JP6856988B2 - 蓄電デバイス用セパレータ及びそれを用いた積層体、捲回体、リチウムイオン二次電池又は蓄電デバイス - Google Patents
蓄電デバイス用セパレータ及びそれを用いた積層体、捲回体、リチウムイオン二次電池又は蓄電デバイス Download PDFInfo
- Publication number
- JP6856988B2 JP6856988B2 JP2016164043A JP2016164043A JP6856988B2 JP 6856988 B2 JP6856988 B2 JP 6856988B2 JP 2016164043 A JP2016164043 A JP 2016164043A JP 2016164043 A JP2016164043 A JP 2016164043A JP 6856988 B2 JP6856988 B2 JP 6856988B2
- Authority
- JP
- Japan
- Prior art keywords
- monomer
- mass
- group
- polyalkylene glycol
- separator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Cell Separators (AREA)
- Secondary Cells (AREA)
Description
[1]
多孔性基材と、無機フィラー及び樹脂バインダを含む多孔層とを含む蓄電デバイス用セパレータであって、
前記多孔層は、前記多孔性基材の少なくとも片面に配置されており、前記樹脂バインダは、ポリアルキレングリコール基を有するエチレン性不飽和単量体(P)を単量体単位として有する共重合体を含み、かつ前記ポリアルキレングリコール基を有するエチレン性不飽和単量体(P)のポリアルキレングリコール鎖の平均繰り返し単位数(n)が3以上である、
前記蓄電デバイス用セパレータ。
[2]
前記共重合体が、前記共重合体100質量%に対して2〜50質量%の前記ポリアルキレングリコール基を有するエチレン性不飽和単量体(P)と、前記ポリアルキレングリコール基を有するエチレン性不飽和単量体(P)と共重合可能な、ポリアルキレングリコール基を有していない単量体と、を単量体単位として有する、[1]に記載の蓄電デバイス用セパレータ。
[3]
前記ポリアルキレングリコール基を有していない単量体が、カルボキシル基を有するエチレン性不飽和単量体(b1)、アミド基を有するエチレン性不飽和単量体(b2)、及びヒドロキシル基を有するエチレン性不飽和単量体(b3)から成る群より選択される少なくとも1種の単量体を、前記共重合体100質量%に対して0.1〜10質量%含む、[2]に記載の蓄電デバイス用セパレータ。
[4]
前記ポリアルキレングリコール基を有していない単量体が、架橋性単量体(b4)を含む、[2]又は[3]に記載の蓄電デバイス用セパレータ。
[5]
前記ポリアルキレングリコール基を有していない単量体が、シクロアルキル基を有するエチレン性不飽和単量体(A)と、(メタ)アクリル酸エステル単量体(b5)とを含み、
前記(メタ)アクリル酸エステル単量体(b5)は、炭素数4以上のアルキル基及び(メタ)アクリロイルオキシ基から成る(メタ)アクリル酸エステル単量体であり、かつ
前記シクロアルキル基を有するエチレン性不飽和単量体(A)及び前記(メタ)アクリル酸エステル単量体(b5)の合計含有割合が、前記共重合体100質量%に対して50〜98質量%である、[2]〜[4]のいずれか1項に記載の蓄電デバイス用セパレータ。
[6]
前記(メタ)アクリル酸エステル単量体(b5)は、炭素数6以上のアルキル基及び(メタ)アクリロイルオキシ基から成る(メタ)アクリル酸エステル単量体である、[5]に記載の蓄電デバイス用セパレータ。
[7]
前記シクロアルキル基を有するエチレン性不飽和単量体(A)が、シクロヘキシルアクリレート又はシクロヘキシルメタクリレートである、[5]に記載の蓄電デバイス用セパレータ。
[8]
正極と[1]〜[7]のいずれか1項に記載の蓄電デバイス用セパレータと負極とから成る積層体。
[9]
正極と[1]〜[7]のいずれか1項に記載の蓄電デバイス用セパレータと負極とが捲回されている捲回体。
[10]
[8]に記載の積層体又は[9]に記載の捲回体と電解液とを含む蓄電デバイス。
[11]
[8]に記載の積層体又は[9]に記載の捲回体と電解液とを含むリチウムイオン二次電池。
本発明の蓄電デバイス用セパレータは、多孔性基材と、無機フィラー及び樹脂バインダを含む多孔層とを含み、かつ多孔層は多孔性基材の少なくとも片面に配置される。この蓄電デバイス用セパレータは、多孔性基材及び無機フィラー含有多孔層のみから成っていてもよいし、これら以外に熱可塑性ポリマー層を更に有していてもよい。
また、本明細書における「(メタ)アクリル」とは「アクリル」及びそれに対応する「メタクリル」を意味し、「(メタ)アクリレート」とは「アクリレート」及びそれに対応する「メタクリレート」を意味し、「(メタ)アクリロイル」とは「アクリロイル」及びそれに対応する「メタクリロイル」を意味する。
本実施形態に用いる基材は、それ自体が、従来セパレータとして用いられていたものであってもよい。基材としては、電子伝導性がなくイオン伝導性があり、有機溶媒の耐性が高い、孔径の微細な多孔質膜であると好ましい。そのような多孔質膜としては、例えば、ポリオレフィン系(例えば、ポリエチレン、ポリプロピレン、ポリブテン及びポリ塩化ビニル)、及びそれらの混合物又は共重合体等の樹脂を主成分として含む微多孔膜、ポリエチレンテレフタレート、ポリシクロオレフィン、ポリエーテルスルホン、ポリアミド、ポリイミド、ポリイミドアミド、ポリアラミド、ポリシクロオレフィン、ナイロン、ポリテトラフルオロエチレン等の樹脂を主成分として含む微多孔膜、ポリオレフィン系の繊維を織ったもの(織布)、ポリオレフィン系の繊維の不織布、紙、並びに、絶縁性物質粒子の集合体が挙げられる。これらの中でも、塗工工程を経てポリマー層を得る場合に塗工液の塗工性に優れ、セパレータの膜厚をより薄くして、電池等の蓄電デバイス内の活物質比率を高めて体積当たりの容量を増大させる観点から、ポリオレフィン系の樹脂を主成分として含むポリオレフィン微多孔膜が好ましい。なお、ここで「主成分として含む」とは、50質量%を超えて含むことを意味し、好ましくは75質量%以上、より好ましくは85質量%以上、更に好ましくは90質量%以上、なおも更に好ましくは95質量%以上、特に好ましくは98質量%以上含み、100質量%であってもよい。
