JP6854134B2 - 高選択性腐食センサーシステム - Google Patents
高選択性腐食センサーシステム Download PDFInfo
- Publication number
- JP6854134B2 JP6854134B2 JP2017004963A JP2017004963A JP6854134B2 JP 6854134 B2 JP6854134 B2 JP 6854134B2 JP 2017004963 A JP2017004963 A JP 2017004963A JP 2017004963 A JP2017004963 A JP 2017004963A JP 6854134 B2 JP6854134 B2 JP 6854134B2
- Authority
- JP
- Japan
- Prior art keywords
- sensor
- thin film
- metal thin
- plasmon resonance
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N17/00—Investigating resistance of materials to the weather, to corrosion, or to light
- G01N17/04—Corrosion probes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/55—Specular reflectivity
- G01N21/552—Attenuated total reflection
- G01N21/553—Attenuated total reflection and using surface plasmons
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/41—Refractivity; Phase-affecting properties, e.g. optical path length
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/55—Specular reflectivity
- G01N21/552—Attenuated total reflection
- G01N21/553—Attenuated total reflection and using surface plasmons
- G01N21/554—Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Ecology (AREA)
- Environmental & Geological Engineering (AREA)
- Environmental Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Description
また、表面プラズモン共鳴センサーは周囲の媒質変化をも捉えてしまうため、単一のセンサーのみでは金属腐食の由来となるセンサー信号と区別することができない。
センサー群中の各センサーに向けて光を投光する投光手段と、
センサー群中の各センサーから出射する光を、該光の強度に応じた信号強度として検出する検出手段と、
被測定金属の腐食に関する情報が蓄積されたデータベースと、
検出手段により検出された複数の信号強度と、データベースに蓄積された情報とに基づきパターン認識して被測定金属の腐食の程度を解析する解析手段と、
を備える。
センサー群は、腐食性環境に対する腐食耐性・腐食傾向が異なる2以上のSPRセンサーから構成される。そして、本実施形態においては、2以上のSPRセンサーにおいてそれぞれの腐食性環境に対する腐食耐性・腐食傾向を異ならせるために、センサー面となる金属薄膜及び/又は機能膜の材料をそれぞれ異なる材料としている。すなわち、センサー群は、(1)センサー面に金属薄膜を有するSPRセンサー、(2)センサー面の金属薄膜の材料がそれぞれ異なる複数のSPRセンサー、(3)センサー面に機能膜を有するSPRセンサー、(4)センサー面の機能膜の材料がそれぞれ異なる複数のSPRセンサー、(5)センサー部に金属微粒子を有するLSPRセンサー、(6)センサー部の金属微粒子がそれぞれ異なる複数のLSPRセンサー、(7)センサー部の金属微粒子表面に機能膜を有するLSPRセンサー、及び(8)センサー部の金属微粒子表面の機能膜の材料がそれぞれ異なる複数のLSPRセンサーからなる群より選択される少なくとも1群を含むセンサー群少なくとも1つを含む。ただし、(1)、(3)、(5)及び(7)のいずれか1群のみからなるものを除く。
当該SPRセンサーは、(1)センサー面に金属薄膜を有するSPRセンサー単独、又は(2)センサー面の金属薄膜の材料がそれぞれ異なる複数のSPRセンサーであり、単独の場合は、他のSPRセンサー/LSPRセンサーと組合せてセンサー群が構成される。そして、センサー面の金属薄膜の材料がそれぞれ異なる複数のSPRセンサーは、金属薄膜の材料が異なるが故に腐食性環境に対するそれぞれの金属薄膜の腐食進行速度、腐食進行過程が異なる。従って、同一腐食環境であっても、SPRのピークシフト量、ピーク強度の変化の度合いは金属材料ごとに異なる。
当該SPRセンサーは、(3)センサー面に機能膜を有するSPRセンサー単独か、又は(4)センサー面の機能膜の材料がそれぞれ異なる複数のSPRセンサーであり、単独の場合は、他のSPRセンサー/LSPRセンサーと組合せてセンサー群を構成する。また、機能膜は、特定の物質を選択的に付着・固定させる膜であり、上記のような金属薄膜上に形成される。
