[go: up one dir, main page]

JP6862651B2 - Adhesion method of heat insulating panel and sound insulation structure in directly attached heat insulating panel - Google Patents

Adhesion method of heat insulating panel and sound insulation structure in directly attached heat insulating panel Download PDF

Info

Publication number
JP6862651B2
JP6862651B2 JP2016166165A JP2016166165A JP6862651B2 JP 6862651 B2 JP6862651 B2 JP 6862651B2 JP 2016166165 A JP2016166165 A JP 2016166165A JP 2016166165 A JP2016166165 A JP 2016166165A JP 6862651 B2 JP6862651 B2 JP 6862651B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating panel
adhesive
adhesive portion
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016166165A
Other languages
Japanese (ja)
Other versions
JP2017044061A (en
Inventor
泰孝 上田
泰孝 上田
高橋 誠治
誠治 高橋
山崎 浩
浩 山崎
伸彦 萩原
伸彦 萩原
吉岡 清
清 吉岡
充宏 桂
充宏 桂
祐 會田
祐 會田
加納 伸悟
伸悟 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cemedine Co Ltd
JSP Corp
Toa Corp
Sato Kogyo Co Ltd
Hazama Ando Corp
Original Assignee
Cemedine Co Ltd
JSP Corp
Toa Corp
Sato Kogyo Co Ltd
Hazama Ando Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cemedine Co Ltd, JSP Corp, Toa Corp, Sato Kogyo Co Ltd, Hazama Ando Corp filed Critical Cemedine Co Ltd
Publication of JP2017044061A publication Critical patent/JP2017044061A/en
Application granted granted Critical
Publication of JP6862651B2 publication Critical patent/JP6862651B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)

Description

本願発明は、例えば集合住宅等の遮音に関する技術であり、より具体的には、断熱効果を有する内装用板材(以下、「断熱パネル」という。)を室内壁に直貼りする方法、及び直貼り断熱パネルにおける遮音構造に関するものである。 The present invention is, for example, a technique related to sound insulation of an apartment house or the like, and more specifically, a method of directly attaching an interior board material having a heat insulating effect (hereinafter, referred to as "insulation panel") to an interior wall, and direct attachment. It relates to a sound insulation structure in a heat insulating panel.

戸建や集合住宅など居住目的の建築物では、特に周到な断熱対策が講じられる。断熱効果を有する内装材である断熱パネルを、外壁(例えば、躯体コンクリート)に面した室内側に貼り付けるのもその一つである。躯体コンクリートは熱容量が大きいため、外壁側は暑さや寒さの影響を受け易い。夏は太陽に暖められた躯体コンクリートから室内へ熱が伝わって室内の暑さが逃げず、冬は冷やされた躯体コンクリートが室内の熱を奪う結果、結露によるカビの発生原因となる。したがって、室内壁に断熱パネルを貼り付けるのは、極めて合理的かつ効率的な手法であり、従来から多用されている手法である。 Especially for residential buildings such as detached houses and apartment houses, careful insulation measures are taken. One of them is to attach a heat insulating panel, which is an interior material having a heat insulating effect, to the indoor side facing the outer wall (for example, skeleton concrete). Since the skeleton concrete has a large heat capacity, the outer wall side is easily affected by heat and cold. In the summer, heat is transferred from the sun-warmed skeleton concrete to the room and the heat in the room does not escape, and in the winter, the chilled skeleton concrete takes away the heat in the room, causing mold to form due to condensation. Therefore, attaching the heat insulating panel to the interior wall is an extremely rational and efficient method, and is a method that has been widely used in the past.

室内のコンクリート壁面に断熱パネルを貼り付ける手段としては、ビスや釘打ちによる工法よりも、接着工法が好まれる傾向にある。硬いコンクリート面に柔らかい断熱パネルをビスや釘で打ちつけるためには特殊工具が必要となり、容易に施工できないことがその理由である。つまり施工性を考えると、接着工法によって断熱パネルを貼り付ける方が容易であり、そのため接着工法はこれまで多くの建築物に採用されてきた。 As a means for attaching the heat insulating panel to the concrete wall surface of the room, the adhesive method tends to be preferred to the method using screws or nailing. The reason is that a special tool is required to drive a soft heat insulating panel against a hard concrete surface with screws or nails, and it is not easy to install. In other words, considering the workability, it is easier to attach the heat insulating panel by the adhesive method, and therefore the adhesive method has been adopted in many buildings.

図9は、従来の接着工法を説明するためのモデル図であり、図9(a)はその正面図(接着材塗布面)、図9(b)は部分断面図である。従来の接着工法では、図9(a)に示すように、断熱パネルDPの接着面(壁面に接する面)の周縁に所定幅を確保しながら接着剤ADを塗布し、断熱パネルDPをコンクリート壁面に直貼りしていた。例えば、「押出法ポリスチレンフォーム保温板裏打ちパネル直か張り工法 施工要領(編集:接着工法推進協議会)」では、接着幅100mm、接着間隔455又は910mmを推奨している。なお一般的な接着剤の塗布方法は、クシ状の塗布具を用いたいわゆる「クシ引き」によって行われる。このクシ引きによって塗布された断面は、図9(b)に示すように凹凸が連続した形状となる。したがって断熱パネルと躯体コンクリートの間には隙間が生じ、この隙間にある空気が室内の空気と交じると内部結露が生じることから、隙間の空気が密閉されるよう断熱パネルは確実に接着されることが求められる。 9A and 9B are model views for explaining a conventional bonding method, FIG. 9A is a front view (adhesive material coated surface) thereof, and FIG. 9B is a partial cross-sectional view. In the conventional adhesive method, as shown in FIG. 9A, the adhesive AD is applied to the peripheral edge of the adhesive surface (the surface in contact with the wall surface) of the heat insulating panel DP while securing a predetermined width, and the heat insulating panel DP is applied to the concrete wall surface. It was pasted directly on. For example, the "Extruded polystyrene foam heat insulating plate backing panel direct or stretched construction method (edit: Adhesive method promotion council)" recommends an adhesive width of 100 mm and an adhesive interval of 455 or 910 mm. The general method of applying the adhesive is a so-called "comb pulling" using a comb-shaped coating tool. The cross section applied by this combing has a shape with continuous irregularities as shown in FIG. 9 (b). Therefore, a gap is created between the heat insulating panel and the skeleton concrete, and when the air in this gap mixes with the air in the room, internal dew condensation occurs. Therefore, the heat insulating panel must be securely adhered so that the air in the gap is sealed. Is required.

ところで、接着工法によって直貼された断熱パネルは、躯体コンクリートが本来有する遮音効果を、特に2,000Hz帯域付近で劣化させることが知られている。図10は、遮音対象となる音の周波数と、接着工法で断熱パネルを直貼した躯体コンクリートの遮音効果の関係を表すグラフ図であり、実際の施工現場にて測定された結果である。横軸に音の周波数を、縦軸に遮音し得る音圧レベルを示している。この図では、概ね周波数が高い音の方がより音圧を低下させることを示しているが、周波数2,000Hz付近の音に対しては極端に遮音効果が低下している。これまで、この2,000Hz付近における遮音効果の低下は、断熱パネルの共鳴であると考えられていた。例えば、隣の居室内で発生した2,000Hzの音が躯体コンクリートに伝わると、断熱パネルの共鳴により隣室の居室内に音として放射されるというわけである。特許文献1でも、この点を従来工法の問題として捉えている。 By the way, it is known that the heat insulating panel directly attached by the adhesive method deteriorates the sound insulation effect originally inherent in the skeleton concrete, particularly in the vicinity of the 2,000 Hz band. FIG. 10 is a graph showing the relationship between the frequency of the sound to be sound-insulated and the sound-insulating effect of the skeleton concrete to which the heat insulating panel is directly attached by the adhesive method, and is the result measured at the actual construction site. The horizontal axis shows the frequency of sound, and the vertical axis shows the sound pressure level that can insulate sound. In this figure, it is shown that the sound having a high frequency generally lowers the sound pressure, but the sound insulation effect is extremely lowered for the sound having a frequency of around 2,000 Hz. Until now, this decrease in the sound insulation effect near 2,000 Hz has been considered to be the resonance of the heat insulating panel. For example, when the sound of 2,000 Hz generated in the next room is transmitted to the skeleton concrete, it is radiated as sound into the room of the next room due to the resonance of the heat insulating panel. Patent Document 1 also regards this point as a problem of the conventional construction method.

部分的な周波数範囲の遮音性の欠損であっても居住空間においては不快になることもあり、例えば集合住宅の引渡し前の調査結果から遮音対策が必要と判断される場合には、図11に示す増張りを行うのが主流であった。この図に示すように増張り工法では、室内コンクリート壁CWに接着剤ADで直貼りされた断熱パネルDPの前面に、さらに遮音性を有する増貼りパネルPIがタッカーや接着剤で貼り付けられる。 Even if the sound insulation is partially lost in the frequency range, it may be uncomfortable in the living space. For example, if it is judged from the survey results before the delivery of the apartment house that sound insulation measures are necessary, FIG. 11 shows. It was the mainstream to carry out the indicated expansion. As shown in this figure, in the extension method, the extension panel PI having further sound insulation is attached to the front surface of the heat insulating panel DP directly attached to the indoor concrete wall CW with the adhesive AD with a tacker or an adhesive.

このように増貼り工法は、増貼りパネルPIによって室内の内法寸法を小さくするものであり、いわば次善の策である。そのため、室内の内法寸法を変えることなく、周波数2,000Hz付近の音に対しても効果的に遮音することができる最善の対策が望まれていた。特許文献1では、接着剤を特徴的な形状で塗布することにより周波数2,000Hz付近の音に対しても遮音できることを提案している。 In this way, the additional pasting method is to reduce the internal dimensions of the room by the additional pasting panel PI, which is, so to speak, the next best measure. Therefore, it has been desired to take the best measures that can effectively insulate sound in the vicinity of a frequency of 2,000 Hz without changing the internal dimensions of the room. Patent Document 1 proposes that by applying an adhesive in a characteristic shape, it is possible to insulate sound even at a frequency of around 2,000 Hz.

