡成形体の切断面の平均弦長測定
発泡成形体の平均セル径は、発泡成形体の切断面をマイクロスコープで観察し、切断面の一直線上(60mm)にかかる気泡数から平均弦長を測定し、平均セル径とした。
平均弦長t=線長/(気泡数×写真の倍率)。
(3) Measurement of average chord length of the cut surface of the foamed product The average cell diameter of the foamed product is averaged from the number of bubbles on a straight line (60 mm) of the foamed product by observing the cut surface of the foamed product with a microscope. The chord length was measured and used as the average cell diameter.
Average chord length t = line length / (number of bubbles x magnification of photo).

(4)耐熱性評価
発泡成形体を150×150×20(t)mmに切り出したサンプル片を、JIS K6767(高温時の寸法安定性:B法)に準拠し、90℃で24時間後の加熱寸法変化率を測定した。
◎:加熱寸法変化率が0.10%未満。
○:加熱寸法変化率が0.10%以上、0.15%未満。
△:加熱寸法変化率が0.15%以上、0.20%未満。
×:加熱寸法変化率が0.2%未満。
(4) Heat resistance evaluation A sample piece obtained by cutting a foamed molded product into a size of 150 × 150 × 20 (t) mm is subjected to JIS K6767 (dimensional stability at high temperature: method B) after 24 hours at 90 ° C. The rate of change in heating dimensions was measured.
⊚: The rate of change in heating dimensions is less than 0.10%.
◯: The heating dimensional change rate is 0.10% or more and less than 0.15%.
Δ: The heating dimensional change rate is 0.15% or more and less than 0.20%.
X: The heating dimensional change rate is less than 0.2%.

(実施例1) <発泡性熱可塑性樹脂粒子の製造>
撹拌機付属の6Lのオートクレーブに、純水108重量部、第3リン酸カルシウム0.08重量部、α−オレフィンスルフォン酸ソーダ0.006重量部および、開始剤として、ジ−t−ブチルパーオキシヘキサハイドロテレフタレート0.773重量部および1,1−ビス(t−ブチルパーオキシ)シクロヘキサン0.16重量部及び、造核剤としてエチレンビスステアリルアマイド0.12重量部を仕込んだ。続いて、250回転/分で撹拌しながら、アルファメチルスチレン単量体70重量部、アクリロニトリル単量体30重量部を仕込んだ後、98℃まで昇温させた。引き続き、98℃にて9時間保持して、熱可塑性樹脂粒子を得た。その後、114℃に昇温し、114℃にて3時間保持した。
(Example 1) <Manufacturing of foamable thermoplastic resin particles>
In a 6 L autoclave attached to the stirrer, 108 parts by weight of pure water, 0.08 parts by weight of tricalcium phosphate, 0.006 parts by weight of α-olefin sulfonate, and di-t-butylperoxyhexahydro as an initiator. 0.773 parts by weight of terephthalate, 0.16 parts by weight of 1,1-bis (t-butylperoxy) cyclohexane, and 0.12 parts by weight of ethylene bisstearyl amide were charged as a nucleating agent. Subsequently, 70 parts by weight of the alpha-methylstyrene monomer and 30 parts by weight of the acrylonitrile monomer were charged while stirring at 250 rpm, and then the temperature was raised to 98 ° C. Subsequently, the mixture was kept at 98 ° C. for 9 hours to obtain thermoplastic resin particles. Then, the temperature was raised to 114 ° C., and the temperature was maintained at 114 ° C. for 3 hours.

95℃まで冷却後、発泡助剤として、シクロヘキサン0.5重量部、発泡剤としてブタン2.52重量部をオートクレーブ中に圧入し、再び110℃まで昇温させた。その後、110℃にて15時間保温した後、室温まで冷却して、オートクレーブから重合スラリーを取り出した。取り出した重合スラリーを洗浄、脱水・乾燥することにより、発泡性熱可塑性樹脂粒子を得た。 After cooling to 95 ° C., 0.5 part by weight of cyclohexane as a foaming aid and 2.52 parts by weight of butane as a foaming agent were press-fitted into the autoclave, and the temperature was raised to 110 ° C. again. Then, after keeping the temperature at 110 ° C. for 15 hours, the mixture was cooled to room temperature, and the polymer slurry was taken out from the autoclave. The removed polymer slurry was washed, dehydrated and dried to obtain effervescent thermoplastic resin particles.