ポリオレフィン樹脂の代表例としては、特に限定されないが、例えば、低密度ポリエチレン、線状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレン、アイソタクティックポリプロピレン、アタクティックポリプロピレン、エチレン−プロピレンランダムコポリマー、ポリブテン、エチレンプロピレンラバー等が挙げられる。
蓄電デバイス用セパレータとして使用するポリオレフィン多孔性基材の材料としては、低融点であり、かつ高強度であることから、特に高密度ポリエチレンを主成分とする樹脂を使用することが好ましい。また、これらのポリエチレンは柔軟性を付与する目的から2種以上を混合してもよい。これらのポリエチレンの製造の際に用いられる重合触媒も特に制限はなく、例えば、チーグラー・ナッタ系触媒、フィリップス系触媒及びメタロセン系触媒が挙げられる。
ここで、ポリプロピレンの立体構造は、限定されるものではなく、アイソタクティックポリプロピレン、シンジオタクティックポリプロピレン及びアタクティックポリプロピレンのいずれでもよい。
ポリオレフィン樹脂組成物中の総ポリオレフィンに対するポリプロピレンの割合は、特に限定されないが、耐熱性と良好なシャットダウン機能の両立の観点から、1〜35質量%であることが好ましく、より好ましくは3〜20質量%、更に好ましくは4〜10質量%である。
また、重合触媒も特に制限はなく、例えば、チーグラー・ナッタ系触媒及びメタロセン系触媒が挙げられる。
本実施形態におけるポリオレフィン多孔性基材は、任意の添加剤を含有することができる。このような添加剤は、特に限定されず、例えば、ポリオレフィン以外のポリマー;無機粒子;フェノール系、リン系、イオウ系等の酸化防止剤;ステアリン酸カルシウム、ステアリン酸亜鉛等の金属石鹸類;紫外線吸収剤;光安定剤;帯電防止剤;防曇剤;着色顔料等が挙げられる。
これらの添加剤の合計含有量は、ポリオレフィン樹脂組成物100質量部に対して、20質量部以下であることが好ましく、より好ましくは10質量部以下、更に好ましくは5質量部以下である。
なお、粘度平均分子量(Mv)は、ASTM−D4020に基づき、溶剤としてデカリンを用い、測定温度135℃で測定された極限粘度[η]から、下記式により算出される。
ポリエチレン:[η]=6.77×10−4Mv0.67(Chiangの式)
ポリプロピレン:[η]=1.10×10−4Mv0.80
気孔率=(体積−質量/膜密度)/体積×100
により求めることができる。ここで、例えばポリエチレンから成るポリオレフィン多孔性基材の場合には、膜密度を0.95(g/cm3)と仮定して計算することができる。気孔率は、ポリオレフィン多孔性基材の延伸倍率の変更等により調節可能である。
上記突刺強度は、ポリオレフィン多孔性基材の延伸倍率及び/又は延伸温度等を調整することにより調節可能である。
フィラー多孔層は、無機フィラー及び樹脂バインダを含む。
フィラー多孔層に使用する無機フィラーとしては、特に限定されないが、200℃以上の融点を持ち、電気絶縁性が高く、かつリチウムイオン二次電池の使用範囲で電気化学的に安定であるものが好ましい。
樹脂バインダとしては、樹脂ラテックスバインダを用いることが好ましい。樹脂バインダとして樹脂ラテックスバインダを用いた場合、樹脂バインダ及び無機フィラーを含むフィラー多孔層を具備するセパレータは、樹脂バインダ溶液を基材上に塗工する工程を経て樹脂バインダを多孔膜上に結着させたセパレータと比較して、イオン透過性が低下し難く、出力特性の高い蓄電デバイスを与える傾向にある。更に、樹脂ラテックスバインダを用いて形成されたセパレータを有する蓄電デバイスは、異常発熱時の温度上昇が速い場合においても、円滑なシャットダウン特性を示し、高い安全性が得られ易い傾向にある。
さらに、樹脂バインダに含まれる共重合体は、平均3つ以上のアルキレングリコール繰り返しユニットの界面活性によって、無機フィラー及び樹脂バインダを含む塗工スラリーの分散性を向上させる。その結果として、均一な無機塗工層がセパレータ基材上に形成されるので、塗工層の剥離強度が高まるとともに、ポリオレフィン基材と無機塗工層の間の結着性も向上させることができ、蓄電デバイスの安全性が向上する。
本実施形態におけるセパレータは、このようにして蓄電デバイスのレート特性と安全性の両立に寄与するものと推察される。
CH2=C(R1)−CO−O−(CH2−CH2−O)n−R2
{式中、R1及びR2は、それぞれ独立に、水素原子又はメチル基であり、かつnは、3>n>1を満たす数である}
で表される化合物等が挙げられる。
その他のポリマーの具体例としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン;ポリフッ化ビニリデン、ポリテトラフルオロエチレン等の含フッ素樹脂;フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレンコポリマー、エチレン−テトラフルオロエチレンコポリマー等の含フッ素ゴム;スチレン−ブタジエンコポリマー及びその水素化物、アクリロニトリル−ブタジエンコポリマー及びその水素化物、アクリロニトリル−ブタジエン−スチレンコポリマー及びその水素化物、メタクリル酸エステル−アクリル酸エステルコポリマー、スチレン−アクリル酸エステルコポリマー、アクリロニトリル−アクリル酸エステルコポリマー、エチレンプロピレンラバー、ポリビニルアルコール、ポリ酢酸ビニル等のゴム類;エチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース等のセルロース誘導体;ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリアミドイミド、ポリアミド、ポリエステル等が挙げられる。
また、コポリマーのTgは、下記数式(1):
1/Tg=W1/Tg1+W2/Tg2+・・・・・・+Wi/Tgi+・・・・・・Wn/Tgn (1)
{式中、Tg(K)はコポリマーのTgであり、Tgi(K)はモノマーiのホモポリマーのTgであり、Wiは各単量体の質量分率である。}で表されるFOXの式によっても、概算することができる。
ただし、本実施形態におけるポリマーのガラス転移温度Tgとしては、上記DSCを用いる方法により測定した値を採用する。