特開2002−121879号公報Japanese Unexamined Patent Publication No. 2002-121879

周波数2,000Hz付近の音に対して遮音効果が低下する原因は、特許文献1の記載にもあるように、断熱性パネルによる共鳴現象であると考えられていたのは既に述べた。しかしながら本願発明者らは、実験を重ねることでその共鳴現象が塗布された接着剤部分で生じていることを特定した。図12は、接着剤で直貼りした断熱パネルに対して音(2,000Hz)の粒子速度を計測した結果図であり、図中の破線で囲った範囲が接着剤塗布部分であって、粒子速度が大きい(すなわち放射レベルが高い)部分である。この図から分かるように、他の部分に比して接着部分では音の放射が著しく、特に周波数2,000Hz付近の音でその差が顕著に表れた。 It has already been described that the cause of the decrease in the sound insulation effect for sound having a frequency of around 2,000 Hz is considered to be a resonance phenomenon due to the heat insulating panel, as described in Patent Document 1. However, the inventors of the present application have identified through repeated experiments that the resonance phenomenon occurs in the coated adhesive portion. FIG. 12 is a result of measuring the particle velocity of sound (2,000 Hz) with respect to the heat insulating panel directly attached with the adhesive. The range surrounded by the broken line in the figure is the adhesive-applied portion, and the particles. This is the part where the velocity is high (that is, the radiation level is high). As can be seen from this figure, the sound radiation was remarkable in the bonded part as compared with the other parts, and the difference was particularly remarkable in the sound near the frequency of 2,000 Hz.

また放射レベルが高くなっている部分は、横方向の接着箇所であり、すなわち断熱パネルの継ぎ目である。継ぎ目に段差が生じないよう叩きながら接着しているため、断熱性パネルが躯体コンクリートに、より密着している部分である。一方の縦方向の接着箇所は、段差が生じる部分ではないため接着剤は適切な厚さが維持されており、断熱性パネルの共鳴が顕著に現れていないと推定できる。接着作業は、人により接着量が異なり、躯体コンクリートの不陸精度によっても差異が生じることから、同じ仕様であっても躯体コンクリートと断熱パネルの密着度合いは異なり、図10に示すようなばらつきが生じていることも解明された。つまり、外観の目視上変化がないものの遮音低下の程度が大きくばらついていることから、遮音効果の低下を起こしている箇所を特定するには、結局は全数遮音調査が必要となり、その判別には多大な労力が必要となることを意味する。 The portion where the radiation level is high is the adhesive portion in the lateral direction, that is, the seam of the heat insulating panel. This is the part where the heat insulating panel is more closely attached to the skeleton concrete because it is adhered while tapping so that there is no step at the seam. On the other hand, since the adhesive portion in the vertical direction is not a portion where a step is generated, it can be estimated that the adhesive maintains an appropriate thickness and the resonance of the heat insulating panel does not appear remarkably. In the bonding work, the amount of bonding differs depending on the person, and the non-landing accuracy of the skeleton concrete also makes a difference. Therefore, even if the specifications are the same, the degree of adhesion between the skeleton concrete and the heat insulating panel is different, and there are variations as shown in FIG. It was also clarified that it was occurring. In other words, although there is no visual change in appearance, the degree of sound insulation reduction varies greatly. Therefore, in order to identify the location where the sound insulation effect is reduced, it is necessary to conduct a 100% sound insulation survey in the end. It means that a lot of effort is required.

既述したとおり従来の接着工法では、相当幅(例えば100mm)を確保して接着剤が塗布されることから、接着材塗布部からの放射音の影響は無視できない。本願発明の課題は、従来技術が抱える問題を解決することであり、すなわち、増貼りによって室内の内法寸法を小さくすることなく、周波数2,000Hz付近の音に対しても効果的に遮音することができ、しかも人および躯体精度による出来形差(バラツキ)を生じ難くし、その結果、塗布された接着剤の全数検査を回避することができる、断熱パネルの接着方法、及び直貼り断熱パネルにおける遮音構造を提供することである。 As described above, in the conventional adhesive method, the adhesive is applied with a considerable width (for example, 100 mm) secured, so that the influence of the radiated sound from the adhesive application portion cannot be ignored. An object of the present invention is to solve the problems of the prior art, that is, it effectively insulates sound in the vicinity of a frequency of 2,000 Hz without reducing the internal dimensions of the room by re-sticking. It is possible to prevent the difference in shape (variation) due to the accuracy of the person and the skeleton, and as a result, it is possible to avoid the 100% inspection of the applied adhesive. Is to provide a sound insulation structure in.

本願発明は、接着剤の塗布部から断熱パネルの共鳴周波数の音が放射される原因に着目し、スペーサーによって接着剤の塗布厚を確保するとともに、断熱パネル内部にも部分接着部を設けることで、躯体コンクリートの振動が断熱パネルへ伝達することを阻止するという着想でなされたものであり、これまでにない発想に基づいて行われた発明である。 The present invention focuses on the cause of radiating the sound of the resonance frequency of the heat insulating panel from the adhesive coating portion, secures the coating thickness of the adhesive by a spacer, and provides a partial adhesive portion inside the heat insulating panel. The invention was made with the idea of preventing the vibration of the skeleton concrete from being transmitted to the heat insulating panel, and was an invention made based on an unprecedented idea.

本願発明の断熱パネルの接着方法は、断熱パネルを壁面に貼り付ける方法であり、外周接着部形成工程と、部分接着部形成工程、スペーサー設置工程を備えている。このうち外周接着部形成工程では、断熱パネル又は壁面の接着面の外周線に沿って「外周接着部」が形成され、部分接着部形成工程では、接着面(断熱パネル又は壁面)の内部の1又は2箇所以上に部分的に接着剤が塗布された「部分接着部」が形成され、スペーサー設置工程では、接着面(断熱パネル又は壁面)に1又は2以上のスペーサーが取り付けられる。断熱パネルの接着部を壁面に当接(又は断熱パネルを壁面の接着部に当接)すると、スペーサーによって壁面と断熱パネルとの間に間隙部が形成され、その状態で断熱パネルが外周接着部と部分接着部からなる「接着部」によって壁面に直貼りされる。
なお本願発明の断熱パネルの接着方法は、スペーサーに代えて、粒子径1mm以上の粒子状物質を含む接着剤が塗布された外周接着部及び部分接着部を形成することによって、計画塗布厚を確保することもできる。したがってこの場合(粒子状物質を含む接着剤を塗布する場合)、スペーサー設置工程を省略することができる(もちろん、スペーサー設置工程を設けることもできる)。
The method of adhering the heat insulating panel of the present invention is a method of attaching the heat insulating panel to the wall surface, and includes a step of forming an outer peripheral adhesive portion, a step of forming a partial adhesive portion, and a process of installing a spacer. Of these, in the outer peripheral adhesive portion forming step, an "outer peripheral adhesive portion" is formed along the outer peripheral line of the adhesive surface of the heat insulating panel or the wall surface, and in the partial adhesive portion forming step, one inside the adhesive surface (insulated panel or wall surface) is formed. Alternatively, a "partially adhered portion" to which the adhesive is partially applied is formed at two or more places, and one or two or more spacers are attached to the adhesive surface (insulation panel or wall surface) in the spacer installation step. When the adhesive part of the heat insulating panel is brought into contact with the wall surface (or the heat insulating panel is brought into contact with the adhesive part of the wall surface), a gap is formed between the wall surface and the heat insulating panel by the spacer, and in that state, the heat insulating panel is attached to the outer peripheral adhesive part. It is directly attached to the wall surface by the "adhesive part" consisting of the part and the partial adhesive part.
In the method of adhering the heat insulating panel of the present invention, the planned coating thickness is secured by forming an outer peripheral adhesive portion and a partial adhesive portion coated with an adhesive containing a particulate matter having a particle diameter of 1 mm or more instead of the spacer. You can also do it. Therefore, in this case (when applying an adhesive containing particulate matter), the spacer installation step can be omitted (of course, the spacer installation step can also be provided).

本願発明の断熱パネルの接着方法は、接着部のバネ定数、及び負担部分質量の組み合わせが、所定条件に従うように接着部を形成する方法とすることもできる。この所定条件を以下に示す。断熱パネルのバネ定数をK1、接着部のバネ定数をK2としたとき、断熱パネルと接着部の合成バネ定数Kが次式で求められる。
1/K=1/K1+1/K2
さらに、接着部が負担する断熱パネルの質量である負担部分質量をMとしたとき、断熱パネルと接着部の共鳴周波数fsが次式で求められる。
fs=1/(2×π)×(K/M)0.5
そして断熱パネルと接着部の共鳴周波数fsが、断熱パネルの共鳴周波数fpよりも小さい値となるように、接着部のバネ定数K2、及び負担部分質量Mの組み合わせが選択される。
The method for adhering the heat insulating panel of the present invention may be a method for forming the adhesive portion so that the combination of the spring constant of the adhesive portion and the mass of the bearing portion conforms to a predetermined condition. This predetermined condition is shown below. When the spring constant of the heat insulating panel is K1 and the spring constant of the bonded portion is K2, the combined spring constant K of the heat insulating panel and the bonded portion can be obtained by the following equation.
1 / K = 1 / K1 + 1 / K2
Further, when the burdened portion mass, which is the mass of the heat insulating panel borne by the bonded portion, is M, the resonance frequency fs between the heat insulating panel and the bonded portion is obtained by the following equation.
fs = 1 / (2 x π) x (K / M) 0.5
Then, a combination of the spring constant K2 of the adhesive portion and the load portion mass M is selected so that the resonance frequency fs of the heat insulating panel and the adhesive portion becomes a value smaller than the resonance frequency fp of the heat insulating panel.

本願発明の断熱パネルの接着方法は、部分接着部形成工において、隣接する部分接着部の間隔が断熱パネル幅の1/6以上であって1/4以下となるように部分接着部を配置する方法とすることもできる。 In the method of adhering the heat insulating panel of the present invention, in the partial adhesive portion forming work, the partial adhesive portions are arranged so that the distance between the adjacent partial adhesive portions is 1/6 or more and 1/4 or less of the width of the heat insulating panel. It can also be a method.