<予備発泡粒子の製造>
得られた発泡性熱可塑性樹脂粒子を篩分けして、粒子径0.6mm〜1.4mmの発泡性熱可塑性樹脂粒子を分取した。
<Manufacturing of preliminary foamed particles>
The obtained foamable thermoplastic resin particles were sieved to separate the foamable thermoplastic resin particles having a particle size of 0.6 mm to 1.4 mm.

分取した発泡性スチレン系樹脂粒子1000gを、常圧式予備発泡機を用いて、吹き込み蒸気圧0.6kgf/cmの条件にて嵩倍率10倍に予備発泡を実施した。この際、吹き込み蒸気にはエアーを切り込ませて、吹き込み蒸気温度を調節した。その後、常温下で1日放置して、養生乾燥を行った。 1000 g of the separated effervescent styrene resin particles were pre-foamed at a bulk ratio of 10 times using a normal pressure pre-foaming machine under the condition of blowing vapor pressure of 0.6 kgf / cm 2. At this time, air was cut into the blown steam to adjust the blown steam temperature. Then, it was left at room temperature for one day to cure and dry.

<型内発泡成形体の製造>
得られた熱可塑性樹脂予備発泡粒子を、成形機[ダイセン製、KR−57]を用いて、厚み20mmで縦450mm×横300mmサイズの板状の金型内に充填し、吹き込み蒸気圧力0.8kgf/cm2として型内成形をして、発泡成形体を得た。
<Manufacturing of in-mold foam molded product>
The obtained thermoplastic resin pre-foamed particles were filled into a plate-shaped mold having a thickness of 20 mm and a size of 450 mm in length and 300 mm in width using a molding machine [made by Daisen, KR-57], and the steam pressure was blown to 0. In-mold molding was performed at 8 kgf / cm 2 to obtain a foam molded product.

得られた発泡性熱可塑性樹脂粒子および発泡成形体を用いて評価を行い、その結果を表1に示す。 Evaluation was performed using the obtained foamable thermoplastic resin particles and the foamed molded product, and the results are shown in Table 1.

(実施例2)
<発泡性熱可塑性樹脂粒子の製造>において、重合開始時の単量体組成をアルファメチルスチレン単量体78重量部およびアクリロニトリル単量体22重量部に変更した以外は、実施例1と同様の操作により、発泡性熱可塑性樹脂粒子、予備発泡粒子、型内発泡成形体を得た。評価結果を、表1に示す。
(Example 2)
In <Production of Effervescent Thermoplastic Resin Particles>, the same as in Example 1 except that the monomer composition at the start of polymerization was changed to 78 parts by weight of an alpha-methylstyrene monomer and 22 parts by weight of an acrylonitrile monomer. By the operation, foamable thermoplastic resin particles, pre-foamed particles, and in-mold foamed molded product were obtained. The evaluation results are shown in Table 1.

(実施例3)
<発泡性熱可塑性樹脂粒子の製造>において、重合開始時の単量体組成をアルファメチルスチレン単量体62重量部およびアクリロニトリル単量体38重量部に変更した以外は、実施例1と同様の操作により、発泡性熱可塑性樹脂粒子、予備発泡粒子、型内発泡成形体を得た。評価結果を、表1に示す。
(Example 3)
In <Production of Effervescent Thermoplastic Resin Particles>, the same as in Example 1 except that the monomer composition at the start of polymerization was changed to 62 parts by weight of an alpha-methylstyrene monomer and 38 parts by weight of an acrylonitrile monomer. By the operation, foamable thermoplastic resin particles, pre-foamed particles, and in-mold foamed molded product were obtained. The evaluation results are shown in Table 1.