当該LSPRセンサーは、(5)センサー部に金属微粒子を有するLSPRセンサー単独か、又は(6)センサー部の金属微粒子がそれぞれ異なる複数のLSPRセンサーである。そして、単独の場合は、他のSPRセンサー/LSPRセンサーと組合せてセンサー群が構成される。また、センサー部の金属微粒子の材料(金属元素)がそれぞれ異なる複数のSPRセンサーは、金属微粒子の材料が異なるが故に腐食性環境に対するそれぞれの金属薄膜の腐食進行速度、腐食進行過程が異なる。従って、同一腐食環境であっても、LSPRのピークシフト量、ピーク強度の変化の度合いは金属材料ごとに異なる。
投光手段は、例えば、光源と、コリメートレンズと、偏光子と、集光レンズとから構成される。光源としては、半導体レーザを用いることができる。光源から出射された光は、コリメートレンズによって平行光束とされ偏光子に導かれる。偏光子は、入射した光を表面プラズモンを引き起こすp偏光とするためのものであり、コリメートレンズにより平行光束とされた光は、偏光子によってp偏光とされ、集光レンズに向けて進む。集光レンズを透過した光は各SPRセンサーに導かれる。また、必要に応じて、信号対雑音比(S/N比:signal-to-noise ratio)を強めるためにチョッパーを光源の直後に配置してもよい。
検出手段は、センサー群中の各センサーから出射する光を受光し、受光した光を光電変換する受光素子を備える。この受光素子により、受光した光はその強弱を示す情報を有する電気信号に変換される。
データベースには、被測定金属の腐食に関する情報が蓄積される。具体的には、センサー群の各センサーにより検出される信号の強弱パターンの組合せに対して、被測定金属の腐食に関する情報を対応づけて情報処理装置の記憶部などに記憶させる。被測定金属の腐食に関する情報としては、腐食要因、腐食進行レベル、腐食進行速度、腐食進行過程(例;腐食進行が単調に進行、もしくは腐食進行が飽和傾向)などの情報が挙げられる。例えば、センサー群が、センサー面となる金属薄膜が異なる5つのSPRセンサーから構成される場合において、これら5つの強弱パターンに対し、金属の腐食の進行の度合いを分類して数値化するなどして記憶させる。
解析手段は、検出手段により検出された複数の信号強度と、データベースに蓄積された情報とに基づきパターン認識して被測定金属の腐食の程度を解析する。当該解析には、例えば、パソコンなどの情報処理装置を用い、パターン認識プログラムの処理により実行される。例えば、解析には、Widrow−Hoffの学習則(デルタルール、直交化学習、最小二乗学習)、ベイズ決定測、最尤法、クラスタリング、主成分分析(≒KL展開;Karhumen−Loeve展開)、フィッシャーの線形判別法(別名;フィッシャーの方法)、パラメーター推定、マルコフモデル、ノンパラメトリックベイズモデル、MTシステムなどの理論を採用することができる。
(1)参照用センサーの信号は変化せず、測定用センサーの信号が変化した場合、センサー表面の金属薄膜の腐食は進行したが、周囲環境は変化していないと判定することができる。
(2)参照用センサーの信号も、測定用センサーの信号も変化しない場合、センサー表面の金属薄膜の腐食も進行せず、周囲環境も変化していないと判定することができる。
(3)参照用センサーの信号も、測定用センサーの信号も変化した場合、少なくとも周囲環境が変化したと判定することができる(センサー表面の金属薄膜の腐食の進行は不明)。
(1)参照用センサーの信号は変化せず、測定用センサーの信号が変化した場合、センサー表面の腐食保護膜の腐食は進行したが、周囲環境は変化していないと判定することができる。
(2)参照用センサーの信号も、測定用センサーの信号も変化しない場合、センサー表面の腐食保護膜の腐食も進行せず、周囲環境も変化していないと判定することができる。
(3)参照用センサーの信号も、測定用センサーの信号も変化した場合、少なくとも周囲環境が変化したと判定することができる(センサー表面の腐食保護膜の腐食の進行は不明)。
14 金属薄膜
16 投光手段
18 検出手段
20 透明基板
30 52 60A 60B 光ファイバー
32 金属薄膜
34 62 コア
36 66 クラッド
40A 40B 50A 50B センサー部
42 基板
44 54 64 金属微粒子
46 誘電体球
48 56 68 金属薄膜
Claims (8)
- 表面プラズモン共鳴センサー及び局在表面プラズモン共鳴センサーのうちの少なくとも2以上からなり、それぞれのセンサー面又はセンサー部に有する金属薄膜又は金属微粒子の腐食性環境に対する腐食耐性が異なるセンサー群と、
前記センサー群中の各センサーに向けて光を投光する投光手段と、
前記センサー群中の各センサーから出射する光を、該光の強度に応じた信号強度として検出する検出手段と、
前記金属薄膜又は前記金属微粒子の腐食に関する情報が蓄積されたデータベースと、
前記検出手段により検出された複数の信号強度と、前記データベースに蓄積された情報とに基づきパターン認識して前記センサー面又は前記センサー部に有する金属薄膜又は金属微粒子の腐食の程度を解析する解析手段と、