本願発明の直貼り断熱パネルにおける遮音構造は、壁面に断熱パネルが直貼りされた遮音構造であり、断熱パネルと間隙部を備えたものである。断熱パネルには、接着面(断熱パネル又は壁面)の外周に沿って「外周接着部」が形成され、さらに、接着面(断熱パネル又は壁面)の内部の1又は2箇所以上に部分的に接着剤が塗布された「部分接着部」が形成される。また間隙部は、接着面(断熱パネル又は壁面)に取り付けられた1又は2以上のスペーサーによって、壁面と断熱パネルとの間に形成される空間である。断熱パネルは、外周接着部と部分接着部からなる「接着部」により、間隙部を介して壁面に直貼りされる。 The sound insulation structure in the directly attached heat insulating panel of the present invention is a sound insulating structure in which the heat insulating panel is directly attached to the wall surface, and is provided with the heat insulating panel and the gap. In the heat insulating panel, an "outer peripheral adhesive portion" is formed along the outer periphery of the adhesive surface (insulation panel or wall surface), and further, the heat insulating panel is partially adhered to one or more places inside the adhesive surface (heat insulating panel or wall surface). A "partially bonded portion" to which the agent is applied is formed. The gap is a space formed between the wall surface and the heat insulating panel by one or more spacers attached to the adhesive surface (heat insulating panel or wall surface). The heat insulating panel is directly attached to the wall surface through the gap portion by the "adhesive portion" composed of the outer peripheral adhesive portion and the partial adhesive portion.

本願発明の「断熱パネルの接着方法、及び直貼り断熱パネルにおける遮音構造」には、次のような効果がある。
(1)増張りによって室内の内法寸法を小さくすることなく、周波数2,000Hz付近の音に対しても効果的に遮音することができ、快適な居住空間を提供できる。
(2)スペーサーを配置することから、確実に計画した塗布厚を確保することができる。またスペーサーの配置により一定の塗布厚が保たれることから、人為的なバラツキが生じ難く、その結果、例えば集合住宅における接着剤の全数検査を回避することができるうえ、躯体コンクリートの振動絶縁が確実に期待できる。
(3)超弾性接着剤を用いることで、躯体コンクリートの振動が断熱パネルに伝達することをさらに抑制することができる。
(4)部分接着部を適切に配置することにより、断熱パネルの曲げ振動を抑制することが可能となる。
(5)外周接着部と部分接着部の形成に「粒子状物質含有の接着剤」を使用すれば、スペーサーの設置を省略することができ、その分手間と材料費を軽減することができる。
The "method of adhering the heat insulating panel and the sound insulating structure in the directly attached heat insulating panel" of the present invention have the following effects.
(1) It is possible to effectively insulate sound in the vicinity of a frequency of 2,000 Hz without reducing the internal dimensions of the room by increasing the tension, and it is possible to provide a comfortable living space.
(2) Since the spacer is arranged, the planned coating thickness can be surely secured. In addition, since a constant coating thickness is maintained by arranging spacers, artificial variation is unlikely to occur, and as a result, for example, 100% inspection of adhesives in apartment buildings can be avoided, and vibration insulation of skeleton concrete can be achieved. You can definitely expect it.
(3) By using the superelastic adhesive, it is possible to further suppress the vibration of the skeleton concrete from being transmitted to the heat insulating panel.
(4) By appropriately arranging the partially bonded portions, it is possible to suppress bending vibration of the heat insulating panel.
(5) If a "particulate matter-containing adhesive" is used to form the outer peripheral adhesive portion and the partial adhesive portion, the installation of the spacer can be omitted, and the labor and material cost can be reduced accordingly.

本願発明の「断熱パネルの接着方法」によって構築された、「直貼り断熱パネルにおける遮音構造」を示す断面図。A cross-sectional view showing a "sound insulation structure in a directly attached heat insulating panel" constructed by the "adhesion method of a heat insulating panel" of the present invention. 断熱パネルの接着面に設けられた外周接着部とスペーサーを示す断熱パネルの正面図。Front view of the heat insulating panel showing the outer peripheral adhesive portion and the spacer provided on the adhesive surface of the heat insulating panel. (a)はスペーサーを設けない場合の外周接着部を示す詳細断面図、(b)はスペーサーを設けた場合の外周接着部を示す詳細断面図。(A) is a detailed cross-sectional view showing an outer peripheral adhesive portion when a spacer is not provided, and (b) is a detailed cross-sectional view showing an outer peripheral adhesive portion when a spacer is provided. (a)は部分接着部が設けられない断熱パネルが振動している状況を示す断面図、(b)は部分接着部が設けられた断熱パネルが振動している状況を示す断面図。(A) is a cross-sectional view showing a situation in which a heat insulating panel having no partially bonded portion is vibrating, and (b) is a cross-sectional view showing a situation in which a heat insulating panel provided with a partially bonded portion is vibrating. (a)は断熱パネルの接着面に設けられた環状の部分接着部を示す断熱パネルの正面図、(b)は断熱パネルの接着面に設けられた線状の部分接着部を示す断熱パネルの正面図。(A) is a front view of the heat insulating panel showing an annular partial adhesive portion provided on the adhesive surface of the heat insulating panel, and (b) is a front view of the heat insulating panel showing a linear partial adhesive portion provided on the adhesive surface of the heat insulating panel. Front view. (a)は、加振周波数と固有周波数の比と、振動伝搬率との関係を示すグラフ図、(b)は、断熱パネルと、従来の接着部、本願発明の接着部それぞれにおける、加振周波数と振動伝搬率との関係を示すグラフ図。(A) is a graph showing the relationship between the ratio of the excitation frequency and the natural frequency and the vibration propagation coefficient, and (b) is the excitation in each of the heat insulating panel, the conventional adhesive portion, and the adhesive portion of the present invention. The graph which shows the relationship between a frequency and a vibration propagation rate. 断熱パネルのみの場合と、本願発明の接着部と断熱パネルの場合における、加振周波数と外壁コンクリートの音圧レベルとの関係を示すグラフ図。The graph which shows the relationship between the excitation frequency and the sound pressure level of the outer wall concrete in the case of only a heat insulating panel and the case of the adhesive part and a heat insulating panel of the present invention. 本願発明による遮音構造の遮音効果を示すグラフ図。The graph which shows the sound insulation effect of the sound insulation structure by this invention. (a)は従来の接着工法を説明するための正面図、(b)は従来の接着工法を説明するための部分断面図。(A) is a front view for explaining the conventional bonding method, and (b) is a partial cross-sectional view for explaining the conventional bonding method. 遮音対象となる音の周波数と、接着工法で断熱パネルを直貼した躯体コンクリートの遮音効果の関係を表すグラフ図。A graph showing the relationship between the frequency of the sound to be sound-insulated and the sound-insulating effect of the skeleton concrete to which the heat insulating panel is directly attached by the adhesive method. 増張り工法を説明する断面図。A cross-sectional view illustrating the extension method. 接着剤で直貼りした断熱パネルに対して音の粒子速度を計測した結果図。Figure of the result of measuring the particle velocity of sound for the heat insulating panel directly attached with adhesive.

本願発明の「断熱パネルの接着方法、及び直貼り断熱パネルにおける遮音構造」の実施形態の一例を、図に基づいて説明する。 An example of the embodiment of the "method of adhering the heat insulating panel and the sound insulating structure in the directly attached heat insulating panel" of the present invention will be described with reference to the drawings.

1.全体概要
図1は、本願発明の「断熱パネルの接着方法」によって構築された、「直貼り断熱パネルにおける遮音構造」を示す断面図である。この図に示すように当該遮音構造は、断熱パネル20が外壁コンクリート10の室内面に接着剤で直貼りされて形成される。なお、断熱パネル20の接着面(外壁コンクリート10側の面)には、接着剤が塗布された外周接着部30と部分接着部60が形成されており、これらによって断熱パネル20は接着される。なお便宜上、外周接着部30と部分接着部60を合わせた領域を「接着部」ということとする。また、同じく断熱パネル20の接着面には、スペーサー40が取り付けられており、あらかじめ計画された空間領域である「間隙部50」が確保される。
1. 1. Overall Overview FIG. 1 is a cross-sectional view showing a "sound insulation structure in a directly attached heat insulating panel" constructed by the "adhesion method of a heat insulating panel" of the present invention. As shown in this figure, the sound insulation structure is formed by directly attaching the heat insulating panel 20 to the indoor surface of the outer wall concrete 10 with an adhesive. An outer peripheral adhesive portion 30 and a partial adhesive portion 60 coated with an adhesive are formed on the adhesive surface of the heat insulating panel 20 (the surface on the outer wall concrete 10 side), and the heat insulating panel 20 is bonded by these. For convenience, the area where the outer peripheral adhesive portion 30 and the partial adhesive portion 60 are combined is referred to as an "adhesive portion". Similarly, a spacer 40 is attached to the adhesive surface of the heat insulating panel 20, and a “gap portion 50” which is a pre-planned space area is secured.

以下、本願発明の「断熱パネルの接着方法、及び直貼り断熱パネルにおける遮音構造」を構成する主な要素ごとに詳しく説明する。 Hereinafter, each of the main elements constituting the "adhesion method of the heat insulating panel and the sound insulating structure in the directly attached heat insulating panel" of the present invention will be described in detail.