(実施例4)
<発泡性熱可塑性樹脂粒子の製造>において、114℃の保持時間を2時間に変更した以外は、実施例1と同様の操作により、発泡性熱可塑性樹脂粒子、予備発泡粒子、型内発泡成形体を得た。評価結果を、表1に示す。
(Example 4)
In <Production of foamable thermoplastic resin particles>, the foamable thermoplastic resin particles, pre-foamed particles, and in-mold foam molding were performed in the same manner as in Example 1 except that the holding time at 114 ° C. was changed to 2 hours. I got a body. The evaluation results are shown in Table 1.

(実施例5)
<発泡性熱可塑性樹脂粒子の製造>において、エチレンビスステアリルアマイド0.20重量部に変更した以外は、実施例1と同様の操作により、発泡性熱可塑性樹脂粒子、予備発泡粒子、型内発泡成形体を得た。評価結果を、表1に示す。
(Example 5)
In <Production of foamable thermoplastic resin particles>, the foamable thermoplastic resin particles, pre-foamed particles, and in-mold foaming were carried out in the same manner as in Example 1 except that the ethylene bisstearyl amide was changed to 0.20 parts by weight. A molded product was obtained. The evaluation results are shown in Table 1.

(実施例6)
<発泡性熱可塑性樹脂粒子の製造>において、エチレンビスステアリルアマイド0.08重量部に変更した以外は、実施例1と同様の操作により、発泡性熱可塑性樹脂粒子、予備発泡粒子、型内発泡成形体を得た。評価結果を、表1に示す。
(Example 6)
In <Production of foamable thermoplastic resin particles>, the foamable thermoplastic resin particles, pre-foamed particles, and in-mold foaming were carried out in the same manner as in Example 1 except that the ethylene bisstearyl amide was changed to 0.08 parts by weight. A molded product was obtained. The evaluation results are shown in Table 1.

(実施例7)
<発泡性熱可塑性樹脂粒子の製造>において、実施例1に記載の方法で発泡性熱可塑性樹脂粒子を得た後、スーパーミキサー[カワタ製、SMV−20]に前記発泡性熱可塑性樹脂粒子に可塑剤:フタル酸ブチルベンジル:0.01重量部と顔料:フロタシアニンブルー:0.005重量の混合物を投入し、60秒間ブレンドすることにより発泡性熱可塑性樹脂粒子を得た。その後、実施例1と同様の操作により予備発泡粒子、型内発泡成形体を得た。評価結果を、表1に示す。
(Example 7)
In <Production of Effervescent Thermoplastic Resin Particles>, after obtaining effervescent thermoplastic resin particles by the method described in Example 1, the effervescent thermoplastic resin particles are converted into the effervescent thermoplastic resin particles in a super mixer [Kawata, SMV-20]. A mixture of plasticizer: butylbenzyl phthalate: 0.01 part by weight and pigment: flotasianin blue: 0.005 weight by weight was added and blended for 60 seconds to obtain effervescent thermoplastic resin particles. Then, the pre-foamed particles and the in-mold foamed molded product were obtained by the same operation as in Example 1. The evaluation results are shown in Table 1.

(実施例8)
<発泡性熱可塑性樹脂粒子の製造>において、実施例1に記載の方法で発泡性熱可塑性樹脂粒子を得た後、スーパーミキサー[カワタ製、SMV−20]に前記発泡性熱可塑性樹脂粒子に可塑剤:ジエチレングリコールジベンゾエート50〜60重量%とジプロピレングリコールジベンゾエート40〜50重量%の混合物(製品名JP120:ジェイ・プラス社):0.01重量部と顔料:フロタシアニンブルー:0.005重量の混合物を投入し、60秒間ブレンドすることにより発泡性熱可塑性樹脂粒子を得た。その後、実施例1と同様の操作により予備発泡粒子、型内発泡成形体を得た。評価結果を、表1に示す。
(Example 8)
In <Production of Effervescent Thermoplastic Resin Particles>, after obtaining effervescent thermoplastic resin particles by the method described in Example 1, the effervescent thermoplastic resin particles are converted into the effervescent thermoplastic resin particles in a super mixer [Kawata, SMV-20]. Plasticizer: Mixture of 50-60% by weight of diethylene glycol dibenzoate and 40 to 50% by weight of dipropylene glycol dibenzoate (Product name JP120: J-Plus): 0.01 parts by weight and pigment: Flotasianin blue: 0.005 Effervescent thermoplastic resin particles were obtained by adding a heavy mixture and blending for 60 seconds. Then, the pre-foamed particles and the in-mold foamed molded product were obtained by the same operation as in Example 1. The evaluation results are shown in Table 1.