を備える、高選択性腐食センサーシステム。 - 前記センサー群が、(1)センサー面に金属薄膜を有する表面プラズモン共鳴センサー、(2)センサー面の金属薄膜の材料がそれぞれ異なる複数の表面プラズモン共鳴センサー、(3)センサー面の金属薄膜上に機能膜を有する表面プラズモン共鳴センサー、(4)センサー面の金属薄膜上に有する機能膜の材料がそれぞれ異なる複数の表面プラズモン共鳴センサー、(5)センサー部に金属微粒子を有する局在表面プラズモン共鳴センサー、(6)センサー部の金属微粒子がそれぞれ異なる複数の局在表面プラズモン共鳴センサー、(7)センサー部の金属微粒子表面に機能膜を有する局在表面プラズモン共鳴センサー、及び(8)センサー部の金属微粒子表面の機能膜の材料がそれぞれ異なる複数の局在表面プラズモン共鳴センサーからなる群より選択される少なくとも1つを含むセンサー群((1)、(3)(5)及び(7)のいずれか1つの群のみからなるものを除く)である、請求項1に記載の高選択性腐食センサーシステム。
- 前記(1)又は(2)の表面プラズモン共鳴センサーが、光ファイバーの端面、又はクラッドが除去されコアが露出する領域を一部に有する光ファイバーの当該領域に金属薄膜が形成された構造を有する、請求項2に記載の高選択性腐食センサーシステム。
- 前記(5)又は(6)の局在表面プラズモン共鳴センサーが、基板上に多数の金属微粒子が配置された構造を有する、請求項2に記載の高選択性腐食センサーシステム。
- 前記多数の金属微粒子のそれぞれが、金属薄膜に包まれた誘電体球である、請求項4に記載の高選択性腐食センサーシステム。
- 前記(5)又は(6)の局在表面プラズモン共鳴センサーが、光ファイバーの端面、又はクラッドが除去されコアが露出する領域を一部に有する光ファイバーの当該領域に多数の金属微粒子が配置された構造を有する、請求項2に記載の高選択性腐食センサーシステム。
- 前記多数の金属微粒子のそれぞれが、金属薄膜に包まれた誘電体球である、請求項6に記載の高選択性腐食センサーシステム。
- 前記センサー群には、センサー面の金属薄膜が金膜である表面プラズモン共鳴センサー又はセンサー面の金属薄膜に保護膜を形成した表面プラズモン共鳴センサーを参照用センサーとして含む、請求項1乃至7のいずれか1項に記載の高選択性腐食センサーシステム。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017004963A JP6854134B2 (ja) | 2017-01-16 | 2017-01-16 | 高選択性腐食センサーシステム |
PCT/JP2017/047220 WO2018131502A1 (ja) | 2017-01-16 | 2017-12-28 | 高選択性腐食センサーシステム |
EP17891313.3A EP3570009A4 (en) | 2017-01-16 | 2017-12-28 | HIGH SELECTIVITY CORROSION SENSOR SYSTEM |
CN201780079198.9A CN110100171A (zh) | 2017-01-16 | 2017-12-28 | 高选择性腐蚀传感器系统 |
US16/445,549 US10753854B2 (en) | 2017-01-16 | 2019-06-19 | High selectivity corrosion sensor system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017004963A JP6854134B2 (ja) | 2017-01-16 | 2017-01-16 | 高選択性腐食センサーシステム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018115867A JP2018115867A (ja) | 2018-07-26 |
JP6854134B2 true JP6854134B2 (ja) | 2021-04-07 |
Family
ID=62839611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017004963A Active JP6854134B2 (ja) | 2017-01-16 | 2017-01-16 | 高選択性腐食センサーシステム |
Country Status (5)
Country | Link |
---|---|
US (1) | US10753854B2 (ja) |
EP (1) | EP3570009A4 (ja) |
JP (1) | JP6854134B2 (ja) |
CN (1) | CN110100171A (ja) |
WO (1) | WO2018131502A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7096498B2 (ja) * | 2019-02-20 | 2022-07-06 | 日本電信電話株式会社 | 推定方法 |
JP2020204540A (ja) * | 2019-06-18 | 2020-12-24 | 矢崎総業株式会社 | 金属の腐食検出装置及び腐食検出方法 |
CN111381135B (zh) * | 2020-03-27 | 2021-01-15 | 西安交通大学 | 一种电缆外护套绝缘老化检测装置及检测方法 |
Family Cites Families (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5327225A (en) * | 1993-01-28 | 1994-07-05 | The Center For Innovative Technology | Surface plasmon resonance sensor |