2.外周接着部
図2は、断熱パネル20の接着面に設けられた外周接着部30とスペーサー40を示す断熱パネル20の正面図である。この図に示すように外周接着部30は、断熱パネル20の外周線(周縁)に沿った位置で塗布されて形成される。なお、従来の接着幅(例えば100mm)で塗布することもできるし、塗布幅を小さくするため線状すなわちビード状で塗布することもできる。なお、図2に示す外周接着部30は、ビード状の接着剤が1条だけ塗布されることで形成されているが、これに限らずビード状の接着剤を2条(あるいは3条以上)塗布することで外周接着部30を形成してもよい。したがって外周接着部30を形成する際、例えば1本の細管から接着剤を出しながら線状に塗布する手法を採用してもよいし、いわゆるクシ引きによる塗布としてもよい。ビード状とした場合の塗布幅(1条あたり)は、好ましくは5mm〜7mmとされる。また、断熱パネル20の接着面に外周接着部30を形成する手段に代えて、壁面側に外周接着部30を形成することもできる。この場合、壁面のうち断熱パネル20が配置される範囲(以下、「壁面の接着面」という。)をあらかじめ計測して明示(いわゆる、墨出し)しておくとよい。
2. The outer peripheral adhesive portion FIG. 2 is a front view of the heat insulating panel 20 showing the outer peripheral adhesive portion 30 and the spacer 40 provided on the adhesive surface of the heat insulating panel 20. As shown in this figure, the outer peripheral adhesive portion 30 is formed by being applied at a position along the outer peripheral line (periphery) of the heat insulating panel 20. It should be noted that the coating can be applied with a conventional adhesive width (for example, 100 mm), or can be applied in a linear shape, that is, in a bead shape in order to reduce the coating width. The outer peripheral adhesive portion 30 shown in FIG. 2 is formed by applying only one bead-shaped adhesive, but the present invention is not limited to this, and two (or three or more) bead-shaped adhesives are applied. The outer peripheral adhesive portion 30 may be formed by coating. Therefore, when forming the outer peripheral adhesive portion 30, for example, a method of linearly applying the adhesive while discharging the adhesive from one thin tube may be adopted, or a so-called combing method may be adopted. The coating width (per row) in the bead shape is preferably 5 mm to 7 mm. Further, instead of the means for forming the outer peripheral adhesive portion 30 on the adhesive surface of the heat insulating panel 20, the outer peripheral adhesive portion 30 can be formed on the wall surface side. In this case, it is advisable to measure and clearly indicate (so-called marking) the range of the wall surface on which the heat insulating panel 20 is arranged (hereinafter, referred to as “adhesive surface of the wall surface”).

3.スペーサー
スペーサー40は、図2に示すように、断熱パネル20の接着面に点在するように配置され、取り付けられる。なお、スペーサー40も外周接着部30と同様、壁面の接着面に設置することができる。設置するスペーサー40の数は、断熱パネル20の大きさによっては1個とすることもできるが、通常は2個以上(図では8個)とされる。図3は、スペーサー40を取り付ける目的を示す説明図であり、(a)はスペーサー40を設けない場合の外周接着部30を示す詳細断面図、(b)はスペーサー40を設けた場合の外周接着部30を示す詳細断面図である。
3. 3. Spacer As shown in FIG. 2, spacers 40 are arranged and attached so as to be scattered on the adhesive surface of the heat insulating panel 20. The spacer 40 can also be installed on the adhesive surface of the wall surface, like the outer peripheral adhesive portion 30. The number of spacers 40 to be installed may be one depending on the size of the heat insulating panel 20, but is usually two or more (8 in the figure). 3A and 3B are explanatory views showing the purpose of attaching the spacer 40, FIG. 3A is a detailed cross-sectional view showing an outer peripheral adhesive portion 30 when the spacer 40 is not provided, and FIG. 3B is an outer peripheral adhesive when the spacer 40 is provided. It is a detailed cross-sectional view which shows the part 30.

図3(a)の左側では、外壁コンクリート10に断熱パネル20を当接した状態を示し、右側では、断熱パネル20を外壁コンクリート10方向に押し付けた状態を示している。この図から分かるように、断熱パネル20を押し付けると外周接着部30は容易に潰され、すなわち外周接着部30の計画厚が維持されず、その結果、音の伝搬を緩衝する間隙部50が十分確保されなくなる(図3(a)右側の矢印)。 The left side of FIG. 3A shows a state in which the heat insulating panel 20 is in contact with the outer wall concrete 10, and the right side shows a state in which the heat insulating panel 20 is pressed in the direction of the outer wall concrete 10. As can be seen from this figure, when the heat insulating panel 20 is pressed, the outer peripheral adhesive portion 30 is easily crushed, that is, the planned thickness of the outer peripheral adhesive portion 30 is not maintained, and as a result, the gap portion 50 that buffers the sound propagation is sufficient. It will not be secured (arrow on the right side of FIG. 3A).

一方、図3(b)に示すように、断熱パネル20の接着面にスペーサー40を取り付けると、断熱パネル20を押し付けてもスペーサー40の効果で外周接着部30が潰されることはなく、すなわち外周接着部30の計画厚は維持され、音の伝搬を緩衝する間隙部50が十分確保される結果となる。なお、外壁コンクリート10表面には不陸(通常3mm程度)が生じているため、スペーサー40の厚さは、外周接着部30の計画厚より例えば3mm程度薄くするとよい(例えば外周接着部30の塗布厚を5mmとした場合、スペーサー40の厚さは2mmとする)。また、スペーサー40は外周接着部30と部分接着部60の接着剤が硬化するまで計画した塗布厚を確保することが目的であるため、スペーサー40の材料としては、接着剤が硬化するまでの間想定される荷重に対して容易に変形しない程度のものを用いるとよい。 On the other hand, as shown in FIG. 3B, when the spacer 40 is attached to the adhesive surface of the heat insulating panel 20, the outer peripheral adhesive portion 30 is not crushed by the effect of the spacer 40 even if the heat insulating panel 20 is pressed, that is, the outer circumference. The planned thickness of the bonded portion 30 is maintained, and the result is that a gap portion 50 that buffers the propagation of sound is sufficiently secured. Since the surface of the outer wall concrete 10 is uneven (usually about 3 mm), the thickness of the spacer 40 may be thinner than the planned thickness of the outer peripheral adhesive portion 30 by, for example, about 3 mm (for example, coating of the outer peripheral adhesive portion 30). When the thickness is 5 mm, the thickness of the spacer 40 is 2 mm). Further, since the purpose of the spacer 40 is to secure a planned coating thickness until the adhesive between the outer peripheral adhesive portion 30 and the partial adhesive portion 60 is cured, the material of the spacer 40 is until the adhesive is cured. It is advisable to use a material that does not easily deform with respect to the assumed load.

スペーサー40に代えて、接着部に粒子状の物質(以下、単に「粒子状物質」という。)を含有させることで、計画した塗布厚を確保することもできる。具体的には、粒子状物質を含有する接着剤を塗布することによって外周接着部30と部分接着部60を形成する。粒子状物質が含まれていることから塗布された接着剤は容易に潰されることがなく、いわば接着剤自身で計画した塗布厚を確保するわけであり、換言すれば接着部がスペーサー40を兼用するわけである。なお、ここで用いる粒子状物質としては、発泡ポリスチレンビーズ、アクリルビーズ、ウレタンビーズ等の有機樹脂ビーズ、ガラスビーズ、セラミックビーズ等の無機ビーズ、合成ゴム粒子、有機バルーン、ガラスバルーン、シラスバルーン等が例示できる。また、スペーサーとしての機能を効果的に発現させるためには、粒子径が1mm以上の粒子状物質を使用することが好ましい。 By incorporating a particulate matter (hereinafter, simply referred to as “particulate matter”) in the adhesive portion instead of the spacer 40, the planned coating thickness can be secured. Specifically, the outer peripheral adhesive portion 30 and the partial adhesive portion 60 are formed by applying an adhesive containing a particulate matter. Since the adhesive contains particulate matter, the applied adhesive is not easily crushed, so to speak, the coating thickness planned by the adhesive itself is secured. In other words, the adhesive portion also serves as the spacer 40. That's why. Examples of the particulate substance used here include organic resin beads such as expanded polystyrene beads, acrylic beads and urethane beads, inorganic beads such as glass beads and ceramic beads, synthetic rubber particles, organic balloons, glass balloons and silas balloons. It can be illustrated. Further, in order to effectively exhibit the function as a spacer, it is preferable to use a particulate matter having a particle size of 1 mm or more.

4.部分接着部
図2にも示すように外周接着部30は、断熱パネル20の外周付近に設けられる。つまり断熱パネル20は、その外周付近では外壁コンクリート10に拘束されるものの、大部分は壁面直角方向に対してある程度自由に挙動することができる。図4(a)は、部分接着部が設けられない断熱パネル20が振動している状況を示す断面図である。この図に示すように、断熱パネル20は上部にある外周接着部30によって外壁コンクリート10に拘束されているが、その他の部分では図の矢印方向(左右方向)に自由であり、そのため外部からの振動波を受けると断熱パネル20は振動して、波形を呈する(以下、「曲げ波を形成する」という。)。
4. Partial adhesive portion As shown in FIG. 2, the outer peripheral adhesive portion 30 is provided near the outer periphery of the heat insulating panel 20. That is, although the heat insulating panel 20 is restrained by the outer wall concrete 10 in the vicinity of its outer circumference, most of the heat insulating panel 20 can behave freely to some extent in the direction perpendicular to the wall surface. FIG. 4A is a cross-sectional view showing a situation in which the heat insulating panel 20 having no partially bonded portion is vibrating. As shown in this figure, the heat insulating panel 20 is restrained by the outer wall concrete 10 by the outer peripheral adhesive portion 30 at the upper part, but the other parts are free in the arrow direction (left-right direction) in the figure, and therefore from the outside. When it receives a vibration wave, the heat insulating panel 20 vibrates and exhibits a waveform (hereinafter, referred to as "forming a bending wave").

断熱パネル20が振動すると、それが固体音となって室内に放出されるため、当然ながら遮音効果は低下する。そこで、断熱パネル20の振動を防ぐべく部分接着部が形成される。図4(b)は、部分接着部60が設けられた断熱パネルが振動している状況を示す断面図である。この図に示す断熱パネル20は、外周接着部30に加え部分接着部60によっても外壁コンクリート10に拘束されており、曲げ波の形成が抑えられていることがわかる。図5は、断熱パネル20の接着面に設けられた部分接着部60を示す断熱パネル20の正面図である。この図に示すように、断熱パネル20の接着面に点在するように部分接着部60は形成される。あるいは、外周接着部30と同様、壁面の接着面に部分接着部60を形成してもよい。断熱パネル20の大きさによっては1箇所のみ部分接着部60を形成することもできるが、通常は2箇所以上(図5(a)では6箇所)に形成される。 When the heat insulating panel 20 vibrates, it becomes a solid sound and is emitted into the room, so that the sound insulation effect is naturally lowered. Therefore, a partially bonded portion is formed to prevent vibration of the heat insulating panel 20. FIG. 4B is a cross-sectional view showing a situation in which the heat insulating panel provided with the partially bonded portion 60 is vibrating. It can be seen that the heat insulating panel 20 shown in this figure is restrained by the outer wall concrete 10 not only by the outer peripheral adhesive portion 30 but also by the partial adhesive portion 60, and the formation of bending waves is suppressed. FIG. 5 is a front view of the heat insulating panel 20 showing the partially bonded portion 60 provided on the adhesive surface of the heat insulating panel 20. As shown in this figure, the partial adhesive portions 60 are formed so as to be scattered on the adhesive surface of the heat insulating panel 20. Alternatively, as with the outer peripheral adhesive portion 30, a partial adhesive portion 60 may be formed on the adhesive surface of the wall surface. Depending on the size of the heat insulating panel 20, the partial adhesive portion 60 may be formed only at one location, but usually it is formed at two or more locations (six locations in FIG. 5A).