(実施例9)
<発泡性熱可塑性樹脂粒子の製造>において、実施例1に記載の方法で発泡性熱可塑性樹脂粒子を得た後、スーパーミキサー[カワタ製、SMV−20]に前記発泡性熱可塑性樹脂粒子に可塑剤:ジエチレングリコールジベンゾエート50〜60重量%とジプロピレングリコールジベンゾエート40〜50重量%の混合物(製品名JP120:ジェイ・プラス社):0.01重量部と顔料:フロタシアニンブルー:0.05重量の混合物を投入し、60秒間ブレンドすることにより発泡性熱可塑性樹脂粒子を得た。その後、実施例1と同様の操作により予備発泡粒子、型内発泡成形体を得た。評価結果を、表1に示す。
(Example 9)
In <Production of Effervescent Thermoplastic Resin Particles>, after obtaining effervescent thermoplastic resin particles by the method described in Example 1, the effervescent thermoplastic resin particles are converted into the effervescent thermoplastic resin particles in a super mixer [Kawata, SMV-20]. Plasticizer: Mixture of 50-60% by weight of diethylene glycol dibenzoate and 40 to 50% by weight of dipropylene glycol dibenzoate (Product name JP120: J-Plus): 0.01 parts by weight and pigment: Flotasianin blue: 0.05 Effervescent thermoplastic resin particles were obtained by adding a heavy mixture and blending for 60 seconds. Then, the pre-foamed particles and the in-mold foamed molded product were obtained by the same operation as in Example 1. The evaluation results are shown in Table 1.

(実施例10)
<発泡性熱可塑性樹脂粒子の製造>において、実施例1に記載の方法で発泡性熱可塑性樹脂粒子を得た後、スーパーミキサー[カワタ製、SMV−20]に前記発泡性熱可塑性樹脂粒子に可塑剤:ジエチレングリコールジベンゾエート50〜60重量%とジプロピレングリコールジベンゾエート40〜50重量%の混合物(製品名JP120:ジェイ・プラス社):0.01重量部と顔料:フロタシアニングリーン:0.05重量の混合物を投入し、60秒間ブレンドすることにより発泡性熱可塑性樹脂粒子を得た。その後、実施例1と同様の操作により予備発泡粒子、型内発泡成形体を得た。評価結果を、表1に示す。
(Example 10)
In <Production of Effervescent Thermoplastic Resin Particles>, after obtaining effervescent thermoplastic resin particles by the method described in Example 1, the effervescent thermoplastic resin particles are converted into the effervescent thermoplastic resin particles in a super mixer [Kawata, SMV-20]. Plasticizer: Mixture of 50-60% by weight of diethylene glycol dibenzoate and 40 to 50% by weight of dipropylene glycol dibenzoate (Product name JP120: J-Plus): 0.01 parts by weight and pigment: Flotasianin green: 0.05 Effervescent thermoplastic resin particles were obtained by adding a heavy mixture and blending for 60 seconds. Then, the pre-foamed particles and the in-mold foamed molded product were obtained by the same operation as in Example 1. The evaluation results are shown in Table 1.

(比較例1)
<発泡性熱可塑性樹脂粒子の製造>において、重合開始時の単量体組成をアルファメチルスチレン単量体85重量部およびアクリロニトリル単量体15重量部に変更した以外は、実施例1と同様の操作により、発泡性熱可塑性樹脂粒子、予備発泡粒子、型内発泡成形体を得た。評価結果を、表1に示す。
(Comparative Example 1)
In <Production of Effervescent Thermoplastic Resin Particles>, the same as in Example 1 except that the monomer composition at the start of polymerization was changed to 85 parts by weight of an alpha-methylstyrene monomer and 15 parts by weight of an acrylonitrile monomer. By the operation, foamable thermoplastic resin particles, pre-foamed particles, and in-mold foamed molded product were obtained. The evaluation results are shown in Table 1.