US5570139A (en) * | 1994-05-13 | 1996-10-29 | Wang; Yu | Surface plasmon high efficiency HDTV projector |
AU7526496A (en) * | 1995-10-25 | 1997-05-15 | University Of Washington | Surface plasmon resonance electrode as chemical sensor |
AU7475996A (en) * | 1995-10-25 | 1997-05-15 | University Of Washington | Surface plasmon resonance light pipe sensor |
JP3572310B2 (ja) | 1998-05-19 | 2004-09-29 | 独立行政法人物質・材料研究機構 | 海塩粒子量の定量方法 |
CA2376699C (en) * | 1999-06-29 | 2004-09-21 | Carrier Corporation | Biosensors for monitoring air conditioning and refrigeration processes |
JP4249359B2 (ja) | 2000-01-20 | 2009-04-02 | 独立行政法人理化学研究所 | Acmセンサの製造方法 |
DE10008006C2 (de) * | 2000-02-22 | 2003-10-16 | Graffinity Pharm Design Gmbh | SPR-Sensor und SPR-Sensoranordnung |
DE10023363C1 (de) * | 2000-05-12 | 2001-12-20 | Jandratek Gmbh | Plasmonenresonanzsensor |
US6475394B2 (en) * | 2000-12-13 | 2002-11-05 | Ondeo Nalco Company | Pseudo-fouling detector and use thereof to control an industrial water process |
EP1424549A1 (en) * | 2001-08-07 | 2004-06-02 | Mitsubishi Chemical Corporation | SURFACE PLASMON RESONANCE SENSOR CHIP, AND SAMPLE ANALYSIS METHOD AND ANALYSIS APPARATUS USING THE SAME |
JPWO2005078415A1 (ja) * | 2004-02-13 | 2007-10-18 | オムロン株式会社 | 表面プラズモン共鳴センサー |
ES2261009B1 (es) * | 2004-06-11 | 2007-11-16 | Consejo Superior De Investigaciones Cientificas. | Dispositivo y metodo para detectar cambios en el indice de refraccion de un medio dielectrico. |
JP2008502538A (ja) * | 2004-06-11 | 2008-01-31 | ストラテック システムズ リミテッド | 鉄道軌道スキャニングシステムおよび方法 |
CN100362337C (zh) * | 2004-07-28 | 2008-01-16 | 南京航空航天大学 | 检测单核苷酸多态性的光纤表面等离子体波核酸传感器系统及检测方法 |
US7397043B2 (en) * | 2005-01-26 | 2008-07-08 | Nomadics, Inc. | Standoff optical detection platform based on surface plasmon-coupled emission |
US7408647B2 (en) * | 2005-12-19 | 2008-08-05 | Stanley Electric Co., Ltd. | Surface plasmon resonance sensor device |
CN100451622C (zh) * | 2006-12-01 | 2009-01-14 | 清华大学 | 表面等离子体共振生化多通道外差相位检测方法及系统 |
US7652768B2 (en) * | 2006-12-01 | 2010-01-26 | Canon Kabushiki Kaisha | Chemical sensing apparatus and chemical sensing method |
US20090004670A1 (en) * | 2007-06-29 | 2009-01-01 | Jingwu Zhang | Methods for fabricating surface enhanced fluorescent (sef) nanoparticles and their applications in bioassays |
TW200918880A (en) * | 2007-10-22 | 2009-05-01 | Forward Electronics Co Ltd | Cascade-type surface plasmon resonance fiber sensor and the apparatus comprising thereof |
