[go: up one dir, main page]

JP6862318B2 - Main bearing for crankshaft of internal combustion engine - Google Patents

Main bearing for crankshaft of internal combustion engine Download PDF

Info

Publication number
JP6862318B2
JP6862318B2 JP2017172486A JP2017172486A JP6862318B2 JP 6862318 B2 JP6862318 B2 JP 6862318B2 JP 2017172486 A JP2017172486 A JP 2017172486A JP 2017172486 A JP2017172486 A JP 2017172486A JP 6862318 B2 JP6862318 B2 JP 6862318B2
Authority
JP
Japan
Prior art keywords
bearing
groove
crankshaft
main bearing
circumferential end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017172486A
Other languages
Japanese (ja)
Other versions
JP2019049272A (en
Inventor
志歩 田中
志歩 田中
斉藤 康志
康志 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Metal Co Ltd
Original Assignee
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Metal Co Ltd filed Critical Daido Metal Co Ltd
Priority to JP2017172486A priority Critical patent/JP6862318B2/en
Publication of JP2019049272A publication Critical patent/JP2019049272A/en
Application granted granted Critical
Publication of JP6862318B2 publication Critical patent/JP6862318B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Description

本願発明は、内燃機関のクランク軸を支承するための主軸受に関するものである。 The present invention relates to a main bearing for bearing a crankshaft of an internal combustion engine.

内燃機関のクランク軸は、そのジャーナル部において、一対の半割軸受から成る主軸受を介して内燃機関のシリンダブロック下部に支承される。主軸受に対しては、オイルポンプによって吐出された潤滑油が、シリンダブロック壁内に形成されたオイルギャラリーから主軸受の壁に形成された貫通口を通じて、主軸受の内周面に沿って形成された油溝内に送り込まれる。また、ジャーナル部の直径方向には第1潤滑油路が貫通形成され、この第1潤滑油路の両端開口が主軸受の油溝と連通するようになっている。さらに、ジャーナル部の第1潤滑油路から、クランクアーム部を通る第2潤滑油路が分岐して形成され、この第2潤滑油路が、クランクピンの直径方向に貫通形成された第3潤滑油路に連通している。このようにして、シリンダブロック壁内のオイルギャラリーから貫通口を通じて主軸受の内周面に形成された油溝内に送り込まれた潤滑油は、第1潤滑油路、第2潤滑油路および第3潤滑油路を経て、第3潤滑油路の末端に開口した吐出口から、クランクピンとコンロッド軸受の摺動面間に供給される(例えば特許文献1参照)。 The crankshaft of the internal combustion engine is supported in the journal portion of the crankshaft of the internal combustion engine via a main bearing composed of a pair of half bearings under the cylinder block of the internal combustion engine. For the main bearing, the lubricating oil discharged by the oil pump is formed along the inner peripheral surface of the main bearing through the through hole formed in the wall of the main bearing from the oil gallery formed in the wall of the cylinder block. It is sent into the oil groove. Further, a first lubricating oil passage is formed through the journal portion in the radial direction, and the openings at both ends of the first lubricating oil passage communicate with the oil groove of the main bearing. Further, a second lubricating oil passage passing through the crank arm portion is branched from the first lubricating oil passage of the journal portion, and the second lubricating oil passage is formed to penetrate in the diameter direction of the crank pin. It communicates with the oil passage. In this way, the lubricating oil sent from the oil gallery in the cylinder block wall into the oil groove formed on the inner peripheral surface of the main bearing through the through hole is the first lubricating oil passage, the second lubricating oil passage, and the second lubricating oil passage. It is supplied between the sliding surface of the crank pin and the connecting rod bearing from the discharge port opened at the end of the third lubricating oil passage through the three lubricating oil passages (see, for example, Patent Document 1).

シリンダブロック壁内のオイルギャラリーから主軸受の油溝に送られる潤滑油は、例えば各部品の加工の際に生じた残留異物を随伴する可能性がある。この異物は、ジャーナル部と主軸受の間の摺動面およびクランクピンとコンロッド軸受の間の摺動面に損傷を与える恐れがあり、したがって潤滑油の流れから速やかに外部に排出する必要がある。 Lubricating oil sent from the oil gallery in the cylinder block wall to the oil groove of the main bearing may be accompanied by residual foreign matter generated during processing of each part, for example. This foreign matter may damage the sliding surface between the journal portion and the main bearing and the sliding surface between the crank pin and the connecting rod bearing, and therefore must be quickly discharged to the outside from the flow of lubricating oil.

そこで、主軸受を構成する一対の半割軸受のうちの一方の半割軸受の内周面に沿って形成される油溝の周方向端部を半割軸受の内周面の周方向両端部に形成したクラッシュリリーフ部や軸線方向溝と連通させることで、油溝内に侵入した異物をクラッシュリリーフ部の隙間や軸線方向溝を介して主軸受の外部へ排出する主軸受が提案されている(特許文献2、3)。 Therefore, the circumferential end of the oil groove formed along the inner peripheral surface of one of the pair of half bearings constituting the main bearing is the circumferential end of the inner peripheral surface of the half bearing. A main bearing has been proposed in which foreign matter that has entered the oil groove is discharged to the outside of the main bearing through a gap in the crash relief portion or an axial groove by communicating with the crash relief portion and the axial groove formed in the above. (Patent Documents 2 and 3).

なお、クラッシュリリーフは、半割軸受の周方向端面に隣接する領域の壁厚を周方向端面に向かって薄くなるように形成することによって、支承する軸との間に形成される隙間領域であり(例えばSAE J506(項目3.26および項目6.4)、DIN1497(セクション3.2)、JIS D3102参照)、一対の半割軸受を組み付けた状態における、半割軸受の突合せ面の位置ずれや変形を吸収する事を企画して形成される(例えば特許文献2参照)。 The crash relief is a gap region formed between the bearing shaft and the bearing shaft by forming the wall thickness of the region adjacent to the circumferential end face of the half bearing so as to become thinner toward the circumferential end face. (See, for example, SAE J506 (item 3.26 and item 6.4), DIN1497 (section 3.2), JIS D3102), misalignment of the butt surface of the half bearing in the state where a pair of half bearings are assembled. It is formed by planning to absorb deformation (see, for example, Patent Document 2).

内燃機関用すべり軸受に対する潤滑油の供給については、まず、クランク軸ジャーナル部用主軸受の外部から該主軸受の内面に形成された油溝内に供給され、その潤滑油がクランク軸ジャーナル部用主軸受の摺動面、および、クランクピン用コンロッド軸受の摺動面に供給される。
内燃機関の運転時には、クランク軸ジャーナル部用主軸受の油溝に供給される潤滑油中に、潤滑油路内に残留した異物が混入しがちである。異物とは、油路を切削加工した時の金属加工屑や鋳造時の鋳砂等を意味する。この異物は、クランク軸の回転によって潤滑油の流れに付随し、従来の内燃機関用主軸受では、クランク軸の回転方向の前方側の軸受周方向端部領域に形成されるクラッシュリリーフや軸線方向溝を通じて潤滑油と共に排出される。
しかしながら、軸受の壁に形成された貫通口から油溝内に潤滑油とともに進入した異物は、軸受周方向端部領域のクラッシュリリーフや軸線方向溝に達する前に、ジャーナル部の第1潤滑油路の入口開口から第1潤滑油路内に潤滑油とともに進入してしまうものも多い。第1潤滑油路に進入した異物の一部は、再度、潤滑油とともに油溝に逆流するので早期に軸受の外部へ排出され難い。
Regarding the supply of lubricating oil to the plain bearings for internal combustion engines, first, the lubricating oil is supplied from the outside of the main bearing for the crankshaft journal portion into the oil groove formed on the inner surface of the main bearing, and the lubricating oil is supplied for the crankshaft journal portion. It is supplied to the sliding surface of the main bearing and the sliding surface of the crank pin conrod bearing.
When the internal combustion engine is in operation, foreign matter remaining in the lubricating oil passage tends to be mixed in the lubricating oil supplied to the oil groove of the main bearing for the crankshaft journal portion. The foreign matter means metal processing waste when the oil passage is cut, casting sand at the time of casting, and the like. This foreign matter accompanies the flow of lubricating oil due to the rotation of the crankshaft, and in the conventional main bearing for internal combustion engines, crash relief and axial direction formed in the bearing circumferential end region on the front side in the rotation direction of the crankshaft. It is discharged together with the lubricating oil through the groove.
However, foreign matter that has entered the oil groove together with the lubricating oil through the through hole formed in the wall of the bearing reaches the first lubricating oil passage of the journal part before reaching the crash relief or the axial groove in the peripheral end region of the bearing. Many of them enter the first lubricating oil passage together with the lubricating oil from the inlet opening of the bearing. A part of the foreign matter that has entered the first lubricating oil passage flows back into the oil groove together with the lubricating oil, so that it is difficult to be discharged to the outside of the bearing at an early stage.

詳しくは、図16Aおよび16B、ならびに図17Aおよび17Bを用いて、従来技術の作用について説明する。図16Aおよび16Bに示すようにジャーナル部6の表面の潤滑油路6aの入口開口6cが下側の半割軸受142の主円筒面171に位置している間は、ジャーナル部6の表面と半割軸受142の主円筒面171との間の隙間が狭いので、入口開口6cは半割軸受142の主円筒面171に閉鎖され、クランク軸の回転による遠心力の影響により潤滑油路6a内の入口開口6c付近の潤滑油の圧力は極めて高い状態にある。 More specifically, FIGS. 16A and 16B and 17A and 17B will be used to describe the operation of the prior art. As shown in FIGS. 16A and 16B, while the inlet opening 6c of the lubricating oil passage 6a on the surface of the journal portion 6 is located on the main cylindrical surface 171 of the lower half bearing 142, the surface and half of the journal portion 6 Since the gap between the split bearing 142 and the main cylindrical surface 171 is narrow, the inlet opening 6c is closed to the main cylindrical surface 171 of the half bearing 142, and the inside of the lubricating oil passage 6a is affected by the centrifugal force due to the rotation of the crankshaft. The pressure of the lubricating oil near the inlet opening 6c is extremely high.

図17Aおよび17Bに示すように、ジャーナル部6の表面の潤滑油路6aの入口開口6cとクラッシュリリーフ170とが連通を開始する瞬間、潤滑油路6a内部の潤滑油の圧力と、クラッシュリリーフ170およびジャーナル部6の表面の間の隙間(リリーフ隙間)内の潤滑油の圧力との差により、瞬間的に潤滑油路6aからリリーフ隙間側への油の噴射流(逆流)が一時的に形成される。 As shown in FIGS. 17A and 17B, the pressure of the lubricating oil inside the lubricating oil passage 6a and the crash relief 170 at the moment when the inlet opening 6c of the lubricating oil passage 6a on the surface of the journal portion 6 and the crash relief 170 start to communicate with each other. Due to the difference from the pressure of the lubricating oil in the gap (relief gap) between the surfaces of the journal portion 6 and the surface of the journal portion 6, an oil jet flow (backflow) from the lubricating oil passage 6a to the relief gap side is momentarily formed. Will be done.

その際、油の噴射流とともにリリーフ隙間へ進入した異物Fは、リリーフ隙間内を直進し、慣性力によって軸線方向溝177を通り越して、他方の半割軸受141の油溝141gに進入してしまう。このため、従来の主軸受は、異物が早期に軸受の外部へ排出され難い。 At that time, the foreign matter F that has entered the relief gap together with the oil injection flow travels straight through the relief gap, passes through the axial groove 177 due to inertial force, and enters the oil groove 141 g of the other half bearing 141. .. Therefore, in the conventional main bearing, it is difficult for foreign matter to be discharged to the outside of the bearing at an early stage.

特開平8−277831号公報Japanese Unexamined Patent Publication No. 8-277831 特開平4−219521号公報Japanese Unexamined Patent Publication No. 4-219521 特開2005−69283号公報Japanese Unexamined Patent Publication No. 2005-69283

本発明の目的は、異物排出性に優れた内燃機関のクランク用主軸受を提供することである。 An object of the present invention is to provide a main bearing for a crank of an internal combustion engine having excellent foreign matter discharging property.

上記目的を達成するために、本願発明の1つの観点によれば、
内燃機関のクランク軸のジャーナル部であって、円筒胴部と、前記円筒胴部を貫通して延びる潤滑油路と、前記円筒胴部の外周面上に形成された前記潤滑油路の少なくとも1つの入口開口とを有しているジャーナル部を回転自在に支持するための主軸受であって、
前記主軸受は、それぞれの周方向端面同士を突き合わせることによって円筒形状に組み合わされる第1および第2の半割軸受を有し、
前記第1および第2の半割軸受は、組み合わされたとき、それぞれの突合せ部分の内周面側に、前記主軸受の軸線方向全長に亘って延びる軸線方向溝を共に形成するように構成され、
前記第1および第2の半割軸受は、該半割軸受の周方向中央部を含む主円筒部と、前記主円筒部よりも壁厚が薄くなるように該半割軸受の周方向両端部に軸線方向全長に亘って形成されたクラッシュリリーフ部とを有し、
前記第1の半割軸受の内周面に、油溝が形成され、該油溝のクランク軸の回転方向の後方側の周方向端部は、前記第1の半割軸受のクランク軸の回転方向の後方側のクラッシュリリーフ部に位置し、クランク軸の回転方向の前方側の周方向端部は、クランク軸の回転方向の前方側のクラッシュリリーフ部に位置するか、または、前記第1の半割軸受のクランク軸の回転方向の前方側の前記周方向端面に開口し、
前記第2の半割軸受の内周面に、部分溝が形成され、該部分溝は、前記第2の半割軸受の2つの周方向端面のうち、クランク軸の回転方向の前方側の周方向端面にのみ開口し、
前記油溝と前記部分溝の溝幅中心が互いに整合し、
前記第2の半割軸受のクランク軸の回転方向の前方側の周方向端面における前記部分溝の開口は、前記第1の半割軸受のクランク軸の回転方向の後方側の周方向端面によって遮蔽されていることを特徴とする主軸受が提供される。
In order to achieve the above object, according to one aspect of the present invention,
At least one of the journal portion of the crankshaft of the internal combustion engine, the cylindrical body portion, the lubricating oil passage extending through the cylindrical body portion, and the lubricating oil passage formed on the outer peripheral surface of the cylindrical body portion. A main bearing for rotatably supporting a journal portion having two inlet openings.
The main bearing has first and second half bearings that are combined into a cylindrical shape by abutting the end faces in the circumferential direction.
When combined, the first and second half-split bearings are configured to together form an axial groove extending over the entire axial direction of the main bearing on the inner peripheral surface side of each butt portion. ,
The first and second halves of the half bearing have a main cylindrical portion including the central portion in the circumferential direction of the halved bearing and both ends of the halved bearing in the circumferential direction so that the wall thickness is thinner than that of the main cylindrical portion. Has a crush relief portion formed over the entire length in the axial direction.
An oil groove is formed on the inner peripheral surface of the first half-split bearing, and the peripheral end of the oil groove on the rear side in the rotation direction of the crankshaft is the rotation of the crankshaft of the first half-split bearing. It is located in the crash relief portion on the rear side in the direction, and the circumferential end on the front side in the rotation direction of the crankshaft is located in the crash relief portion on the front side in the rotation direction of the crankshaft, or the first An opening is made in the circumferential end face on the front side in the rotational direction of the crankshaft of the half-split bearing.
A partial groove is formed on the inner peripheral surface of the second half-split bearing, and the partial groove is the circumference of the two circumferential end faces of the second half-split bearing on the front side in the rotational direction of the crankshaft. Open only on the directional end face,
The center of the groove width of the oil groove and the partial groove are aligned with each other,
The opening of the partial groove in the circumferential end face on the front side in the rotational direction of the crankshaft of the second half bearing is shielded by the circumferential end face on the rear side in the rotational direction of the crankshaft of the first half bearing. A main bearing characterized by being provided is provided.

上記主軸受にて、好適には、
前記部分溝が、前記第2の半割軸受の前記クランク軸の回転方向の前方側の周方向端面から円周角θ1(ただし、円周角θ1の最小値=5°、円周角θ1の最大値=45°)の範囲に形成されている。
In the above main bearing, preferably
The partial groove has an inscribed angle θ1 from the circumferential end face of the second half bearing on the front side in the rotational direction of the crank shaft (however, the minimum value of the inscribed angle θ1 = 5 °, the inscribed angle θ1). It is formed in the range of maximum value = 45 °).

上記主軸受にて、好適には、
前記油溝のクランク軸の回転方向の後方側の周方向端部は、前記第1の半割軸受のクランク軸の回転方向の後方側の周方向端面から円周角θ2(ただし、円周角θ2の最小値=2°、円周角θ2の最大値=7°)の範囲に位置する。
In the above main bearing, preferably
The circumferential end of the oil groove on the rear side of the crankshaft in the rotational direction has an inscribed angle θ2 (however, the inscribed angle) from the circumferential end face on the rear side of the crankshaft of the first half bearing in the rotational direction. It is located in the range of the minimum value of θ2 = 2 ° and the maximum value of the inscribed angle θ2 = 7 °).

上記主軸受にて、好適には、
前記部分溝の第2の半割軸受のクランク軸の回転方向の前方側の周方向端面における溝深さ(D2)は、0.3〜1.5mmである。
In the above main bearing, preferably
The groove depth (D2) at the circumferential end face on the front side in the rotational direction of the crankshaft of the second half bearing of the partial groove is 0.3 to 1.5 mm.

上記主軸受にて、好適には、
前記部分溝の第2の半割軸受のクランク軸の回転方向の前方側の周方向端面における前記部分溝の溝幅(W2)は、前記油溝のクランク軸の回転方向の後方側の周方向端部の位置での溝幅(W1)よりも大きい。
In the above main bearing, preferably
The groove width (W2) of the partial groove on the circumferential end surface of the second half bearing of the partial groove on the front side in the rotational direction of the crankshaft is the circumferential direction on the rear side of the crankshaft of the oil groove in the rotational direction. It is larger than the groove width (W1) at the end position.

(1)本発明によれば、主軸受は、第1および第2の半割軸受を有し、第1の半割軸受の内周面に、主軸受の外部から潤滑油が供給される油溝が形成され、該油溝の周方向両端部は、第1の半割軸受のクラッシュリリーフに位置し、第2の半割軸受の内周面に、第2の半割軸受の2つの周方向端面のうち、クランク軸の回転方向の前方側の周方向端面にのみ開口する部分溝が形成される。
図14Aおよび14Bに示すように、本願発明においても、ジャーナル部6の表面の潤滑油路6aの入口開口6cが第2の半割軸受42の主円筒面71(主円筒部の内面)に位置している間は、入口開口6cは第2の半割軸受42の主円筒面71に閉塞されるが、潤滑油路6a内の潤滑油は、クランク軸の回転による遠心力によって入口開口6c側へ向かって押圧されるために、特に内燃機関の運転でクランク軸の回転速度が大きいときには、潤滑油路6a内の入口開口6c付近の潤滑油の圧力は極めて高い状態にある。
図15Aおよび15Bに示すように、ジャーナル部6の表面の潤滑油路6aの入口開口6cと第2の半割軸受42の部分溝42gとが連通を開始する瞬間には、潤滑油路6a内部の潤滑油の圧力と、部分溝42g内の潤滑油の圧力との差によって、潤滑油路6aから部分溝42g内に瞬間的に噴出し逆流する高圧の潤滑油の噴射流が形成される。潤滑油路6aに混入した異物Fは、この潤滑油の噴射流により部分溝42gに進入する。部分溝42gに進入した異物Fは、部分溝42gの開口へ向かって流れる。このとき、潤滑油に対し比重が大きい異物Fは、遠心力の作用により部分溝42の溝底面に沿って流れる。
(1) According to the present invention, the main bearing has first and second half-split bearings, and oil to which lubricating oil is supplied from the outside of the main bearing to the inner peripheral surface of the first half-split bearing. A groove is formed, and both ends in the circumferential direction of the oil groove are located at the crash relief of the first half-split bearing, and the two circumferences of the second half-split bearing are on the inner peripheral surface of the second half-split bearing. Of the directional end faces, a partial groove is formed that opens only on the circumferential end face on the front side in the rotation direction of the crankshaft.
As shown in FIGS. 14A and 14B, also in the present invention, the inlet opening 6c of the lubricating oil passage 6a on the surface of the journal portion 6 is located on the main cylindrical surface 71 (inner surface of the main cylindrical portion) of the second half bearing 42. While the inlet opening 6c is closed by the main cylindrical surface 71 of the second half bearing 42, the lubricating oil in the lubricating oil passage 6a is on the inlet opening 6c side due to the centrifugal force due to the rotation of the crankshaft. The pressure of the lubricating oil in the vicinity of the inlet opening 6c in the lubricating oil passage 6a is extremely high, particularly when the rotation speed of the crankshaft is high during the operation of the internal combustion engine.
As shown in FIGS. 15A and 15B, at the moment when the inlet opening 6c of the lubricating oil passage 6a on the surface of the journal portion 6 and the partial groove 42g of the second half bearing 42 start communication, the inside of the lubricating oil passage 6a Due to the difference between the pressure of the lubricating oil and the pressure of the lubricating oil in the partial groove 42g, a high-pressure lubricating oil jet flow that momentarily ejects from the lubricating oil passage 6a into the partial groove 42g and flows back is formed. The foreign matter F mixed in the lubricating oil passage 6a enters the partial groove 42g by the jet flow of the lubricating oil. The foreign matter F that has entered the partial groove 42g flows toward the opening of the partial groove 42g. At this time, the foreign matter F having a higher specific gravity than the lubricating oil flows along the bottom surface of the partial groove 42 due to the action of centrifugal force.

油溝41gと部分溝42gの溝幅中心が互いに整合している。油溝41gは、クランク軸の回転方向の後方側の周方向端部43が第1の半割軸受41のクランク軸の回転方向の後方側クラッシュリリーフ部70に位置し、部分溝42gは、第2の半割軸受42のクランク軸の回転方向の前方側の周方向端面72のみに開口しており、油溝41gと部分溝42gとが互いに流体連通する関係にない。この構造では、互いに接触状態にある2つの周方向端面72に位置する部分溝42gの開口が、油溝41gを有する第1の半割軸受41の周方向端面72で塞がれる。したがって、開口の遮蔽構造が、部分溝42gの溝底に沿って開口まで移動してくる異物Fに対する障壁になり、異物Fの周方向移動速度が低下し、異物Fの直進運動の慣性力が低下する。
一方、第1の半割軸受41の周方向端面72と第2の半割軸受42の周方向端面72との突き合わせ接触界面に沿って、それら周方向端面72の軸受内周面側に位置する2つの角縁部に傾斜面76が形成されて、主軸受4の軸線方向幅全体に亘る軸線方向溝77が形成されている。この構造により、部分溝42gと、これに連通する軸線方向溝77に沿って流れる潤滑油に、周方向移動速度の低下した前記異物Fが付随し易く、異物Fが潤滑油と共に主軸受1の軸線方向端部から円滑に排出される。
The groove width centers of the oil groove 41 g and the partial groove 42 g are aligned with each other. In the oil groove 41g, the circumferential end 43 on the rear side in the rotation direction of the crankshaft is located at the rear side crash relief portion 70 in the rotation direction of the crankshaft of the first half bearing 41, and the partial groove 42g is the first. The half-split bearing 42 of 2 is open only on the circumferential end surface 72 on the front side in the rotational direction of the crankshaft, and the oil groove 41 g and the partial groove 42 g are not in a relationship of fluid communication with each other. In this structure, the openings of the partial grooves 42g located on the two circumferential end faces 72 in contact with each other are closed by the circumferential end faces 72 of the first half bearing 41 having the oil groove 41 g. Therefore, the shielding structure of the opening serves as a barrier against the foreign matter F moving to the opening along the groove bottom of the partial groove 42g, the circumferential movement speed of the foreign matter F decreases, and the inertial force of the linear motion of the foreign matter F increases. descend.
On the other hand, it is located on the inner peripheral surface side of the bearing of the circumferential end surface 72 along the butt contact interface between the circumferential end surface 72 of the first half bearing 41 and the circumferential end surface 72 of the second half bearing 42. Inclined surfaces 76 are formed on the two square edges, and an axial groove 77 is formed over the entire axial width of the main bearing 4. Due to this structure, the foreign matter F having a reduced circumferential moving speed is likely to accompany the partial groove 42g and the lubricating oil flowing along the axial groove 77 communicating with the partial groove 42g, and the foreign matter F is attached to the main bearing 1 together with the lubricating oil. It is discharged smoothly from the end in the axial direction.

軸線方向溝77については、この横断面積を過大にすると、潤滑油の漏れ量が増大するため、異物Fの排出が可能な限りにおいて、可及的に横断面積を小さくすることが好ましい。具体的には、乗用車用等に搭載される小型内燃機関の場合には、軸線方向溝77の溝幅を、0.2mm〜1mm、溝深さを0.2mm〜1mmにすることが好ましい。ただし、油溝の幅や深さの寸法は内燃機関の仕様によって決まるものであり、この寸法に限定されない。 As for the axial groove 77, if the cross-sectional area is made excessive, the amount of lubricating oil leaked increases. Therefore, it is preferable to make the cross-sectional area as small as possible as long as the foreign matter F is discharged. Specifically, in the case of a small internal combustion engine mounted on a passenger car or the like, it is preferable that the groove width of the axial groove 77 is 0.2 mm to 1 mm and the groove depth is 0.2 mm to 1 mm. However, the width and depth of the oil groove are determined by the specifications of the internal combustion engine and are not limited to these dimensions.

(2)潤滑油に比して比重の大きな異物Fは、部分溝42g内を流体連通部へ移動する間、遠心力の作用で溝底に沿う。そのため、部分溝42gの上部領域(溝底に近い下部領域ではなく、クランク軸に近い側の上部領域)を流れる潤滑油中の異物量が少ない(図5参照)。この部分溝42gの上部領域を流れる異物量の少ない潤滑油は、第2の半割軸受42のクラッシュリリーフ部70の表面および第1の半割軸受41のクラッシュリリーフ部70の表面とクランク軸のジャーナル部6の表面との間の隙間を、周方向に直進して油溝41g内に円滑に流れるので、主軸受4からの潤滑油の漏れ量を低減できる。
以上は、油溝41gは、クランク軸の回転方向の後方側の周方向端部43が第1の半割軸受41のクランク軸の回転方向の後方側クラッシュリリーフ部70に位置し、部分溝42gは、第2の半割軸受42のクランク軸の回転方向の前方側の周方向端面72のみに開口しており、油溝41gと部分溝42gとが互いに流体連通する関係にない場合であるが、油溝41gと部分溝42gとが互いに流体連通する関係にある場合には、部分溝42gの溝底面に沿って移動する異物Fが、油溝41g内に送られ易い。また、油溝41gと部分溝42gとが互いに流体連通する関係にない場合であっても、本発明の主軸受4と異なって、部分溝42gに流体連通する軸線方向溝77が存在しない場合には、部分溝42gの開口(開放溝端)に到達した異物Fが第1の半割軸受41の油溝41g内に送られ易い。また、第1の半割軸受41の油溝41gのクランク軸の回転方向の後方側の周方向端部43が、第1の半割軸受41の主円筒面71に開口している場合や油溝41gと部分溝42gの溝幅中心が互いに整合していない場合には、部分溝42gの上部領域を流れる異物量の少ない潤滑油は、油溝41g内に円滑に流れなくなる、或いは、流れ難くなるため、主軸受4からの潤滑油の漏れ量が増加する。
(2) The foreign matter F, which has a higher specific gravity than the lubricating oil, follows the groove bottom by the action of centrifugal force while moving in the partial groove 42 g to the fluid communication portion. Therefore, the amount of foreign matter in the lubricating oil flowing through the upper region of the partial groove 42 g (the upper region on the side closer to the crankshaft, not the lower region near the groove bottom) is small (see FIG. 5). Lubricating oil with a small amount of foreign matter flowing in the upper region of the partial groove 42g is provided on the surface of the crash relief portion 70 of the second half bearing 42, the surface of the crash relief portion 70 of the first half bearing 41, and the crankshaft. Since the lubricating oil flows straight through the gap between the journal portion 6 and the surface of the journal portion 6 in the circumferential direction and smoothly flows into the oil groove 41 g, the amount of lubricating oil leaking from the main bearing 4 can be reduced.
As described above, in the oil groove 41g, the circumferential end 43 on the rear side in the rotation direction of the crankshaft is located at the rear side crash relief portion 70 in the rotation direction of the crankshaft of the first half bearing 41, and the partial groove 42g Is a case where the second half bearing 42 is opened only on the circumferential end surface 72 on the front side in the rotational direction of the crankshaft, and the oil groove 41 g and the partial groove 42 g are not in a fluid communication relationship with each other. When the oil groove 41g and the partial groove 42g are in a fluid communication relationship with each other, the foreign matter F moving along the groove bottom surface of the partial groove 42g is likely to be sent into the oil groove 41g. Further, even when the oil groove 41g and the partial groove 42g do not have a fluid communication relationship with each other, unlike the main bearing 4 of the present invention, when the axial groove 77 for fluid communication does not exist in the partial groove 42g. Is easy to send the foreign matter F that has reached the opening (open groove end) of the partial groove 42g into the oil groove 41g of the first half bearing 41. Further, when the circumferential end 43 of the oil groove 41g of the first half bearing 41 on the rear side in the rotation direction of the crankshaft is open to the main cylindrical surface 71 of the first half bearing 41 or oil. When the groove width centers of the groove 41g and the partial groove 42g are not aligned with each other, the lubricating oil having a small amount of foreign matter flowing in the upper region of the partial groove 42g does not flow smoothly into the oil groove 41g or is difficult to flow. Therefore, the amount of lubricating oil leaking from the main bearing 4 increases.

(3)本発明の主軸受4では、部分溝42gの開口(開放溝端)が、油溝41gを有する第1の半割軸受41の周方向端面72で塞がれる構造になっており、この構造が、部分溝42gの溝底に沿って開口(開放溝端)まで転動してくる異物に対する遮断効果を発揮する。この遮断効果を最大限にするために、部分溝42gの溝底幅が十分に大きくなるように、溝底を平坦面にすることが好ましい。 (3) The main bearing 4 of the present invention has a structure in which the opening (open groove end) of the partial groove 42 g is closed by the circumferential end surface 72 of the first half bearing 41 having the oil groove 41 g. The structure exerts a blocking effect against foreign matter rolling to the opening (open groove end) along the groove bottom of the partial groove 42 g. In order to maximize this blocking effect, it is preferable to make the groove bottom a flat surface so that the groove bottom width of the partial groove 42 g is sufficiently large.

(4)本発明の好適形態として、部分溝42gが、第2の半割軸受42のクランク軸の回転方向の前方側の周方向端面72から第2の半割軸受42の周方向中央部側へ向かって円周角θ1の範囲(ただし、円周角θ1の最小値=5°、円周角θ1の最大値=45°)に形成された場合について説明する。
円周角θ1を5°以上にすると、部分溝42gの十分な長さが確保されて、潤滑油の噴射流とともに部分溝42gに進入した異物Fは、前記流体連通部分に達するまでの間に周方向移動速度が低下しやすい。このため、異物Fは、前記流体連通部分の軸線方向溝77によって軸受の外部へ排出されやすい。円周角θ1を5°未満にすると、この効果が不十分で、異物Fは、軸線方向溝77を通り越して、第1の半割軸受41の油溝41gに進入してしまうものが多くなる。
円周角θ1の最大値を45°にした理由は、部分溝42gを有する第2の半割軸受42の主荷重受部(クランク軸から大きな荷重が作用する、半割軸受42の周方向中央領域)を避けて部分溝42gを形成し、大きな作用荷重に対する第2の半割軸受42の強度を確保するためである。
(4) As a preferred embodiment of the present invention, the partial groove 42 g is from the circumferential end surface 72 on the front side in the rotational direction of the crankshaft of the second half bearing 42 to the central portion side in the circumferential direction of the second half bearing 42. A case where the bearing is formed in the range of the inscribed angle θ1 (however, the minimum value of the inscribed angle θ1 = 5 ° and the maximum value of the inscribed angle θ1 = 45 °) will be described.
When the inscribed angle θ1 is set to 5 ° or more, a sufficient length of the partial groove 42 g is secured, and the foreign matter F that has entered the partial groove 42 g together with the injection flow of the lubricating oil reaches the fluid communication portion. The circumferential movement speed tends to decrease. Therefore, the foreign matter F is easily discharged to the outside of the bearing by the axial groove 77 of the fluid communication portion. When the inscribed angle θ1 is set to less than 5 °, this effect is insufficient, and foreign matter F often passes through the axial groove 77 and enters the oil groove 41g of the first half bearing 41. ..
The reason why the maximum value of the inscribed angle θ1 is set to 45 ° is that the main load receiving portion of the second half-split bearing 42 having the partial groove 42 g (the center in the circumferential direction of the half-split bearing 42 on which a large load acts from the crankshaft). This is to avoid the region) and form a partial groove 42 g to secure the strength of the second half bearing 42 against a large acting load.

(5)本発明の好適形態として、油溝41gのクランク軸の回転方向の後方側の周方向端部43は、第1の半割軸受41のクランク軸の回転方向の後方側の周方向端面72から円周角θ2(ただし、円周角θ2の最小値=2°、円周角θ2の最大値=7°)の範囲に位置する場合について説明する。
円周角θ2を2°以上にすると、油溝41gのクランク軸の回転方向の後方側の周方向端部43と部分溝42gの開口とが十分に離間し、部分溝42gを流れてきた異物が油溝41gに侵入し難い。円周角θ2を2°未満にすると、部分溝42gを流れてきた異物が油溝41gに侵入してしまうことがある。
また、円周角θ2を7°以下にすると、部分溝42gの上部領域を流れる異物量の少ない潤滑油は、油溝41g内に円滑に流れやすくなる。円周角θ2を7°を超えるようにすると、部分溝42gの上部領域を流れる異物量の少ない潤滑油が油溝41g内に流れ難くなることがある。
(5) As a preferred embodiment of the present invention, the circumferential end 43 on the rear side of the crankshaft of the oil groove 41 g in the rotational direction is the circumferential end surface of the first half bearing 41 on the rear side of the crankshaft in the rotational direction. A case where the vehicle is located in the range from 72 to the inscribed angle θ2 (however, the minimum value of the inscribed angle θ2 = 2 ° and the maximum value of the inscribed angle θ2 = 7 °) will be described.
When the inscribed angle θ2 is set to 2 ° or more, the circumferential end 43 of the oil groove 41g on the rear side in the rotational direction of the crankshaft and the opening of the partial groove 42g are sufficiently separated from each other, and foreign matter flowing through the partial groove 42g. Is hard to invade the oil groove 41g. If the inscribed angle θ2 is less than 2 °, foreign matter flowing through the partial groove 42g may invade the oil groove 41g.
Further, when the inscribed angle θ2 is set to 7 ° or less, the lubricating oil having a small amount of foreign matter flowing in the upper region of the partial groove 42g can easily flow smoothly into the oil groove 41g. When the inscribed angle θ2 exceeds 7 °, it may be difficult for the lubricating oil having a small amount of foreign matter flowing in the upper region of the partial groove 42g to flow into the oil groove 41g.

(6)本発明の好適形態として、部分溝42gの第2の半割軸受42のクランク軸の回転方向の前方側の周方向端面72における溝深さ(D2)は、0.3〜1.5mmである。溝深さ(D2)が0.3mm未満である場合には、部分溝42gの底面側を流れるべき異物が、部分溝42gの上部領域を流れる油にも混入し、油溝41gに侵入しやすくなる。また、溝深さ(D2)が1.5mmを超える場合には、溝深さが深すぎて部分溝42gの溝底面側を流れてきた異物が、軸線方向溝77に侵入し難くなり、主軸受4の外部へ排出され難くなる。 (6) As a preferred embodiment of the present invention, the groove depth (D2) at the circumferential end surface 72 on the front side in the rotational direction of the crankshaft of the second half bearing 42 having the partial groove 42 g is 0.3 to 1. It is 5 mm. When the groove depth (D2) is less than 0.3 mm, foreign matter that should flow on the bottom surface side of the partial groove 42g also mixes with the oil flowing in the upper region of the partial groove 42g and easily penetrates into the oil groove 41g. Become. Further, when the groove depth (D2) exceeds 1.5 mm, the groove depth is too deep and foreign matter flowing on the groove bottom surface side of the partial groove 42 g becomes difficult to enter the axial groove 77, which is the main cause. It becomes difficult for the bearing 4 to be discharged to the outside.

(7)本発明の好適形態として、部分溝42gの第2の半割軸受42のクランク軸の回転方向の前方側の周方向端面72における溝幅(W2)は、油溝41gのクランク軸の回転方向の後方側の周方向端部43の位置での溝幅(W1)よりも大きい構成を採用したことについて説明する。
部分溝42gに進入した異物Fは、図9に示すように流体連通部分に達するまでの間は部分溝42g内の軸線方向両端部付近を流れやすい。仮に、異物Fが、軸線方向溝77を越えて第1の第1の半割軸受41側に進入したとしても、第2の半割軸受42のクランク軸の回転方向の前方側の周方向端面72における部分溝42gの溝幅(W2)は、油溝41gのクランク軸の回転方向の後方側の周方向端部43の位置での溝幅(W1)よりも大きい場合には、異物Fは、第1の第1の半割軸受41の油溝41gには進入し難い。
(7) As a preferred embodiment of the present invention, the groove width (W2) at the circumferential end surface 72 on the front side in the rotational direction of the crankshaft of the second half bearing 42 having the partial groove 42g is the same as that of the crankshaft of the oil groove 41g. It will be described that a configuration larger than the groove width (W1) at the position of the circumferential end 43 on the rear side in the rotation direction is adopted.
As shown in FIG. 9, the foreign matter F that has entered the partial groove 42g tends to flow in the vicinity of both ends in the axial direction in the partial groove 42g until it reaches the fluid communication portion. Even if the foreign matter F crosses the axial groove 77 and enters the first half-split bearing 41 side, the end face in the circumferential direction on the front side of the crankshaft of the second half-split bearing 42 in the rotational direction. When the groove width (W2) of the partial groove 42g in 72 is larger than the groove width (W1) at the position of the circumferential end 43 on the rear side in the rotation direction of the crankshaft of the oil groove 41g, the foreign matter F is present. , It is difficult to enter the oil groove 41g of the first first half bearing 41.

内燃機関のクランク軸を、ジャーナル部およびクランクピン部でそれぞれ截断した模式図。The schematic diagram which cut the crankshaft of an internal combustion engine by a journal part and a crankpin part respectively. 本発明の実施例1に係る主軸受の正面図。The front view of the main bearing which concerns on Example 1 of this invention. 図2に示す主軸受の第1の半割軸受の内周面を見た平面図。FIG. 2 is a plan view of the inner peripheral surface of the first half bearing of the main bearing shown in FIG. 2. 図2に示す主軸受の第2の半割軸受の内周面を見た平面図。The plan view which looked at the inner peripheral surface of the 2nd half bearing of the main bearing shown in FIG. 図2に示す主軸受の機能説明図。The functional explanatory view of the main bearing shown in FIG. 図2〜図4に示す主軸受の第2の半割軸受の周方向端面を示す図(図5におけるVII矢視図)。2 is a view showing the end face in the circumferential direction of the second half bearing of the main bearing shown in FIGS. 2 to 4 (FIG. VII arrow view in FIG. 5). 本発明の実施例2に係る主軸受の第1の半割軸受の内周面を見た平面図。The plan view which looked at the inner peripheral surface of the 1st half bearing of the main bearing which concerns on Example 2 of this invention. 実施例2に係る主軸受の第2の半割軸受の内周面を見た平面図。The plan view which looked at the inner peripheral surface of the 2nd half bearing of the main bearing which concerns on Example 2. FIG. 図7、図8に示す主軸受の機能説明図。Functional explanatory view of the main bearing shown in FIGS. 7 and 8. 本発明の実施例3に係る主軸受の正面図。The front view of the main bearing which concerns on Example 3 of this invention. 図10に示す主軸受の第1の半割軸受の内周面を見た平面図。FIG. 10 is a plan view of the inner peripheral surface of the first half bearing of the main bearing shown in FIG. 図10に示す主軸受の第2の半割軸受の内周面を見た平面図。FIG. 10 is a plan view of the inner peripheral surface of the second half bearing of the main bearing shown in FIG. 本発明の主軸受に形成される油溝および部分溝の溝断面形状の一例を示す図。The figure which shows an example of the groove cross-sectional shape of the oil groove and the partial groove formed in the main bearing of this invention. 本発明の主軸受の作用を説明するための、軸受内側から見た図。The figure seen from the inside of the bearing for demonstrating the operation of the main bearing of this invention. 本発明の主軸受の作用を説明するための、正面図。The front view for demonstrating the operation of the main bearing of this invention. 本発明の主軸受の作用を説明するための、軸受内側から見た図。The figure seen from the inside of the bearing for demonstrating the operation of the main bearing of this invention. 本発明の主軸受の作用を説明するための、正面図。The front view for demonstrating the operation of the main bearing of this invention. 従来技術の主軸受の作用を説明した、軸受内側から見た図。The figure seen from the inside of the bearing which explained the operation of the main bearing of the prior art. 従来技術の主軸受の作用を説明した正面図。The front view explaining the operation of the main bearing of the prior art. 従来技術の主軸受の作用を説明した、軸受内側から見た図。The figure seen from the inside of the bearing which explained the operation of the main bearing of the prior art. 従来技術の主軸受の作用を説明した正面図。The front view explaining the operation of the main bearing of the prior art.

(軸受装置の全体構成)
図1に示すように、本実施例の軸受装置1は、シリンダブロック8の下部に支承されるジャーナル部6と、ジャーナル部6と一体に形成されてジャーナル部6を中心として回転するクランクピン5と、クランクピン5に内燃機関から往復運動を伝達するコンロッド2とを備えている。そして、軸受装置1は、クランク軸を支承するすべり軸受として、ジャーナル部6を回転自在に支承する主軸受4と、クランクピン5を回転自在に支承するコンロッド軸受3とをさらに備えている。
(Overall configuration of bearing device)
As shown in FIG. 1, the bearing device 1 of the present embodiment has a journal portion 6 supported at the lower part of the cylinder block 8 and a crank pin 5 formed integrally with the journal portion 6 and rotating around the journal portion 6. And a connecting rod 2 that transmits reciprocating motion from the internal combustion engine to the crank pin 5. The bearing device 1 further includes a main bearing 4 that rotatably supports the journal portion 6 and a conrod bearing 3 that rotatably supports the crankpin 5 as a slide bearing that supports the crankshaft.

なお、クランク軸は複数のジャーナル部6と複数のクランクピン5とを有するが、ここでは説明の便宜上、1つのジャーナル部6および1つのクランクピン5を図示して説明する。図1において、紙面奥行き方向の位置関係は、ジャーナル部6が紙面の奥側で、クランクピン5が手前側となっている。 The crankshaft has a plurality of journal portions 6 and a plurality of crank pins 5, but here, for convenience of explanation, one journal portion 6 and one crank pin 5 will be illustrated and described. In FIG. 1, as for the positional relationship in the depth direction of the paper surface, the journal portion 6 is on the back side of the paper surface and the crank pin 5 is on the front side.

ジャーナル部6は、一対の半割軸受41、42によって構成される主軸受4を介して、内燃機関のシリンダブロック下部81に軸支されている。図1でシリンダブロック下部に取り付けられる上側の第1の半割軸受41には、内周面に油溝41gが周方向に形成されおり、軸受キャップ82に取り付けられる下側の第2の半割軸受42には、内周面に部分溝42gが形成されている。また、ジャーナル部6は、直径方向に貫通する潤滑油路6aを有し、ジャーナル部6が矢印X方向に回転すると、潤滑油路6aの両端の入口開口6cが交互に主軸受4の油溝41gに連通する。 The journal portion 6 is pivotally supported by the lower portion 81 of the cylinder block of the internal combustion engine via a main bearing 4 composed of a pair of half bearings 41 and 42. In FIG. 1, the upper first half-split bearing 41 attached to the lower part of the cylinder block has an oil groove 41 g formed in the circumferential direction on the inner peripheral surface, and the lower second half-split bearing attached to the bearing cap 82 is attached. A partial groove 42g is formed on the inner peripheral surface of the bearing 42. Further, the journal portion 6 has a lubricating oil passage 6a penetrating in the radial direction, and when the journal portion 6 rotates in the direction of the arrow X, the inlet openings 6c at both ends of the lubricating oil passage 6a alternate with the oil grooves of the main bearing 4. It communicates with 41g.

クランクピン5は、一対の半割軸受31、32によって構成されるコンロッド軸受3を介して、コンロッド2の大端部ハウジング21(ロッド側大端部ハウジング22およびキャップ側大端部ハウジング23)に軸支されている。 The crank pin 5 is attached to the large end housing 21 of the connecting rod 2 (the large end housing 22 on the rod side and the large end housing 23 on the cap side) via the connecting rod bearing 3 composed of a pair of half bearings 31 and 32. It is bearing.

上述したように、主軸受4に対して、オイルポンプによって吐出された潤滑油が、シリンダブロック壁内に形成されたオイルギャラリーから主軸受4の壁に形成された貫通口を通じて第1の半割軸受41の内周面に沿って形成された油溝41g内に送り込まれる。 As described above, the lubricating oil discharged by the oil pump to the main bearing 4 is divided into the first half through the through hole formed in the wall of the main bearing 4 from the oil gallery formed in the cylinder block wall. It is fed into the oil groove 41g formed along the inner peripheral surface of the bearing 41.

さらに、ジャーナル部6の直径方向に第1の潤滑油路6aが貫通形成され、第1の潤滑油路6aの入口開口6cが油溝41gと連通している。そして、ジャーナル部6の第1の潤滑油路6aから分岐してクランクアーム部(図示せず)を通る第2の潤滑油路5aが形成され、第2の潤滑油路5aが、クランクピン5の直径方向に貫通形成された第3の潤滑油路5bに連通している。 Further, the first lubricating oil passage 6a is formed through the journal portion 6 in the radial direction, and the inlet opening 6c of the first lubricating oil passage 6a communicates with the oil groove 41g. Then, a second lubricating oil passage 5a that branches from the first lubricating oil passage 6a of the journal portion 6 and passes through the crank arm portion (not shown) is formed, and the second lubricating oil passage 5a is formed by the crank pin 5. It communicates with a third lubricating oil passage 5b formed through the diameter direction of the above.

このようにして、潤滑油は、第1の潤滑油路6a、第2の潤滑油路5aおよび第3の潤滑油路5bを経て、第3の潤滑油路5bの端部の吐出口5cから、クランクピン5とコンロッド軸受3の間に形成される隙間に供給される。 In this way, the lubricating oil passes through the first lubricating oil passage 6a, the second lubricating oil passage 5a, and the third lubricating oil passage 5b, and from the discharge port 5c at the end of the third lubricating oil passage 5b. , It is supplied to the gap formed between the crank pin 5 and the connecting rod bearing 3.

(半割軸受の構成)
そして、本実施例の主軸受4は、一対の半割軸受41、42の周方向の端面を突き合わせて、全体として円筒形状に組み合わせることによって形成される。それぞれの半割軸受41(または42)は、図2に示すように、鋼板上に軸受合金を薄く接着させたバイメタルによって半円筒形状に形成されたものである。半割軸受41、42は、周方向の中央部を含んで形成された主円筒部71と、周方向の両端部に形成されたクラッシュリリーフ部70、70を備えている。
(Composition of half-split bearing)
The main bearing 4 of this embodiment is formed by abutting the end faces of the pair of half bearings 41 and 42 in the circumferential direction and combining them into a cylindrical shape as a whole. As shown in FIG. 2, each half-split bearing 41 (or 42) is formed in a semi-cylindrical shape by bimetal in which a bearing alloy is thinly adhered on a steel plate. The half-split bearings 41 and 42 include a main cylindrical portion 71 formed including a central portion in the circumferential direction, and crash relief portions 70 and 70 formed at both end portions in the circumferential direction.

クラッシュリリーフ部70とは、半割軸受41、42の周方向端面に近い部分の軸受壁を内周面側で除去することによって形成された、軸受内周面の曲率中心とは異なる曲率中心を有する減厚領域(周方向端面に向かって厚さを減じた領域を指し、SAE J506(項目3.26、項目6.4参照)、DIN1497、§3.2で規定されるとおりである)を意味する。 The crush relief portion 70 is a center of curvature different from the center of curvature of the inner peripheral surface of the bearing, which is formed by removing the bearing wall of the half-split bearings 41 and 42 near the end faces in the circumferential direction on the inner peripheral surface side. The thickening region (refers to the region whose thickness is reduced toward the end face in the circumferential direction, as specified in SAE J506 (see item 3.26, item 6.4), DIN1497, §3.2). means.

図2〜図4に、第1の半割軸受41および第2の半割軸受42から成る、クランクジャーナル6用主軸受4を示す。主軸受4は、一対の半割軸受41、42の周方向端面72を突き合わせて、全体として円筒形状に組み合わせることによって形成される(図2参照)。油溝41gは、第1の半割軸受41のクランク軸の回転方向(矢印X参照)の前方側のクラッシュリリーフ部70から、クランク軸の回転方向の後方側のクラッシュリリーフ部70に亘って形成されている。したがって、油溝41gは、両方のクラッシュリリーフ部70に開口(開放溝端)を有する。なお、油溝41gのクランク軸の回転方向の後方側の周方向端部43は、第1の半割軸受41のクランク軸の回転方向の後方側の周方向端面72から円周角θ2(ただし、円周角θ2の最小値=2°、円周角θ2の最大値=7°)の範囲に位置するようにすることが好ましい。また、油溝41gの溝底は平坦である。
また、第1の半割軸受41の周方向端面72の内側(主軸受4の軸線側)に位置する角縁部が、軸受幅方向全体に亘って面取り状に欠截されて傾斜面76になっている。
2 to 4 show a main bearing 4 for a crank journal 6 composed of a first half-split bearing 41 and a second half-split bearing 42. The main bearing 4 is formed by abutting the peripheral end faces 72 of the pair of half bearings 41 and 42 and combining them into a cylindrical shape as a whole (see FIG. 2). The oil groove 41g is formed from the crash relief portion 70 on the front side in the rotation direction of the crankshaft (see arrow X) of the first half bearing 41 to the crash relief portion 70 on the rear side in the rotation direction of the crankshaft. Has been done. Therefore, the oil groove 41g has an opening (open groove end) in both crash relief portions 70. The circumferential end 43 of the oil groove 41g on the rear side of the crankshaft in the rotation direction has an inscribed angle θ2 from the circumferential end surface 72 on the rear side of the crankshaft of the first half bearing 41 in the rotation direction (however, , The minimum value of the inscribed angle θ2 = 2 °, the maximum value of the inscribed angle θ2 = 7 °). Further, the bottom of the oil groove 41g is flat.
Further, the square edge portion located inside the circumferential end surface 72 of the first half bearing 41 (on the axial side of the main bearing 4) is chamfered over the entire bearing width direction to form an inclined surface 76. It has become.

第2の半割軸受42の内周面には、クランク軸の回転方向(矢印X参照)の前方側の周方向端面72から測定して円周角θ1の範囲に、周方向長さの短尺な部分溝42gが形成されている。部分溝42gの溝幅中心と、油溝41gの溝幅中心とは、互いに整合する。なお、部分溝42gの溝底は図6に示されるように平坦である。
なお、第2の半割軸受42の部分溝42gの周方向端部(半割軸受42の周方向中央部側の端部)は、図4等に示すように主円筒部71の内周面に位置するようにすることが好ましいが、これに限定されないで、部分溝42gの周方向端部がクラッシュリリーフ部70に位置していてもよい。
また、第2の半割軸受42の周方向端面72の内側(主軸受4の軸線側)に位置する角縁部が、軸受幅方向全体に亘って面取り状に欠截されて傾斜面76になっている。
この第2の半割軸受41の傾斜面76は、第1の半割軸受41の傾斜面76と対をなし、主軸受4の軸線方向幅全体に亘って延在する断面V字形の軸線方向溝77を画成する。
The inner peripheral surface of the second half bearing 42 has a short circumferential length within the range of the inscribed angle θ1 measured from the circumferential end surface 72 on the front side in the rotation direction of the crankshaft (see arrow X). 42g of partial grooves are formed. The groove width center of the partial groove 42 g and the groove width center of the oil groove 41 g are aligned with each other. The bottom of the partial groove 42 g is flat as shown in FIG.
The circumferential end of the partial groove 42 g of the second half bearing 42 (the end of the half bearing 42 on the circumferential central side) is the inner peripheral surface of the main cylindrical portion 71 as shown in FIG. 4 and the like. However, the present invention is not limited to this, and the circumferential end portion of the partial groove 42 g may be located at the crash relief portion 70.
Further, the square edge portion located inside the circumferential end surface 72 of the second half bearing 42 (on the axial side of the main bearing 4) is chamfered over the entire bearing width direction to form an inclined surface 76. It has become.
The inclined surface 76 of the second half bearing 41 is paired with the inclined surface 76 of the first half bearing 41 and extends in the axial direction of the V-shaped cross section extending over the entire axial width of the main bearing 4. The groove 77 is defined.

以上の構成により、互いに接触する第1の半割軸受41と第2の半割軸受42の周方向端面72、72において、油溝41gと部分溝42gとが流体連通せず、また、部分溝42gと、軸線方向溝77とが流体連通する。 With the above configuration, in the circumferential end faces 72 and 72 of the first half-split bearing 41 and the second half-split bearing 42 that are in contact with each other, the oil groove 41 g and the partial groove 42 g do not communicate with each other, and the partial groove does not communicate with each other. The 42 g and the axial groove 77 communicate with each other in fluid.

油溝41gと部分溝42gの寸法関係
油溝41gおよび部分溝42gの溝幅: 両溝41g、42gの溝幅W1、W2は互いに等しい(W1=W2)(図3、図4参照)。
Dimensional relationship between oil groove 41g and partial groove 42g Groove width of oil groove 41g and partial groove 42g: Groove widths W1 and W2 of both grooves 41g and 42g are equal to each other (W1 = W2) (see FIGS. 3 and 4).

第1の半割軸受41と第2の半割軸受42の斯かる構成によれば、突き合わされた周方向端面72、72において、油溝41gと部分溝42gとが流体連通状態にないから、部分溝42gの開口(開放溝端)が、第1の半割軸受41の周方向端面72によって遮蔽される。この遮蔽作用によって、部分溝42gの溝底に沿って移動する異物Fの移動速度が、周方向端面72への接近に伴って次第に低下する。突き合わされた周方向端面72、72における、異物Fの周方向への直進慣性力低下により、部分溝42gから軸線方向溝77に流れる潤滑油に付随して、異物Fが、主軸受4の軸線方向端部から容易に軸受外部に排出される。
一方、部分溝42gの溝底から離れた溝上部領域を流れる潤滑油中の異物量は少ないが、その潤滑油は、第1の半割軸受41のクラッシュリリーフ70や油溝41gへ流れるので、主軸受4からの潤滑油の流出を抑制できる。
According to such a configuration of the first half-split bearing 41 and the second half-split bearing 42, the oil groove 41 g and the partial groove 42 g are not in a fluid communication state at the abutted circumferential end faces 72 and 72. The opening (open groove end) of the partial groove 42 g is shielded by the circumferential end surface 72 of the first half bearing 41. Due to this shielding action, the moving speed of the foreign matter F moving along the groove bottom of the partial groove 42g gradually decreases as it approaches the peripheral end surface 72. Due to the decrease in the linear inertial force of the foreign matter F in the circumferential direction at the abutted circumferential end faces 72 and 72, the foreign matter F accompanies the lubricating oil flowing from the partial groove 42g to the axial groove 77, and the foreign matter F is the axis of the main bearing 4. It is easily discharged to the outside of the bearing from the directional end.
On the other hand, although the amount of foreign matter in the lubricating oil flowing in the groove upper region away from the groove bottom of the partial groove 42 g is small, the lubricating oil flows to the crash relief 70 and the oil groove 41 g of the first half bearing 41. The outflow of lubricating oil from the main bearing 4 can be suppressed.

図7〜図9に示された実施例2について説明する。実施例2は、一部を除いて、実施例1と同じ構成を有する。以下、相違点についてのみ説明する。
部分溝42gの第2の半割軸受42のクランク軸の回転方向の前方側の周方向端面72における部分溝の溝幅(W2)は、油溝41gのクランク軸の回転方向の後方側の周方向端部43の位置での溝幅(W1)よりも大きい。
W1とW2の好適な関係は、1.1×W1<W2<2×W1である。
The second embodiment shown in FIGS. 7 to 9 will be described. Example 2 has the same configuration as that of Example 1 except for a part. Hereinafter, only the differences will be described.
The groove width (W2) of the partial groove in the circumferential end surface 72 on the front side in the rotational direction of the crankshaft of the second half bearing 42 of the partial groove 42 g is the circumference on the rear side in the rotational direction of the crankshaft of the oil groove 41 g. It is larger than the groove width (W1) at the position of the directional end 43.
A preferable relationship between W1 and W2 is 1.1 × W1 <W2 <2 × W1.

部分溝42gに進入した異物Fは、図9に示すように流体連通部分に達するまでの間は部分溝42g内の軸線方向両端部付近を流れやすい。仮に、異物Fが、軸線方向溝77を越えて第1の第1の半割軸受41側に進入したとしても、第2の半割軸受42のクランク軸の回転方向の前方側の周方向端面72における部分溝42gの溝幅(W2)は、油溝41gのクランク軸の回転方向の後方側の周方向端部43の位置での溝幅(W1)よりも大きい場合には、異物Fは、第1の第1の半割軸受41の油溝41gには進入し難い。 As shown in FIG. 9, the foreign matter F that has entered the partial groove 42g tends to flow in the vicinity of both ends in the axial direction in the partial groove 42g until it reaches the fluid communication portion. Even if the foreign matter F crosses the axial groove 77 and enters the first half-split bearing 41 side, the end face in the circumferential direction on the front side of the crankshaft of the second half-split bearing 42 in the rotational direction. When the groove width (W2) of the partial groove 42g in 72 is larger than the groove width (W1) at the position of the circumferential end 43 on the rear side in the rotation direction of the crankshaft of the oil groove 41g, the foreign matter F is present. , It is difficult to enter the oil groove 41g of the first first half bearing 41.

図10〜図12に示す、主軸受4は、第1の半割軸受41および第2の半割軸受42から成る。第2の半割軸受42は、実施例1における第2の半割軸受42と同一品である。第1の半割軸受41は、以下の点で、実施例1における第1の半割軸受41と違っている。油溝41gの溝深さは、第1の半割軸受41のクランク軸の回転方向(矢印X方向)の後方側の周方向端部43において最小で、クランク軸の回転方向の前方側の周方向端面72に向かって徐々に大きくなっている。なお、クラッシュリリーフ部70における油溝41gの溝深さは、クラッシュリリーフを形成しなかった場合の仮想の主円筒部71の内周面を基準とした溝深さを意味する。そして、実施例1の場合と同様に、油溝41gの溝幅(W1)と、部分溝42gの溝幅(W2)とは互いに等しくなされている(W1=W2)。 The main bearing 4 shown in FIGS. 10 to 12 includes a first half-split bearing 41 and a second half-split bearing 42. The second half-split bearing 42 is the same product as the second half-split bearing 42 in the first embodiment. The first half-split bearing 41 is different from the first half-split bearing 41 in the first embodiment in the following points. The groove depth of the oil groove 41g is the minimum at the circumferential end 43 on the rear side in the rotation direction (arrow X direction) of the crankshaft of the first half bearing 41, and is the circumference on the front side in the rotation direction of the crankshaft. It gradually increases toward the directional end face 72. The groove depth of the oil groove 41g in the crash relief portion 70 means a groove depth based on the inner peripheral surface of the virtual main cylindrical portion 71 when the crash relief is not formed. Then, as in the case of the first embodiment, the groove width (W1) of the oil groove 41 g and the groove width (W2) of the partial groove 42 g are made equal to each other (W1 = W2).

以上の実施例において、油溝41gおよび部分溝42gの横断面形状を、図13に示すように逆台形状、すなわち両側面を傾斜面にして、溝底幅に比して溝頂部幅を大きくしてもよい。ただし、この場合の油溝41gおよび部分溝42gの溝幅(W1、W2)は、溝底で測定する値である。
また、実施例1および2では、油溝41gの溝深さを、第1の半割軸受41の周方向中央部分から周方向両端面72側に向かって次第に小さくなるようにしたが、本発明の主軸受は、これに限定されず、例えば、油溝41gの深さを、第1の半割軸受41の周方向中央部分では、一定に形成してもよい。
In the above embodiment, the cross-sectional shapes of the oil groove 41 g and the partial groove 42 g are inverted trapezoidal as shown in FIG. 13, that is, both side surfaces are inclined surfaces, and the groove top width is made larger than the groove bottom width. You may. However, the groove widths (W1, W2) of the oil groove 41 g and the partial groove 42 g in this case are values measured at the groove bottom.
Further, in Examples 1 and 2, the groove depth of the oil groove 41 g is gradually reduced from the central portion in the circumferential direction of the first half bearing 41 toward both end faces 72 in the circumferential direction. The main bearing is not limited to this, and for example, the depth of the oil groove 41 g may be formed to be constant at the central portion in the circumferential direction of the first half bearing 41.

なお、実施例1〜3において、第2の半割軸受42のクランク軸の回転方向の後方側の周方向端面72側に、部分溝42gと同様な部分溝を設けて、第2の半割軸受42を左右対称形状にしてもよい。このような左右対称形状を採用することにより、主軸受4の誤った組立作業を未然に防止できる。また、第2の半割軸受42のクランク軸の回転方向の後方側の周方向端面72側に、部分溝42gと異なる形状、寸法の他の部分溝を形成してもよい。 In Examples 1 to 3, a partial groove similar to the partial groove 42 g is provided on the circumferential end surface 72 side of the crankshaft of the second half bearing 42 on the rear side in the rotational direction, and the second half split bearing 42 is split. The bearing 42 may have a symmetrical shape. By adopting such a symmetrical shape, it is possible to prevent erroneous assembly work of the main bearing 4 in advance. Further, another partial groove having a shape and size different from that of the partial groove 42g may be formed on the circumferential end surface 72 side of the second half bearing 42 on the rear side in the rotation direction of the crankshaft.

2 コンロッド
3 コンロッド軸受
4 主軸受
5 クランクピン
5a、5b 潤滑油路
5c 吐出口
6 ジャーナル部
6a 潤滑油路
6c 入口開口
41、42 半割軸受
41g 油溝
42g 部分溝
43 周方向端部
70 クラッシュリリーフ部
71 主円筒部
72 周方向端面
77 軸線方向溝
F 異物
2 Connecting rod 3 Connecting rod bearing 4 Main bearing 5 Crank pin 5a, 5b Lubricating oil passage 5c Discharge port 6 Journal part 6a Lubricating oil passage 6c Inlet opening 41, 42 Half bearing 41g Oil groove 42g Partial groove 43 Circumferential end 70 Crash relief Part 71 Main cylindrical part 72 Circumferential end face 77 Axial direction groove F Foreign matter

Claims (5)

内燃機関のクランク軸のジャーナル部であって、円筒胴部と、前記円筒胴部を貫通して延びる潤滑油路と、前記円筒胴部の外周面上に形成された前記潤滑油路の少なくとも1つの入口開口とを有しているジャーナル部を回転自在に支持するための主軸受であって、
前記主軸受は、それぞれの周方向端面同士を突き合わせることによって円筒形状に組み合わされる第1および第2の半割軸受を有し、
前記第1および第2の半割軸受は、組み合わされたとき、それぞれの突合せ部分の内周面側に、前記主軸受の軸線方向全長に亘って延びる軸線方向溝を共に形成するように構成され、
前記第1および第2の半割軸受は、該半割軸受の周方向中央部を含む主円筒部と、前記主円筒部よりも壁厚が薄くなるように該半割軸受の周方向両端部に軸線方向全長に亘って形成されたクラッシュリリーフ部とを有し、
前記第1の半割軸受の内周面に、油溝が形成され、該油溝のクランク軸の回転方向の後方側の周方向端部は、前記第1の半割軸受のクランク軸の回転方向の後方側のクラッシュリリーフ部に位置し、クランク軸の回転方向の前方側の周方向端部は、クランク軸の回転方向の前方側のクラッシュリリーフ部に位置するか、または、前記第1の半割軸受のクランク軸の回転方向の前方側の周方向端面に開口し、
前記第2の半割軸受の内周面に、部分溝が形成され、該部分溝は、前記第2の半割軸受の2つの周方向端面のうち、クランク軸の回転方向の前方側の周方向端面にのみ開口し、
前記油溝と前記部分溝の溝幅中心が互いに整合し、前記第2の半割軸受のクランク軸の回転方向の前方側の周方向端面における前記部分溝の開口は、前記第1の半割軸受のクランク軸の回転方向の後方側の周方向端面によって遮蔽されることを特徴とする主軸受。
At least one of the journal portion of the crankshaft of the internal combustion engine, the cylindrical body portion, the lubricating oil passage extending through the cylindrical body portion, and the lubricating oil passage formed on the outer peripheral surface of the cylindrical body portion. A main bearing for rotatably supporting a journal portion having two inlet openings.
The main bearing has first and second half bearings that are combined into a cylindrical shape by abutting the end faces in the circumferential direction.
When combined, the first and second half-split bearings are configured to together form an axial groove extending over the entire axial direction of the main bearing on the inner peripheral surface side of each butt portion. ,
The first and second halves of the half bearing have a main cylindrical portion including the central portion in the circumferential direction of the halved bearing and both ends of the halved bearing in the circumferential direction so that the wall thickness is thinner than that of the main cylindrical portion. Has a crush relief portion formed over the entire length in the axial direction.
An oil groove is formed on the inner peripheral surface of the first half-split bearing, and the peripheral end of the oil groove on the rear side in the rotation direction of the crankshaft is the rotation of the crankshaft of the first half-split bearing. It is located in the crash relief portion on the rear side in the direction, and the circumferential end on the front side in the rotation direction of the crankshaft is located in the crash relief portion on the front side in the rotation direction of the crankshaft, or the first An opening is made in the circumferential end face on the front side in the rotational direction of the crankshaft of the half-split bearing.
A partial groove is formed on the inner peripheral surface of the second half-split bearing, and the partial groove is the circumference of the two circumferential end faces of the second half-split bearing on the front side in the rotational direction of the crankshaft. Open only on the directional end face,
The groove width centers of the oil groove and the partial groove are aligned with each other, and the opening of the partial groove on the circumferential end surface on the front side in the rotational direction of the crankshaft of the second half bearing is the first half split. A main bearing characterized in that it is shielded by a circumferential end face on the rear side in the rotational direction of the crankshaft of the bearing.
前記部分溝が、前記第2の半割軸受の前記クランク軸の回転方向の前方側の周方向端面から円周角θ1(ただし、円周角θ1の最小値=5°、円周角θ1の最大値=45°)の範囲に形成されていることを特徴とする請求項1に記載された主軸受。 The partial groove has an inscribed angle θ1 from the circumferential end surface of the second half bearing on the front side in the rotational direction of the crank shaft (however, the minimum value of the inscribed angle θ1 = 5 °, the inscribed angle θ1). The main bearing according to claim 1, wherein the main bearing is formed in a range of (maximum value = 45 °). 前記油溝のクランク軸の回転方向の後方側の周方向端部は、前記第1の半割軸受のクランク軸の回転方向の後方側の周方向端面から円周角θ2(ただし、円周角θ2の最小値=2°、円周角θ2の最大値=7°)の範囲に位置することを特徴とする請求項1または請求項2に記載された主軸受。 The circumferential end of the oil groove on the rear side of the crankshaft in the rotational direction has an inscribed angle θ2 (however, the inscribed angle) from the circumferential end face on the rear side of the crankshaft of the first half bearing in the rotational direction. The main bearing according to claim 1 or 2, wherein the main bearing is located in the range (minimum value of θ2 = 2 °, maximum value of inscribed angle θ2 = 7 °). 前記部分溝の第2の半割軸受のクランク軸の回転方向の前方側の周方向端面における溝深さ(D2)は、0.3〜1.5mmであることを特徴とする請求項1から請求項3までのいずれか1項に記載された主軸受。 From claim 1, the groove depth (D2) at the circumferential end face on the front side in the rotational direction of the crankshaft of the second half bearing of the partial groove is 0.3 to 1.5 mm. The main bearing according to any one of claims 3. 前記部分溝の第2の半割軸受のクランク軸の回転方向の前方側の周方向端面における前記部分溝の溝幅(W2)は、前記油溝のクランク軸の回転方向の後方側の周方向端部の位置での溝幅(W1)よりも大きいことを特徴とする請求項1から請求項4までのいずれか1項に記載された主軸受。 The groove width (W2) of the partial groove on the circumferential end surface of the second half bearing of the partial groove on the front side in the rotational direction of the crankshaft is the circumferential direction on the rear side in the rotational direction of the crankshaft of the oil groove. The main bearing according to any one of claims 1 to 4, wherein the main bearing is larger than the groove width (W1) at the position of the end portion.
JP2017172486A 2017-09-07 2017-09-07 Main bearing for crankshaft of internal combustion engine Active JP6862318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017172486A JP6862318B2 (en) 2017-09-07 2017-09-07 Main bearing for crankshaft of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017172486A JP6862318B2 (en) 2017-09-07 2017-09-07 Main bearing for crankshaft of internal combustion engine

Publications (2)

Publication Number Publication Date
JP2019049272A JP2019049272A (en) 2019-03-28
JP6862318B2 true JP6862318B2 (en) 2021-04-21

Family

ID=65906064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017172486A Active JP6862318B2 (en) 2017-09-07 2017-09-07 Main bearing for crankshaft of internal combustion engine

Country Status (1)

Country Link
JP (1) JP6862318B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4864108B2 (en) * 2009-02-27 2012-02-01 大同メタル工業株式会社 Connecting rod bearing for internal combustion engine
JP5967719B2 (en) * 2013-08-26 2016-08-10 大同メタル工業株式会社 Main bearing for crankshaft of internal combustion engine
JP2015152104A (en) * 2014-02-14 2015-08-24 大豊工業株式会社 slide bearing
JP6004501B2 (en) * 2015-02-09 2016-10-12 大同メタル工業株式会社 Main bearing for crankshaft of internal combustion engine
JP2016191420A (en) * 2015-03-31 2016-11-10 大豊工業株式会社 Slide bearing

Also Published As

Publication number Publication date
JP2019049272A (en) 2019-03-28

Similar Documents

Publication Publication Date Title
KR101152855B1 (en) Sliding bearing for internal combustion engine
US8905639B2 (en) Main bearing for crankshaft of internal combustion engine
JP5048805B2 (en) Sliding bearings for internal combustion engines
US8147144B2 (en) Connecting rod bearing for internal combustion engines
JP4913179B2 (en) Sliding bearings for internal combustion engines
JP6185702B2 (en) Slide bearing and bearing device
JP4864108B2 (en) Connecting rod bearing for internal combustion engine
US9593711B2 (en) Main bearing for crankshaft of internal combustion engine
JP6923465B2 (en) Main bearing for crankshaft of internal combustion engine
JP2014047846A (en) Connecting rod bearing
JP5722758B2 (en) Main bearing for crankshaft of internal combustion engine
JP2014047844A (en) Connecting rod bearing
JP7013203B2 (en) Main bearing for crank shaft of internal combustion engine
JP5038445B2 (en) Sliding bearings for internal combustion engines
JP6862318B2 (en) Main bearing for crankshaft of internal combustion engine
JP6004501B2 (en) Main bearing for crankshaft of internal combustion engine
US9243660B2 (en) Main bearing for crankshaft of internal combustion engine
JP6961460B2 (en) Connecting rod bearing for crank shaft of internal combustion engine
JP2011208740A (en) Slide bearing
JP2018151037A (en) Main bearing for crank shaft of internal combustion engine
JP5234679B2 (en) Sliding bearings for internal combustion engines
JP2019218972A (en) Main bearing for crank shaft of internal combustion engine, and bearing device
JP5044684B2 (en) Sliding bearing for crankshaft of internal combustion engine
JP2019218973A (en) Main bearing for crank shaft of internal combustion engine, and bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210331

R150 Certificate of patent or registration of utility model

Ref document number: 6862318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250