(比較例2)
<発泡性熱可塑性樹脂粒子の製造>において、重合開始時の単量体組成をアルファメチルスチレン単量体55重量部およびアクリロニトリル単量体45重量部に変更した以外は、実施例1と同様の操作により、発泡性熱可塑性樹脂粒子、予備発泡粒子、型内発泡成形体を得た。評価結果を、表1に示す。
(Comparative Example 2)
In <Production of Effervescent Thermoplastic Resin Particles>, the same as in Example 1 except that the monomer composition at the start of polymerization was changed to 55 parts by weight of the alpha-methylstyrene monomer and 45 parts by weight of the acrylonitrile monomer. By the operation, foamable thermoplastic resin particles, pre-foamed particles, and in-mold foamed molded product were obtained. The evaluation results are shown in Table 1.

(比較例3)
<発泡性熱可塑性樹脂粒子の製造>において、特開2007−246566公報の実施例1に記載の方法で発泡性熱可塑性樹脂粒子を得た。その後、実施例1と同様の操作により、発泡性熱可塑性樹脂粒子、予備発泡粒子、型内発泡成形体を得た。評価結果を、表1に示す。
(Comparative Example 3)
In <Production of Foamable Thermoplastic Resin Particles>, foamable thermoplastic resin particles were obtained by the method described in Example 1 of JP-A-2007-246566. Then, by the same operation as in Example 1, foamable thermoplastic resin particles, pre-foamed particles, and an in-mold foam molded product were obtained. The evaluation results are shown in Table 1.

Figure 0006871991
Figure 0006871991

Claims (11)

重合体を構成する単量体組成がアルファメチルスチレン60〜80重量部と、アクリロニトリル40〜20重量部とからなる発泡性熱可塑性樹脂粒子であって、
造核剤を、前記重合体を構成する単量体100重量部に対して、0.07重量部以上、0.3重量部以下含み、
前記造核剤がポリエチレンワックス又は脂肪酸ビスアマイドであることを特徴とする発泡性熱可塑性樹脂粒子。
Foamable thermoplastic resin particles in which the monomer composition constituting the polymer is 60 to 80 parts by weight of alpha-methylstyrene and 40 to 20 parts by weight of acrylonitrile.
The nucleating agent to the polymer monomer 100 parts constituting the 0.07 parts by weight or more, unrealized 0.3 part by weight,
Effervescent thermoplastic resin particles, wherein the nucleating agent is polyethylene wax or fatty acid bisamide.
残存する単量体成分量が0.5重量%以下であることを特徴とする請求項1に記載の発泡性熱可塑性樹脂粒子。 The foamable thermoplastic resin particles according to claim 1, wherein the amount of the remaining monomer component is 0.5% by weight or less. 前記発泡性熱可塑性樹脂粒子の表層に可塑剤と顔料の混合物がコーティングされていることを特徴とする請求項1又は2に記載の発泡性熱可塑性樹脂粒子。 The foamable thermoplastic resin particles according to claim 1 or 2, wherein the surface layer of the foamable thermoplastic resin particles is coated with a mixture of a plasticizer and a pigment. 請求項1〜3のいずれかに記載の発泡性熱可塑性樹脂粒子を発泡倍率2〜15倍で発泡したことを特徴とする熱可塑性予備発泡粒子。 The thermoplastic pre-foamed particles according to any one of claims 1 to 3, wherein the foamable thermoplastic resin particles are foamed at a foaming ratio of 2 to 15 times. 請求項4に記載の熱可塑性予備発泡粒子を型内成形させることにより得られる熱可塑性発泡成形体。 A thermoplastic foam molded product obtained by in-mold molding of the thermoplastic prefoamed particles according to claim 4. アルファメチルスチレン60〜80重量部と、アクリロニトリル40〜20重量部とからなる単量体を、造核剤の存在下で重合することを特徴とする発泡性熱可塑性樹脂粒子の製造方法であって、
前記造核剤の使用量が、前記単量体100重量部に対して、0.07重量部以上、0.3重量部以下であり、
前記造核剤がポリエチレンワックス又は脂肪酸ビスアマイドである製造方法。
A method for producing effervescent thermoplastic resin particles, which comprises polymerizing a monomer composed of 60 to 80 parts by weight of alpha-methylstyrene and 40 to 20 parts by weight of acrylonitrile in the presence of a nucleating agent. ,
The amount of the nucleating agent is, relative to the monomer 100 parts by weight, 0.07 parts by weight or more state, and are less than 0.3 part by weight,
The manufacturing method nucleating agent is Ru Oh polyethylene wax or fatty acid bisamide.
前記発泡性熱可塑性樹脂粒子中に残存する単量体成分量が0.5重量%以下である、請求項6に記載の製造方法。 The production method according to claim 6, wherein the amount of the monomer component remaining in the foamable thermoplastic resin particles is 0.5% by weight or less. 前記重合時に重合開始剤を使用し、該重合開始剤が、1,1−ビス(t−ブチルパーオキシ)シクロヘキサンを含む、請求項6又は7に記載の製造方法。 The production method according to claim 6 or 7, wherein a polymerization initiator is used at the time of the polymerization, and the polymerization initiator contains 1,1-bis (t-butylperoxy) cyclohexane. さらに、前記発泡性熱可塑性樹脂粒子の表層に可塑剤と顔料の混合物を被覆する工程を含む、請求項6〜8のいずれかに記載の製造方法。 The production method according to any one of claims 6 to 8, further comprising a step of coating the surface layer of the foamable thermoplastic resin particles with a mixture of a plasticizer and a pigment. 請求項6〜9のいずれかに記載の製造方法により得られる発泡性熱可塑性樹脂粒子を、発泡倍率2〜15倍で発泡させることを特徴とする熱可塑性予備発泡粒子の製造方法。 A method for producing thermoplastic pre-foamed particles, which comprises foaming the foamable thermoplastic resin particles obtained by the production method according to any one of claims 6 to 9 at a foaming ratio of 2 to 15 times. 請求項10に記載の製造方法により得られる熱可塑性予備発泡粒子を、型内成することを特徴とする熱可塑性発泡成形体の製造方法。 Method for producing a thermoplastic foamed molded thermoplastic pre-expanded particles obtained by the production method, characterized by mold forming form according to claim 10.
JP2019198442A 2014-09-29 2019-10-31 Effervescent thermoplastic resin particles, thermoplastic pre-foamed particles, thermoplastic foam molded products and methods for producing them. Active JP6871991B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014198734 2014-09-29
JP2014198734 2014-09-29