CN101424683A (zh) * | 2007-10-31 | 2009-05-06 | 株式会社精工技研 | 生物传感器及其制造方法,以及传感器检测系统 |
CN201302545Y (zh) * | 2008-09-28 | 2009-09-02 | 邢凤飞 | 一种光纤表面等离子体共振传感检测装置 |
WO2010134470A1 (ja) * | 2009-05-20 | 2010-11-25 | コニカミノルタホールディングス株式会社 | 表面プラズモン増強蛍光測定装置および表面プラズモン増強蛍光測定装置に用いられるプラズモン励起センサ |
JP5215949B2 (ja) * | 2009-06-22 | 2013-06-19 | 株式会社日立エンジニアリング・アンド・サービス | 人工バリア環境モニタリング装置 |
WO2011002117A1 (ko) * | 2009-07-01 | 2011-01-06 | 한국과학기술연구원 | 고민감도 국소 표면 플라즈몬 공진 센서 및 이를 이용한 센서 시스템 |
TWI404982B (zh) * | 2009-09-22 | 2013-08-11 | Nat Univ Chung Cheng | Localized plasma resonance sensing device |
TW201122412A (en) * | 2009-12-22 | 2011-07-01 | Forward Electronics Co Ltd | Coating apparatus and method for real-time monitoring thickness change of coating film |
CN101769857B (zh) * | 2010-01-06 | 2012-05-09 | 哈尔滨工程大学 | 基于环形芯波导的等离子体谐振式光纤生物传感器 |
KR20110138657A (ko) * | 2010-06-21 | 2011-12-28 | (주)미코바이오메드 | 표면 플라즈몬 공명 센서 모듈 및 이를 포함한 센싱 시스템 |
CN102095719A (zh) * | 2010-12-30 | 2011-06-15 | 浙江工业大学 | 基于表面等离子共振和受激拉曼散射的光纤型传感系统 |
JP5799559B2 (ja) * | 2011-04-12 | 2015-10-28 | セイコーエプソン株式会社 | 検出装置 |
CN102156110A (zh) * | 2011-05-16 | 2011-08-17 | 浙江工商职业技术学院 | 一种基于局域表面等离子体共振的传感方法 |
KR101257309B1 (ko) * | 2011-11-11 | 2013-04-23 | 한국과학기술연구원 | 광섬유 표면 플라즈몬 공진 센서 및 이를 이용한 센싱 방법 |
US20130162138A1 (en) * | 2011-12-27 | 2013-06-27 | Shinoda Plasma Co., Ltd. | Display device and method for producing the same |
EP2626691A1 (en) * | 2012-02-08 | 2013-08-14 | Stichting IMEC Nederland | Surface Wave Sensing |
CN103376244B (zh) * | 2012-04-18 | 2016-09-21 | 中国科学院电子学研究所 | 表面等离子体共振芯片及应用该芯片的传感器 |
CN103868457B (zh) * | 2014-03-03 | 2016-08-17 | 中国计量学院 | 基于表面等离子共振的光纤多点微位移传感方法及装置 |
JP2016142617A (ja) * | 2015-02-02 | 2016-08-08 | セイコーエプソン株式会社 | 電場増強素子、分析装置、及び電子機器 |
CN105158213B (zh) * | 2015-09-11 | 2018-08-17 | 暨南大学 | 基于光纤表面等离子体共振的葡萄糖检测装置及方法 |
US9823192B1 (en) * | 2016-10-17 | 2017-11-21 | Ecolife Technologies, Llc | Auto-calibration surface plasmon resonance biosensor |
-
2017
- 2017-01-16 JP JP2017004963A patent/JP6854134B2/ja active Active
- 2017-12-28 WO PCT/JP2017/047220 patent/WO2018131502A1/ja active Application Filing
- 2017-12-28 CN CN201780079198.9A patent/CN110100171A/zh not_active Withdrawn
- 2017-12-28 EP EP17891313.3A patent/EP3570009A4/en not_active Withdrawn
-
2019
- 2019-06-19 US US16/445,549 patent/US10753854B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP3570009A4 (en) | 2020-10-21 |