フィラー多孔層の層密度は、0.5g/cm3〜3.0g/cm3であることが好ましく、0.7g/cm3〜2.0g/cm3であることがより好ましい。フィラー多孔層の層密度が0.5g/cm3以上であると、高温での熱収縮率が良好となる傾向にあり、3.0g/cm3以下であると、透気度が低下する傾向にある。
塗工液を基材に塗工する方法は、必要とする層厚及び塗工面積を実現できる限り特に限定されない。例えば、樹脂バインダを含んだフィラー原料と、ポリマー基材原料とを共押出法により積層して押出してもよいし、基材とフィラー多孔膜とを個別に作製した後に貼り合せてもよい。
蓄電デバイス用セパレータは、所望により、多孔性基材及びフィラー多孔層に加えて、熱可塑性ポリマー層を有していてもよい。熱可塑性ポリマー層は、多孔性基材の片面若しくは両面上に、又はフィラー多孔層上に配置されてよく、フィラー多孔層の少なくとも一部が露出するように配置されていても好ましい。
また、熱可塑性ポリマー層が無機フィラーと混在した層である場合には、熱可塑性ポリマーと無機フィラーの全面積を100%として熱可塑性ポリマーの存在面積を算出する。
ポリオレフィン多孔性基材上に配置される熱可塑性ポリマー層の厚さは、基材の片面当たり、0.01μm〜5μmであることが好ましく、0.1μm〜3μmであることがより好ましく、0.1〜1μmであることが更に好ましい。
熱可塑性ポリマー層は、熱可塑性ポリマーを含む。熱可塑性ポリマー層は、その全量に対して、好ましくは60質量%以上、より好ましくは90質量%以上、更に好ましくは95質量%以上、特に好ましくは98質量%以上の熱可塑性ポリマーを含んでよい。熱可塑性ポリマー層は、熱可塑性ポリマーに加えて、その他の成分を含んでもよい。
ポリエチレン、ポリプロピレン、α−ポリオレフィン等のポリオレフィン樹脂;
ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系ポリマー又はこれらを含むコポリマー;
ブタジエン、イソプレン等の共役ジエンを単量体ユニットとして含むジエン系ポリマー若しくはこれらを含むコポリマー、又はこれらの水素化物;
(メタ)アクリレート等を単量体ユニットとして含み、かつポリアルキレングリコールユニットを有していないアクリル系ポリマー、(メタ)アクリレート等を単量体ユニットとして含み、かつ1つ又は2つのポリアルキレングリコールユニットを有するアクリル系ポリマー、若しくはこれらを含むコポリマー、又はその水素化物;
エチレンプロピレンラバー、ポリビニルアルコール、ポリ酢酸ビニル等のゴム類;
エチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース等のセルロース誘導体;
ポリエチレングリコール、ポリプロピレングリコール等の、重合性官能基を有していないポリアルキレングリコール;
ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリアミドイミド、ポリアミド、ポリエステル等の樹脂;
フィラー多孔層を形成するための樹脂バインダとして上記で説明された、アルキレングリコールユニットの繰り返し数が3以上であるエチレン性不飽和単量体を共重合ユニットとして有するコポリマー;及び
これらの組み合わせ;
が挙げられる。
これらの中でも、電極活物質との接着性、及び柔軟性、ポリマーのイオン透過性の観点からは、ジエン系ポリマー、アクリル系ポリマー又はフッ素系ポリマーが好ましい。
コアシェル構造とは、中心部分に属するポリマーと、外殻部分に属するポリマーが異なる組成から成る、二重構造の形態をしたポリマーである。
特に、ポリマーブレンド及びコアシェル構造において、ガラス転移温度の高いポリマーと低いポリマーとを組み合せることにより、熱可塑性ポリマー全体のガラス転移温度を制御できる。また、熱可塑性ポリマー全体に複数の機能を付与できる。
熱可塑性ポリマー層に粒子状熱可塑性コポリマーを含有させることによって、基材上に配置された熱可塑性ポリマー層の多孔性及びセパレータの耐ブロッキング性を確保することができる。
本実施形態における熱可塑性ポリマー層は、熱可塑性ポリマーのみを含有していてもよいし、熱可塑性ポリマーに加えて、これ以外の任意成分を含んでいてもよい。任意成分としては、例えば、フィラー多孔層を形成するために上記で説明された無機フィラー等が挙げられる。
[ポリオレフィン多孔性基材の製造方法]
本実施形態におけるポリオレフィン多孔性基材を製造する方法は、特に限定されず、公知の製造方法を採用することができる。例えば、ポリオレフィン樹脂組成物と可塑剤とを溶融混練してシート状に成形後、場合により延伸した後、可塑剤を抽出することにより多孔化させる方法、ポリオレフィン樹脂組成物を溶融混練して高ドロー比で押出した後、熱処理と延伸によってポリオレフィン結晶界面を剥離させることにより多孔化させる方法、ポリオレフィン樹脂組成物と無機充填材とを溶融混練してシート上に成形後、延伸によってポリオレフィンと無機充填材との界面を剥離させることにより多孔化させる方法、ポリオレフィン樹脂組成物を溶解後、ポリオレフィンに対する貧溶媒に浸漬させポリオレフィンを凝固させると同時に溶剤を除去することにより多孔化させる方法等が挙げられる。
先ず、ポリオレフィン樹脂組成物と可塑剤を溶融混練する。溶融混練方法としては、例えば、ポリオレフィン樹脂及び必要によりその他の添加剤を、押出機、ニーダー、ラボプラストミル、混練ロール、バンバリーミキサー等の樹脂混練装置に投入し、樹脂成分を加熱溶融させながら任意の比率で可塑剤を導入して混練する方法が挙げられる。この際、ポリオレフィン樹脂、その他の添加剤及び可塑剤を樹脂混練装置に投入する前に、予めヘンシェルミキサー等を用い所定の割合で事前混練しておくことが好ましい。より好ましくは、事前混練において可塑剤の一部のみを投入し、残りの可塑剤を樹脂混練装置サイドフィードしながら混練することである。
フィラー多孔層は、例えば、無機フィラー、樹脂バインダ、及び所望により、溶剤(例えば水)、分散剤等の追加成分を含む塗工液を基材の少なくとも片面に塗工することにより、基材上に配置されることができる。樹脂バインダを乳化重合によって合成し、得られたエマルジョンをそのまま塗工液として使用してもよい。
さらに、樹脂バインダを含んだフィラー原料と、ポリマー基材原料とを共押出法により積層して押出してもよいし、基材とフィラー多孔膜とを個別に作製した後に貼り合せてもよい。