部分接着部60は、外周接着部30と同様、領域内を面状に塗布(いわゆるベタ塗り)してもよいし、線状すなわちビード状に塗布されてもよい。ビード状とした場合、外周接着部30で説明したように好ましくは塗布幅(1条あたり)が5mm〜7mmとされる。またこの場合、図5に示すように部分的な範囲で環状を描くように、あるいは単に線状に塗布することもできる。図5(a)では環状の部分接着部を示し、(b)では線状の部分接着部を示している。なおここで環状とは、閉鎖領域を形成するように周回する線形形状のことを意味し、円形に限らず、楕円形や、四角形を含む多角形など様々な形状を指す。例えば図5では、中心部に略四角形の部分接着部60が形成され、その周辺には略円形の部分接着部60が形成されている。 Similar to the outer peripheral adhesive portion 30, the partial adhesive portion 60 may be applied in a planar shape (so-called solid coating) in the region, or may be applied in a linear shape, that is, in a bead shape. In the case of a bead shape, the coating width (per row) is preferably 5 mm to 7 mm as described in the outer peripheral adhesive portion 30. Further, in this case, as shown in FIG. 5, the coating can be applied in a circular shape in a partial range or simply in a linear shape. FIG. 5A shows an annular partially bonded portion, and FIG. 5B shows a linear partially bonded portion. Here, the circular shape means a linear shape that orbits so as to form a closed region, and refers not only to a circular shape but also to various shapes such as an ellipse and a polygon including a quadrangle. For example, in FIG. 5, a substantially quadrangular partial adhesive portion 60 is formed in the central portion, and a substantially circular partial adhesive portion 60 is formed in the periphery thereof.

既述のとおり、部分接着部60は断熱パネル20が曲げ波を形成することを防ぐ目的で設けられる。そこで、断熱パネル20の曲げ波について説明する。断熱パネル20は、おもに間隙部で曲げ波を形成し、その共鳴周波数は次式によって求められる。
=1/2π×(Ka/m)0.5 (式1−1)
Ka=K/h (式1−2)
ただし、fは間隙部の共鳴周波数、πは円周率、Kaは間隙部のバネ定数、mは断熱パネル20の単位面積当たりの質量、hは間隙部の厚さ、Kは空気のバネ定数で1.4×10kg/mである。一般的な仕様から、m=6kg/m、K=1.4×10kg/m、h=0.003mとすると、fは444Hzとなる。つまり一般的な断熱パネル20は、400〜500Hzで曲げ波を形成しやすいことが分かる。
As described above, the partial adhesive portion 60 is provided for the purpose of preventing the heat insulating panel 20 from forming bending waves. Therefore, the bending wave of the heat insulating panel 20 will be described. The heat insulating panel 20 forms a bending wave mainly in the gap, and its resonance frequency is obtained by the following equation.
f 0 = 1 / 2π × (Ka / m) 0.5 (Equation 1-1)
Ka = K 0 / h (Equation 1-2)
However, f 0 is the resonance frequency of the gap, π is the pi, Ka is the spring constant of the gap, m is the mass per unit area of the heat insulating panel 20, h is the thickness of the gap, and K 0 is the air. is 1.4 × 10 5 kg / m in spring constant. From the general specifications, m = 6kg / m 2, K 0 = 1.4 × 10 5 kg / m, when the h = 0.003m, f 0 becomes 444Hz. That is, it can be seen that the general heat insulating panel 20 tends to form a bending wave at 400 to 500 Hz.

さらに本願発明者らは、断熱パネル20の曲げ波の波長が300mm程度であることを究明した。最もよく採用される断熱パネル20の幅(図5の横寸法)は600mm〜900mmであり、例えば幅600mmの断熱パネル20を採用した場合、曲げ波の波長は断熱パネル20幅の概ね半分である。換言すれば、断熱パネル20の幅は曲げ波の2波長分であり、曲げ波の半波長(ひと山)は断熱パネル20の幅の1/4となる。あるいは幅900mmの断熱パネル20を採用した場合、曲げ波の半波長は断熱パネル20の幅の1/6となる。したがって、隣接する個々の部分接着部60の間隔が、断熱パネル20幅の1/6以上であって1/4以下となるように配置すれば、断熱パネル20の曲げ波形成を抑制できるため好適となる。また、断熱パネル20に設けられる複数の部分接着部60は、左右対称や上下対称、あるいは断熱パネル20中心の点対象となる整列配置よりも、線対称や点対称ではない無作為配置(ランダム配置)とした方が、断熱パネル20の曲げ波形成をさらに抑制できることも本願発明者らは確認している。 Furthermore, the inventors of the present application have found that the wavelength of the bending wave of the heat insulating panel 20 is about 300 mm. The width of the heat insulating panel 20 most often used (horizontal dimension in FIG. 5) is 600 mm to 900 mm. For example, when the heat insulating panel 20 having a width of 600 mm is used, the wavelength of the bending wave is approximately half the width of the heat insulating panel 20. .. In other words, the width of the heat insulating panel 20 is two wavelengths of the bending wave, and the half wavelength (one mountain) of the bending wave is 1/4 of the width of the heat insulating panel 20. Alternatively, when the heat insulating panel 20 having a width of 900 mm is adopted, the half wavelength of the bending wave is 1/6 of the width of the heat insulating panel 20. Therefore, if the distance between the adjacent partial adhesive portions 60 is arranged so as to be ⅙ or more and 1/4 or less of the width of the heat insulating panel 20, it is preferable because the formation of bending waves of the heat insulating panel 20 can be suppressed. It becomes. Further, the plurality of partially bonded portions 60 provided on the heat insulating panel 20 are randomly arranged (randomly arranged) that are not line-symmetrical or point-symmetrical, rather than left-right symmetry, vertical symmetry, or a point-symmetrical alignment arrangement at the center of the heat insulating panel 20. ), The inventors of the present application have confirmed that the formation of bending waves in the heat insulating panel 20 can be further suppressed.

5.接着剤
これまでの接着剤は、断熱ボードの引っ張り強度のみ考慮されており、接着剤硬化後の弾性性能(バネ定数)はメーカーによってまちまちであり、接着剤のショア硬度もばらついていた。一方、本願発明者らは、接着剤のバネ定数が小さくなると躯体コンクリートの振動が断熱パネル20へ伝わる程度が小さくなることを究明した。つまり、変形し易い接着剤の方が、躯体コンクリートの振動を断熱パネルに伝達し難くすることを確認したわけである。一方、バネ定数が小さくても、塗布厚が極端に薄くなると躯体コンクリートの振動が断熱パネルに伝わり易くなる。しかしながら、本願発明ではスペーサー40を配置した効果で接着剤の塗布厚は薄くならず、したがって接着剤本来のバネ定数が維持される。
5. Adhesives Up to now, adhesives have considered only the tensile strength of the heat insulating board, and the elastic performance (spring constant) after curing of the adhesive varies depending on the manufacturer, and the shore hardness of the adhesive also varies. On the other hand, the inventors of the present application have found that when the spring constant of the adhesive becomes smaller, the degree to which the vibration of the skeleton concrete is transmitted to the heat insulating panel 20 becomes smaller. In other words, it was confirmed that the easily deformable adhesive makes it more difficult to transmit the vibration of the skeleton concrete to the heat insulating panel. On the other hand, even if the spring constant is small, if the coating thickness becomes extremely thin, the vibration of the skeleton concrete is easily transmitted to the heat insulating panel. However, in the present invention, the coating thickness of the adhesive is not reduced due to the effect of arranging the spacer 40, and therefore the original spring constant of the adhesive is maintained.

ここまで説明したとおり、「変形し易い」という性能を持つ接着剤(以下、「超弾性接着剤」という。)を用いると、本願発明の遮音効果がさらに期待でき極めて好適となる。ここで「変形し易い」とは、その弾性率が従来の弾性接着剤より大幅に小さい(例えば1/5程度)ことを意味し、具体的には従来の弾性接着剤の弾性率が5.0×10N/m程度であることから、例えば弾性係数が1.0×10N/m程度の接着剤は「変形し易い」ものであり、すなわち超弾性接着剤である。なお、ここでいう弾性率及び弾性係数とは、動的粘弾性測定(DMA:Dynamic Mechanical Analysis)により測定した貯蔵弾性率のことである。 As described above, the use of an adhesive having the property of being "easily deformed" (hereinafter referred to as "superelastic adhesive") is extremely suitable because the sound insulation effect of the present invention can be further expected. Here, "easily deformed" means that the elastic modulus is significantly smaller than that of the conventional elastic adhesive (for example, about 1/5), and specifically, the elastic modulus of the conventional elastic adhesive is 5. Since it is about 0 × 10 7 N / m 2 , for example, an adhesive having an elastic modulus of about 1.0 × 10 7 N / m 2 is “easily deformable”, that is, it is a superelastic adhesive. The elastic modulus and elastic modulus referred to here are storage elastic moduli measured by dynamic viscoelasticity measurement (DMA: Dynamic Mechanical Analysis).

6.振動伝達率
既述のとおり、接着された断熱パネル20は特に2,000Hz帯域付近の音に対して、外壁コンクリート10の遮音効果を劣化させる。加振周波数によって振動伝搬率が変化することは、一般に知られている。図6(a)は、加振周波数と固有周波数の比と、振動伝搬率Tとの関係を示すグラフ図であり、当業者に広く知られた防振理論に基づいて描かれた図である。防振理論によれば、最大の周波数を示す「共鳴周波数f」が決まると、加振周波数(加振周波数と固有周波数との比)に応じた振動伝搬率Tが定められる。
6. Vibration Transmissibility As described above, the bonded heat insulating panel 20 deteriorates the sound insulation effect of the outer wall concrete 10 particularly with respect to sound in the vicinity of the 2,000 Hz band. It is generally known that the vibration propagation rate changes depending on the excitation frequency. FIG. 6A is a graph showing the relationship between the ratio of the excitation frequency and the natural frequency and the vibration propagation factor T, and is a diagram drawn based on the vibration isolation theory widely known to those skilled in the art. .. According to the vibration isolation theory, when the "resonance frequency f" indicating the maximum frequency is determined, the vibration propagation factor T corresponding to the vibration frequency (ratio of the vibration frequency to the natural frequency) is determined.