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016551906A Division JP6612764B2 (en) 2014-09-29 2015-09-16 Expandable thermoplastic resin particles, thermoplastic pre-expanded particles, thermoplastic foam moldings

Publications (2)

Publication Number Publication Date
JP2020094186A JP2020094186A (en) 2020-06-18
JP6871991B2 true JP6871991B2 (en) 2021-05-19

Family

ID=55630230

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016551906A Active JP6612764B2 (en) 2014-09-29 2015-09-16 Expandable thermoplastic resin particles, thermoplastic pre-expanded particles, thermoplastic foam moldings
JP2019198442A Active JP6871991B2 (en) 2014-09-29 2019-10-31 Effervescent thermoplastic resin particles, thermoplastic pre-foamed particles, thermoplastic foam molded products and methods for producing them.

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016551906A Active JP6612764B2 (en) 2014-09-29 2015-09-16 Expandable thermoplastic resin particles, thermoplastic pre-expanded particles, thermoplastic foam moldings

Country Status (5)

Country Link
US (1) US10563056B2 (en)
EP (1) EP3202836B1 (en)
JP (2) JP6612764B2 (en)
CN (1) CN107075164B (en)
WO (1) WO2016052188A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6371711B2 (en) * 2015-01-28 2018-08-08 株式会社カネカ Colored polystyrene-based expandable resin particles, pre-expanded particles, and molded article
JP7078849B2 (en) * 2018-07-04 2022-06-01 株式会社ジェイエスピー Effervescent composite resin particles

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59204629A (en) * 1983-05-06 1984-11-20 Kanegafuchi Chem Ind Co Ltd Expandable thermoplastic resin particle and its preparation
JPH064717B2 (en) * 1984-03-30 1994-01-19 鐘淵化学工業株式会社 Method for producing expandable thermoplastic copolymer particles
JP4007738B2 (en) 1999-12-27 2007-11-14 株式会社カネカ Expandable thermoplastic copolymer particles
JP2003335891A (en) * 2002-05-21 2003-11-28 Kanegafuchi Chem Ind Co Ltd Expandable polystyrene resin particle, polystyrene expansion molded product and its preparation process
JP4202716B2 (en) 2002-10-24 2008-12-24 株式会社カネカ Thermoplastic resin foam molding and method for producing the same
JP2007191518A (en) 2006-01-17 2007-08-02 Kaneka Corp Foam-molded article of thermoplastic resin particle
JP2007238771A (en) 2006-03-08 2007-09-20 Kaneka Corp Expansion-molded item from thermoplastic resin particle
JP2007246566A (en) 2006-03-13 2007-09-27 Kaneka Corp Foamable thermoplastic resin particle and foamed molded article obtained from the same
BRPI0813964A2 (en) * 2007-06-28 2016-08-02 Basf Se expandable thermoplastic polymer granule, particle foam molding, particle foam, and process for the production of expandable thermoplastic polymer granules.
JP5338364B2 (en) * 2009-02-18 2013-11-13 株式会社カネカ Styrene resin particle foam molding

Also Published As

Publication number Publication date
US10563056B2 (en) 2020-02-18
US20170298215A1 (en) 2017-10-19
EP3202836B1 (en) 2020-01-01
JP6612764B2 (en) 2019-11-27
JP2020094186A (en) 2020-06-18
JPWO2016052188A1 (en) 2017-07-13
CN107075164B (en) 2020-09-04
WO2016052188A1 (en) 2016-04-07
EP3202836A1 (en) 2017-08-09
EP3202836A4 (en) 2018-05-09
CN107075164A (en) 2017-08-18

Similar Documents

Publication Publication Date Title
JP6871991B2 (en) Effervescent thermoplastic resin particles, thermoplastic pre-foamed particles, thermoplastic foam molded products and methods for producing them.
JP2002284917A (en) Expandable styrene resin particles
JP6435113B2 (en) Expandable thermoplastic resin particles, thermoplastic pre-expanded particles, thermoplastic foam moldings
JP5824263B2 (en) Expandable thermoplastic resin particles
JP3970188B2 (en) Self-extinguishing foamable styrenic resin particles, pre-foamed particles and self-extinguishing foam
JP2014189767A (en) Polystyrenic resin composition for foaming, polystyrenic resin foam sheet, and foam molding
JP6216237B2 (en) Expandable thermoplastic resin particles
JP7049767B2 (en) Effervescent polystyrene resin particles
JP6697862B2 (en) Method for producing expandable styrenic resin particles having flame retardancy
JP5487668B2 (en) Expandable styrene resin particles
JP6410616B2 (en) Expandable thermoplastic resin particles, pre-expanded particles and foam
JP2018053181A (en) Method for producing foamable styrene resin particle
JP6600541B2 (en) Method for producing expandable polystyrene resin particles
JP6431683B2 (en) Expandable thermoplastic resin particles
JP5809508B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP2013023565A (en) Foamable polystyrene resin particle for middle-low ratio expansion molding, foamed particle, expansion molded product and manufacturing method for expansion molded product
JP6677974B2 (en) Method for producing expandable styrene resin particles
JP6679390B2 (en) Expandable styrene resin particles
JP5552399B2 (en) Expandable polystyrene resin particles, process for producing the same, pre-expanded particles, and expanded molded body
JP6218602B2 (en) Expandable polystyrene resin particles and process for producing expandable polystyrene resin particles
JP2017115114A (en) Manufacturing method of expandable styrene resin particle
JP2010222489A (en) Foamable styrenic resin particle
JP2019156901A (en) Expandable styrene-based resin particle, pre-expanded particle, and method for producing expanded formed body
JP2017071746A (en) Expandable polystyrene resin particles
JP2002249614A (en) Expandable styrenic resin particle

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210416

R150 Certificate of patent or registration of utility model

Ref document number: 6871991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250