熱可塑性ポリマーは、例えば、熱可塑性ポリマーを含む塗工液を基材に塗工することにより基材上に配置されることができる。熱可塑性ポリマーを乳化重合によって合成し、得られたエマルジョンをそのまま塗工液として使用してもよい。塗工液は、水、水と水溶性有機媒体(例えば、メタノール又はエタノール)の混合溶媒等の貧溶媒を含むことが好ましい。
本実施形態では、蓄電デバイス用セパレータの透気度は、10秒/100cc以上650秒/100cc以下であることが好ましく、より好ましくは20秒/100cc以上500秒/100cc以下、さらに好ましくは30秒/100cc以上450秒/100cc以下、特に好ましくは50秒/100cc以上400秒/100cc以下である。この透気度は、ポリオレフィン多孔性基材の透気度と同じく、JIS P−8117に準拠して測定される透気抵抗度である。
透気度が10秒/100cc以上であると電池用セパレータとして使用した際の自己放電が少なくなる傾向にあり、650秒/100cc以下であると良好な充放電特性が得られる傾向にある。
本実施形態の蓄電デバイス用セパレータは、このように非常に大きな透気度を示すことにより、リチウムイオン二次電池に適用されたときに、大きなイオン透過性を示す。
本実施形態の蓄電デバイス用セパレータは、これを正極、負極、及び非水電解液を組み合わせることにより、蓄電デバイスのセパレータとして好適に適用することができる。この蓄電デバイスとしては、例えばリチウムイオン二次電池を挙げることができる。
本実施形態のセパレータをリチウムイオン二次電池を製造する場合、正極、負極、非水電解液に限定はなく、それぞれ公知のものを用いることができる。
正極としては、正極集電体上に正極活物質を含む正極活物質層が形成されて成る正極を好適に用いることができる。正極集電体としては、例えばアルミニウム箔等を、正極活物質としては、例えば、LiCoO2、LiNiO2、スピネル型LiMnO4、オリビン型LiFePO4等のリチウム含有複合酸化物等をそれぞれ挙げることができる。正極活物質層には、正極活物質の他、バインダ、導電材等を含んでいてもよい。
本実施形態のセパレータを、幅10〜500mm(好ましくは80〜500mm)、長さ200〜4,000m(好ましくは1,000〜4,000m)の縦長形状のセパレータとして製造し、当該セパレータを、正極−セパレータ−負極−セパレータ、又は負極−セパレータ−正極−セパレータの順で積層し、円又は扁平な渦巻状に巻回して巻回体を得、当該巻回体を電池缶内に収納し、更に電解液を注入することにより、製造することができる。或いは、シート状のセパレータ及び電極からなる積層体、又は電極及びセパレータを折り畳んで巻回体としたものを、電池容器(例えばアルミニウム製のフィルム)に入れて、電解液を注液する方法によって製造してもよい。
(1)固形分
得られた共重合体の水分散体をアルミ皿上に約1g精秤し、このとき量り取った水分散体の質量を(a)gとした。それを、130℃の熱風乾燥機で1時間乾燥し、乾燥後の共重合体の乾燥質量を(b)gとした。下記式により固形分を算出した。
固形分=(b)/(a)×100 [%]
ポリマー粒子の平均粒径は、粒子径測定装置(日機装株式会社製、Microtrac UPA150)を使用し、測定した。測定条件としては、ローディングインデックス=0.15〜0.3、測定時間300秒とし、得られたデータにおける50%粒子径の数値を粒子径として記載した。
共重合体を含む水分散体(固形分=38〜42質量%、pH=9.0)を、アルミ皿に適量取り、130℃の熱風乾燥機で30分間乾燥した。乾燥後の乾燥皮膜試料約17mgを測定用アルミ容器に詰め、DSC測定装置(島津製作所社製、DSC6220)にて窒素雰囲気下におけるDSC曲線及びDDSC曲線を得た。測定条件は下記の通りとした。
1段目昇温プログラム:70℃スタート、毎分15℃の割合で昇温。110℃に到達後5分間維持。
2段目降温プログラム:110℃から毎分40℃の割合で降温。−50℃に到達後5分間維持。
3段目昇温プログラム:−50℃から毎分15℃の割合で130℃まで昇温。この3段目の昇温時にDSC及びDDSCのデータを取得。
ベースライン(得られたDSC曲線におけるベースラインを高温側に延長した直線)と、変曲点(上に凸の曲線が下に凸の曲線に変わる点)における接線との交点をガラス転移温度(Tg)とした。
ASRM−D4020に準拠して、デカリン溶剤中、135℃における極限粘度[η]を求めた。この[η]値を用いて、下記数式の関係から粘度平均分子量Mvを算出した。
ポリエチレンの場合:[η]=0.00068×Mv0.67
ポリプロピレンの場合:[η]=1.10×Mv0.80
ポリオレフィン多孔性基材又はセパレータからMD10cm×TD10cm角の試料を切り取り、格子状に9箇所(3点×3点)を選んで、ダイヤルゲージ(尾崎製作所PEACOCK No,25(登録商標))を用いて室温23±2℃で膜厚を測定した。得られた9箇所の測定値の平均値を試料の膜厚として算出した。
ポリオレフィン多孔性基材から10cm×10cm角のサンプルを切り取り、その体積(cm3)及び質量(g)を求めた。これらの値を用い、該多孔性基材の密度を0.95(g/cm3)として、気孔率を下記数式:
気孔率(%)=(1−質量/体積/0.95)×100
により計算した。
JIS P−8117に準拠し、東洋精器(株)製のガーレー式透気度計G−B2(商標)により測定した透気抵抗度を透気度とした。
カトーテック製のハンディー圧縮試験器KES−G5(商標)を用いて、開口部の直径11.3mmの試料ホルダーでポリオレフィン多孔性基材を固定した。次に、固定された多孔性基材の中央部を、先端の曲率半径0.5mmの針を用いて、突刺速度2mm/秒で、25℃雰囲気下において突刺試験を行うことにより、最大突刺荷重として突刺強度(g)を得た。
無機フィラーを含む塗工液について、レーザー式粒度分布測定装置(日機装(株)製マイクロトラックMT3300EX)を用いて粒径分布を測定し、累積頻度が50%となる粒径を平均粒径(μm)とした。
塗工膜及びポリオレフィン微多孔膜基材からMD10cm×TD10cmのサンプルを切り出し、格子状に9箇所(3点×3点)を選んで、膜厚をダイヤルゲージ(尾崎製作所PEACOCK No.25(登録商標))を用いて測定し、9箇所の測定値の平均値を塗工膜及び基材の膜厚(μm)とした。また、このように測定された塗工膜及び基材の膜厚の差を塗工層の厚み(μm)とした。なお、表12では、基材の片面に形成された塗工層の厚みを「片面塗工厚み(μm)」として表し、そして基材の両面に形成された塗工層の合計厚みを「両面塗工厚み(μm)」として表した。
幅26mm、長さ76mmのスライドガラスに両面テープを張り付け、その上に塗工面が両面テープ側にくるようにセパレータを張り付けた。(株)イマダ製のフォースゲージZP5N及びMX2−500N(製品名)を用いて、スライドガラスを固定し、セパレータを把持して引っ張る方式によって剥離速度300mm/分にて180°剥離試験を行い、剥離強度を測定した。このとき、上記の条件で行った長さ40mm分の剥離試験における剥離強度の平均値を剥離強度として採用し、以下の基準で評価した。
◎(著しく良好):剥離強度が2.0N/cm以上
○(良好):剥離強度が1.0N/cm以上2.0N/cm未満
△(許容):剥離強度が0.45N/cm以上1.0N/cm未満
×(不良):剥離強度が0.45N/cm未満
22mmφに切り出した測定サンプル6枚を、電解液(1M 過塩素酸リチウム プロピレンカーボネート/ジメチルカーボネート=1/1)に十分に浸し、そのうちの1枚を蓋付きステンレス金属製容器に収容した。容器と蓋とはテフロン(登録商標)パッキン及び15.95mmφのテフロン(登録商標)ガイドによって直接接触することなく絶縁されており、SUS製の電極抑えによってのみ接していた。蓋はトルクレンチ(締め付けトルク:0.8Nm)を使用して閉めた。日置電機製「3522−50 LCRハイテスター」を用いて、周波数100Hz、開放電圧0.01Vの条件下、−30℃の恒温槽内に測定セルを設置して測定した。ここで得られた抵抗値をR1とする。次に、測定容器を分解し、含浸させていた残りのサンプル5枚を容器内に重ねてセットし、再度組立てた後、同様の条件にて、6枚での抵抗を測定した。ここで得られた膜抵抗をR6とする。得られたR1及びR6から下記式(2)に従って、サンプル1枚あたりの膜抵抗R(Ω・cm2)を算出した。
R=(R6−R1)/5 (2)
式(2)より得られたセパレータの交流電気抵抗(Ω/cm2)を20μm膜厚に換算した抵抗値として算出し、塗工前の基材の交流電気抵抗Raと塗工後の交流電気抵抗Rbから下記の式(3)に従って抵抗上昇率を求めた。
抵抗上昇率(%)={(Rb−Ra)/Ra}×100 (3)
抵抗上昇率を以下の評価基準に従ってランク分けした。
◎(著しく良好):抵抗上昇率が50%未満
○(良好):抵抗上昇率が50%以上100%未満
×(不良):抵抗上昇率が100%以上
a.正極の作製
正極活物質としてニッケル、マンガン、コバルト複合酸化物(NMC)(Ni:Mn:Co=1:1:1(元素比)、密度4.70g/cm3)を90.4質量%、導電助材としてグラファイト粉末(KS6)(密度2.26g/cm3、数平均粒子径6.5μm)を1.6質量%及びアセチレンブラック粉末(AB)(密度1.95g/cm3、数平均粒子径48nm)を3.8質量%、並びにバインダとしてポリフッ化ビニリデン(PVDF)(密度1.75g/cm3)を4.2質量%の比率で混合し、これらをN−メチルピロリドン(NMP)中に分散させてスラリーを調製した。このスラリーを、正極集電体となる厚さ20μmのアルミニウム箔の片面にダイコーターを用いて塗工し、130℃において3分間乾燥した後、ロールプレス機を用いて圧縮成形することにより、正極を作製した。この時の正極活物質塗工量は109g/m2であった。
負極活物質としてグラファイト粉末A(密度2.23g/cm3、数平均粒子径12.7μm)を87.6質量%及びグラファイト粉末B(密度2.27g/cm3、数平均粒子径6.5μm)を9.7質量%、並びにバインダとしてカルボキシメチルセルロースのアンモニウム塩1.4質量%(固形分換算)(固形分濃度1.83質量%水溶液)及びジエンゴム系ラテックス1.7質量%(固形分換算)(固形分濃度40質量%水溶液)を精製水中に分散させてスラリーを調製した。このスラリーを負極集電体となる厚さ12μmの銅箔の片面にダイコーターで塗工し、120℃において3分間乾燥した後、ロールプレス機で圧縮成形することにより、負極を作製した。この時の負極活物質塗工量は5.2g/m2であった。
エチレンカーボネート:エチルメチルカーボネート=1:2(体積比)の混合溶媒に、溶質としてLiPF6を濃度1.0mol/Lとなるように溶解させることにより、非水電解液を調製した。
各実施例及び比較例で得られた蓄電デバイス用セパレータを24mmφ、正極及び負極をそれぞれ16mmφの円形に切り出した。正極と負極の活物質面とが対向するように、負極、セパレータ、正極の順に重ね、プレス又はヒートプレスをして、蓋付きステンレス金属製容器に収容した。容器と蓋とは絶縁されており、容器は負極の銅箔と、蓋は正極のアルミニウム箔と、それぞれ接していた。この容器内に前記非水電解液を0.4ml注入して密閉することにより、電池を組み立てた。
上記d.で組み立てた簡易電池を、25℃において、電流値3mA(約0.5C)で電池電圧4.2Vまで充電した後、4.2Vを保持するようにして電流値を3mAから絞り始めるという方法により、電池作成後の最初の充電を合計約6時間行った。その後、電流値3mAで電池電圧3.0Vまで放電した。
次に、25℃において、電流値6mA(約1.0C)で電池電圧4.2Vまで充電した後、4.2Vを保持するようにして電流値を6mAから絞り始めるという方法により、合計約3時間充電を行った。その後、電流値6mAで電池電圧3.0Vまで放電した時の放電容量を1C放電容量(mAh)とした。
次に、25℃において、電流値6mA(約1.0C)で電池電圧4.2Vまで充電した後、4.2Vを保持するようにして電流値を6mAから絞り始めるという方法により、合計約3時間充電を行った。その後、電流値12mA(約2.0C)で電池電圧3.0Vまで放電した時の放電容量を2C放電容量(mAh)とした。
そして、1C放電容量に対する2C放電容量の割合を算出し、この値をレート特性とした。
レート特性(%)=(2C放電容量/1C放電容量)×100
レート特性(%)の評価基準は以下の通りとした。
◎(著しく良好):レート特性が95%以上である。
○(良好):レート特性が85%以上95%未満である。
×(不良):レート特性が85%未満である。
(水分散体a1)
撹拌機、還流冷却器、滴下槽及び温度計を取り付けた反応容器に、イオン交換水70.4質量部と、乳化剤として「アクアロンKH1025」(登録商標、第一工業製薬株式会社製25%水溶液、表中「KH1025」と表記。以下同様。)0.5質量部と、「アデカリアソープSR1025」(登録商標、株式会社ADEKA製25%水溶液、表中「SR1025」と表記。以下同様。)0.5質量部とを投入した。次いで、反応容器内部の温度を80℃に昇温し、80℃の温度を保ったまま、過硫酸アンモニウムの2%水溶液(表中「APS(aq)と表記。以下同様。」)を7.5質量部添加した。過硫酸アンモニウム水溶液を添加終了した5分後に、乳化液を滴下槽から反応容器に150分かけて滴下した。
(水分散体A1〜A27、a2〜a4)
原材料の種類及び配合比を表1〜表5に示すように変更した以外は、合成例1と同様にして、水分散体A1〜A27、a2〜a4を得た。
(乳化剤)
KH1025:アクアロンKH1025、商品名、第一工業製薬株式会社製、25質量%水溶液
SR1025:アデカリアソープSR1025、商品名、株式会社ADEKA製、25質量%水溶液、
NaSS:p−スチレンスルホン酸ナトリウム
(開始剤)
APS:過硫酸アンモニウム(2質量%水溶液)
(中和剤)
AW:水酸化アンモニウム
ポリアルキレングリコール基含有単量体:下記表6に示される単量体
CHMA:シクロヘキシルメタクリレート
カルボキシル基含有単量体
MAA:メタクリル酸
AA:アクリル酸
アミド基含有単量体
AM:アクリルアミド
ヒドロキシル基含有単量体
HEMA:メタクリル酸2−ヒドロキシエチル
架橋性単量体
GMA:メタクリル酸グリシジル
A−TMPT:トリメチロールプロパントリアクリレート
MAPTMS:メタクリルオキシプロピルトリメトキシシラン
その他の(メタ)アクリレート
MMA:メタクリル酸メチル
BMA:ブチルメタクリレート
BA:アクリル酸n−ブチル
2EHA:2−エチルヘキシルアクリレート
ポリオレフィン多孔性基材B1
Mvが70万であるホモポリマーの高密度ポリエチレンを45質量部と、
Mvが30万であるホモポリマーの高密度ポリエチレンを45質量部と、
Mvが40万であるホモポリマーのポリプロピレン5質量部と、
を、タンブラーブレンダーを用いてドライブレンドした。
得られたポリオレフィン混合物99質量部に酸化防止剤としてテトラキス−[メチレン−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタンを1質量部添加し、再度タンブラーブレンダーを用いてドライブレンドすることにより、混合物を得た。
得られた混合物を、窒素雰囲気下で二軸押出機へフィーダーにより供給した。
また、流動パラフィン(37.78℃における動粘度7.59×10−5m2/s)を押出機シリンダーにプランジャーポンプにより注入した。
押し出される全混合物中の、流動パラフィンの割合が65質量部、及びポリマー濃度が35質量部となるように、フィーダー及びポンプの運転条件を調整した。
このシートを同時二軸延伸機にて、温度112℃において倍率7×6.4倍に延伸した。その後、延伸物を塩化メチレンに浸漬して、流動パラフィンを抽出除去後、乾燥し、更にテンター延伸機を用いて温度130℃において横方向に2倍延伸した。
その後、この延伸シートを幅方向に約10%緩和して熱処理を行い、ポリオレフィン多孔性基材B1を得た。得られた基材B1の物性を下記表7に示す。
以下の材料:
SiO2「DM10C」(商標、トクヤマ社製) 6.4質量部、
粘度平均分子量が70万の高密度ポリエチレン 12.2質量部、
粘度平均分子量が25万の高密度ポリエチレン 12.2質量部、
粘度平均分子量40万のホモポリプロピレン 1.3質量部、
可塑剤として、流動パラフィン 37.1質量部、及び
酸化防止剤として、ペンタエリスリチル−テトラキス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート] 0.3質量部添加
をスーパーミキサーにて予備混合することにより、ポリオレフィン第1微多孔層の原料を調製した。
以下の原料:
粘度平均分子量が70万の高密度ポリエチレン10.8質量部、粘度平均分子量が25万の高密度ポリエチレン 10.8質量部、
粘度平均分子量40万のホモポリプロピレン 1.1質量部、
可塑剤として、流動パラフィン 46.3質量部、及び
酸化防止剤として、ペンタエリスリチル−テトラキス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート] 0.3質量部
をスーパーミキサーにて予備混合することにより、ポリオレフィン第2微多孔層の原料を調製した。
押出機における溶融混練条件は、以下のとおりである。
第1微多孔層の原料
設定温度:200℃
スクリュー回転数:100rpm
吐出量:5kg/h
第2微多孔層の原料
設定温度:200℃
スクリュー回転数:120rpm
吐出量:16kg/h
基材B3としてセルガードの型番「CG2500」を用意した。
水酸化酸化アルミニウム(平均粒径1.0μm)96.0質量部、樹脂バインダーA1を3.0質量部、及びポリカルボン酸アンモニウム水溶液(サンノプコ社製 SNディスパーサント5468)1.0質量部を100質量部の水に均一に分散させて塗布液を調製した。続いて、その塗布液を、ポリオレフィン多孔性基材B1の表面にグラビアコーターを用いて塗布した。その後、60℃において乾燥して水を除去した。このようにして、ポリオレフィン多孔性基材B1上に水酸化酸化アルミニウム層(無機フィラーの多孔層)を厚さ4μmで形成することにより、セパレータS1を得た。
セパレータS1と同様の方法で、表8〜表13に従ってセパレータS2〜S53を作製した。
なお、セパレータS42〜S46は、基材B1の片面に塗布液を塗布し乾燥させた後、さらに、もう片面に塗布液を塗布することにより、無機フィラー層が基材B1の両面に塗工されたセパレータとして作製された。
Claims (9)
- 多孔性基材と、無機フィラー及び樹脂バインダを含む多孔層とを含む蓄電デバイス用セパレータであって、
前記多孔層は、前記多孔性基材の少なくとも片面に配置されており、前記樹脂バインダは、ポリアルキレングリコール基を有するエチレン性不飽和単量体(P)を単量体単位として有する共重合体を含み、かつ前記ポリアルキレングリコール基を有するエチレン性不飽和単量体(P)のポリアルキレングリコール鎖の平均繰り返し単位数(n)が3以上であり、
前記共重合体が、前記共重合体100質量%に対して2〜50質量%の前記ポリアルキレングリコール基を有するエチレン性不飽和単量体(P)と、前記ポリアルキレングリコール基を有するエチレン性不飽和単量体(P)と共重合可能な、ポリアルキレングリコール基を有していない単量体と、を単量体単位として有し、かつ
前記ポリアルキレングリコール基を有していない単量体が、カルボキシル基を有するエチレン性不飽和単量体(b1)、アミド基を有するエチレン性不飽和単量体(b2)、及びヒドロキシル基を有するエチレン性不飽和単量体(b3)から成る群より選択される少なくとも1種の単量体を、前記共重合体100質量%に対して0.1〜10質量%含む、蓄電デバイス用セパレータ。 - 多孔性基材と、無機フィラー及び樹脂バインダを含む多孔層とを含む蓄電デバイス用セパレータであって、
前記多孔層は、前記多孔性基材の少なくとも片面に配置されており、前記樹脂バインダは、ポリアルキレングリコール基を有するエチレン性不飽和単量体(P)を単量体単位として有する共重合体を含み、かつ前記ポリアルキレングリコール基を有するエチレン性不飽和単量体(P)のポリアルキレングリコール鎖の平均繰り返し単位数(n)が3以上であり、
前記共重合体が、前記共重合体100質量%に対して2〜50質量%の前記ポリアルキレングリコール基を有するエチレン性不飽和単量体(P)と、前記ポリアルキレングリコール基を有するエチレン性不飽和単量体(P)と共重合可能な、ポリアルキレングリコール基を有していない単量体と、を単量体単位として有し、かつ
前記ポリアルキレングリコール基を有していない単量体が、架橋性単量体(b4)を含む、蓄電デバイス用セパレータ。 - 多孔性基材と、無機フィラー及び樹脂バインダを含む多孔層とを含む蓄電デバイス用セパレータであって、
前記多孔層は、前記多孔性基材の少なくとも片面に配置されており、前記樹脂バインダは、ポリアルキレングリコール基を有するエチレン性不飽和単量体(P)を単量体単位として有する共重合体を含み、かつ前記ポリアルキレングリコール基を有するエチレン性不飽和単量体(P)のポリアルキレングリコール鎖の平均繰り返し単位数(n)が3以上であり、
前記共重合体が、前記共重合体100質量%に対して2〜50質量%の前記ポリアルキレングリコール基を有するエチレン性不飽和単量体(P)と、前記ポリアルキレングリコール基を有するエチレン性不飽和単量体(P)と共重合可能な、ポリアルキレングリコール基を有していない単量体と、を単量体単位として有し、
前記ポリアルキレングリコール基を有していない単量体が、シクロアルキル基を有するエチレン性不飽和単量体(A)と、(メタ)アクリル酸エステル単量体(b5)とを含み、
前記(メタ)アクリル酸エステル単量体(b5)は、炭素数4以上のアルキル基及び(メタ)アクリロイルオキシ基から成る(メタ)アクリル酸エステル単量体であり、かつ
前記シクロアルキル基を有するエチレン性不飽和単量体(A)及び前記(メタ)アクリル酸エステル単量体(b5)の合計含有割合が、前記共重合体100質量%に対して50〜98質量%である、蓄電デバイス用セパレータ。 - 前記(メタ)アクリル酸エステル単量体(b5)は、炭素数6以上のアルキル基及び(メタ)アクリロイルオキシ基から成る(メタ)アクリル酸エステル単量体である、請求項3に記載の蓄電デバイス用セパレータ。
- 前記シクロアルキル基を有するエチレン性不飽和単量体(A)が、シクロヘキシルアクリレート又はシクロヘキシルメタクリレートである、請求項3又は4に記載の蓄電デバイス用セパレータ。
- 正極と請求項1〜5のいずれか1項に記載の蓄電デバイス用セパレータと負極とから成る積層体。
- 正極と請求項1〜5のいずれか1項に記載の蓄電デバイス用セパレータと負極とが捲回されている捲回体。
- 請求項6に記載の積層体又は請求項7に記載の捲回体と電解液とを含む蓄電デバイス。
- 請求項6に記載の積層体又は請求項7に記載の捲回体と電解液とを含むリチウムイオン二次電池。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015226702 | 2015-11-19 | ||
JP2015226702 | 2015-11-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017103206A JP2017103206A (ja) | 2017-06-08 |
JP6856988B2 true JP6856988B2 (ja) | 2021-04-14 |
Family
ID=59015649
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016164043A Active JP6856988B2 (ja) | 2015-11-19 | 2016-08-24 | 蓄電デバイス用セパレータ及びそれを用いた積層体、捲回体、リチウムイオン二次電池又は蓄電デバイス |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6856988B2 (ja) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109935755B (zh) * | 2018-08-20 | 2022-08-12 | 苏州清陶新能源科技有限公司 | 一种有机-无机复合凝胶隔膜及其制备方法 |
KR20200032542A (ko) * | 2018-09-18 | 2020-03-26 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지 |
KR102609218B1 (ko) | 2018-10-11 | 2023-12-05 | 아사히 가세이 가부시키가이샤 | 리튬 이온 전지용 세퍼레이터 |
EP4220844A3 (en) * | 2018-10-11 | 2023-08-30 | Asahi Kasei Kabushiki Kaisha | Lithium ion battery using crosslinked separator |
KR102312278B1 (ko) | 2018-12-21 | 2021-10-12 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지 |
KR102306447B1 (ko) | 2018-12-26 | 2021-09-28 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지 |
KR102306446B1 (ko) | 2018-12-28 | 2021-09-28 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지 |
KR102342669B1 (ko) | 2019-01-16 | 2021-12-22 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지 |
KR20240144402A (ko) * | 2019-07-10 | 2024-10-02 | 아사히 가세이 가부시키가이샤 | 다층 다공막 |
JP6973695B2 (ja) * | 2019-11-27 | 2021-12-01 | Dic株式会社 | リチウムイオン二次電池バインダー用水性樹脂組成物、及びリチウムイオン二次電池用セパレータ |
JPWO2023176479A1 (ja) * | 2022-03-15 | 2023-09-21 | ||
CN115775916B (zh) * | 2022-11-15 | 2024-04-09 | 南京大学 | 一种室温高锂离子电导率的聚合物固态电解质 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5124178B2 (ja) * | 2007-06-15 | 2013-01-23 | 日東電工株式会社 | 電池用セパレータのための架橋性ポリマー担持多孔質フィルムとその利用 |
KR101254693B1 (ko) * | 2011-02-15 | 2013-04-15 | 주식회사 엘지화학 | 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자 |
JP2015141838A (ja) * | 2014-01-29 | 2015-08-03 | 旭化成イーマテリアルズ株式会社 | 蓄電デバイス用セパレータ、蓄電デバイス、リチウムイオン二次電池及び共重合体 |
WO2015133154A1 (ja) * | 2014-03-07 | 2015-09-11 | 日本ゼオン株式会社 | リチウムイオン二次電池用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池多孔膜用スラリー組成物、リチウムイオン二次電池用電極、及びリチウムイオン二次電池 |
-
2016
- 2016-08-24 JP JP2016164043A patent/JP6856988B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017103206A (ja) | 2017-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6856988B2 (ja) | 蓄電デバイス用セパレータ及びそれを用いた積層体、捲回体、リチウムイオン二次電池又は蓄電デバイス | |
JP6502523B2 (ja) | 蓄電デバイス用バインダー、蓄電デバイス用バインダー組成物 | |
JP6431621B2 (ja) | 蓄電デバイス用セパレータ並びにそれを用いた電極体及び蓄電デバイス | |
JP5829042B2 (ja) | 多層多孔膜用共重合体組成物 | |
JP7166773B2 (ja) | 蓄電デバイス用セパレータ及びそれを用いた積層体、捲回体、リチウムイオン二次電池、並びに蓄電デバイス | |
JP6872932B2 (ja) | 蓄電デバイス用セパレータ | |
JP6718218B2 (ja) | 蓄電デバイス用セパレータ | |
JP2011005670A (ja) | 多層多孔膜 | |
JP2011008966A (ja) | 多層多孔膜 | |
JP2012219240A (ja) | 多層多孔膜用共重合体組成物 | |
JP6903090B2 (ja) | 蓄電デバイス用セパレータ、及びそれを用いた捲回体、リチウムイオン二次電池、並びに蓄電デバイス | |
JP5968347B2 (ja) | 積層体、蓄電デバイス及びリチウムイオン二次電池 | |
JP6574602B2 (ja) | 蓄電デバイス用セパレータ、蓄電デバイス、及びリチウムイオン二次電池 | |
JP2016071963A (ja) | 蓄電デバイス用セパレータ | |
JP2015128059A (ja) | 蓄電デバイス用セパレータ、蓄電デバイス、リチウムイオン二次電池及び共重合体 | |
JP2015103482A (ja) | 蓄電デバイス用セパレータ、蓄電デバイス、リチウムイオン二次電池及び共重合体 | |
JP7002229B2 (ja) | パターン塗工用スラリー | |
EP3340343A1 (en) | Separator for power storage device, and laminated body, roll and secondary battery using it | |
JP6580234B1 (ja) | 蓄電デバイス用セパレータ、及びそれを用いた捲回体、リチウムイオン二次電池、並びに蓄電デバイス | |
JP7071310B2 (ja) | 蓄電デバイス用セパレータ用スラリー、及びそれを用いたセパレータ | |
JP2022157163A (ja) | 蓄電デバイス用セパレータ | |
JP2015141837A (ja) | 蓄電デバイス用セパレータ、蓄電デバイス、リチウムイオン二次電池及び共重合体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190820 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200722 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200804 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200928 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210302 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210319 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6856988 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |