[go: up one dir, main page]

JP6859573B2 - Water supply pumpless hydrogen water production equipment and hydrogen water production method - Google Patents

Water supply pumpless hydrogen water production equipment and hydrogen water production method Download PDF

Info

Publication number
JP6859573B2
JP6859573B2 JP2017099912A JP2017099912A JP6859573B2 JP 6859573 B2 JP6859573 B2 JP 6859573B2 JP 2017099912 A JP2017099912 A JP 2017099912A JP 2017099912 A JP2017099912 A JP 2017099912A JP 6859573 B2 JP6859573 B2 JP 6859573B2
Authority
JP
Japan
Prior art keywords
water
hydrogen
pressure
dissolution tank
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017099912A
Other languages
Japanese (ja)
Other versions
JP2018034147A (en
Inventor
祐太 水谷
祐太 水谷
文士 張
文士 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hikarimirai Co Ltd
Original Assignee
Hikarimirai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hikarimirai Co Ltd filed Critical Hikarimirai Co Ltd
Publication of JP2018034147A publication Critical patent/JP2018034147A/en
Application granted granted Critical
Publication of JP6859573B2 publication Critical patent/JP6859573B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Non-Alcoholic Beverages (AREA)
  • Accessories For Mixers (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、水素を含む水である水素水の製造装置及び製造方法に関し、特に、水を送水する送水ポンプを使用せずに飲料用の水素水を安定して提供できる送水ポンプレス水素水製造装置及び水素水製造方法に関する。 The present invention relates to a hydrogen water production apparatus and a production method for hydrogen-containing water, and in particular, a water supply pumpless hydrogen water production apparatus capable of stably providing hydrogen water for drinking without using a water supply pump for supplying water. And hydrogen water production method.

近年、飲料水に水素を溶解した飲料用の水素水が販売されている。このような水素水は、水に溶解した水素ガスを直接摂取することにより、人間の体内に存在する活性酸素を還元させる効果があるとして注目されている。 In recent years, hydrogen water for drinking in which hydrogen is dissolved in drinking water has been sold. Such hydrogen water has been attracting attention as having the effect of reducing active oxygen existing in the human body by directly ingesting hydrogen gas dissolved in water.

例えば、特許文献1では、このような水素水を製造する技術として、液体を圧送する加圧部と、液体に気体を注入する気体注入部と、圧送による加圧で液体に気体を溶解させる加圧溶解部と、を備えた気体溶解装置が開示されている。かかる気体溶解装置では、気体が混合された液体を加圧溶解部に圧送するポンプ等の圧送手段が用いられている。 For example, in Patent Document 1, as a technique for producing such hydrogen water, a pressurizing part for pumping a liquid, a gas injection part for injecting a gas into the liquid, and an addition for dissolving the gas in the liquid by pressurizing by pressure feeding. A gas melting device including a pressure melting unit is disclosed. In such a gas melting device, a pressure feeding means such as a pump for pumping a liquid mixed with a gas to a pressure melting unit is used.

更に、特許文献2では、水を電気分解して水素を発生させる水素発生手段と、発生した水素を水素バブルとして水と混合し加圧送水する加圧型気体溶解手段と、混合した水素水を貯留する溶存槽と、を備え、溶存槽に貯留された水素水を加圧型気体溶解手段に加圧送水して循環させることにより、水素バブルをナノバブル化する気体溶解装置が開示されている。かかる気体溶解装置では、水素を加圧型気体溶解手段に送る機構あるいは加圧型気体溶解手段と溶存槽とで水素水を循環させる機構として、ダイヤフラムポンプを用いて圧送している。 Further, in Patent Document 2, hydrogen generating means for electrolyzing water to generate hydrogen, pressurized gas dissolving means for mixing the generated hydrogen with water as hydrogen bubbles and supplying pressurized water, and mixed hydrogen water are stored. Disclosed is a gas dissolving device that comprises a dissolved tank and circulates hydrogen water stored in the dissolved tank by pressurizing and sending it to a pressurized gas dissolving means to make hydrogen bubbles into nanobubbles. In such a gas dissolving apparatus, hydrogen water is pumped by using a diaphragm pump as a mechanism for sending hydrogen to the pressurized gas dissolving means or a mechanism for circulating hydrogen water between the pressurized gas dissolving means and the dissolution tank.

また、特許文献3では、水を貯留する貯留槽に水電気分解装置で発生させた水素を高速で供給することにより、水中で水素をナノバブル化して混合することで、水素水を製造する装置が開示されている。かかる装置は、水素をナノバブル化して水に分散及び溶解させるために、水素ガスを気体放出手段(例えばコンプレッサ)で加圧して噴射することにより、水素ガスを高速で水に衝突させている。 Further, in Patent Document 3, a device for producing hydrogen water by supplying hydrogen generated by a water electrolyzer to a storage tank for storing water at high speed to make hydrogen into nanobubbles and mixing them in water. It is disclosed. In such a device, hydrogen gas is collided with water at high speed by pressurizing and injecting hydrogen gas with a gas discharging means (for example, a compressor) in order to make hydrogen into nanobubbles and disperse and dissolve it in water.

特開2008−188574号公報Japanese Unexamined Patent Publication No. 2008-188574 特許5865560号公報Japanese Patent No. 5865560 特開2015−150512号公報Japanese Unexamined Patent Publication No. 2015-150512

上記したように、特許文献1〜3に開示された装置では、水素を加圧して圧送する際にポンプ等の気体放出手段が駆動するため駆動音が発生するとともに、水素ガスが圧送されて高速で水に衝突する際にも少なからず衝突音が発生し、静粛性を要求されるオフィス等の室内環境での使用には適さないという問題があった。 As described above, in the apparatus disclosed in Patent Documents 1 to 3, when hydrogen is pressurized and pumped, a gas discharging means such as a pump is driven to generate a driving noise, and hydrogen gas is pumped at high speed. When it collides with water, it makes a considerable amount of collision noise, and there is a problem that it is not suitable for use in an indoor environment such as an office where quietness is required.

そこで、本発明の目的は、前記の従来技術の問題点を解決し、水素を水に溶解させる際にコンプレッサやポンプ等の加圧手段を用いることなく、静粛性を確保できる送水ポンプレス水素水製造装置及びこれを用いた水素水製造方法を提供することにある。 Therefore, an object of the present invention is to produce water pumpless hydrogen water that can ensure quietness without using a pressurizing means such as a compressor or a pump when dissolving hydrogen in water by solving the above-mentioned problems of the prior art. An object of the present invention is to provide an apparatus and a method for producing hydrogen water using the apparatus.

本発明者らは、上記した課題を解決すべく鋭意検討を行った結果、水と水素とを混合させる加圧溶解タンクの圧力を制御しつつその内部に水素を加圧供給することで、上記した目的を達成し得ることを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above-mentioned problems, the present inventors have controlled the pressure of the pressure-dissolving tank that mixes water and hydrogen, and pressurized and supplied hydrogen to the inside thereof. We have found that the above-mentioned object can be achieved, and have completed the present invention.

即ち、本発明による、水素ガス及び水を気液二相状態で加圧保持して水素水とする加圧溶解タンクを含む飲料用の送水ポンプレス水素水製造装置は、前記加圧溶解タンクに水を供給する給水槽と、水を電気分解して水素ガスを生成し前記加圧溶解タンクの内部に供給する水素供給機構と、前記加圧溶解タンクの内部の水を外部に吐出させる取水機構と、を含み、前記給水槽から前記加圧溶解タンクに水を供給し前記加圧溶解タンクを閉空間とした後に、前記水素供給機構から前記水素ガスを前記加圧溶解タンクの内部に加圧供給して前記閉空間を加圧し、保持後、前記加圧溶解タンクの内部圧力によって前記取水機構を介して前記加圧溶解タンクの内部の水を外部に吐出させることを特徴とする。 That is, according to the present invention, the water supply pumpless hydrogen water production apparatus for beverages, which includes a pressure dissolution tank that pressurizes and holds hydrogen gas and water in a gas-liquid two-phase state to form hydrogen water, has water in the pressure dissolution tank. A water supply tank that supplies water, a hydrogen supply mechanism that electrolyzes water to generate hydrogen gas and supplies it to the inside of the pressure dissolution tank, and a water intake mechanism that discharges the water inside the pressure dissolution tank to the outside. , Is supplied from the water supply tank to the pressurized dissolution tank to make the pressurized dissolution tank a closed space, and then the hydrogen gas is pressurized and supplied to the inside of the pressurized dissolution tank from the hydrogen supply mechanism. Then, the closed space is pressurized, and after holding, the water inside the pressurized dissolution tank is discharged to the outside through the water intake mechanism by the internal pressure of the pressurized dissolution tank.

かかる発明によれば、水素を水に溶解させる際にコンプレッサ等の加圧手段を用いることなく、静粛性を確保した水素水製造装置を提供することができる。 According to such an invention, it is possible to provide a hydrogen water production apparatus that ensures quietness without using a pressurizing means such as a compressor when dissolving hydrogen in water.

上記した発明において、前記水素供給機構は、前記保持時の前記閉空間の圧力以上の逆耐圧を有する固体高分子からなる水素発生膜を用いた水の電気分解部を含むことを特徴としてもよい。かかる発明によれば、逆耐圧以下の圧力であれば比較的容易に得ることができて、コンプレッサ等の加圧手段を用いることもなく、静粛性を確保できる。 In the above-described invention, the hydrogen supply mechanism may include an electrolyzer of water using a hydrogen generating membrane made of a solid polymer having a reverse pressure resistance equal to or higher than the pressure of the closed space at the time of holding. .. According to such an invention, if the pressure is equal to or lower than the reverse pressure resistance, it can be obtained relatively easily, and quietness can be ensured without using a pressurizing means such as a compressor.

上記した発明において、前記水素供給機構は、前記加圧溶解タンクの内部に前記水素ガスを放出する気泡放出部とこれに水素を供給する水素供給管とを含み、前記水素供給管には管内圧力を検出する圧力センサが取り付けられ、前記管内圧力が所定の閾値を超えたときに前記電気分解部の駆動を停止せしめることを特徴としてもよい。かかる発明によれば、貯水量を変化させても加圧溶解タンク内の圧力を一定以下にできるのである。 In the above-described invention, the hydrogen supply mechanism includes a bubble discharge portion for discharging the hydrogen gas and a hydrogen supply pipe for supplying hydrogen to the inside of the pressurized dissolution tank, and the pressure in the pipe is provided in the hydrogen supply pipe. A pressure sensor for detecting the above may be attached, and the drive of the electrolysis unit may be stopped when the pressure in the pipe exceeds a predetermined threshold value. According to such an invention, the pressure in the pressurized dissolution tank can be kept below a certain level even if the amount of water stored is changed.

上記した発明において、前記取水機構は、前記加圧溶解タンクと取水口とを接続する取水管を含み、前記取水管は前記取水口からの吐出を抑制する形状を有することを特徴としてもよい。また、前記取水管は水の粘性によって圧力損失を与えるよう、細径且つ長尺に与えられ、その径を1.0〜5.0mm、長さを1.0m以上とすることを特徴としてもよい。さらに、前記取水管は、前記取水口に向かって縮径する形状を有することを特徴としてもよい。かかる発明によれば、静粛性を確保しつつ、製造した水素水中により多くの水素を含有した状態で取り出すことができる。 In the above-described invention, the water intake mechanism may include an water intake pipe connecting the pressurized dissolution tank and the water intake port, and the water intake pipe may have a shape that suppresses discharge from the water intake port. Further, the intake pipe is provided with a small diameter and a long length so as to give a pressure loss due to the viscosity of water, and the diameter is 1.0 to 5.0 mm and the length is 1.0 m or more. Good. Further, the water intake pipe may be characterized by having a shape whose diameter is reduced toward the water intake port. According to such an invention, it can be taken out in a state where more hydrogen is contained in the produced hydrogen water while ensuring quietness.

上記した発明において、前記取水口は前記供給槽に向けて設けられることを特徴としてもよい。かかる発明によれば、静粛性を確保しつつ、供給槽に向けて水素水を吐出できる。 In the above invention, the intake port may be provided toward the supply tank. According to such an invention, hydrogen water can be discharged toward a supply tank while ensuring quietness.

また、本発明による、水素ガス及び水を気液二相状態で加圧保持する加圧溶解タンクを用いて飲料用水素水を製造する水素水製造方法は、前記加圧溶解タンク内に水を供給し前記加圧溶解タンクを閉空間とする工程と、電気分解部を備える水素供給機構によって水を電気分解して水素ガスを生成した後、前記加圧溶解タンクの内部に加圧供給して前記閉空間を加圧する工程と、前記閉空間の加圧状態を保持する工程と、前記加圧溶解タンクの内部圧力によって前記加圧溶解タンクの内部の水を外部に吐出させる工程と、を含むことを特徴とする。 Further, according to the present invention, in the hydrogen water production method for producing hydrogen water for drinking by using a pressure dissolution tank that pressurizes and holds hydrogen gas and water in a gas-liquid two-phase state, water is placed in the pressure dissolution tank. After supplying hydrogen gas by electrolyzing water by a step of supplying and closing the pressurized dissolution tank and a hydrogen supply mechanism provided with an electrolysis unit, the pressure is supplied to the inside of the pressurized dissolution tank. It includes a step of pressurizing the closed space, a step of maintaining the pressurized state of the closed space, and a step of discharging water inside the pressurized dissolution tank to the outside by the internal pressure of the pressurized dissolution tank. It is characterized by that.

かかる発明によれば、水素を水に溶解させる際にコンプレッサ等の加圧手段を用いることなく、静粛性を確保した水素水製造方法を提供することができる。 According to such an invention, it is possible to provide a hydrogen water production method that ensures quietness without using a pressurizing means such as a compressor when dissolving hydrogen in water.

上記した発明において、前記水素供給機構は、前記加圧溶解タンクの内部に前記水素ガスを放出する気泡放出部とこれに水素を供給する水素供給管とを含み、前記水素供給管には管内圧力を検出する圧力センサが取り付けられ、前記管内圧力が所定の閾値を超えたときに前記電気分解部の動作を停止せしめることを特徴としてもよい。かかる発明によれば、貯水量によらずに加圧溶解タンク内の圧力を一定以下にできるのである。 In the above-described invention, the hydrogen supply mechanism includes a bubble discharge portion for discharging the hydrogen gas and a hydrogen supply pipe for supplying hydrogen to the inside of the pressurized dissolution tank, and the pressure in the pipe is provided in the hydrogen supply pipe. A pressure sensor for detecting the above may be attached, and the operation of the electrolysis unit may be stopped when the pressure in the pipe exceeds a predetermined threshold value. According to such an invention, the pressure in the pressurized dissolution tank can be kept below a certain level regardless of the amount of water stored.

本発明による水素水製造装置の代表的な一例を示すブロック図である。It is a block diagram which shows a typical example of the hydrogen water production apparatus by this invention. 水素水製造装置の動作の一例を示す図である。It is a figure which shows an example of the operation of a hydrogen water production apparatus. 水素水製造装置の動作の一例を示す図である。It is a figure which shows an example of the operation of a hydrogen water production apparatus. 本発明による水素水製造装置の変形例を示すブロック図である。It is a block diagram which shows the modification of the hydrogen water production apparatus by this invention. 本発明による水素水製造装置の他の変形例を示すブロック図である。It is a block diagram which shows the other modification of the hydrogen water production apparatus by this invention.

以下、本発明による水素水製造装置について具体的に説明する。 Hereinafter, the hydrogen water production apparatus according to the present invention will be specifically described.

図1は、本発明による水素水製造装置の代表的な一例を示すブロック図である。なお、図中において、後述する加圧溶解タンクのみ内部の構成を断面図として示している。 FIG. 1 is a block diagram showing a typical example of the hydrogen water production apparatus according to the present invention. In the figure, the internal configuration of only the pressure melting tank, which will be described later, is shown as a cross-sectional view.

水素水製造装置100は、飲料用の水を貯留する給水タンク110と、給水タンク(給水槽)110から供給された水と水素とを混合させる加圧溶解タンク120と、加圧溶解タンク120内の水の一部から水素を生成する電気分解機構130と、加圧溶解タンク120から水素の溶解した飲料用水素水を大気圧下に取り出す減圧取水口140と、を備える。 The hydrogen water production apparatus 100 includes a water supply tank 110 for storing drinking water, a pressurized dissolution tank 120 for mixing water and hydrogen supplied from the water supply tank (water supply tank) 110, and a pressurized dissolution tank 120. It is provided with an electrolysis mechanism 130 that generates hydrogen from a part of the water of the above, and a decompression intake port 140 that takes out hydrogen-dissolved drinking hydrogen water from the pressurized dissolution tank 120 under atmospheric pressure.

給水タンク110は、給水配管111を介して加圧溶解タンク120と接続されており、給水配管111には、給水ポンプ112と逆止弁113とが取り付けられている。逆止弁113は、給水タンク110から加圧溶解タンク120への給水時にのみ開放して、加圧溶解タンク120からの逆流を阻止するように構成されている。給水タンク110を加圧溶解タンク120よりも高所に配置すれば、給水タンクから水を自重により加圧溶解タンク120へ流入させ得て給水ポンプ112を省略できる。その他、水道水など圧力を得た水を利用することで、給水ポンプ112を省略しても加圧溶解タンク120へ水を流入させ得る。 The water supply tank 110 is connected to the pressurized dissolution tank 120 via a water supply pipe 111, and a water supply pump 112 and a check valve 113 are attached to the water supply pipe 111. The check valve 113 is configured to be opened only when water is supplied from the water supply tank 110 to the pressurized dissolution tank 120 to prevent backflow from the pressurized dissolution tank 120. If the water supply tank 110 is arranged at a higher position than the pressurized dissolution tank 120, water can flow from the water supply tank into the pressurized dissolution tank 120 by its own weight, and the water supply pump 112 can be omitted. In addition, by using tap water or other pressurized water, water can flow into the pressurized dissolution tank 120 even if the water supply pump 112 is omitted.

加圧溶解タンク120は、その頂部に圧力リーク弁121及び水位センサ122を取り付けられており、その底部近傍に後述する電気分解機構130から供給された水素を微細な気泡として放出する微細気泡放出部123を備えている。加圧溶解タンク120の本体は、水素水を製造する際に大気圧以上に加圧される所定の範囲の内部圧力に耐え得る材料及び厚さにより形成される。 The pressure leak valve 121 and the water level sensor 122 are attached to the top of the pressurized dissolution tank 120, and a fine bubble discharge section that discharges hydrogen supplied from the electrolysis mechanism 130, which will be described later, as fine bubbles near the bottom of the pressure leak valve 121. It is equipped with 123. The main body of the pressurized dissolution tank 120 is formed of a material and a thickness capable of withstanding an internal pressure in a predetermined range of being pressurized to atmospheric pressure or higher when producing hydrogen water.

圧力リーク弁121は、加圧溶解タンク120の頂部に取り付けられ、加圧溶解タンク120内の圧力が所定値(例えば0.6MPa)を超える場合に、頂部近傍に滞留する水素ガスを外部に排出する。これにより、加圧溶解タンク120内の圧力を、上記した所定値を上限値として調整する機能を有する。圧力リーク弁121は、その他、上記の所定値よりも低い圧力で加圧溶解タンク120内を減圧するよう制御される減圧手段として用いられてもよい。 The pressure leak valve 121 is attached to the top of the pressure melting tank 120, and when the pressure in the pressure melting tank 120 exceeds a predetermined value (for example, 0.6 MPa), hydrogen gas staying in the vicinity of the top is discharged to the outside. To do. As a result, it has a function of adjusting the pressure in the pressurized dissolution tank 120 with the above-mentioned predetermined value as an upper limit value. The pressure leak valve 121 may also be used as a depressurizing means controlled to depressurize the inside of the pressurized dissolution tank 120 at a pressure lower than the above-mentioned predetermined value.

水位センサ122は、加圧溶解タンク120の頂部に取り付けられ、給水タンク110から加圧溶解タンク120に給水される水Wの水位が所定の高さに至ったかどうかを検知する。また、水位センサ122の使用に係る一例として、水位センサ122によって、水Wの水位が所定の高さに到達したことを検知したら、給水ポンプ112の動作を停止して給水を止める。このとき、加圧溶解タンク120の頂部近傍における内部には、水Wの水面と加圧溶解タンク120の上面との間に滞留空間Pが形成されている。 The water level sensor 122 is attached to the top of the pressurized dissolution tank 120 and detects whether or not the water level of the water W supplied from the water supply tank 110 to the pressurized dissolution tank 120 has reached a predetermined height. Further, as an example relating to the use of the water level sensor 122, when the water level sensor 122 detects that the water level of the water W has reached a predetermined height, the operation of the water supply pump 112 is stopped to stop the water supply. At this time, a retention space P is formed between the water surface of the water W and the upper surface of the pressure dissolution tank 120 inside the vicinity of the top of the pressure dissolution tank 120.

微細気泡放出部123は、例えば表面にメッシュ体や多孔質材料などの微小な穴を表面に有する部材であって、後述する電気分解機構130と水素供給管132を介して接続されている。微細気泡放出部123から加圧溶解タンク120内の水Wに放出される水素は、ナノメートル(nm)単位の微小な径の気泡(ナノバブル)Bとして水中に分散させることが好ましく、水Wの飽和量を超えて水Wに溶解しなかった水素の気泡Bは微細であるほど長時間水W中に維持され、やがて上昇して滞留空間Pに水素ガスとして蓄積される。 The fine bubble discharging portion 123 is a member having minute holes such as a mesh body or a porous material on the surface thereof, and is connected to an electrolysis mechanism 130 described later via a hydrogen supply pipe 132. The hydrogen released from the fine bubble discharge unit 123 into the water W in the pressurized dissolution tank 120 is preferably dispersed in water as bubbles (nano bubbles) B having a minute diameter in the nanometer (nm) unit, and is preferably the water W. Hydrogen bubbles B that exceed the saturation amount and are not dissolved in water W are maintained in water W for a longer period of time as they are finer, and eventually rise and are accumulated as hydrogen gas in the retention space P.

電気分解機構130は、水を電気分解して水素を生成し、後述する水素供給管132に所定の圧力に加圧して送り出すものであって、例えば、固体高分子膜(PEM)方式を用いた公知の装置を適用できる。ここで固体高分子膜は水素ガスの加圧供給に必要とされる圧力以上の逆耐圧を有する水素発生膜である。すなわち、水素ガスの供給可能な圧力の上限値は固体高分子膜の逆耐圧以下の値に定められる。これによれば、比較的簡単に所定の圧力として逆耐圧以下の圧力を得ることができる。電気分解機構130は、加圧溶解タンク120と取入配管131を介して接続されており、加圧溶解タンク120内の水を取り入れて電気分解し、水素を生成する。このとき、取入配管131には、イオン交換手段(図示せず)を設けてもよい。上記した圧力リーク弁121の開放する所定値を固体高分子膜の逆耐圧に合わせて設定し、固体高分子膜を保護してもよい。 The electrolysis mechanism 130 electrolyzes water to generate hydrogen, pressurizes it to a predetermined pressure and sends it out to a hydrogen supply pipe 132, which will be described later. For example, a solid polymer membrane (PEM) method is used. A known device can be applied. Here, the solid polymer membrane is a hydrogen generating membrane having a reverse pressure resistance equal to or higher than the pressure required for pressurizing and supplying hydrogen gas. That is, the upper limit of the pressure at which hydrogen gas can be supplied is set to a value equal to or less than the reverse pressure resistance of the solid polymer membrane. According to this, it is possible to obtain a pressure equal to or less than the reverse pressure resistance as a predetermined pressure relatively easily. The electrolysis mechanism 130 is connected to the pressurized dissolution tank 120 via an intake pipe 131, and takes in water in the pressurized dissolution tank 120 and electrolyzes it to generate hydrogen. At this time, the intake pipe 131 may be provided with an ion exchange means (not shown). The predetermined value to be opened by the pressure leak valve 121 may be set according to the reverse pressure resistance of the solid polymer membrane to protect the solid polymer membrane.

一方、上述のとおり、電気分解機構130は、水素供給管132を介して微細気泡放出部123に接続されており、電気分解機構130で生成された水素は、当該電気分解機構130の駆動中において、所定の圧力で連続的に微細気泡放出部123に供給される。つまり、電気分解機構130は加圧溶解タンク120の内部に水素ガスを供給する水素供給機構の一部として設けられている。また、水素供給管132には、管内の圧力を測定する圧力センサ133が設けられており、当該圧力センサ133の検出値に基づいて、図示しない制御部によって電気分解機構130から安定して水素が供給されているかどうかを判別するとともに、検出値が所定の閾値を超えたときには電気分解機構130の駆動を停止し、上記した所定の圧力を超えないように構成されている。なお、電気分解機構130において電気分解で発生した酸素は、図示しない排出口から水素水製造装置100の外部に排出される。 On the other hand, as described above, the electrolysis mechanism 130 is connected to the fine bubble discharge unit 123 via the hydrogen supply pipe 132, and the hydrogen generated by the electrolysis mechanism 130 is being driven by the electrolysis mechanism 130. , It is continuously supplied to the fine bubble discharging unit 123 at a predetermined pressure. That is, the electrolysis mechanism 130 is provided as a part of the hydrogen supply mechanism that supplies hydrogen gas to the inside of the pressurized dissolution tank 120. Further, the hydrogen supply pipe 132 is provided with a pressure sensor 133 for measuring the pressure inside the pipe, and based on the detected value of the pressure sensor 133, hydrogen is stably discharged from the electrolysis mechanism 130 by a control unit (not shown). It is configured so that it is determined whether or not the pressure is supplied, and when the detected value exceeds a predetermined threshold value, the drive of the electrolysis mechanism 130 is stopped so as not to exceed the predetermined pressure described above. Oxygen generated by electrolysis in the electrolysis mechanism 130 is discharged to the outside of the hydrogen water production apparatus 100 from a discharge port (not shown).

減圧取水口140は、加圧溶解タンク120の下部に取水管141を介して接続されている。また、取水管141には、例えば電磁弁等の開閉機構142が取り付けられ、これらによって加圧溶解タンク120の外部に水を吐出させる取水機構を構成している。水素水製造装置100において、取水管141は、加圧溶解タンク120から減圧取水口140に向かって徐々に縮径する形状を有しており、これにより取水管141を通る水素水の流れを安定した層流とし、水素水により多くの水素を含有した状態を維持させることができる。すなわち、取水管141は減圧取水口140からの水の吐出を抑制する形状を有し、これによって通過する水の圧力を減圧取水口140において外部の圧力(ここでは大気圧)と同等の圧力とするように徐々に減圧させて水素水の急激な圧力変化を防ぎ、溶解した水素のガス化を抑制するのである。特に、加圧溶解タンク120では大気圧以上に加圧されて平衡状態で水素を溶解させており、減圧して大気圧で取り出した水素水を高濃度とし得る。取り出した水素水はウォーターサーバ等に供給することもできる。 The decompression intake port 140 is connected to the lower part of the pressurized dissolution tank 120 via an intake pipe 141. Further, an opening / closing mechanism 142 such as a solenoid valve is attached to the water intake pipe 141, thereby forming a water intake mechanism for discharging water to the outside of the pressurized dissolution tank 120. In the hydrogen water production apparatus 100, the intake pipe 141 has a shape that gradually reduces in diameter from the pressurized dissolution tank 120 toward the decompression intake port 140, thereby stabilizing the flow of hydrogen water through the intake pipe 141. It is possible to maintain a state in which a large amount of hydrogen is contained in hydrogen water. That is, the intake pipe 141 has a shape that suppresses the discharge of water from the decompression intake port 140, so that the pressure of the passing water is the same as the external pressure (atmospheric pressure in this case) at the decompression intake port 140. The pressure is gradually reduced so as to prevent a sudden pressure change of hydrogen water and suppress the gasification of dissolved hydrogen. In particular, in the pressurized dissolution tank 120, hydrogen is dissolved in an equilibrium state by being pressurized to an atmospheric pressure or higher, and hydrogen water taken out at atmospheric pressure after being depressurized can have a high concentration. The extracted hydrogen water can also be supplied to a water server or the like.

図2及び図3は、水素水製造装置100を用いた水素水製造方法の動作の一例を示す概略図である。 2 and 3 are schematic views showing an example of the operation of the hydrogen water production method using the hydrogen water production apparatus 100.

かかる水素水製造方法において、まず図2(a)に示すように、給水タンク110から加圧溶解タンク120に水Wを給水する。このとき、電気分解機構130の駆動は停止されており、減圧取水口140に連通する開閉機構142は閉鎖状態とされている。 In such a hydrogen water production method, first, as shown in FIG. 2A, water W is supplied from the water supply tank 110 to the pressurized dissolution tank 120. At this time, the drive of the electrolysis mechanism 130 is stopped, and the opening / closing mechanism 142 communicating with the decompression intake port 140 is in a closed state.

続いて、図2(b)に示すように、加圧溶解タンク120内の水位が所定の高さに達したことを水位センサ122によって図示しない制御部が検知したら、給水タンク110からの給水を停止する(給水工程)。かかる給水工程において、加圧溶解タンク120内の水Wの水位が上昇すると、空の状態で加圧溶解タンク120内に存在していた空気が圧縮されて圧力が上昇する。このとき、圧力リーク弁121から余剰の空気を排出するようにしてもよいが、その後の工程において圧力リーク弁1を閉鎖し、加圧溶解タンク120を閉空間とする。 Subsequently, as shown in FIG. 2B, when the water level sensor 122 detects that the water level in the pressurized dissolution tank 120 has reached a predetermined height, a control unit (not shown) detects that the water is supplied from the water supply tank 110. Stop (water supply process). In such a water supply step, when the water level of the water W in the pressurized dissolution tank 120 rises, the air existing in the pressurized dissolution tank 120 in an empty state is compressed and the pressure rises. At this time, the excess air may be discharged from the pressure leak valve 121, but in the subsequent step, the pressure leak valve 1 is closed and the pressurized dissolution tank 120 is set as a closed space.

続いて、図3(a)に示すように、電気分解機構130(図1参照)を駆動させる。すなわち、取入配管131から加圧溶解タンク120内の水を取り入れ、これを電気分解して水素を生成した後、当該水素を所定の圧力(例えば0.2MPa)で水素供給管132から送り出し、微細気泡放出部123から加圧溶解タンク120内に水素の微細な気泡(ナノバブル)Bを放出させる。取入配管131から電気分解機構130への送水には加圧溶解タンク120内の圧力を用いる。かかる圧力は水素の供給によって得るが、水素の生成前においては上記した加圧溶解タンク120への給水による圧力の上昇も利用し得る。さらに気泡Bを放出し続けると、気泡Bのうちの一部はそのまま水Wの中に分散し、残りの気泡Bは浮上して加圧溶解タンク120の上部に形成された滞留空間Pに蓄積される。このとき、加圧溶解タンク120の閉空間は加圧状態を保持されつつ、次第に内部圧力を上昇される。 Subsequently, as shown in FIG. 3A, the electrolysis mechanism 130 (see FIG. 1) is driven. That is, water in the pressurized dissolution tank 120 is taken in from the intake pipe 131, and after this is electrolyzed to generate hydrogen, the hydrogen is sent out from the hydrogen supply pipe 132 at a predetermined pressure (for example, 0.2 MPa). Fine hydrogen bubbles (nano bubbles) B are released from the fine bubble discharge unit 123 into the pressurized dissolution tank 120. The pressure in the pressurized dissolution tank 120 is used for water supply from the intake pipe 131 to the electrolysis mechanism 130. Such pressure is obtained by supplying hydrogen, but before hydrogen is generated, an increase in pressure due to water supply to the pressurized dissolution tank 120 described above can also be used. When the bubbles B are further released, a part of the bubbles B is dispersed in the water W as it is, and the remaining bubbles B float and accumulate in the retention space P formed in the upper part of the pressure melting tank 120. Will be done. At this time, the internal pressure of the closed space of the pressurized dissolution tank 120 is gradually increased while maintaining the pressurized state.

すると、滞留空間Pに蓄積された水素ガスの分圧が高まることにより、大気圧における水素の溶解限度を超えた分量の水素が水に溶解することが可能となり、加圧溶解タンク120内の水Wに分散して含まれる微細な気泡Bとともに水素の含有量が増加する。このとき、水素の供給が過剰となって加圧溶解タンク120内の圧力が所定値(例えば0.6MPa)を超えたときは、圧力リーク弁121から滞留空間Pに滞留する水素ガスを外部に排出することで、圧力を上記所定値以下となるように調整する(気泡放出工程)。また、加圧溶解タンク120内の圧力の上昇により、水Wはポンプ等の送水手段を用いることなく、取入配管131を介して電気分解機構130に供給される。 Then, the partial pressure of the hydrogen gas accumulated in the retention space P increases, so that the amount of hydrogen exceeding the hydrogen dissolution limit at atmospheric pressure can be dissolved in water, and the water in the pressurized dissolution tank 120 can be dissolved. The hydrogen content increases with the fine bubbles B dispersed and contained in W. At this time, when the supply of hydrogen becomes excessive and the pressure in the pressurized dissolution tank 120 exceeds a predetermined value (for example, 0.6 MPa), the hydrogen gas staying in the retention space P is sent to the outside from the pressure leak valve 121. By discharging, the pressure is adjusted so as to be equal to or lower than the above-mentioned predetermined value (bubble release step). Further, due to the increase in pressure in the pressurized dissolution tank 120, the water W is supplied to the electrolysis mechanism 130 via the intake pipe 131 without using a water supply means such as a pump.

なお、例えば、加圧溶解タンク120における上記した所定値の圧力を水に水素を効率よく溶解し得る圧力として設定し、図示しない制御部によって、圧力リーク弁121が水素ガスを排出した時点で適切な水素水の製造を終了したと判定し、電気分解機構130からの水素の供給を停止するように制御してもよい。また、上述のとおり、圧力センサ133で検出された水素供給管132内の圧力値が所定の閾値を超えたときにも、電気分解機構130の駆動が停止される。これによって、水素ガスの生成量を確実に制限できて加圧溶解タンク120内を過度に加圧させることがない。 For example, the above-mentioned predetermined value pressure in the pressurized dissolution tank 120 is set as a pressure capable of efficiently dissolving hydrogen in water, and it is appropriate when the pressure leak valve 121 discharges hydrogen gas by a control unit (not shown). It may be determined that the production of hydrogen water has been completed, and the supply of hydrogen from the electrolysis mechanism 130 may be stopped. Further, as described above, the drive of the electrolysis mechanism 130 is also stopped when the pressure value in the hydrogen supply pipe 132 detected by the pressure sensor 133 exceeds a predetermined threshold value. As a result, the amount of hydrogen gas produced can be reliably limited, and the inside of the pressurized dissolution tank 120 is not excessively pressurized.

続いて、図3(b)に示すように、開閉機構142を開放して、減圧取水口140から水素水を取り出す。このとき、減圧取水口140に接続する取水管141が加圧溶解タンク120の下部に配置されているため、開閉機構142が開くと、閉空間とされた加圧溶解タンク120内の内部圧力及び自重によって水素水が減圧取水口140から流出する。これにより、水素水をポンプ等の送水手段を用いることなく、減圧取水口140から大気圧下に取り出すことができる。そして、水素水の流出によって加圧溶解タンク120内の水Wの水位がある程度低下したら、再び図2(a)に示す給水工程に戻って、改めて加圧溶解タンク120内に給水タンク110から給水を行い、図2(b)、図3(a)、図3(b)に示す動作を繰り返す。 Subsequently, as shown in FIG. 3B, the opening / closing mechanism 142 is opened to take out hydrogen water from the decompression intake port 140. At this time, since the intake pipe 141 connected to the decompression intake port 140 is arranged at the lower part of the pressurized dissolution tank 120, when the opening / closing mechanism 142 is opened, the internal pressure in the pressurized dissolution tank 120 which is a closed space and Due to its own weight, hydrogen water flows out from the decompression intake port 140. As a result, hydrogen water can be taken out from the decompression intake port 140 under atmospheric pressure without using a water supply means such as a pump. Then, when the water level of the water W in the pressurized dissolution tank 120 drops to some extent due to the outflow of hydrogen water, the process returns to the water supply step shown in FIG. 2A, and water is supplied from the water supply tank 110 into the pressurized dissolution tank 120 again. 2 (b), FIG. 3 (a), and FIG. 3 (b) are repeated.

以上のような構成を備えることにより、水素水製造装置及び水素水製造方法によれば、加圧溶解タンク120に水Wを溜めた後で、電気分解機構130によって生成された水素を微細気泡放出部123から微細な気泡(ナノバブル)Bとして水中に放出することにより、加圧溶解タンク120内の圧力を増加させるとともに水に対する水素の溶解限度を高めて、より多くの水素を水中に溶解させることができる。 With the above configuration, according to the hydrogen water production apparatus and the hydrogen water production method, after the water W is stored in the pressurized dissolution tank 120, the hydrogen generated by the electrolysis mechanism 130 is released into fine bubbles. By releasing it into water as fine bubbles (nano bubbles) B from the part 123, the pressure in the pressurized dissolution tank 120 is increased and the dissolution limit of hydrogen in water is increased to dissolve more hydrogen in water. Can be done.

そして、加圧溶解タンク120内の圧力を電気分解機構130から供給される水素の圧力で増加させることにより、従来の水素水製造装置で用いられた水素を加圧して水中に放出する気体放出手段(コンプレッサ等)を不要とするため、水素水製造時の静粛性を確保することができる。さらに、このような気体放出手段の構成を不要とするため、水素水製造装置の全体としてのコストを低減することができる。なお、圧力リーク弁121の設置された高さよりも水位の所定の高さを低く設定しておけば、圧力リーク弁121に水を触れさせることなく安定してガスを排出できて、かかる排出においても静粛性を確保できる。 Then, by increasing the pressure in the pressurized dissolution tank 120 with the pressure of hydrogen supplied from the electrolysis mechanism 130, the gas release means for pressurizing the hydrogen used in the conventional hydrogen water production apparatus and releasing it into water. Since (compressor, etc.) is not required, quietness during hydrogen water production can be ensured. Further, since the configuration of such a gas discharge means is not required, the cost of the hydrogen water production apparatus as a whole can be reduced. If a predetermined height of the water level is set lower than the height at which the pressure leak valve 121 is installed, the gas can be stably discharged without contacting the pressure leak valve 121 with water. Can also ensure quietness.

また、給水タンク110を高所に設置したり水道水を利用したりするなどして所定の圧力を有する水を供給できる場合には、給水ポンプ112も不要とできる。 Further, if the water supply tank 110 can be installed at a high place or tap water can be used to supply water having a predetermined pressure, the water supply pump 112 can also be unnecessary.

図4は、本発明による水素水製造装置の変形例を示すブロック図である。なお、同図において、図1に示した水素水製造装置100の構成要素と共通するものには同一の符号を付して、再度の説明を省略する。 FIG. 4 is a block diagram showing a modified example of the hydrogen water production apparatus according to the present invention. In the figure, the components common to the components of the hydrogen water production apparatus 100 shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted again.

図4に示すように、水素水製造装置100’において、加圧溶解タンク120の上面120aに滞留室120bが追加的に形成されている。そして、滞留室120bには圧力リーク弁121が取り付けられ、加圧溶解タンク120の上面120aに水位センサ122が取り付けられる。 As shown in FIG. 4, in the hydrogen water production apparatus 100', a retention chamber 120b is additionally formed on the upper surface 120a of the pressurized dissolution tank 120. A pressure leak valve 121 is attached to the retention chamber 120b, and a water level sensor 122 is attached to the upper surface 120a of the pressurized dissolution tank 120.

このような構成により、給水工程での給水を加圧溶解タンク120の上面120aまで行うことができるとともに、必要な滞留空間Pをその上部に確保できるため、より大量の水素水を1度で製造することが可能となる。また、水位センサ122が検出する水位の上限よりも高い位置に圧力リーク弁121を配置できるため、圧力リーク弁121を水に触れさせることがなく、空気や水素ガスの放出を安定させることができる。また、減圧取水口140からの水素水を更に給水ポンプ112の手前に導いて循環させてもよい。 With such a configuration, water can be supplied up to the upper surface 120a of the pressurized dissolution tank 120 in the water supply process, and the necessary retention space P can be secured above the upper surface 120a, so that a larger amount of hydrogen water can be produced at one time. It becomes possible to do. Further, since the pressure leak valve 121 can be arranged at a position higher than the upper limit of the water level detected by the water level sensor 122, the pressure leak valve 121 does not come into contact with water, and the release of air or hydrogen gas can be stabilized. .. Further, hydrogen water from the decompression intake port 140 may be further guided to the front of the water supply pump 112 to be circulated.

取水管141は、上記したように減圧取水口140に向かって徐々に縮径する形状を有するものではなく、一定の径となる形状を有するものであってもよい。この場合、減圧取水口140からの吐出を抑制する形状として、細径且つ長尺とされる。加圧溶解タンク120の内部と外部との圧力差にもよるが、例えば、取水管141の内径を1.0〜5.0mmとすることが好ましく、長さを1m以上とすることが好ましい。すなわち、取水管141の内径を細くすることで水の粘性による圧力損失を大きくして、長さを長くすることでかかる圧力損失による圧力差を大きくでき、通過する水を徐々に減圧させることができる。これによって、より多くの水素を含有した状態を維持させて水素水を取り出すことができる。 The water intake pipe 141 does not have a shape that gradually reduces in diameter toward the decompression intake port 140 as described above, but may have a shape that has a constant diameter. In this case, the shape is small and long so as to suppress the discharge from the decompression intake port 140. Although it depends on the pressure difference between the inside and the outside of the pressurized dissolution tank 120, for example, the inner diameter of the intake pipe 141 is preferably 1.0 to 5.0 mm, and the length is preferably 1 m or more. That is, by reducing the inner diameter of the intake pipe 141, the pressure loss due to the viscosity of water can be increased, and by increasing the length, the pressure difference due to the pressure loss can be increased, and the passing water can be gradually depressurized. it can. As a result, hydrogen water can be taken out while maintaining a state containing more hydrogen.

上記では、気体として水素を用いた例を示したが、他の気体を溶解することも可能である。例えば、電気分解機構130で生成した酸素を加圧溶解タンク120に供給することにより、酸素を水に溶解させるようにしてもよい。また、給水タンク110又は加圧溶解タンク120にヒータ等の加熱手段を設けることにより、水の温度を高めて水素を溶解することができる。これにより、水素水をシャワーや入浴等にも使用できる。さらに、上記した水の代わりにお茶、コーヒー等の他の飲料等を用いてもよい。この場合、逆浸透膜を用いたRO装置等の浄化装置により加圧溶解タンク120内の飲料を浄化した水を電気分解機構130に供給するとよい。 In the above, an example in which hydrogen is used as a gas is shown, but it is also possible to dissolve another gas. For example, oxygen may be dissolved in water by supplying oxygen generated by the electrolysis mechanism 130 to the pressurized dissolution tank 120. Further, by providing a heating means such as a heater in the water supply tank 110 or the pressurized dissolution tank 120, the temperature of water can be raised and hydrogen can be dissolved. As a result, hydrogen water can be used for showering, bathing, and the like. Further, other beverages such as tea and coffee may be used instead of the above-mentioned water. In this case, it is preferable to supply the electrolysis mechanism 130 with water obtained by purifying the beverage in the pressurized dissolution tank 120 by a purification device such as an RO device using a reverse osmosis membrane.

図5は、本発明による水素水製造装置の他の変形例を示すブロック図である。なお、同図において、図1に示した水素水製造装置100の構成要素と共通するものには同一の符号を付して、再度の説明を省略する。 FIG. 5 is a block diagram showing another modification of the hydrogen water production apparatus according to the present invention. In the figure, the components common to the components of the hydrogen water production apparatus 100 shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted again.

図5に示すように、水素水製造装置100’’は、ウォーターサーバ150との間で水及び水素水をやりとりさせることができる。ウォーターサーバの貯水タンク151を上記した給水タンク110の代わりに給水槽として用い、給水配管111を介して加圧溶解タンク120と接続させる。また、加圧溶解タンク120の底部近傍から開閉機構142を介して送水管141’を延ばし、減圧取水口140を貯水タンク151に接続する。これによって、貯水タンク151から加圧溶解タンク120に水を供給でき、製造した水素水を貯水タンク151に送水できる。なお、減圧取水口140は、貯水タンク151に直接接続されなくてもよく、吐出される水を貯水タンク151に供給できるように向けられていればよい。 As shown in FIG. 5, the hydrogen water production apparatus 100 ″ can exchange water and hydrogen water with the water server 150. The water storage tank 151 of the water server is used as a water supply tank instead of the water supply tank 110 described above, and is connected to the pressurized dissolution tank 120 via the water supply pipe 111. Further, the water pipe 141'is extended from the vicinity of the bottom of the pressurized dissolution tank 120 via the opening / closing mechanism 142, and the decompression intake port 140 is connected to the water storage tank 151. As a result, water can be supplied from the water storage tank 151 to the pressurized dissolution tank 120, and the produced hydrogen water can be sent to the water storage tank 151. The decompression intake port 140 does not have to be directly connected to the water storage tank 151, and may be directed so that the discharged water can be supplied to the water storage tank 151.

ここで、貯水タンク151を加圧溶解タンク120よりも高所に配置すれば、自重により水又は水素水を加圧溶解タンク120に流入させることができる。つまり、給水ポンプ112を省略できる。また、加圧溶解タンク120の閉空間の内部圧力により水が吐出されるので、ポンプを省略しても加圧溶解タンク120から送水管141’を介して高所に配置した貯水タンク151に送水することができる。 Here, if the water storage tank 151 is arranged at a higher position than the pressurized dissolution tank 120, water or hydrogen water can flow into the pressurized dissolution tank 120 by its own weight. That is, the water supply pump 112 can be omitted. Further, since water is discharged by the internal pressure of the closed space of the pressurized dissolution tank 120, water is sent from the pressurized dissolution tank 120 to the water storage tank 151 arranged at a high place via the water pipe 141'even if the pump is omitted. can do.

このようにすることで、例えば、加圧溶解タンク120と貯水タンク151との間で水素水を循環させ得て、貯水タンク151内の水素水の水素の含有量を増大させて維持できる。このようにして得た水素水をウォーターサーバの蛇口152から取り出すことができる。なお、給水配管111を太くするなどして、加圧溶解タンク120への給水に対して加圧溶解タンク120内のガスを貯水タンク151に逆流させ得るようにしておけば、圧力リーク弁121を省略しても給水時において加圧溶解タンク120内を減圧できる。 By doing so, for example, hydrogen water can be circulated between the pressurized dissolution tank 120 and the water storage tank 151, and the hydrogen content of the hydrogen water in the water storage tank 151 can be increased and maintained. The hydrogen water thus obtained can be taken out from the faucet 152 of the water server. If the water supply pipe 111 is thickened so that the gas in the pressure dissolution tank 120 can flow back to the water storage tank 151 with respect to the water supply to the pressure dissolution tank 120, the pressure leak valve 121 can be made. Even if omitted, the pressure inside the pressurized dissolution tank 120 can be reduced during water supply.

以上、本発明による実施例及びこれに基づく変形例を説明したが、本発明は必ずしもこれに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、様々な代替実施例及び改変例を見出すことができるであろう。 Although the examples according to the present invention and the modifications based on the present invention have been described above, the present invention is not necessarily limited to this, and those skilled in the art deviate from the gist of the present invention or the appended claims. Without doing so, various alternative and modified examples could be found.

100 水素水製造装置
110 給水タンク
120 加圧溶解タンク
121 圧力リーク弁
122 水位センサ
123 微細気泡放出部
130 電気分解機構
132 水素供給管
133 圧力センサ
140 減圧取水口
141 取水管
142 開閉機構
150 ウォーターサーバ
100 Hydrogen water production equipment 110 Water supply tank 120 Pressurized dissolution tank 121 Pressure leak valve 122 Water level sensor 123 Fine bubble discharge part 130 Electrolysis mechanism 132 Hydrogen supply pipe 133 Pressure sensor 140 Decompression intake pipe 141 Water intake pipe 142 Opening and closing mechanism 150 Water server

Claims (6)

水素ガス及び水を気液二相状態で加圧保持して水素水とする加圧溶解タンクを含む飲料用の送水ポンプレス水素水製造装置であって、
前記加圧溶解タンクに水を供給する給水槽と、
固体高分子膜を用いて水を電気分解して水素ガスを生成し前記加圧溶解タンクの内部に供給する水素供給機構と、
前記加圧溶解タンクの内部の水を外部に吐出させる取水機構と、を含み、
前記給水槽から前記加圧溶解タンクに水を供給し前記加圧溶解タンクに設けられた圧力リーク弁を閉鎖し閉空間とした後に、前記水素供給機構から前記水素ガスを生成する圧力で前記加圧溶解タンクの内部であって底部近傍に気泡として加圧供給して前記閉空間を加圧し、保持後、前記閉空間の内部圧力によって前記取水機構を介して前記加圧溶解タンクの内部の水を徐々に減圧させて外部に吐出させるにおいて、
前記圧力リーク弁の動作圧力以上の逆耐圧を有する前記水素供給機構は、前記加圧溶解タンクの内部にメッシュ体又は多孔質材料の穴を介して前記水素ガスを放出する気泡放出部とこれに水素を供給する水素供給管とを含み、前記水素供給管には管内圧力を検出する圧力センサが取り付けられ、前記管内圧力が所定の閾値を超えたときに前記電気分解部の動作を停止せしめることを特徴とする送水ポンプレス水素水製造装置。
A water supply pumpless hydrogen water production device for beverages that includes a pressurized dissolution tank that pressurizes and holds hydrogen gas and water in a gas-liquid two-phase state to produce hydrogen water.
A water supply tank that supplies water to the pressurized dissolution tank and
A hydrogen supply mechanism that electrolyzes water using a solid polymer membrane to generate hydrogen gas and supplies it to the inside of the pressurized dissolution tank.
The water intake mechanism for discharging the water inside the pressurized dissolution tank to the outside is included.
After water is supplied from the water supply tank to the pressurized dissolution tank and the pressure leak valve provided in the pressurized dissolution tank is closed to form a closed space, the pressure is applied to generate the hydrogen gas from the hydrogen supply mechanism. The water inside the pressure-dissolving tank is pressurized and supplied as bubbles near the bottom of the pressure-melting tank to pressurize the closed space, and after holding the closed space, the internal pressure of the closed space causes water inside the pressure-dissolving tank to pass through the water intake mechanism. In gradually depressurizing and discharging to the outside ,
The hydrogen supply mechanism having a reverse pressure resistance equal to or higher than the operating pressure of the pressure leak valve is provided with a bubble discharge portion that discharges the hydrogen gas through a hole of a mesh body or a porous material inside the pressure melting tank. A pressure sensor for detecting the pressure inside the pipe is attached to the hydrogen supply pipe, including a hydrogen supply pipe for supplying hydrogen, and the operation of the electrolysis unit is stopped when the pressure inside the pipe exceeds a predetermined threshold. A water pumpless hydrogen water production device featuring.
前記取水機構は前記加圧溶解タンクと取水口とを接続する取水管を含み、前記取水管は前記取水口からの吐出を抑制する形状を有することを特徴とする請求項1記載の送水ポンプレス水素水製造装置。 The intake mechanism includes a water intake pipe which connects the pressure dissolution tank and the intake, the intake pipe is water pumpless of claim 1 Symbol mounting and having a shape of suppressing the discharge from the water intake Hydrogen water production equipment. 前記取水管は水の粘性によって圧力損失を与えるよう、細径且つ長尺に与えられ、その径を1.0〜5.0mm、長さを1.0m以上とすることを特徴とする請求項記載の送水ポンプレス水素水製造装置。 The claim is characterized in that the intake pipe is provided with a small diameter and a long length so as to give a pressure loss due to the viscosity of water, and the diameter is 1.0 to 5.0 mm and the length is 1.0 m or more. 2. The water supply pumpless hydrogen water production apparatus according to 2. 前記取水管は前記取水口に向かって徐々に縮径する形状を有することを特徴とする請求項記載の送水ポンプレス水素水製造装置。 The water supply pumpless hydrogen water production apparatus according to claim 2, wherein the water intake pipe has a shape that gradually reduces in diameter toward the water intake port. 前記取水口は前記給水槽に向けて設けられることを特徴とする請求項2乃至4のうちの1つに記載の送水ポンプレス水素水製造装置。 Water pumpless hydrogen water production apparatus according to one of claims 2 to 4 wherein the water inlet is characterized in that it is provided towards the water supply tank. 水素ガス及び水を気液二相状態で加圧保持する加圧溶解タンクを用いて飲料用水素水を製造する水素水製造方法であって、
前記加圧溶解タンク内に水を供給し前記加圧溶解タンクに設けられた圧力リーク弁を閉鎖し閉空間とする工程と、
固体高分子膜を用いて水を電気分解して水素ガスを生成す水素供給機構から前記水素ガスを生成する圧力で前記加圧溶解タンクの内部であって底部近傍に気泡として加圧供給して前記閉空間を加圧する工程と、
前記閉空間の加圧状態を保持する工程と、
前記加圧溶解タンクの内部圧力によって前記取水機構を介して前記加圧溶解タンクの内部の水を徐々に減圧させて外部に吐出させる工程と、を含み、
前記水素供給機構は、前記加圧溶解タンクの内部にメッシュ体又は多孔質材料の穴を介して前記水素ガスを放出する気泡放出部とこれに水素を供給する水素供給管とを含み、前記水素供給管には管内圧力を検出する圧力センサが取り付けられ、前記管内圧力が所定の閾値を超えたときに前記電気分解部の動作を停止せしめることを特徴とする水素水製造方法。


A hydrogen water production method for producing hydrogen water for drinking using a pressurized dissolution tank that pressurizes and holds hydrogen gas and water in a gas-liquid two-phase state.
A step of supplying water into the pressurized dissolution tank and closing the pressure leak valve provided in the pressurized dissolution tank to form a closed space.
Using a solid polymer film, water is electrolyzed to generate hydrogen gas, and the pressure to generate hydrogen gas is applied to the inside of the pressurized dissolution tank as bubbles near the bottom. The step of pressurizing the closed space and
The step of maintaining the pressurized state of the closed space and
See containing and a step of discharging to the outside gradually reduce the internal pressure of water in the pressure dissolution tank through the intake mechanism by the internal pressure of the pressure dissolution tank,
The hydrogen supply mechanism includes a bubble discharge portion that discharges the hydrogen gas through a hole of a mesh body or a porous material and a hydrogen supply pipe that supplies hydrogen to the inside of the pressurized dissolution tank, and the hydrogen. A method for producing hydrogen water , wherein a pressure sensor for detecting the pressure inside the pipe is attached to the supply pipe, and the operation of the electrolysis unit is stopped when the pressure inside the pipe exceeds a predetermined threshold value.


JP2017099912A 2016-08-29 2017-05-19 Water supply pumpless hydrogen water production equipment and hydrogen water production method Active JP6859573B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016166690 2016-08-29
JP2016166690 2016-08-29

Publications (2)

Publication Number Publication Date
JP2018034147A JP2018034147A (en) 2018-03-08
JP6859573B2 true JP6859573B2 (en) 2021-04-14

Family

ID=61566617

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017100390A Active JP6539817B2 (en) 2016-08-29 2017-05-19 Hydrogen water producing apparatus and hydrogen water producing method
JP2017099912A Active JP6859573B2 (en) 2016-08-29 2017-05-19 Water supply pumpless hydrogen water production equipment and hydrogen water production method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017100390A Active JP6539817B2 (en) 2016-08-29 2017-05-19 Hydrogen water producing apparatus and hydrogen water producing method

Country Status (1)

Country Link
JP (2) JP6539817B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109970167A (en) * 2019-03-27 2019-07-05 北京岠匠科技有限责任公司 A kind of efficient hydrogen-rich water production device
CN110002569B (en) * 2019-04-12 2024-05-03 上海行恒科技有限公司 Electric power-free hydrogen-rich water shower device
US20220241736A1 (en) 2019-05-20 2022-08-04 Kagoshima University Bubble formation device and bubble formation method
JP7204211B2 (en) * 2019-11-28 2023-01-16 学校法人福岡工業大学 Batch-type microbubble liquid generator and generation method
US10626513B1 (en) * 2019-12-27 2020-04-21 Haiming Li Water electrolysis hydrogen production plant with a pumpless water supply system and process flow method
CN111229067A (en) * 2020-02-11 2020-06-05 武汉宝盈普济科技有限公司 Device and method for continuously preparing hydrogen-rich water under negative pressure state
CN111472015B (en) * 2020-04-24 2025-03-07 深圳市珐彩科技有限公司 A portable hydrogen generator to prevent water overflow
CN113969407B (en) * 2020-07-23 2024-05-24 林信涌 Hydrogen generator with hydrogen leakage self-checking function
WO2022249487A1 (en) * 2021-05-28 2022-12-01 中国電力株式会社 Water discharge method, water treatment method, residual chlorine reduction method, and water treatment facility
JPWO2022249488A1 (en) * 2021-05-28 2022-12-01

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07299461A (en) * 1994-05-02 1995-11-14 Kazuhiro Kuwabara Continuous electrolyzed water producing device
JP2890342B2 (en) * 1994-08-23 1999-05-10 熊本県 Reducing hydrogen water for foods and the like, and method and apparatus for producing the same
JP3562631B2 (en) * 1999-10-15 2004-09-08 テクノエクセル株式会社 Salt-added water electrolytic disinfection equipment
JP4231249B2 (en) * 2002-07-01 2009-02-25 大成建設株式会社 High oxygen water production apparatus and bottom purification method
JP3717471B2 (en) * 2002-10-25 2005-11-16 四国厨房器製造株式会社 Gas dissolving device
JP2004167339A (en) * 2002-11-19 2004-06-17 Erutekku Kk Electrolytic water making apparatus
JP2005013825A (en) * 2003-06-24 2005-01-20 Kenji Yamazaki Reductive hydrogen water and apparatus for making the same
JP2005013833A (en) * 2003-06-25 2005-01-20 Eko Japan Kk Reductive hydrogen water and manufacturing apparatus therefor
JP4420667B2 (en) * 2003-12-26 2010-02-24 タカオカ化成工業株式会社 Electrolytic hydrogen water generator
JP4107674B2 (en) * 2005-03-28 2008-06-25 将 中嶋 Cleaning liquid manufacturing method and manufacturing apparatus
JP4360407B2 (en) * 2006-10-12 2009-11-11 パナソニック電工株式会社 Cleaning device and cleaning method
JP5986718B2 (en) * 2011-07-25 2016-09-06 バイオコーク技研株式会社 Hydrogen water production apparatus and hydrogen water production method
JP5416246B2 (en) * 2011-11-15 2014-02-12 株式会社ヒロマイト Hydrogen water raw water method
JP5095020B1 (en) * 2012-03-13 2012-12-12 エウレカ・ラボ株式会社 Gas dissolved water purifier
JP5738945B2 (en) * 2013-08-14 2015-06-24 株式会社テックコーポレーション Solution spray system
KR20170116255A (en) * 2014-05-27 2017-10-18 가부시키가이샤 히카리 미라이 Gas-dissolving device and gas-dissolving method
JP6185445B2 (en) * 2014-10-20 2017-08-23 株式会社ドクターズ・マン Hydrogen water supply device
JP2017087168A (en) * 2015-11-13 2017-05-25 シャープ株式会社 Hydrogen-containing water production device, and hydrogen-containing water production method
CN105803477B (en) * 2016-05-17 2019-01-29 廖若琛 A kind of multi-function device and its application method that can generate oxygen, ultrapure active water and hydrogen-rich water simultaneously

Also Published As

Publication number Publication date
JP2018034147A (en) 2018-03-08
JP2018034148A (en) 2018-03-08
JP6539817B2 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
JP6859573B2 (en) Water supply pumpless hydrogen water production equipment and hydrogen water production method
JP3929472B2 (en) Gas dissolution amount adjusting device and system
JP6116658B2 (en) Gas dissolving apparatus and gas dissolving method
JP2018199122A (en) Nano-bubble water generating apparatus containing application gas
KR20100039128A (en) Ozonized water generator
US9290396B2 (en) Liquid treating method
JP5242193B2 (en) Method for producing hydrogen reduced water
JP6338518B2 (en) Micro bubble generator
JP2009291769A (en) Method and apparatus for producing carbonated water
JP2010022955A (en) Apparatus for generating microbubble
JP5412135B2 (en) Ozone water supply device
JP2007289492A (en) Method and device of manufacturing carbonated hot spring
JP2004313749A (en) Apparatus and method for producing carbonated water
JP2017131822A (en) Hydrogen water generator and hydrogen water generation method
JP2007216122A (en) Deaerator
JP7204211B2 (en) Batch-type microbubble liquid generator and generation method
JP2013223824A (en) Fine bubble utilizing apparatus
KR20080001577U (en) A pressurized gas saturater
JP6896336B2 (en) Hydrogen water production equipment and production method
JP3738440B2 (en) Bubble generator
KR20070076350A (en) Gas Dissolver and Circulating Bathtub Apparatus Using the Same
JP2007229714A (en) Apparatus and method of manufacturing carbonated water
JP2007268245A (en) Mixing device for bathtub
JP6853980B2 (en) Electrolyzed water generator
JP2012240046A (en) Oxygen water generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201217

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201217

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201224

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210302

R150 Certificate of patent or registration of utility model

Ref document number: 6859573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250