図6(b)は、加振周波数と振動伝搬率Tとの関係を示すグラフ図であり、断熱パネル20と、本願発明の接着部、従来の接着部、それぞれの場合を示している。なお従来の接着部とは、従来の手法や接着剤を用いて塗布した領域のことである。 FIG. 6B is a graph showing the relationship between the excitation frequency and the vibration propagation coefficient T, and shows the case of the heat insulating panel 20, the bonded portion of the present invention, and the conventional bonded portion, respectively. The conventional adhesive portion is an area coated by a conventional method or an adhesive.

図6(b)に示すように、断熱パネル20の共鳴周波数fpは、やはり加振周波数が2,000Hz付近で生じており、ここでの伝搬率Tpは1を超えている。また、従来の接着部の共鳴周波数fcは、加振周波数が2,000Hzを大きく超えた帯域で生じており、加振周波数2,000Hzにおける伝搬率Tcは1を超えている。断熱パネル20のうち従来の接着部が設けられた箇所の伝搬率Tpcは、断熱パネル20の伝搬率Tpと従来の接着部の伝搬率Tcの積で求められ、したがって加振周波数2,000Hzにおける伝搬率Tpcは1を上回る。つまり、加振周波数2,000Hzにおける断熱パネル20の音伝達性能を、従来の接着部が増幅しているわけである。 As shown in FIG. 6B, the resonance frequency fp of the heat insulating panel 20 also has an excitation frequency of around 2,000 Hz, and the propagation frequency Tp here exceeds 1. Further, the resonance frequency fc of the conventional adhesive portion is generated in a band where the excitation frequency greatly exceeds 2,000 Hz, and the propagation rate Tc at the excitation frequency of 2,000 Hz exceeds 1. The propagation factor Tpc of the portion of the heat insulating panel 20 where the conventional adhesive portion is provided is obtained by the product of the propagation factor Tp of the heat insulating panel 20 and the propagation factor Tc of the conventional adhesive portion, and therefore at an excitation frequency of 2,000 Hz. The propagation factor Tpc is greater than 1. That is, the sound transmission performance of the heat insulating panel 20 at the excitation frequency of 2,000 Hz is amplified by the conventional adhesive portion.

一方、本願発明の接着部の共鳴周波数fbは、加振周波数が2,000Hzを大きく下回っており、加振周波数2,000Hzにおける伝搬率Tbは1未満となっている。したがって本願発明の接着部の共鳴周波数fbの大きさによっては、加振周波数2,000Hzにおける伝搬率Tpb(断熱パネル20の伝搬率Tpと本願発明の接着部の伝搬率Tbの積)は1を下回る。つまり、加振周波数2,000Hzにおける断熱パネル20の音伝達性能を、本願発明の接着部が抑制することができるわけである。 On the other hand, the resonance frequency fb of the bonded portion of the present invention has a vibration frequency much lower than 2,000 Hz, and a propagation rate Tb at a vibration frequency of 2,000 Hz is less than 1. Therefore, depending on the magnitude of the resonance frequency fb of the adhesive portion of the present invention, the propagation factor Tpb (the product of the propagation ratio Tp of the heat insulating panel 20 and the propagation ratio Tb of the adhesive portion of the present invention) at the excitation frequency of 2,000 Hz is 1. Below. That is, the adhesive portion of the present invention can suppress the sound transmission performance of the heat insulating panel 20 at the excitation frequency of 2,000 Hz.

加振周波数2,000Hzにおける伝搬率Tpbを小さくするには、加振周波数2,000Hzにおける本願発明の接着部の伝搬率Tbを小さくすればよく、そのためには本願発明の接着部の共鳴周波数fbが生ずる加振周波数を小さくするとよい。ここで接着部の共鳴周波数fbは、防振理論により、接着剤のバネ定数Kに比例し、接着部が負担する断熱パネル20の部分質量M’と、接着剤の塗布厚tに反比例する。したがって、接着剤のバネ定数Kが小さいほど接着部の共鳴周波数fbは小さくなり、つまり加振周波数2,000Hzにおける伝搬率Tpbも小さくなり、加振周波数2,000Hzにおける音伝達を抑えることができる。この点からも、本願発明に用いる接着剤は、超弾性接着剤が適していることが理解できる。 In order to reduce the propagation rate Tpb at the excitation frequency of 2,000 Hz, the propagation rate Tb of the adhesive portion of the present invention at the excitation frequency of 2,000 Hz may be reduced, and for that purpose, the resonance frequency fb of the adhesive portion of the present invention may be reduced. It is advisable to reduce the excitation frequency at which Here, the resonance frequency fb of the adhesive portion is proportional to the spring constant K of the adhesive according to the vibration isolation theory, and is inversely proportional to the partial mass M'of the heat insulating panel 20 borne by the adhesive portion and the coating thickness t of the adhesive. Therefore, the smaller the spring constant K of the adhesive, the smaller the resonance frequency fb of the adhesive portion, that is, the smaller the propagation rate Tpb at the excitation frequency of 2,000 Hz, and the sound transmission at the excitation frequency of 2,000 Hz can be suppressed. .. From this point as well, it can be understood that a superelastic adhesive is suitable as the adhesive used in the present invention.

接着剤のバネ定数Kに限らず、接着部が負担する断熱パネル20の部分質量M’や、接着剤の塗布厚tを適切に設定すれば、接着部の共鳴周波数fbを小さくすることができる。なお、加振周波数2,000Hzにおける音伝達を抑えることを考えれば、加振周波数2,000Hzにおける伝搬率Tpbが1未満となるような接着部の伝搬率Tbとするとよい。換言すれば、加振周波数2,000Hzにおける伝搬率Tpbが1未満となるような接着部の共鳴周波数fbを定め、これに合わせて接着剤のバネ定数K、接着部が負担する断熱パネル20の部分質量M’、接着剤の塗布厚tの組み合わせを設定し、これに基づいて接着部(外周接着部30と部分接着部60)を形成すると良い。具体的には、使用する接着剤(超弾性接着剤)、部分接着部60の箇所数と配置、接着剤の塗布厚あるいはスペーサー40の厚さ、などを種々組み合わせることで、適切な接着部を形成するとよい。 The resonance frequency fb of the adhesive portion can be reduced by appropriately setting the partial mass M'of the heat insulating panel 20 borne by the adhesive portion and the coating thickness t of the adhesive, not limited to the spring constant K of the adhesive. .. Considering that sound transmission at a vibration frequency of 2,000 Hz is suppressed, it is preferable to set the propagation rate Tb of the adhesive portion so that the propagation rate Tpb at the vibration frequency of 2,000 Hz is less than 1. In other words, the resonance frequency fb of the adhesive portion is determined so that the propagation coefficient Tpb at the excitation frequency of 2,000 Hz is less than 1, and the spring constant K of the adhesive and the heat insulating panel 20 borne by the adhesive portion are set accordingly. It is preferable to set a combination of the partial mass M'and the coating thickness t of the adhesive, and to form the adhesive portion (the outer peripheral adhesive portion 30 and the partial adhesive portion 60) based on this. Specifically, an appropriate adhesive portion can be obtained by variously combining the adhesive (superelastic adhesive) to be used, the number and arrangement of the partial adhesive portions 60, the coating thickness of the adhesive or the thickness of the spacer 40, and the like. It is good to form.

さらに本願発明者らは、断熱パネル20と接着部を一体の部材(以下、「パネル接着部合成材」という。)として見たときの共鳴周波数fsが、断熱パネル20の共鳴周波数fpよりも小さい値となれば、加振周波数2,000Hzにおける音圧レベルは従来よりも低下することを見出した。図7は、加振周波数と外壁コンクリートの音圧レベルとの関係を示すグラフ図であり、断熱パネルのみの場合と、パネル接着部合成材とした場合を示している。この図に示すように、パネル接着部合成材の共鳴周波数fsを断熱パネル20の共鳴周波数fpより小さくしたことで、加振周波数2,000Hzにおける音圧レベルは断熱パネル20のみの場合よりも著しく低減されている。 Further, the inventors of the present application have a resonance frequency fs smaller than the resonance frequency fp of the heat insulating panel 20 when the heat insulating panel 20 and the bonded portion are viewed as an integral member (hereinafter, referred to as “panel bonded portion synthetic material”). It was found that the sound pressure level at the excitation frequency of 2,000 Hz is lower than the conventional value. FIG. 7 is a graph showing the relationship between the excitation frequency and the sound pressure level of the outer wall concrete, and shows the case where only the heat insulating panel is used and the case where the panel adhesive portion is made of a synthetic material. As shown in this figure, by making the resonance frequency fs of the panel adhesive portion synthetic material smaller than the resonance frequency fp of the heat insulating panel 20, the sound pressure level at the excitation frequency of 2,000 Hz is significantly higher than that of the heat insulating panel 20 alone. It has been reduced.

ところで、パネル接着部合成材の共鳴周波数fsは下式で求められる。
fs=1/(2×π)×(K/M)0.5 (式2−1)
1/K=1/K1+1/K2 (式2−2)
ここで、πは円周率、Kはパネル接着部合成材のバネ定数(断熱パネル20と接着部の合成バネ定数)、Mは接着部が負担する断熱パネル20の部分質量(以下、「負担部分質量」という。)である。また、K1は断熱パネル20のバネ定数、K2は接着部のバネ定数である。なお、一般に防振ゴムでは形状係数(直径/厚みなど)がバネ定数に影響を与えることが知られている。同様にパネル接着部のバネ定数K2は、接着剤の塗布形状(断面視における縦横比など)に影響を受けると想定できる。これらより具体的には、K2は塗布厚(t)/塗布巾(l)に反比例し負担部分質量(M)に比例し、t/lが0.05以上(例えば塗布厚1mmであれば塗布幅20mm程度)であれば、fsがfp/20.5以下になることを本願発明者らは確認している。
By the way, the resonance frequency fs of the panel adhesive portion synthetic material is obtained by the following equation.
fs = 1 / (2 × π) × (K / M) 0.5 (Equation 2-1)
1 / K = 1 / K1 + 1 / K2 (Equation 2-2)
Here, π is the pi, K is the spring constant of the composite material of the panel adhesive portion (synthetic spring constant of the heat insulating panel 20 and the adhesive portion), and M is the partial mass of the heat insulating panel 20 borne by the adhesive portion (hereinafter, “burden”). It is called "partial mass"). Further, K1 is the spring constant of the heat insulating panel 20, and K2 is the spring constant of the bonded portion. It is generally known that the shape coefficient (diameter / thickness, etc.) of anti-vibration rubber affects the spring constant. Similarly, it can be assumed that the spring constant K2 of the panel adhesive portion is affected by the coating shape of the adhesive (aspect ratio in the cross-sectional view, etc.). More specifically, K2 is inversely proportional to the coating thickness (t) / coating width (l) and proportional to the burden portion mass (M), and if t / l is 0.05 or more (for example, if the coating thickness is 1 mm, the coating is applied). if the width of about 20 mm), the present inventors found that fs is fp / 2 0.5 or less has been confirmed.

式2−1より、パネル接着部合成材のバネ定数Kが小さいほどパネル接着部合成材の共鳴周波数fsは小さい値を示し、負担部分質量Mが大きいほどパネル接着部合成材の共鳴周波数fsは小さい値を示す。また式2−2より、接着部のバネ定数K2が小さいほどパネル接着部合成材Kが小さくなり、その結果パネル接着部合成材の共鳴周波数fsは小さい値を示す。 From Equation 2-1 the smaller the spring constant K of the panel adhesive part synthetic material, the smaller the resonance frequency fs of the panel adhesive part synthetic material, and the larger the burden portion mass M, the smaller the resonance frequency fs of the panel adhesive part synthetic material. Indicates a small value. Further, from Equation 2-2, the smaller the spring constant K2 of the bonded portion, the smaller the panel bonded portion synthetic material K, and as a result, the resonance frequency fs of the panel bonded portion synthetic material shows a small value.

ここまで述べたように、加振周波数2,000Hzにおける音圧レベルを低減する(すなわち遮音欠損を小さくする)ためには、パネル接着部合成材の共鳴周波数fsが断熱パネルの共鳴周波数fpよりも小さい値となるような接着部を形成するとよい。換言すれば、パネル接着部合成材の共鳴周波数fsが断熱パネルの共鳴周波数fpよりも小さい値となるように、「接着部のバネ定数K2と負担部分質量Mの組み合わせ」を選択し、その組み合わせによって接着部を形成するとよい。 As described above, in order to reduce the sound pressure level at the excitation frequency of 2,000 Hz (that is, to reduce the sound insulation defect), the resonance frequency fs of the panel adhesive portion synthetic material is larger than the resonance frequency fp of the heat insulating panel. It is preferable to form an adhesive portion having a small value. In other words, "combination of the spring constant K2 of the adhesive portion and the load portion mass M" is selected so that the resonance frequency fs of the panel adhesive portion synthetic material becomes smaller than the resonance frequency fp of the heat insulating panel, and the combination thereof. It is advisable to form an adhesive portion by.

7.放射面積
加振周波数2,000Hzにおける音圧レベルを低減する(すなわち遮音欠損を小さくする)には、放射面積Sbを小さくすることでも実現できる。この放射面積Sbは下式で求められる。
Sb=L×π×r/4/t (式3−1)
そして、加振周波数fにおける断熱パネル20の振動レベルをVAL、放射係数をH、室内の吸音力をAとしたとき、室内の騒音レベルSPLは下式で求められる。
SPL(f)=VAL(f)−20×Log(f)+10×Log(H)+10×Log(Sb/A)+36 (式3−2)
上式が示すように、放射面積Sbが小さいと室内の騒音レベルSPLは小さい値を示すことから、放射面積Sbが小さくなるように接着部を形成することで、加振周波数2,000Hzにおける音圧レベルを低減することもできる。
7. Radiation area Reducing the sound pressure level at the excitation frequency of 2,000 Hz (that is, reducing the sound insulation defect) can also be realized by reducing the radiation area Sb. This radiation area Sb is calculated by the following equation.
Sb = L × π × r 2 /4 / t s (Equation 3-1)
Then, when the vibration level of the heat insulating panel 20 at the excitation frequency f is VAL, the radiation coefficient is H, and the sound absorption force in the room is A, the noise level SPL in the room can be obtained by the following equation.
SPL (f) = VAL (f) -20 x Log (f) + 10 x Log (H) + 10 x Log (Sb / A) +36 (Equation 3-2)
As shown in the above equation, when the radiation area Sb is small, the noise level SPL in the room shows a small value. Therefore, by forming the adhesive portion so that the radiation area Sb is small, the sound at the excitation frequency of 2,000 Hz The pressure level can also be reduced.

8.実験結果
以下、本願発明の効果を確認するために本願の発明者が実施した実験結果について説明する。
8. Experimental Results Hereinafter, the experimental results carried out by the inventor of the present application in order to confirm the effect of the invention of the present application will be described.

図8は、本願発明による遮音構造の遮音効果を示すグラフ図であり、横軸に騒音対象となる音の周波数を、縦軸に当該遮音構造が遮音し得る音圧レベルを示している。この図と図10を比較すると分かるように、従来に比べ本願発明では、周波数2,000(2K)Hz付近の音に対して遮音効果が低下していない。すなわち本願発明が、あらゆる周波数の音に対して効果的に遮音し得ることが理解できる。 FIG. 8 is a graph showing the sound insulation effect of the sound insulation structure according to the present invention. The horizontal axis shows the frequency of the sound subject to noise, and the vertical axis shows the sound pressure level at which the sound insulation structure can insulate. As can be seen by comparing this figure with FIG. 10, in the present invention, the sound insulation effect is not deteriorated for the sound having a frequency around 2,000 (2K) Hz as compared with the conventional invention. That is, it can be understood that the present invention can effectively insulate sound of any frequency.

本願発明の「断熱パネルの接着方法、及び直貼り断熱パネルにおける遮音構造」は、マンションなどの集合住宅や、戸建住宅、オフィスビルといった建築物で利用できるほか、校舎や倉庫などあらゆる建築物で利用することができる。放送施設や映画館、コンサートホールなど放射音による騒音が妨げとなる建築物には、特に有効である。 The "method of adhering heat insulating panels and sound insulation structure in directly attached heat insulating panels" of the present invention can be used in apartment buildings such as condominiums, detached houses, office buildings, and all other buildings such as school buildings and warehouses. It can be used. It is especially effective for buildings such as broadcasting facilities, movie theaters, and concert halls where the noise caused by radiated sound is an obstacle.

10 外壁コンクリート
20 断熱パネル
30 外周接着部
40 スペーサー
50 間隙部
60 部分接着部
CW 室内壁
AD 接着剤
DP 断熱パネル
PI 増張りパネル
10 Outer wall concrete 20 Insulation panel 30 Outer peripheral adhesive 40 Spacer 50 Gap 60 Partial adhesive CW Interior wall AD Adhesive DP Insulation panel PI Insulation panel

Claims (4)

外周接着部と部分接着部からなる接着部によって、壁面に断熱パネルを直貼りする方法であって、
前記断熱パネル又は前記壁面の接着面の外周線に沿って接着剤を塗布することで、前記外周接着部を形成する外周接着部形成工程と、
前記断熱パネル又は前記壁面の接着面の内部の1又は2箇所以上に接着剤を塗布することで、部分的に接着剤が塗布された前記部分接着部を形成する部分接着部形成工程と、
前記断熱パネル又は前記壁面の接着面に、1又は2以上のスペーサーを取り付けるスペーサー設置工程と、を備え、
前記断熱パネルの前記接着部を前記壁面に当接し、又は前記断熱パネルを前記壁面の前記接着部に当接し、前記スペーサーにより前記壁面と前記断熱パネルとの間に間隙部を形成したうえで、前記接着部によって前記断熱パネルを前記壁面に直貼り
前記断熱パネルのバネ定数をK1、前記接着部のバネ定数をK2としたとき、前記断熱パネルと前記接着部の合成バネ定数Kが次式で求められ、
1/K=1/K1+1/K2
さらに、前記接着部が負担する前記断熱パネルの質量である負担部分質量をMとしたとき、前記断熱パネルと前記接着部の共鳴周波数fsが次式で求められ、
fs=1/(2×π)×(K/M) 0.5
前記断熱パネルと前記接着部の共鳴周波数fsが、前記断熱パネルの共鳴周波数fpよりも小さい値となるように選択された、前記接着部のバネ定数K2、及び前記負担部分質量Mの組み合わせによって前記接着部を形成する、
ことを特徴とする断熱パネルの接着方法。
It is a method of directly attaching a heat insulating panel to the wall surface by an adhesive portion consisting of an outer peripheral adhesive portion and a partial adhesive portion.
An outer peripheral adhesive portion forming step of forming the outer peripheral adhesive portion by applying an adhesive along the outer peripheral line of the adhesive surface of the heat insulating panel or the wall surface.
A partial adhesive portion forming step of forming the partial adhesive portion to which the adhesive is partially applied by applying the adhesive to one or more places inside the adhesive surface of the heat insulating panel or the wall surface.
A spacer installation step of attaching one or more spacers to the heat insulating panel or the adhesive surface of the wall surface is provided.
The adhesive portion of the heat insulating panel is brought into contact with the wall surface, or the heat insulating panel is brought into contact with the adhesive portion of the wall surface, and a gap is formed between the wall surface and the heat insulating panel by the spacer. The heat insulating panel is directly attached to the wall surface by the adhesive portion, and the heat insulating panel is directly attached to the wall surface.
When the spring constant of the heat insulating panel is K1 and the spring constant of the bonded portion is K2, the combined spring constant K of the heat insulating panel and the bonded portion is obtained by the following equation.
1 / K = 1 / K1 + 1 / K2
Further, when the burdened portion mass, which is the mass of the heat insulating panel borne by the adhesive portion, is M, the resonance frequency fs between the heat insulating panel and the adhesive portion is obtained by the following equation.
fs = 1 / (2 x π) x (K / M) 0.5
The combination of the spring constant K2 of the adhesive portion and the burden portion mass M selected so that the resonance frequency fs of the heat insulating panel and the adhesive portion is smaller than the resonance frequency fp of the heat insulating panel is used. Forming an adhesive part,
A method of adhering a heat insulating panel, which is characterized in that.
外周接着部と部分接着部からなる接着部によって、壁面に断熱パネルを直貼りする方法であって、
前記断熱パネル又は前記壁面の接着面の外周線に沿って、粒子径1mm以上の粒子状物質を含む接着剤を塗布することで、前記外周接着部を形成する外周接着部形成工程と、
前記断熱パネル又は前記壁面の接着面の内部の1又は2箇所以上に、粒子径1mm以上の粒子状物質を含む接着剤を塗布することで、部分的に接着剤が塗布された前記部分接着部を形成する部分接着部形成工程と、を備え、
前記断熱パネルの前記接着部を前記壁面に当接し、又は前記断熱パネルを前記壁面の前記接着部に当接し、前記壁面と前記断熱パネルとの間に間隙部を形成したうえで、前記接着部によって前記断熱パネルを前記壁面に直貼り
前記断熱パネルのバネ定数をK1、前記接着部のバネ定数をK2としたとき、前記断熱パネルと前記接着部の合成バネ定数Kが次式で求められ、
1/K=1/K1+1/K2
さらに、前記接着部が負担する前記断熱パネルの質量である負担部分質量をMとしたとき、前記断熱パネルと前記接着部の共鳴周波数fsが次式で求められ、
fs=1/(2×π)×(K/M) 0.5
前記断熱パネルと前記接着部の共鳴周波数fsが、前記断熱パネルの共鳴周波数fpよりも小さい値となるように選択された、前記接着部のバネ定数K2、及び前記負担部分質量Mの組み合わせによって前記接着部を形成する、
ことを特徴とする断熱パネルの接着方法。
It is a method of directly attaching a heat insulating panel to the wall surface by an adhesive portion consisting of an outer peripheral adhesive portion and a partial adhesive portion.
An outer peripheral adhesive portion forming step of forming the outer peripheral adhesive portion by applying an adhesive containing a particulate matter having a particle diameter of 1 mm or more along the outer peripheral line of the adhesive surface of the heat insulating panel or the wall surface.
The partially bonded portion to which the adhesive is partially applied by applying an adhesive containing a particulate substance having a particle diameter of 1 mm or more to one or two or more locations inside the heat insulating panel or the adhesive surface of the wall surface. With a partial adhesive forming step to form
The adhesive portion of the heat insulating panel is brought into contact with the wall surface, or the heat insulating panel is brought into contact with the adhesive portion of the wall surface to form a gap between the wall surface and the heat insulating panel, and then the adhesive portion is formed. The heat insulating panel is directly attached to the wall surface by
When the spring constant of the heat insulating panel is K1 and the spring constant of the bonded portion is K2, the combined spring constant K of the heat insulating panel and the bonded portion is obtained by the following equation.
1 / K = 1 / K1 + 1 / K2
Further, when the burdened portion mass, which is the mass of the heat insulating panel borne by the adhesive portion, is M, the resonance frequency fs between the heat insulating panel and the adhesive portion is obtained by the following equation.
fs = 1 / (2 x π) x (K / M) 0.5
The combination of the spring constant K2 of the adhesive portion and the burden portion mass M selected so that the resonance frequency fs of the heat insulating panel and the adhesive portion is smaller than the resonance frequency fp of the heat insulating panel is used. Forming an adhesive part,
A method of adhering a heat insulating panel, which is characterized in that.
前記部分接着部形成工では、隣接する前記部分接着部の間隔が、前記断熱パネルの幅の1/6〜1/4以下となるように、前記部分接着部が配置された、ことを特徴とする請求項1又は請求項2記載の断熱パネルの接着方法。 In more said partial bonding portion formed Engineering, spacing of the partially adhered portion adjacent said to be the insulating panel width of 1 / 6-1 / 4 or less, the partial bonding portion is arranged, characterized in that The method for adhering a heat insulating panel according to claim 1 or 2. 壁面に断熱パネルが直貼りされた遮音構造において、
前記断熱パネルと間隙部を備え、
前記断熱パネル又は前記壁面の接着面には、該接着面の外周に沿って外周接着部が形成され、
さらに前記断熱パネル又は前記壁面の接着面には、該接着面の内部の1又は2箇所以上に部分的に接着剤が塗布された部分接着部が形成され、
前記間隙部は、前記断熱パネル又は前記壁面の接着面に取り付けられた1又は2以上のスペーサーによって、前記壁面と前記断熱パネルとの間に形成され、
前記断熱パネルが、前記外周接着部と前記部分接着部からなる接着部によって、前記間隙部を介して前記壁面に直貼りされ、
前記断熱パネルと前記接着部の共鳴周波数fsは、前記断熱パネルの共鳴周波数fpよりも小さい値であり、
前記断熱パネルと前記接着部の共鳴周波数fsは、前記断熱パネルと前記接着部の合成バネ定数Kと、前記接着部が負担する前記断熱パネルの質量である負担部分質量Mと、によって次式で求められ、
fs=1/(2×π)×(K/M) 0.5
前記断熱パネルと前記接着部の合成バネ定数Kは、前記断熱パネルのバネ定数K1と、前記接着部のバネ定数K2と、によって次式で求められる、
1/K=1/K1+1/K2
ことを特徴とする直貼り断熱パネルにおける遮音構造。
In a sound insulation structure with a heat insulating panel directly attached to the wall surface,
With the heat insulating panel and the gap,
On the adhesive surface of the heat insulating panel or the wall surface, an outer peripheral adhesive portion is formed along the outer periphery of the adhesive surface.
Further, on the adhesive surface of the heat insulating panel or the wall surface, a partial adhesive portion to which the adhesive is partially applied is formed at one or more places inside the adhesive surface.
The gap is formed between the wall surface and the heat insulating panel by one or more spacers attached to the heat insulating panel or the adhesive surface of the wall surface.
The heat insulating panel is directly attached to the wall surface through the gap portion by the adhesive portion composed of the outer peripheral adhesive portion and the partial adhesive portion.
The resonance frequency fs of the heat insulating panel and the adhesive portion is a value smaller than the resonance frequency fp of the heat insulating panel.
The resonance frequency fs between the heat insulating panel and the adhesive portion is calculated by the following equation according to the synthetic spring constant K of the heat insulating panel and the adhesive portion and the burdened portion mass M which is the mass of the heat insulating panel borne by the adhesive portion. Asked,
fs = 1 / (2 x π) x (K / M) 0.5
The synthetic spring constant K of the heat insulating panel and the bonded portion is obtained by the following equation by the spring constant K1 of the heat insulating panel and the spring constant K2 of the bonded portion.
1 / K = 1 / K1 + 1 / K2
A sound insulation structure in a directly attached heat insulating panel.
JP2016166165A 2015-08-28 2016-08-26 Adhesion method of heat insulating panel and sound insulation structure in directly attached heat insulating panel Active JP6862651B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015169692 2015-08-28
JP2015169692 2015-08-28

Publications (2)

Publication Number Publication Date
JP2017044061A JP2017044061A (en) 2017-03-02
JP6862651B2 true JP6862651B2 (en) 2021-04-21

Family

ID=58209436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016166165A Active JP6862651B2 (en) 2015-08-28 2016-08-26 Adhesion method of heat insulating panel and sound insulation structure in directly attached heat insulating panel

Country Status (1)

Country Link
JP (1) JP6862651B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113235927B (en) * 2021-05-17 2022-03-22 广东华星建设集团有限公司 Intelligent construction process for building heat-insulating wall

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036196B2 (en) * 1979-02-09 1985-08-19 セメダイン株式会社 Mastic adhesive for direct attachment to interior and exterior materials of buildings
JP2001027028A (en) * 1999-07-14 2001-01-30 Takenaka Komuten Co Ltd Direct sticking structure of interior finish board
JP2008031753A (en) * 2006-07-31 2008-02-14 Kowa Kenshiyou Kk Method for positioning and fixing building member
GB2448467A (en) * 2007-04-20 2008-10-22 Parasol Panel Systems Llp Insulating panel

Also Published As

Publication number Publication date
JP2017044061A (en) 2017-03-02

Similar Documents

Publication Publication Date Title
US9771715B2 (en) Sound dampening wall
US8572914B2 (en) Interior wall cap for use with an exterior wall of a building structure
ES2945689T3 (en) Acoustic soundproofing material with improved damping at selected frequencies and methods for its manufacture
JP6308770B2 (en) Construction method of hollow double wall
CN202627252U (en) Dual-sound-insulation wall structure of building
CN103733251B (en) The manufacture method of cellular board duplexer and cellular board duplexer
Hongisto et al. Sound insulation of double walls–An experimental parametric study
US20220074198A1 (en) Sound damping structural support system
JP6862651B2 (en) Adhesion method of heat insulating panel and sound insulation structure in directly attached heat insulating panel
EA024799B1 (en) Furring strip fastening member and building structure using the same
JP5663119B2 (en) Open joint structure of partition wall and its construction method
JP4933841B2 (en) Building vibration control and sound insulation structure and vibration control sound insulation sheet
JP4927424B2 (en) Wall structure and its construction method
CA2893390C (en) Sound dampening wall
JP2009035925A (en) Sound isolation system of building
KR101004733B1 (en) Floor structures
JP2009030250A (en) Ceiling structure
JP2017101396A (en) Heat insulation repair construction method and heat insulation structure
CN106522461B (en) A kind of shockproof sound-insulating composite wallboard structure
US20220251828A1 (en) Constrained layer floor and wall damping systems using high-density reinforced cement panels
JP3123028U (en) Sound absorbing material
JP6235958B2 (en) Building material panel and manufacturing method thereof
KR20100114255A (en) Method execution thermal insulation material of building
CN206971489U (en) Shockproof sound control glass curtain wall
JP3988874B2 (en) Interior board mounting structure

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20160920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161004

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210312

R150 Certificate of patent or registration of utility model

Ref document number: 6862651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250