EP3570009A1 (en) | 2019-11-20 |
JP2018115867A (ja) | 2018-07-26 |
WO2018131502A1 (ja) | 2018-07-19 |
US10753854B2 (en) | 2020-08-25 |
CN110100171A (zh) | 2019-08-06 |
US20190302002A1 (en) | 2019-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3051166B2 (ja) | 表面プラズモン共鳴測定を行うための方法およびその測定において使用されるセンサ | |
US10753854B2 (en) | High selectivity corrosion sensor system | |
JP2009210569A (ja) | 表面プラズモン共鳴センサ用チップ | |
WO2022056288A1 (en) | Nanohole array based sensors with various coatings and temperature control for covid-19 | |
US10190981B2 (en) | Multimode spectroscopy apparatuses and methods | |
JP3961405B2 (ja) | 表面プラズモン共鳴センサおよび屈折率変化測定方法 | |
CN203534964U (zh) | 基于金属光栅的表面等离子体共振生物传感装置 | |
JP2003294606A (ja) | 環境評価方式およびそれを用いた環境評価装置 | |
CN103245635B (zh) | 基于导波共振的传感器及其制备方法 | |
US8879065B1 (en) | Systems and methods for localized surface plasmon resonance sensing | |
CN100552447C (zh) | 露点测量方法和用于执行所述方法的装置 | |
WO2009105422A2 (en) | Detection system for detecting and measuring metal ions in an aqueous medium | |
JP6540710B2 (ja) | 速い解離速度の相互作用カイネティクスの決定方法 | |
Yun et al. | The use of bilayers consisting of graphene and noble metals has been explored for biosensors that employ inverted surface plasmon resonance | |
JP2003090795A (ja) | 環境評価装置 | |
WO2006109408A1 (ja) | 全反射減衰型光学プローブおよびそれを用いた遠紫外分光測定装置 | |
JP2011106928A (ja) | 水素吸着検知センサ及び水素吸着検知装置 | |
Nagase et al. | Signal enhancement of protein binding by electrodeposited gold nanostructures for applications in Kretschmann-type SPR sensors | |
Saleviter et al. | Label-free binding analysis of 4-(2-Pyridylazo)-resorcinol-based composite layer with cobalt ion using surface plasmon resonance optical sensor | |
Narayan Nirala et al. | Enhanced sensitivity based surface plasmon resonance biosensor for clinical applications | |
Kosako et al. | Detection of initial stage of aluminum corrosion in NaCl solution utilizing surface plasmon resonance | |
Chan et al. | SPR prism sensor using laser line generator | |
CN107076671B (zh) | 光学传感器表面上的质量传输性质的归一化 | |
CN111795947B (zh) | 具有共振腔的等离激元波导传感器及其使用和制备方法 | |
KR101264101B1 (ko) | 바이오센서의 제조 방법 및 이에 의해 제조된 바이오센서 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201117 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210302 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210315 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6854134 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |