[go: up one dir, main page]

JP6846309B2 - Solution tank device - Google Patents

Solution tank device Download PDF

Info

Publication number
JP6846309B2
JP6846309B2 JP2017153796A JP2017153796A JP6846309B2 JP 6846309 B2 JP6846309 B2 JP 6846309B2 JP 2017153796 A JP2017153796 A JP 2017153796A JP 2017153796 A JP2017153796 A JP 2017153796A JP 6846309 B2 JP6846309 B2 JP 6846309B2
Authority
JP
Japan
Prior art keywords
solution
solution tank
thin film
tank
introducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017153796A
Other languages
Japanese (ja)
Other versions
JP2019032250A (en
Inventor
佑介 後藤
佑介 後藤
一真 松井
一真 松井
至 柳
至 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2017153796A priority Critical patent/JP6846309B2/en
Publication of JP2019032250A publication Critical patent/JP2019032250A/en
Application granted granted Critical
Publication of JP6846309B2 publication Critical patent/JP6846309B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は,薄膜デバイスを用いた測定を行うための構造に関する。 The present invention relates to a structure for performing measurement using a thin film device.

ナノポアシーケンサは,薄膜に埋め込まれたナノポアを通過する計測対象の電流値を計測するシステムである。たとえば,計測対象がDNA(Deoxyribonucleic Acid)である場合,DNAがナノポアを通過すると,DNAを構成する塩基(アデニン(A),グアニン(G),シトシン(C),チミン(T))の違いによって,ナノポアをふさぐ電流値(「封鎖電流値」という)に違いが生じる。これにより,ナノポアシーケンサは,塩基配列を特定することができる。 The nanopore sequencer is a system that measures the current value of the measurement target that passes through the nanopore embedded in the thin film. For example, when the measurement target is DNA (Deoxyribonic Acid), when the DNA passes through the nanopore, it depends on the difference in the bases (adenine (A), guanine (G), cytosine (C), thymine (T)) that make up the DNA. , There is a difference in the current value (called "blocking current value") that blocks the nanopore. As a result, the nanopore sequencer can specify the base sequence.

ナノポアシーケンサのDNA読み取り精度を決定する要因には,たとえば,ナノポアが形成される薄膜の膜厚やナノポアを通過する電流のノイズの大きさがある。薄膜の膜厚は薄い方が良い。DNA鎖中に配列する4種塩基の隣同士の間隔は,およそ0.34[nm]である。この間隔に比べて膜厚が厚くなるほどナノポア中に同時に多くの塩基が入るため,封鎖電流として得られる信号も複数塩基に由来した信号となる。そのため,塩基配列の決定精度が低下し,かつ,信号の解析も複雑になる。また,ノイズ電流は小さいほうが良い。封鎖電流の値にはノイズ電流が加算される。4種塩基の識別率を上げるために封鎖電流の低減が要求される。 Factors that determine the DNA reading accuracy of the nanopore sequencer are, for example, the film thickness of the thin film on which the nanopore is formed and the magnitude of the noise of the current passing through the nanopore. The thinner the thin film, the better. The distance between the four bases arranged in the DNA strand next to each other is approximately 0.34 [nm]. As the film thickness becomes thicker than this interval, more bases enter the nanopore at the same time, so the signal obtained as the blocking current is also a signal derived from multiple bases. Therefore, the accuracy of determining the base sequence is lowered, and the signal analysis is complicated. Also, the smaller the noise current, the better. The noise current is added to the value of the blockade current. A reduction in the blocking current is required to increase the discrimination rate of the four bases.

非特許文献1は,DNAが薄膜のナノポアを通過する時の塩基種由来の封鎖電流の違いを観測することを開示する。非特許文献1では封鎖電流の識別率を上げるために,薄膜のSiNメンブレンにナノポアが設けられ,絶縁膜が塗布される。これにより,デバイス容量が低減しノイズ電流が低減する。 Non-Patent Document 1 discloses observing a difference in blocking current derived from a base species when DNA passes through a thin film nanopore. In Non-Patent Document 1, nanopores are provided on a thin SiN membrane and an insulating film is applied in order to increase the identification rate of the blocking current. As a result, the device capacitance is reduced and the noise current is reduced.

Venta, K., et al., Differentiation of Short, Single-Stranded DNA Homopolymers in Solid-State Nanopores, ACS Nano 7(5), p. 4629-4636 (2013).Venta, K., et al., Differentiation of Short, Single-Stranded DNA Homopolymers in Solid-State Nanopores, ACS Nano 7 (5), p. 4629-4636 (2013).

生体ポリマ計測用の薄膜は,薄膜両側の溶液間の電位差に影響を受けやすく,電位差により壊れるという課題がある。特に,ノイズ電流を低減するためにデバイス容量を下げるようにした場合,薄膜に初期欠陥が生じる確率が高くなる。 The thin film for measuring biopolymers is easily affected by the potential difference between the solutions on both sides of the thin film, and has a problem that it is broken by the potential difference. In particular, if the device capacitance is reduced to reduce the noise current, the probability of initial defects occurring in the thin film increases.

実験により,厚さ12〜20[nm]の薄膜メンブレンを有するデバイスに,絶縁膜を塗布してデバイス容量を下げることで,ノイズ電流が低減できることが確認された。一方,ノイズ低減した低容量デバイスの薄膜両面側のチャンバに溶液が満たされると,多くの場合,薄膜が壊れるという初期不良が生じることが確認された。この初期不良は非特許文献1で言及されていない。したがって,当該初期不良のメカニズムおよび対策は不明である。 From the experiment, it was confirmed that the noise current can be reduced by applying an insulating film to a device having a thin film membrane having a thickness of 12 to 20 [nm] to reduce the device capacitance. On the other hand, it was confirmed that when the chambers on both sides of the thin film of the noise-reduced low-capacity device were filled with the solution, the initial failure of the thin film breaking often occurred. This initial defect is not mentioned in Non-Patent Document 1. Therefore, the mechanism and countermeasures for the initial failure are unknown.

検討の結果,この初期不良は,薄膜両側に満たした溶液の電荷差ΔQにより,デバイス容量Cの低減に伴って薄膜にかかる電位差ΔV(=ΔQ/C)が増幅し,薄膜を絶縁破壊することによって生じると分かった。さらにこの電荷差の発生原因の主な要因の1つが,溶液を満たす溶液槽外側に生じる静電気であることが分かった。 As a result of the examination, this initial failure is caused by the electric charge difference ΔQ of the solution filled on both sides of the thin film, which amplifies the potential difference ΔV (= ΔQ / C) applied to the thin film as the device capacitance C is reduced, resulting in dielectric breakdown of the thin film. Turned out to be caused by. Furthermore, it was found that one of the main causes of this charge difference is static electricity generated on the outside of the solution tank that fills the solution.

静電気は,物質と物質が数nm以下の近傍にまで接近し,接触摩擦により帯電することにより発生する。二種類の物質が接触摩擦により帯電するとき,その帯電量は物質によって異なることが知られている。接触摩擦しうる物質と同じ素材で構成したり,帯電列で近い物質を用いる方法は,接触摩擦する相手物質を限定する。したがって,雰囲気条件の変化や他の物質との接触摩擦によって帯電する可能性がある。また,湿度を上げて放電を促したり,イオナイザーを用いるといった雰囲気条件を調整する対策は,雰囲気条件の調整機器のメンテナンスが必要である。また,雰囲気条件の調整機器の振動によるノイズが問題になる。 Static electricity is generated when a substance and a substance approach each other to a vicinity of several nm or less and are charged by contact friction. When two kinds of substances are charged by contact friction, it is known that the amount of charge differs depending on the substance. The method of using the same material as the substance that can be contact-rubbed or using a substance that is close to the charged train limits the partner substance that can be contact-friction. Therefore, it may be charged due to changes in atmospheric conditions or contact friction with other substances. In addition, measures to adjust the atmospheric conditions, such as raising the humidity to promote discharge or using an ionizer, require maintenance of the atmospheric condition adjusting equipment. In addition, noise due to vibration of the atmosphere condition adjusting device becomes a problem.

本発明は,薄膜の初期不良を抑制する構造を提供する。 The present invention provides a structure that suppresses initial defects of a thin film.

本願において開示される発明の一側面となる溶液槽デバイスは,測定対象を第1領域から第2領域へ通過させる溶液槽デバイスであって,前記第1領域と前記第2領域を隔てる1μm以下の厚さを有する絶縁性の薄膜と,前記薄膜の両面のうち一方の面側を支持する第1溶液槽と,前記薄膜の両面のうちもう一方の面側を支持する第2溶液槽と,前記第1および第2溶液槽の外側に設けられた第3の溶液槽を備えていることを特徴とする。 The solution tank device, which is one aspect of the invention disclosed in the present application, is a solution tank device that allows a measurement target to pass from a first region to a second region, and is 1 μm or less that separates the first region from the second region. An insulating thin film having a thickness, a first solution tank that supports one side of both sides of the thin film, a second solution tank that supports the other side of both sides of the thin film, and the above. It is characterized by including a third solution tank provided outside the first and second solution tanks.

本発明の代表的な実施の形態によれば,溶液間の電位差による薄膜の破壊確率を低減することができる。前述した以外の課題,構成及び効果は,以下の実施例の説明により明らかにされる。 According to a typical embodiment of the present invention, the probability of thin film destruction due to a potential difference between solutions can be reduced. Issues, configurations and effects other than those mentioned above will be clarified by the explanation of the following examples.

図1は,薄膜デバイスの断面図である。FIG. 1 is a cross-sectional view of the thin film device. 図2は,デバイス容量とノイズ電流との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the device capacitance and the noise current. 図3は,ノイズ電流とリーク電流との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the noise current and the leak current. 図4は,溶液槽外側で生じた静電気によって初期欠陥が作られるメカニズムを示す説明図である。FIG. 4 is an explanatory diagram showing a mechanism in which an initial defect is created by static electricity generated outside the solution tank. 図5は,実験セットアップを示す説明図(A)と,静電気を与えた際の薄膜の両面側の電位差の時間変化を示すグラフ(B)である。FIG. 5 is an explanatory diagram (A) showing the experimental setup and a graph (B) showing the time change of the potential difference on both sides of the thin film when static electricity is applied. 図6は,静電気の電荷密度差と薄膜の膜厚との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the charge density difference of static electricity and the film thickness of the thin film. 図7は,溶液槽で静電気を与えた際の電位差変化を示すグラフである。FIG. 7 is a graph showing the change in potential difference when static electricity is applied in the solution tank. 図8は,溶液槽デバイスに与えた静電気由来の表面電位と薄膜デバイスに印加される電位差の実測値を示すグラフである。FIG. 8 is a graph showing the measured values of the surface potential derived from static electricity applied to the solution tank device and the potential difference applied to the thin film device. 図9は,実施例1にかかる静電気防止構造を有する溶液槽デバイスの第1の例の断面図である。FIG. 9 is a cross-sectional view of a first example of the solution tank device having the antistatic structure according to the first embodiment. 図10は,実施例1にかかる静電気防止構造を有する第1の例の溶液槽デバイスに溶液を満たした状態を示す断面図である。FIG. 10 is a cross-sectional view showing a state in which the solution tank device of the first example having the antistatic structure according to the first embodiment is filled with a solution. 図11は,実施例1にかかる静電気防止構造を有する第1の例の溶液槽デバイスに溶液を満たし,電気的配線を有する電極を配置した状態を示す断面図である。FIG. 11 is a cross-sectional view showing a state in which the solution tank device of the first example having the antistatic structure according to the first embodiment is filled with a solution and an electrode having an electric wiring is arranged. 図12は,実施例1にかかる静電気防止構造を有する第1の例の溶液槽デバイスに溶液を導入する手順を示した図である。FIG. 12 is a diagram showing a procedure for introducing a solution into the solution tank device of the first example having the antistatic structure according to the first embodiment. 図13は,実施例1にかかる静電気防止構造を有する溶液槽デバイスの第2の例の断面図である。FIG. 13 is a cross-sectional view of a second example of the solution tank device having the antistatic structure according to the first embodiment. 図14は,実施例1にかかる静電気防止構造を有する溶液槽デバイスの第3の例の断面図である。FIG. 14 is a cross-sectional view of a third example of the solution tank device having the antistatic structure according to the first embodiment. 図15は,実施例1にかかる静電気防止構造を有する第3の例の溶液槽デバイスに溶液を導入する手順を示した図である。FIG. 15 is a diagram showing a procedure for introducing a solution into the solution tank device of the third example having the antistatic structure according to the first embodiment. 図16は,ナノポアシーケンサの一例を示す説明図である。FIG. 16 is an explanatory diagram showing an example of a nanopore sequencer. 図17は,ナノポアシーケンサのフローの一例を示す説明図である。FIG. 17 is an explanatory diagram showing an example of the flow of the nanopore sequencer. 図18は,実施例1にかかる溶液槽デバイスを用いて薄膜デバイスに電気的方法により微小孔を加工する際の実測値を示した図である。FIG. 18 is a diagram showing actual measurement values when micropores are formed in a thin film device by an electric method using the solution tank device according to Example 1. 図19は,実施例2にかかる溶液槽デバイスの一例を示す断面図である。FIG. 19 is a cross-sectional view showing an example of the solution tank device according to the second embodiment.

<実施の形態1>
最初に,デバイス容量低減に伴うノイズ電流の低減効果,デバイス容量低減に付随して薄膜両面側に溶液を満たした際に生じる初期不良が発生する原理,およびこの初期不良を防ぐメカニズムを,実験結果に基づいて説明する。
<Embodiment 1>
First, the experimental results show the effect of reducing noise current due to the reduction of device capacitance, the principle of initial failure that occurs when the solution is filled on both sides of the thin film due to the reduction of device capacitance, and the mechanism for preventing this initial failure. The explanation will be based on.

<薄膜デバイス>
図1は,薄膜デバイスの断面図である。(A)は絶縁膜51が塗布されていない薄膜デバイスであり,(B)は絶縁膜51が塗布された薄膜デバイスである。薄膜デバイスは,薄膜100と,当該薄膜100を支持する支持基板52と,により構成される。薄膜100の表面側(図1では上側)および裏面側(図1では下側)は,溶液103で満たされている。溶液103および薄膜デバイスは,不図示の溶液槽により封入される。薄膜100は,たとえば,厚さ20[nm],面積100[μm]以下のSiN薄膜である。支持基板52は,たとえば,厚さ725[μm]のシリコン基板である。
<Thin film device>
FIG. 1 is a cross-sectional view of the thin film device. (A) is a thin film device to which the insulating film 51 is not coated, and (B) is a thin film device to which the insulating film 51 is coated. The thin film device is composed of a thin film 100 and a support substrate 52 that supports the thin film 100. The front surface side (upper side in FIG. 1) and the back surface side (lower side in FIG. 1) of the thin film 100 are filled with the solution 103. The solution 103 and the thin film device are sealed by a solution tank (not shown). The thin film 100 is, for example, a SiN thin film having a thickness of 20 [nm] and an area of 100 [μm 2] or less. The support substrate 52 is, for example, a silicon substrate having a thickness of 725 [μm].

(A)において,支持基板52が存在する側の第1容量をC1,支持基板52が存在しない側の領域の第2容量をC2とする。この薄膜デバイスの合成容量CはC=C1+C2となる。(B)において,支持基板52が支持する裏面と反対側の薄膜100の表面には,絶縁膜51が塗布されている。支持基板52が存在する側の第1容量をC1’,支持基板52が存在しない側の領域の第2容量をC2とする。合成容量C’はC’=C1’+C2となる。 In (A), the first capacitance on the side where the support substrate 52 exists is C1, and the second capacitance on the region where the support substrate 52 does not exist is C2. The combined capacity C of this thin film device is C = C1 + C2. In (B), the insulating film 51 is coated on the front surface of the thin film 100 on the side opposite to the back surface supported by the support substrate 52. Let C1'be the first capacitance on the side where the support substrate 52 exists, and C2 be the second capacitance on the side where the support substrate 52 does not exist. The combined capacity C'is C'= C1'+ C2.

(B)の薄膜デバイスには絶縁膜51が塗布されているため,(B)の薄膜デバイスの第1容量C1’は,(A)の薄膜デバイスの第1容量C1よりも低い(C1>C1’)。したがって,(B)の薄膜デバイスの合成容量C’は,(A)の薄膜デバイスの合成容量Cよりも低減される(C>C’)。 Since the insulating film 51 is applied to the thin film device of (B), the first capacitance C1'of the thin film device of (B) is lower than the first capacitance C1 of the thin film device of (A) (C1> C1). '). Therefore, the combined capacity C'of the thin film device of (B) is smaller than the combined capacity C of the thin film device of (A) (C> C').

図2は,デバイス容量とノイズ電流との関係を示すグラフである。横軸はデバイス容量(薄膜デバイスの合成容量)であり,縦軸はノイズ電流である。図1の(B)において,絶縁膜51の塗布量を増加すると,合成容量C’の低減によってノイズ電流を低減できることが確認された。その結果,非特許文献1と同様に,我々が製作した薄膜デバイスにおいてもノイズ電流はデバイス容量の低減に伴って単調に減少した。上記のとおり,絶縁膜51の塗布による低ノイズ化を確認できた一方で,上述したように,ノイズ低減した低容量デバイスの薄膜100両面側のチャンバに溶液103が満たされると,デバイス容量低減に付随して初期不良が発生することが判明した。 FIG. 2 is a graph showing the relationship between the device capacitance and the noise current. The horizontal axis is the device capacitance (combined capacitance of the thin film device), and the vertical axis is the noise current. In FIG. 1B, it was confirmed that the noise current can be reduced by reducing the combined capacitance C'by increasing the coating amount of the insulating film 51. As a result, as in Non-Patent Document 1, the noise current of the thin film device manufactured by us decreased monotonically as the device capacitance decreased. As described above, it was confirmed that the noise was reduced by applying the insulating film 51, but as described above, when the chamber on both sides of the thin film 100 of the low-capacity device with reduced noise was filled with the solution 103, the device capacity was reduced. It was found that an initial failure occurred accordingly.

図3は,ノイズ電流とリーク電流との関係を示すグラフである。横軸はノイズ電流であり,縦軸はリーク電流である。図3のグラフは,初期不良の発生有無を示し,ノイズ電流の帯域を1[MHz]とし,リーク電流の印加電圧を0.1[V]として,ノイズ電流とリーク電流とを比較した実験結果である。 FIG. 3 is a graph showing the relationship between the noise current and the leak current. The horizontal axis is the noise current, and the vertical axis is the leak current. The graph in FIG. 3 shows the presence or absence of initial failure, and the noise current band is set to 1 [MHz], the applied voltage of the leak current is set to 0.1 [V], and the experimental results comparing the noise current and the leak current are performed. Is.

この実験では,薄膜100は壊れていないか,大きさ1[nm]程度の小さな欠陥が生じる程度であるとき,0.1[V]の電圧を印加した際に流れる電流値がおよそ10−10[A]以下になる。一方で,薄膜100に1[nm]以上の大きさの初期欠陥が生じたとき,0.1[V]の電圧印加時に初期欠陥を通じて,およそ10−10[A]以上の電流が流れる。 In this experiment, when the thin film 100 is not broken or has a small defect with a size of about 1 [nm], the current value flowing when a voltage of 0.1 [V] is applied is about 10-10. [A] It becomes the following. On the other hand, when an initial defect having a size of 1 [nm] or more occurs in the thin film 100, a current of about 10-10 [A] or more flows through the initial defect when a voltage of 0.1 [V] is applied.

図3に示したように,ノイズ電流が小さな溶液槽デバイスほど,低容量化される。従来の絶縁性材料のみを含む溶液槽デバイスでは,ノイズ電流の低減に伴ってリーク電流が大きくなる。一方,実施例1にかかる溶液槽デバイスは,後述するように,絶縁性材料で構成された第1および第2の溶液槽の外部を第3の溶液槽が覆っている。したがって,従来の溶液槽デバイスに比べてリーク電流は大きく減少し,初期欠陥の発生を抑制する。 As shown in FIG. 3, the smaller the noise current of the solution tank device, the lower the capacity. In conventional solution tank devices containing only insulating materials, the leakage current increases as the noise current decreases. On the other hand, in the solution tank device according to the first embodiment, as will be described later, a third solution tank covers the outside of the first and second solution tanks made of an insulating material. Therefore, the leakage current is greatly reduced compared to the conventional solution tank device, and the occurrence of initial defects is suppressed.

<初期欠陥の発生メカニズム>
図4は,溶液槽外側で生じた静電気によって初期欠陥が作られるメカニズムを示す説明図である。(a)は初期状態,(b)は(a)の次状態,(c)は(b)の次状態を示す。(a)初期状態では,溶液槽デバイスである溶液槽101,102の外部に静電気10がなく,溶液103内に含まれている電荷量と溶液104内に含まれている電荷量とに差がないものとする。(b)の状態において,溶液槽101の外側に静電気10が生じたとすると,溶液槽101の外側で生じた静電気10と溶液槽101内の溶液103内の電荷とにより,電気二重層が生じる。溶液槽101の外側で生じた静電気10が仮に正の電荷を有していたとすると,電気二重層を構成する溶液103内電荷は負電荷であり,溶液103の拡散層やバルク溶液の電荷は正に偏る。
<Initial defect generation mechanism>
FIG. 4 is an explanatory diagram showing a mechanism in which an initial defect is created by static electricity generated outside the solution tank. (A) indicates the initial state, (b) indicates the next state of (a), and (c) indicates the next state of (b). (A) In the initial state, there is no static electricity 10 outside the solution tanks 101 and 102, which are solution tank devices, and there is a difference between the amount of electric charge contained in the solution 103 and the amount of electric charge contained in the solution 104. Make it not exist. If static electricity 10 is generated on the outside of the solution tank 101 in the state of (b), an electric double layer is formed by the static electricity 10 generated on the outside of the solution tank 101 and the electric charge in the solution 103 in the solution tank 101. Assuming that the static electricity 10 generated outside the solution tank 101 has a positive charge, the charge inside the solution 103 constituting the electric double layer is a negative charge, and the charge of the diffusion layer and the bulk solution of the solution 103 is positive. Biased to.

上側の溶液槽101が有する静電気10の量と下側の溶液槽102が有する静電気10の量とが異なったとき,溶液103と溶液104のそれぞれがもつ電荷量Q1とQ2に差が生じる。この溶液103,104間の電荷差ΔQ=|Q1−Q2|は,薄膜100に電位差ΔV(=ΔQ/C)を与える。特に薄膜デバイスが持つ容量Cが小さいとき,電位差ΔVは大きくなり,(c)の状態のように薄膜100を絶縁破壊して孔を生じさせる。 When the amount of static electricity 10 contained in the upper solution tank 101 and the amount of static electricity 10 contained in the lower solution tank 102 are different, the charges Q1 and Q2 of the solution 103 and the solution 104 are different from each other. The charge difference ΔQ = | Q1-Q2 | between the solutions 103 and 104 gives the thin film 100 a potential difference ΔV (= ΔQ / C). In particular, when the capacitance C of the thin film device is small, the potential difference ΔV becomes large, and the thin film 100 is dielectrically broken down to generate holes as in the state of (c).

図5Aは,実験セットアップを示す説明図である。実験セットアップは,静電気10の発生により,薄膜100を絶縁破壊する電位差を与えるための実験装置である。この実験では,静電気10によって与えられた電荷差によって薄膜100が壊れることがないように,デバイス容量が1000[pF]の高容量の薄膜デバイスを用いた。 FIG. 5A is an explanatory diagram showing an experimental setup. The experimental setup is an experimental device for giving a potential difference that causes dielectric breakdown of the thin film 100 due to the generation of static electricity 10. In this experiment, a high-capacity thin film device having a device capacitance of 1000 [pF] was used so that the thin film 100 would not be damaged by the charge difference given by the static electricity 10.

この実験の初期状態は,(A−1)のように溶液103,104の間で電荷差が解消された状態とし,(A−2)のように外部物体との接触摩擦により,溶液槽101の外側に静電気10を与えた状態とする。外部物体とは,たとえば,溶液槽デバイスの設置面,溶液槽を保持する治具やユーザの手である。 The initial state of this experiment is a state in which the charge difference between the solutions 103 and 104 is eliminated as shown in (A-1), and the solution tank 101 is caused by contact friction with an external object as shown in (A-2). It is assumed that static electricity 10 is applied to the outside of the. The external object is, for example, the installation surface of the solution tank device, the jig that holds the solution tank, or the user's hand.

図5Bは,静電気10を与えた際の薄膜100の両面側の電位差の時間変化を示すグラフである。グラフの横軸が時間を示し,縦軸が薄膜100の両面側の電位差を示す。グラフでは,静電気10を与えている時間を「*」で示す。静電気10を与えた後,電位差は2[V]に増加している。この電位差はデバイス容量を低減した際には,さらに大きくなると考えられる。例えば,100[pF]の容量をもつ膜厚10[nm]のSiNを薄膜に用いると,電位差は20[V]となる。このとき薄膜にかかる電場は2[V/nm]である。当該電場は,SiN薄膜の絶縁破壊電圧1[V/nm]よりも大きいため,薄膜100が壊れる。 FIG. 5B is a graph showing the time change of the potential difference on both sides of the thin film 100 when static electricity 10 is applied. The horizontal axis of the graph indicates time, and the vertical axis indicates the potential difference on both sides of the thin film 100. In the graph, the time during which the static electricity 10 is applied is indicated by "*". After applying static electricity 10, the potential difference increases to 2 [V]. This potential difference is considered to become even larger when the device capacitance is reduced. For example, when SiN having a capacity of 100 [pF] and a film thickness of 10 [nm] is used for the thin film, the potential difference becomes 20 [V]. At this time, the electric field applied to the thin film is 2 [V / nm]. Since the electric field is larger than the dielectric breakdown voltage 1 [V / nm] of the SiN thin film, the thin film 100 is broken.

このように薄膜100が絶縁破壊によって孔が生じる条件は,薄膜デバイスのもつデバイス容量Cによって変化するが,その他にも薄膜100の膜厚t[nm],薄膜100の絶縁破壊電圧E[V/nm]や,溶液槽101,102で静電気10が発生する面積S[m2],静電気10の電荷密度差Δσ[C/m]によっても変化する。許容される静電気10の電荷密度差Δσ[C/m]は次式で表される。 The conditions under which holes are generated in the thin film 100 due to dielectric breakdown vary depending on the device capacitance C of the thin film device, but in addition, the film thickness t [nm] of the thin film 100 and the dielectric breakdown voltage E [V / of the thin film 100]. It also changes depending on [nm], the area S [m2] where static electricity 10 is generated in the solution tanks 101 and 102, and the charge density difference Δσ [C / m 2] of static electricity 10. The charge density difference Δσ [C / m 2 ] of the allowable static electricity 10 is expressed by the following equation.

Δσ=(E×t×C)/S・・・・・(1) Δσ = (E × t × C) / S ・ ・ ・ ・ ・ (1)

図6は,静電気10の電荷密度差Δσと薄膜100の膜厚tとの関係を示すグラフである。横軸が膜厚tを示し,縦軸が電荷密度差Δσを示す。図7では,一例として,絶縁破壊電圧EをE=1[V/nm],溶液槽101,102で静電気10が生じる面積SをS=1[cm],デバイス容量CをC=10[pF]と仮定した。 FIG. 6 is a graph showing the relationship between the charge density difference Δσ of the static electricity 10 and the film thickness t of the thin film 100. The horizontal axis represents the film thickness t, and the vertical axis represents the charge density difference Δσ. In FIG. 7, as an example, the dielectric breakdown voltage E is E = 1 [V / nm], the area S where static electricity 10 is generated in the solution tanks 101 and 102 is S = 1 [cm 2 ], and the device capacity C is C = 10 [. pF] was assumed.

絶縁体表面に発生しうる電荷密度は最大で±5×10−5[C/m]であることから,この条件下では,膜厚1[μm]以下の薄膜デバイスで,静電気10による絶縁破壊が生じうる。このように,式(1)を用いることで,許容される静電気10の電荷密度差Δσをおおよそ見積もることができ,静電気対策の必要の有無が判別可能である。 Since the maximum charge density that can be generated on the insulator surface is ± 5 × 10-5 [C / m 2 ], under these conditions, a thin film device with a film thickness of 1 [μm] or less is insulated by static electricity 10. Destruction can occur. In this way, by using the equation (1), it is possible to roughly estimate the charge density difference Δσ of the allowable static electricity 10, and it is possible to determine whether or not countermeasures against static electricity are necessary.

図7は,溶液槽で静電気を与えた際の電位差変化を示すグラフである。実施例1の静電気防止機構を有する溶液槽デバイスは,溶液103,104間で発生する電位差を低減させる。図7は,図5Bと同様に溶液槽101の外側に静電気10を与え,その後の電位差の時間変化を示す。0[s]時点での電位差が,静電気10を与えた直後の電位差に相当する。図7から分かるように,実施例1の静電気防止機構を有する溶液槽デバイスによって電位差を低減できると分かった。 FIG. 7 is a graph showing the change in potential difference when static electricity is applied in the solution tank. The solution tank device having the antistatic mechanism of Example 1 reduces the potential difference generated between the solutions 103 and 104. FIG. 7 shows the time change of the potential difference after applying static electricity 10 to the outside of the solution tank 101 as in FIG. 5B. The potential difference at 0 [s] corresponds to the potential difference immediately after the static electricity 10 is applied. As can be seen from FIG. 7, it was found that the potential difference can be reduced by the solution tank device having the antistatic mechanism of Example 1.

図8には溶液槽デバイスにコントロールして与えた静電気由来の表面電位と,その際に実際に薄膜デバイスに印加される電位差の実測値の関係を示したグラフである。ここで,Vsは静電気由来の表面電位,Veは薄膜デバイスに印加される電位差,Cfは溶液槽デバイスの静電容量,Cdは薄膜デバイスのデバイス容量である。Cdは1000[pF],Cfは3[pF]の条件下において実験を行った。溶液槽デバイスの電気的回路の等価回路は単純化すると,図8右に示した回路図のようにコンデンサの直列回路に電圧が印加された構造と見なす事ができる。この時,薄膜デバイスに印加される電圧Veは,次式で表される。 FIG. 8 is a graph showing the relationship between the surface potential derived from static electricity given to the solution tank device under control and the measured value of the potential difference actually applied to the thin film device at that time. Here, Vs is the surface potential derived from static electricity, Ve is the potential difference applied to the thin film device, Cf is the capacitance of the solution tank device, and Cd is the device capacitance of the thin film device. The experiment was conducted under the conditions of Cd of 1000 [pF] and Cf of 3 [pF]. To simplify the equivalent circuit of the electrical circuit of the solution tank device, it can be regarded as a structure in which a voltage is applied to the series circuit of the capacitor as shown in the circuit diagram shown on the right of FIG. At this time, the voltage Ve applied to the thin film device is expressed by the following equation.

Ve=(Cf/(Cf+Cd))×Vs・・・・・(2) Ve = (Cf / (Cf + Cd)) × Vs ... (2)

式(2)で予測された理論直線と実測値から予測した回帰直線はほぼ一致しており,静電気由来の表面電位が薄膜デバイスに対して,式(2)にて電位差が実際に印加されることが判明した。 The theoretical straight line predicted by Eq. (2) and the regression line predicted from the measured values are almost the same, and the surface potential derived from static electricity is actually applied to the thin film device by Eq. (2). It has been found.

<静電気防止機構を有する溶液槽デバイス例>
続いて,実施例で用いる静電気防止機構を有する溶液槽デバイスについて,図9〜図15を用いて説明する。溶液槽デバイスは,絶縁性の薄膜100を第1溶液槽101,第2溶液槽102で挟み,第1および第2溶液槽の外側には第3溶液槽901が設けられ,第3溶液槽901と第1溶液槽101および第2溶液槽102の間には空隙902が存在することを特徴とする構造である。溶液槽デバイスは,本特徴的構造により外部の物体との接触摩擦により生じる静電気10を低減する。
<Example of solution tank device with antistatic mechanism>
Subsequently, the solution tank device having the antistatic mechanism used in the examples will be described with reference to FIGS. 9 to 15. In the solution tank device, the insulating thin film 100 is sandwiched between the first solution tank 101 and the second solution tank 102, and the third solution tank 901 is provided outside the first and second solution tanks, and the third solution tank 901 is provided. The structure is characterized in that a gap 902 exists between the first solution tank 101 and the second solution tank 102. The solution tank device reduces static electricity 10 generated by contact friction with an external object due to this characteristic structure.

図9は,実施例1にかかる静電気防止構造を有する溶液槽デバイスの第1の例の断面図である。図9に示す溶液槽デバイス900は,第1溶液槽101,第2溶液槽102の外側に第3溶液槽901を有する。第3溶液槽901と第1溶液槽101および第2溶液槽102との間には空隙902が設けられている。この空隙902には溶液で充填されていることが好ましい。第1,2,3,溶液槽には溶液を導入するための注入口105,106,107が設けられている。溶液槽101,102,901は,絶縁性の樹脂,たとえば,シート抵抗1014[Ω]以上のポリメチルメタクリレート樹脂などで構成される。第1溶液槽101と第2溶液槽102は,薄膜デバイスを支持する。薄膜デバイスは,薄膜100と支持基板52とを有する。溶液槽101,102の外側に生じる静電気10が与える電場によって,溶液槽101,102内の気体,液体,固体を通じて,薄膜100が絶縁破壊されることがある。空隙902に充填された溶液によって,第1溶液槽101および第2溶液槽102の外側に生じた静電気10は緩和され,薄膜100の絶縁破壊を防ぐ事が可能となる。静電気は主に2種類の電気的経路によって解放される。1つ目の経路は静電気を帯びた箇所の電荷が,溶液と接液する事により気中放電によって大気中へと電荷が解放されていく経路である。2つ目の経路は静電気を帯びた箇所の電荷がGNDに接続された導電性の構造または電気的配線によって,GNDへと解放されていく経路である。これら2種の電気的経路により静電気によって蓄積された電荷は緩和される。第3溶液槽は導電性の構造であってもよく,たとえばシート抵抗1013[Ω]以下の樹脂や,典型的には金属であってもよい。溶液は静電気を逃がす能力を有する導電性溶媒を含んでいればよく,典型的には水溶液が好ましい。水以外にはメタノールやエタノールなどのアルコールなどの極性溶媒であってもよい。また,溶液には導電性を高める電解質が含まれていてもよい。また,導電性を有するイオン液体であってもよい。 FIG. 9 is a cross-sectional view of a first example of the solution tank device having the antistatic structure according to the first embodiment. The solution tank device 900 shown in FIG. 9 has a third solution tank 901 outside the first solution tank 101 and the second solution tank 102. A gap 902 is provided between the third solution tank 901, the first solution tank 101, and the second solution tank 102. The void 902 is preferably filled with a solution. The first, second, and third solution tanks are provided with injection ports 105, 106, and 107 for introducing a solution. The solution tanks 101, 102, and 901 are made of an insulating resin, for example, a polymethylmethacrylate resin having a sheet resistance of 10 14 [Ω] or more. The first solution tank 101 and the second solution tank 102 support the thin film device. The thin film device has a thin film 100 and a support substrate 52. The electric field generated by the static electricity 10 generated on the outside of the solution tanks 101 and 102 may cause dielectric breakdown of the thin film 100 through the gas, liquid, and solid in the solution tanks 101 and 102. The solution filled in the void 902 alleviates the static electricity 10 generated on the outside of the first solution tank 101 and the second solution tank 102, and it is possible to prevent dielectric breakdown of the thin film 100. Static electricity is released mainly by two types of electrical paths. The first path is a path in which the electric charge in the electrostatically charged part is released into the atmosphere by an air discharge when it comes into contact with the solution. The second path is a path in which the electric charge at the electrostatically charged portion is released to the GND by a conductive structure or electrical wiring connected to the GND. The charge accumulated by static electricity is relaxed by these two types of electrical paths. The third solution tank may have a conductive structure, and may be, for example, a resin having a sheet resistance of 10 13 [Ω] or less, or typically a metal. The solution may contain a conductive solvent having the ability to dissipate static electricity, and an aqueous solution is typically preferable. Other than water, it may be a polar solvent such as alcohol such as methanol or ethanol. In addition, the solution may contain an electrolyte that enhances conductivity. Further, it may be an ionic liquid having conductivity.

第3溶液槽,たとえば,絶縁性の樹脂表面に界面活性剤を塗装した溶液槽であってもよい。これにより,溶液槽101,102の表面で水を吸着することにより導電性を高めることができる。また,第3溶液槽は絶縁性の樹脂表面に導電性材料を塗装または貼着した構造でもよい。あるいは第3溶液槽は,絶縁性の樹脂表面に導電性が高い金属で覆われるように真空蒸着による金属薄膜を形成した構造でもよい。これにより,静電気10の効果的に漏洩することができる。 A third solution tank, for example, a solution tank in which a surfactant is coated on an insulating resin surface may be used. As a result, the conductivity can be enhanced by adsorbing water on the surfaces of the solution tanks 101 and 102. Further, the third solution tank may have a structure in which a conductive material is coated or attached to an insulating resin surface. Alternatively, the third solution tank may have a structure in which a metal thin film is formed by vacuum vapor deposition so that the surface of the insulating resin is covered with a metal having high conductivity. As a result, the static electricity 10 can be effectively leaked.

図10は,図9の溶液槽デバイスの第1,2,3溶液槽に対して溶液を充填した際の断面図である。第1溶液108,第2溶液109,第3溶液110はそれぞれ第1,2,3溶液槽に対して充填されていることを特徴とする。この時,第3溶液が第1,2溶液槽と触れることにより,溶液槽デバイスが帯びていた表面電荷が第3溶液を介して解放され,静電気による薄膜の破壊を回避する事ができる。この際,後述するように電気的配線が設けられている事が好ましいが,溶液を介するだけで大気中などへ静電気が解放されるため,静電気を十分低減する事ができる。この際,第1溶液と第2溶液は電気的に絶縁していてもよい。 FIG. 10 is a cross-sectional view of the solution tank device of FIG. 9 when the solution is filled in the first, second, and third solution tanks. The first solution 108, the second solution 109, and the third solution 110 are filled in the first, second, and third solution tanks, respectively. At this time, when the third solution comes into contact with the first and second solution tanks, the surface charge carried by the solution tank device is released via the third solution, and the destruction of the thin film due to static electricity can be avoided. At this time, it is preferable that the electrical wiring is provided as described later, but the static electricity can be sufficiently reduced because the static electricity is released to the atmosphere or the like only through the solution. At this time, the first solution and the second solution may be electrically insulated.

図10に示した溶液槽デバイスの各溶液槽には電気的配線で接続された電極が配置されていることが好ましい。図11にはそのような電極を有する図10の溶液槽デバイスの断面図を示した。第1電極111,第2電極112,第3電極113は各溶液槽に対して配置され,それぞれ第1,2,3溶液と接液することによって電気的に接続されている。この際,第1溶液と第3溶液は電気的に等電位となるように接続されている事が好ましい。このような配置とすることにより,発生した静電気は電気的配線によって外部へと確実に解放される。典型的にはGNDに接地することから,静電気はGNDへと解放される。 It is preferable that electrodes connected by electrical wiring are arranged in each solution tank of the solution tank device shown in FIG. FIG. 11 shows a cross-sectional view of the solution tank device of FIG. 10 having such an electrode. The first electrode 111, the second electrode 112, and the third electrode 113 are arranged for each solution tank and are electrically connected by contacting the first, second, and third solutions, respectively. At this time, it is preferable that the first solution and the third solution are connected so as to be electrically equipotential. With such an arrangement, the generated static electricity is surely released to the outside by the electrical wiring. Since it is typically grounded to GND, static electricity is released to GND.

第1溶液と第2溶液は電位差を発生させる電源114を介して電気的に接続される。後述するように電源114が発生する電位差を利用して薄膜100に孔を電気的に加工し,第1領域から第2領域へと測定対象を移動させて分析する事が可能となる。 The first solution and the second solution are electrically connected via a power source 114 that generates a potential difference. As will be described later, it is possible to electrically process holes in the thin film 100 by utilizing the potential difference generated by the power supply 114, and move the measurement target from the first region to the second region for analysis.

図12には図11に示した溶液槽デバイスに対して溶液を導入する手順を示す。まず第1に,第3溶液槽に対して注入口を介して第3溶液を導入する。第2に,第1溶液槽に第1溶液を導入する。最後に,第2溶液槽に第2溶液を導入する。このような工程を経る事により,第1,2溶液槽表面で帯電した静電気を解放してから,薄膜100に対して溶液を導入することができるため,薄膜の破壊を確実に防ぐ事が可能となる。この際に,第3溶液と第1溶液は電気的配線によって接続されながら溶液を導入することによって確実な静電気の解放が実現される。尚,上記では第2に溶液を導入する手順として第1溶液槽に第1溶液を導入したが,第2溶液槽に第2溶液を先に導入した後に,第1溶液槽に第1溶液を導入する手順であっても良い。 FIG. 12 shows a procedure for introducing a solution into the solution tank device shown in FIG. First, the third solution is introduced into the third solution tank through the injection port. Second, the first solution is introduced into the first solution tank. Finally, the second solution is introduced into the second solution tank. By going through such a process, the static electricity charged on the surfaces of the first and second solution tanks can be released, and then the solution can be introduced into the thin film 100, so that the thin film can be reliably prevented from being destroyed. It becomes. At this time, the third solution and the first solution are connected by electrical wiring and the solution is introduced to realize reliable release of static electricity. In the above, the first solution was introduced into the first solution tank as the second procedure for introducing the solution, but after the second solution was first introduced into the second solution tank, the first solution was introduced into the first solution tank. It may be an introduction procedure.

上記手順によって,薄膜の破壊を防止しながら溶液を導入した後に電源114によって薄膜100に電位差を与え,薄膜の絶縁破壊電圧以上の電位差を印加することによって,微小な孔を電気的に加工することが可能となる。薄膜の破壊を防止する事により,精度良く,かつ品質の良い孔を加工することができるようになる。 By the above procedure, after introducing the solution while preventing the thin film from breaking down, a potential difference is given to the thin film 100 by the power supply 114, and a potential difference equal to or higher than the dielectric breakdown voltage of the thin film is applied to electrically process minute holes. Is possible. By preventing the thin film from breaking, it becomes possible to process holes with high accuracy and quality.

上記溶液槽デバイスは,必ずしも第3溶液槽が第1溶液槽および第2溶液槽をすべて覆うように囲っている必要は無く,第3溶液槽中の第3溶液が第1溶液槽および第2溶液槽の一部と接液している構造であれば良い。例えば,図9の溶液槽デバイスは第1溶液槽および第2溶液槽の一面が第3溶液槽の第3溶液と接液していない構造であるが,このような構造であっても静電気低減の効果は発揮される。第3溶液が接液した箇所の静電気が解放されるので,絶縁破壊防止の観点からは,第1溶液槽および第2溶液槽の全面が覆われていることがより望ましい。ただし,溶液注入口に存在すると第1溶液または第2溶液と混合してしまう恐れがあり,第1溶液槽または第2溶液槽に設けられた電極と接液すると,接液箇所で電気化学反応が進行し,電気的に接続されてしまい薄膜特性を正しく評価することができなくなる。そのため,溶液注入口や上記電極には第3溶液が接液しないことが望ましい。よって,装置配置の実現可能性から考え,図11に示すように,溶液注入口や上記電極には第3溶液が接液していない構造が望ましい。また,第3溶液槽と大気が触れる面に静電気が存在する場合,第3溶液槽の静電容量に依存した電位差が,薄膜に印加されうる。そのため,第3溶液槽と大気が触れる面は静電気がたまらないよう,シート抵抗1013Ω以下の導電性の部材で構成されていることが望ましい。 In the above solution tank device, the third solution tank does not necessarily have to surround the first solution tank and the second solution tank so as to cover all of them, and the third solution in the third solution tank is the first solution tank and the second solution tank. Any structure may be used as long as it is in contact with a part of the solution tank. For example, the solution tank device of FIG. 9 has a structure in which one surface of the first solution tank and the second solution tank is not in contact with the third solution of the third solution tank, but even with such a structure, static electricity is reduced. The effect of is exhibited. Since the static electricity at the place where the third solution comes into contact is released, it is more desirable that the entire surfaces of the first solution tank and the second solution tank are covered from the viewpoint of preventing dielectric breakdown. However, if it is present at the solution inlet, it may be mixed with the first solution or the second solution, and when it comes into contact with the electrodes provided in the first solution tank or the second solution tank, an electrochemical reaction occurs at the contact point. Will progress and will be electrically connected, making it impossible to evaluate the thin film characteristics correctly. Therefore, it is desirable that the third solution does not come into contact with the solution inlet or the electrode. Therefore, considering the feasibility of arranging the device, as shown in FIG. 11, a structure in which the third solution is not in contact with the solution injection port or the electrode is desirable. Further, when static electricity exists on the surface where the third solution tank and the atmosphere come into contact with each other, a potential difference depending on the capacitance of the third solution tank can be applied to the thin film. Therefore, it is desirable that the surface where the third solution tank and the atmosphere come into contact with each other is made of a conductive member having a sheet resistance of 10 13 Ω or less so that static electricity does not accumulate.

図13は実施例1にかかる静電気防止構造を有する溶液槽デバイスの第2の例の断面図である。図13に示す第2の例の溶液槽デバイス1300は,図9に示した溶液槽デバイスの第3溶液槽の注入口107を封じ,第3溶液を第3溶液槽に先に導入した後に封入した構造を有する。このような構造は,典型的なネジなどを用いる機械的組み立て方法や,射出成型方法,樹脂溶着などによって組み立てる事ができる。 FIG. 13 is a cross-sectional view of a second example of the solution tank device having the antistatic structure according to the first embodiment. In the solution tank device 1300 of the second example shown in FIG. 13, the injection port 107 of the third solution tank of the solution tank device shown in FIG. 9 is sealed, and the third solution is first introduced into the third solution tank and then sealed. Has a structure that is Such a structure can be assembled by a mechanical assembly method using a typical screw or the like, an injection molding method, resin welding, or the like.

図14は,実施例1にかかる静電気防止構造を有する溶液槽デバイスの第3の例の断面図である。図14に示す第3の例の溶液槽デバイス1400は,第1溶液槽と第3溶液槽が流路115により接続されている事を特徴とする構造である。このように第1溶液槽と第3溶液槽を接続する事により,溶液を導入する手順を1回減らす事ができる。また,第3溶液槽を経由しながら第1溶液槽を通って溶液が通過することにより,第1溶液槽と第2溶液槽表面の帯電を除去しながら溶液を導入することが可能となる。 FIG. 14 is a cross-sectional view of a third example of the solution tank device having the antistatic structure according to the first embodiment. The solution tank device 1400 of the third example shown in FIG. 14 has a structure characterized in that the first solution tank and the third solution tank are connected by a flow path 115. By connecting the first solution tank and the third solution tank in this way, the procedure for introducing the solution can be reduced once. Further, by passing the solution through the first solution tank while passing through the third solution tank, it is possible to introduce the solution while removing the charge on the surfaces of the first solution tank and the second solution tank.

図15には,図14の溶液槽デバイスに溶液を導入する手順を示した。まず第1に,第3溶液槽の注入口を介して溶液を導入する。この際,第3溶液槽と第1溶液槽は流路115で接続されているため,流路を経由して第1溶液槽へと溶液が続いて導入され,第1溶液槽の注入口から溶液が排出される。次に第2溶液槽に溶液を導入する。このような工程を経る事により,第1,2溶液槽表面で帯電した静電気を解放してから,薄膜100に対して溶液を導入することができるため,薄膜の破壊を確実に防ぐ事が可能となる。尚,流路115はGNDに接地された第1溶液槽と第3溶液槽を繋ぐ形で接続することが好ましいが,電源と接続された第2溶液槽と第3溶液槽を接続する形で配置されてもよい。ただし,第1溶液槽と第2溶液槽は接続してはならない。 FIG. 15 shows a procedure for introducing a solution into the solution tank device of FIG. First, the solution is introduced through the inlet of the third solution tank. At this time, since the third solution tank and the first solution tank are connected by the flow path 115, the solution is continuously introduced into the first solution tank via the flow path, and is introduced from the injection port of the first solution tank. The solution is drained. Next, the solution is introduced into the second solution tank. By going through such a process, the static electricity charged on the surfaces of the first and second solution tanks can be released, and then the solution can be introduced into the thin film 100, so that the thin film can be reliably prevented from being destroyed. It becomes. The flow path 115 is preferably connected by connecting the first solution tank and the third solution tank grounded to GND, but is connected by connecting the second solution tank and the third solution tank connected to the power supply. It may be arranged. However, the first solution tank and the second solution tank must not be connected.

以下,第1〜第3の例の溶液槽デバイス900〜1400に共通の構成について説明する。薄膜デバイスは,たとえば725[μm]の厚さのシリコンの支持基板52で,厚さ1[μm],面積100[μm]以下のSiN薄膜100を支持した構成としてもよい。薄膜デバイスをナノポアシーケンサのデバイスとして用いる場合,薄膜100に絶縁膜を塗布する,支持基板52にSiO2を用いてもよい。このように,デバイス容量を低減することにより,高周波成分のノイズを低減することができる。 Hereinafter, configurations common to the solution tank devices 900 to 1400 of the first to third examples will be described. The thin film device may be configured such that, for example, a silicon support substrate 52 having a thickness of 725 [μm] supports a SiN thin film 100 having a thickness of 1 [μm] and an area of 100 [μm 2] or less. When the thin film device is used as a device of the nanopore sequencer, SiO2 may be used for the support substrate 52 in which the thin film 100 is coated with an insulating film. By reducing the device capacitance in this way, noise of high-frequency components can be reduced.

また,図2で示したように,十分にノイズ電流を低減するには,デバイス容量を100[pF]以下になるように絶縁膜を薄膜デバイスに形成することが望ましい。また,デバイス容量を低減していない薄膜デバイスであっても,薄膜デバイスの絶縁破壊電圧が小さい場合,または上下の溶液間に発生する初期電荷差ΔQが大きい場合には,薄膜100に発生する電位差ΔV(=ΔQ/C)が絶縁破壊電圧を上回り,薄膜100に初期欠陥を与える可能性がある。そのため,デバイス容量を低減していないデバイスであったとしても,第1〜第3の例の溶液槽デバイス900〜1400による静電気発生の防止が有効である。 Further, as shown in FIG. 2, in order to sufficiently reduce the noise current, it is desirable to form an insulating film on the thin film device so that the device capacitance is 100 [pF] or less. Further, even if the device capacitance is not reduced, the potential difference generated in the thin film 100 is generated when the insulation breakdown voltage of the thin film device is small or when the initial charge difference ΔQ generated between the upper and lower solutions is large. ΔV (= ΔQ / C) may exceed the breakdown voltage and cause an initial defect in the thin film 100. Therefore, even if the device capacity is not reduced, it is effective to prevent static electricity from being generated by the solution tank devices 900 to 1400 of the first to third examples.

薄膜デバイスを封鎖電流計測に用いる場合には,薄膜100の厚さは測定対象の大きさによって適切な厚みを選ぶ必要がある。たとえば,測定対象が1[μm]程度の大きさである場合,薄膜100の膜厚は1[μm]程度であることが好ましい。一方で,測定対象として20[nm]以下の幅または長さを有する生体ポリマを計測する場合,センサとしての分解能を高めるために膜厚20[nm]以下の薄膜100を用いる必要がある。このとき,図6で示したように,膜厚tが薄くなるほど絶縁破壊が生じる電荷密度差Δσも小さくなるため,静電気10による初期不良の発生率が増加する。そのため,特に膜厚20[nm]以下の薄膜100を有する薄膜デバイスを第1〜第3の例の溶液槽デバイス900〜1400に実装することにより,静電気10の発生を効果的に抑制することができる。 When the thin film device is used for the blockade current measurement, it is necessary to select an appropriate thickness of the thin film 100 according to the size of the measurement target. For example, when the measurement target has a size of about 1 [μm], the film thickness of the thin film 100 is preferably about 1 [μm]. On the other hand, when measuring a biological polymer having a width or length of 20 [nm] or less as a measurement target, it is necessary to use a thin film 100 having a film thickness of 20 [nm] or less in order to improve the resolution as a sensor. At this time, as shown in FIG. 6, as the film thickness t becomes thinner, the charge density difference Δσ at which dielectric breakdown occurs also becomes smaller, so that the occurrence rate of initial defects due to static electricity 10 increases. Therefore, in particular, by mounting a thin film device having a thin film 100 having a film thickness of 20 [nm] or less on the solution tank devices 900 to 1400 of the first to third examples, it is possible to effectively suppress the generation of static electricity 10. it can.

また,直径10[nm]以下の孔が開いた薄膜100を用いてもよい。薄膜100が孔を有していると,DNA等の生体ポリマを孔に通過させ,封鎖電流を計測することができる。ここで,薄膜100の両面側に電解液を満たしたとき,孔が開いている薄膜100であっても,孔径が小さい場合には孔部分で発生する溶液抵抗が大きいため,薄膜100に0.01[V/nm]以上の電位差が生じることがある。このように既に孔が開いている薄膜100であっても,0.01[V/nm]以上の高い電位差が1[s]以上の時間与えられると薄膜100に複数の孔が開いたり,孔が広がるといった不良が生じるため,静電気10の防止が必要となる。 Further, the thin film 100 having holes having a diameter of 10 [nm] or less may be used. When the thin film 100 has pores, a biological polymer such as DNA can be passed through the pores to measure the blocking current. Here, when the electrolytic solution is filled on both sides of the thin film 100, even if the thin film 100 has pores, if the pore diameter is small, the solution resistance generated in the pore portion is large, so that the thin film 100 is 0. A potential difference of 01 [V / nm] or more may occur. Even in the thin film 100 having holes already formed in this way, when a high potential difference of 0.01 [V / nm] or more is given for a time of 1 [s] or more, the thin film 100 has a plurality of holes or holes. It is necessary to prevent the static electricity 10 because the defect such as the spread of the static electricity occurs.

また,薄膜100は孔を含まないものであってもよい。たとえば,薄膜100に溶液103,104を満たし,その後薄膜100に電圧を印加することによって,制御良く薄膜100に直径10[nm]以下の孔を開孔する手順を用いる場合,薄膜100を溶液槽101,102に組み込んだ時点ではまだ孔が開いていない。孔が開いていない場合,薄膜100にかかる電位差はより大きくなりやすく,制御不能な孔が薄膜100上に開くことがある。そのため,孔が開いていない場合において,静電気10の発生の防止は有効である。また,薄膜100の素材はソリッドナノポアシーケンスができるようSiNやGrapheneといった無機材料としてもよく,バイオナノポアシーケンスができるよう脂質二重膜にタンパク質ナノポアを埋め込んだバイオナノポアなどの有機材料であってもよい。 Further, the thin film 100 may not include holes. For example, when the procedure of filling the thin film 100 with solutions 103 and 104 and then applying a voltage to the thin film 100 to open holes with a diameter of 10 [nm] or less in the thin film 100 in a controlled manner, the thin film 100 is placed in a solution tank. At the time of incorporation into 101 and 102, no holes have been opened yet. If the pores are not open, the potential difference applied to the thin film 100 tends to be larger, and uncontrollable pores may open on the thin film 100. Therefore, it is effective to prevent the generation of static electricity 10 when the holes are not opened. Further, the material of the thin film 100 may be an inorganic material such as SiN or Graphene so that solid nanopore sequencing can be performed, or an organic material such as bio-nanopore in which protein nanopores are embedded in a lipid bilayer membrane so that bio-nanopore sequencing can be performed. ..

また,薄膜100と溶液槽101,102の間には,液漏れを防ぐためOリングを挟んでもよい。溶液槽内の溶液抵抗が小さいことは,ノイズ電流の低減に繋がる。したがって,注入口の流路長は50[mm]以下にするのが望ましく,その流路径も直径1[mm]以上にするのが望ましい。 Further, an O-ring may be sandwiched between the thin film 100 and the solution tanks 101 and 102 to prevent liquid leakage. A small solution resistance in the solution tank leads to a reduction in noise current. Therefore, it is desirable that the flow path length of the injection port is 50 [mm] or less, and that the flow path diameter is also 1 [mm] or more in diameter.

図16は,ナノポアシーケンサの一例を示す説明図である。図16に示すナノポアシーケンサ1600は,図11に示した第1の例の溶液槽デバイス900の電極に接続し,コンピュータ117により,薄膜100を通過する電流を計測する計測システムである。電流を計測するため,電極は電源や電流計116と接続される。コンピュータ117は,電流計116で計測した電流値を内部の記憶デバイスに保存する。 FIG. 16 is an explanatory diagram showing an example of a nanopore sequencer. The nanopore sequencer 1600 shown in FIG. 16 is a measurement system connected to the electrodes of the solution tank device 900 of the first example shown in FIG. 11 and measuring the current passing through the thin film 100 by the computer 117. To measure the current, the electrodes are connected to a power supply or ammeter 116. The computer 117 stores the current value measured by the ammeter 116 in an internal storage device.

一例として,電極は,構造が単純で取扱が容易な電極Ag/AgCl電極とし,溶液は,1M KCl水溶液とした。また,溶液は,計測対象の生体ポリマとして,たとえば,DNA,タンパク質,核酸を含む。また,計測対象は無機材料や有機材料のパーティクルでもよい。すなわち,計測対象は,ナノポアを通過するような物質を含む溶液であればよい。 As an example, the electrode was an electrode Ag / AgCl electrode having a simple structure and easy to handle, and the solution was a 1M KCl aqueous solution. In addition, the solution contains, for example, DNA, protein, and nucleic acid as biological polymers to be measured. Further, the measurement target may be particles made of an inorganic material or an organic material. That is, the measurement target may be a solution containing a substance that passes through the nanopores.

計測対象がDNAである場合,ナノポアシーケンサ1600は,DNAがナノポアを通過した場合の封鎖電流値の大きさから,DNAを構成する塩基配列を特定することができる。また,計測対象がDNA以外の生体ポリマや無機材料のパーティクルといった計測対象である場合,ナノポアシーケンサ1500は,これらがナノポアを通過した場合の封鎖電流値の大きさから,計測対象の大きさを推定することができる。図17には図16に示したナノポアシーケンサ構成を用いて、DNAを計測するまでの一連のフローを示した。図12に示した手順を用いて、溶液槽に溶液を導入した後、薄膜デバイスに絶縁破壊電圧を印加することで,微小な孔を加工する。その後、第1または第2溶液槽のいずれかに計測対象、たとえばDNAを含む溶液に置換し,薄膜デバイスを介して電位差を印加することにより,DNAは電気泳動されて微小な孔へと誘導されてDNAを計測する事が可能となる。 When the measurement target is DNA, the nanopore sequencer 1600 can specify the base sequence constituting the DNA from the magnitude of the blockade current value when the DNA passes through the nanopore. Further, when the measurement target is a measurement target such as a biological polymer other than DNA or particles of an inorganic material, the nanopore sequencer 1500 estimates the size of the measurement target from the magnitude of the blockade current value when these pass through the nanopore. can do. FIG. 17 shows a series of flows up to the measurement of DNA using the nanopore sequencer configuration shown in FIG. After introducing the solution into the solution tank using the procedure shown in FIG. 12, a micropore is machined by applying a breakdown voltage to the thin film device. After that, the DNA is electrophoresed and guided into minute pores by substituting the measurement target, for example, a solution containing DNA, in either the first or second solution tank and applying a potential difference via a thin film device. It becomes possible to measure DNA.

図18には図11に示した溶液槽デバイスを用いて図12に示した手順によって溶液を導入した後,薄膜デバイスに絶縁破壊電圧を印加することによって微小な孔を加工した際の実験図を示す。横軸は薄膜デバイスに印加したパルス状電圧の総累積印加時間を,縦軸はパルス電圧を印加した後の薄膜デバイスを流れる電流値を示している。実施例1にかかる溶液槽デバイスを用いる事で,薄膜は破壊されることなく,第1溶液と第2溶液が絶縁状態を維持したままを保つことができる。この状態にて絶縁破壊電圧に相当する電圧をパルス状に複数印加することによって,薄膜デバイスに微小孔を加工することができる。本実験ではデバイス容量100[pF],薄膜5[nm],絶縁破壊電圧4[V]の条件にてパルス状の電圧を10[ms]から徐々に対数的にパルス時間幅を増加させて印加し,パルス印加後の電流値を電圧0.1[V]を印加することで読み取った。この際,第1溶液と第2溶液は1MKCl溶液を使用している。パルス電圧を複数回印加した後,ナノポア径1.0[nm]に相当する電流値が流れる事を確認した。したがって,本溶液槽デバイスを用いる事によりデバイス容量の小さい条件下において,薄膜デバイスを破壊することなく,電気的方法によって微小孔を加工できることを確認した。 FIG. 18 shows an experimental diagram in which a minute hole is machined by applying a breakdown voltage to a thin film device after introducing a solution using the solution tank device shown in FIG. 11 according to the procedure shown in FIG. Shown. The horizontal axis shows the total cumulative application time of the pulsed voltage applied to the thin film device, and the vertical axis shows the current value flowing through the thin film device after the pulse voltage is applied. By using the solution tank device according to the first embodiment, the thin film can be kept in an insulated state without being destroyed. In this state, by applying a plurality of voltages corresponding to the dielectric breakdown voltage in a pulse shape, micropores can be formed in the thin film device. In this experiment, a pulsed voltage is applied by gradually increasing the pulse time width from 10 [ms] under the conditions of a device capacitance of 100 [pF], a thin film of 5 [nm], and an insulation breakdown voltage of 4 [V]. Then, the current value after applying the pulse was read by applying a voltage of 0.1 [V]. At this time, a 1 MKCl solution is used as the first solution and the second solution. After applying the pulse voltage multiple times, it was confirmed that a current value corresponding to the nanopore diameter of 1.0 [nm] flows. Therefore, it was confirmed that by using this solution tank device, micropores can be machined by an electrical method without destroying the thin film device under the condition that the device capacity is small.

<実施の形態2>
実施例2は,実施例1に示した第1〜第3の例の溶液槽デバイス900〜1400を薄膜100の平面方向にアレイ状に構成した溶液槽デバイスである。実施例2では,実施例1にかかる第1の例の溶液槽デバイス900をアレイ状に構成した溶液槽デバイスについて説明するが,第2〜第3の例をアレイ状にてもよい。これにより,測定対象の測定の高速化を図る。
<Embodiment 2>
The second embodiment is a solution tank device in which the solution tank devices 900 to 1400 of the first to third examples shown in the first embodiment are formed in an array in the plane direction of the thin film 100. In the second embodiment, the solution tank device 900 in which the solution tank device 900 of the first example according to the first embodiment is configured in an array will be described, but the second to third examples may be in an array. This will speed up the measurement of the measurement target.

図19は,実施例2にかかる溶液槽デバイスの一例を示す断面図である。図19は,実施例1にかかる第1の例の溶液槽デバイス900をアレイ状に構成した溶液槽デバイス1900である。実施例2においても,溶液槽デバイス1900は,第3溶液槽を有する。溶液槽101,102において,各薄膜100の境界に隔壁を設け,溶液の流入,流出を抑制する。これにより,アレイ間のクロストークノイズを低減することができる。また,溶液槽101はアレイ間でつながっている構造となるが,溶液槽101は隔壁を設けて個別の溶液槽に分離しても良い。 FIG. 19 is a cross-sectional view showing an example of the solution tank device according to the second embodiment. FIG. 19 is a solution tank device 1900 in which the solution tank device 900 of the first example according to the first embodiment is configured in an array. Also in Example 2, the solution tank device 1900 has a third solution tank. In the solution tanks 101 and 102, a partition wall is provided at the boundary of each thin film 100 to suppress the inflow and outflow of the solution. This makes it possible to reduce crosstalk noise between arrays. Further, although the solution tank 101 has a structure in which the arrays are connected to each other, the solution tank 101 may be separated into individual solution tanks by providing a partition wall.

以上説明したように,本実施例にかかる溶液槽デバイスによれば,薄膜の初期不良を抑制することができる。また,薄膜が,測定対象として生体ポリマを通過させる構成とすることにより,薄膜の初期不良を抑制した溶液槽デバイスを,生体ポリマの測定に利用することができる。また,薄膜を複数の領域に分割することにより,領域ごとに並列に測定対象を通過させることができ,測定時間の短縮化を図ることができる。また,薄膜の厚さを20nm以下とすることにより,測定対象として20[nm]以下の幅または長さを有する生体ポリマを計測する場合,溶液槽デバイスを用いたセンサとしての分解能を高めることができる。 As described above, according to the solution tank device according to this embodiment, the initial failure of the thin film can be suppressed. In addition, by configuring the thin film to pass the biological polymer as a measurement target, a solution tank device that suppresses the initial failure of the thin film can be used for the measurement of the biological polymer. Further, by dividing the thin film into a plurality of regions, the measurement target can be passed in parallel for each region, and the measurement time can be shortened. Further, by setting the thickness of the thin film to 20 nm or less, when measuring a biological polymer having a width or length of 20 [nm] or less as a measurement target, the resolution as a sensor using a solution tank device can be improved. it can.

また,膜厚20[nm]以下の薄膜を用いることにより,静電気の発生を効果的に抑制することができる。また,薄膜が直径10nm以下の大きさの孔を有することにより,DNA等の生体ポリマを孔に通過させ,封鎖電流を計測することができる。また,第1溶液槽と薄膜の一方の面とで囲まれた領域に第1溶液を満たし,第2溶液槽と薄膜のもう一方の面とで囲まれた領域に第2溶液を存在させ,第1溶液と第2溶液のうちいずれか一方の溶液に測定対象を含めることにより,薄膜を介して電位差を第1溶液および第2溶液に与えることで,薄膜を通過する測定対象の封鎖電流を測定することができる。 Further, by using a thin film having a film thickness of 20 [nm] or less, the generation of static electricity can be effectively suppressed. Further, since the thin film has pores having a diameter of 10 nm or less, it is possible to pass a biological polymer such as DNA through the pores and measure the blocking current. Further, the region surrounded by the first solution tank and one surface of the thin film is filled with the first solution, and the second solution is allowed to exist in the region surrounded by the second solution tank and the other surface of the thin film. By including the measurement target in either the first solution or the second solution, a potential difference is given to the first solution and the second solution through the thin film, so that the blocking current of the measurement target passing through the thin film is increased. Can be measured.

なお,本発明は上記した実施例に限定されるものではなく,様々な変形例が含まれる。例えば,上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり,必ずしも説明した全ての構成を備えるものに限定されるものではない。また,ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり,また,ある実施例の構成に他の実施例の構成を加えることも可能である。また,各実施例の構成の一部について,他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. In addition, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.

Claims (14)

測定対象を第1領域から第2領域へ通過させる溶液槽デバイスであって、
前記第1領域と前記第2領域を隔てる1μm以下の厚さを有する絶縁性の薄膜と、
前記薄膜の両面のうち一方の面側を支持する第1溶液槽と、
前記薄膜の両面のうちもう一方の面側を支持する第2溶液槽と、
前記第1および第2溶液槽の外側に設けられた第3溶液槽を備えられており、
前記第3溶液槽はシート抵抗10 13 Ω以下の導電性を有する
ことを特徴とする溶液槽デバイス。
A solution tank device that allows a measurement target to pass from the first region to the second region.
An insulating thin film having a thickness of 1 μm or less that separates the first region from the second region,
A first solution tank that supports one side of both sides of the thin film, and
A second solution tank that supports the other side of both sides of the thin film, and
It is provided with a third solution tank provided outside the first and second solution tanks .
The third solution tank is a solution tank device having a sheet resistance of 10 13 Ω or less.
測定対象を第1領域から第2領域へ通過させる溶液槽デバイスであって、
前記第1領域と前記第2領域を隔てる1μm以下の厚さを有する絶縁性の薄膜と、
前記薄膜の両面のうち一方の面側を支持する第1溶液槽と、
前記薄膜の両面のうちもう一方の面側を支持する第2溶液槽と、
前記第1および第2溶液槽の外側に設けられた第3溶液槽を備えられており、
前記第1溶液槽と前記薄膜の前記一方の面とで囲まれた領域に第1溶液が存在し、前記第2溶液槽と前記薄膜の前記もう一方の面とで囲まれた領域に第2溶液が存在し、前記第3溶液槽と前記第1および第2溶液槽で囲まれた領域に第3溶液が存在している
ことを特徴とする溶液槽デバイス。
A solution tank device that allows a measurement target to pass from the first region to the second region.
An insulating thin film having a thickness of 1 μm or less that separates the first region from the second region,
A first solution tank that supports one side of both sides of the thin film, and
A second solution tank that supports the other side of both sides of the thin film, and
It is provided with a third solution tank provided outside the first and second solution tanks .
The first solution exists in the region surrounded by the first solution tank and the one surface of the thin film, and the second solution exists in the region surrounded by the second solution tank and the other surface of the thin film. A solution tank device characterized in that a solution is present and a third solution is present in a region surrounded by the third solution tank and the first and second solution tanks.
請求項1または2に記載の溶液槽デバイスであって、前記薄膜は、前記測定対象として生体ポリマを通過させることを特徴とする溶液槽デバイス。 The solution tank device according to claim 1 or 2 , wherein the thin film passes a biological polymer as a measurement target. 請求項に記載の溶液槽デバイスであって、前記薄膜は、複数の領域に分割されていることを特徴とする溶液槽デバイス。 The solution tank device according to claim 3 , wherein the thin film is divided into a plurality of regions. 請求項1または2に記載の溶液槽デバイスであって、前記薄膜の厚さは、20nm以下であることを特徴とする溶液槽デバイス。 The solution tank device according to claim 1 or 2 , wherein the thickness of the thin film is 20 nm or less. 請求項1または2に記載の溶液槽デバイスであって、前記薄膜は、直径10nm以下の大きさの孔を含むことを特徴とする溶液槽デバイス。 The solution tank device according to claim 1 or 2 , wherein the thin film includes holes having a diameter of 10 nm or less. 請求項に記載の溶液槽デバイスであって、前記第1溶液または前記第2溶液のいずれか一方と前記第3溶液を等電位にする電気的配線を有することを特徴とする溶液槽デバイス。 The solution tank device according to claim 2 , further comprising electrical wiring for equipotentializing either one of the first solution or the second solution with the third solution. 請求項1または2に記載の溶液槽デバイスであって、前記第3溶液槽と前記第1溶液槽または前記第2溶液槽のいずれか一方が流路で接続されていることを特徴とする溶液槽デバイス。 The solution according to claim 1 or 2 , wherein either the third solution tank and the first solution tank or the second solution tank is connected by a flow path. Tank device. 溶液槽デバイスを破壊することなく前記溶液槽デバイスに対して溶液を導入する方法であって、
前記溶液槽デバイスは、
第1領域と第2領域を隔てる1μm以下の厚さを有する絶縁性の薄膜と、
前記薄膜の両面のうち一方の面側を支持する第1溶液槽と、
前記薄膜の両面のうちもう一方の面側を支持する第2溶液槽と、
前記第1および第2溶液槽の外側に設けられた第3溶液槽と、
を備え、
前記第3溶液槽はシート抵抗10 13 Ω以下の導電性を有し、
前記方法は、
前記第3溶液槽に溶液を導入するステップ、
前記第3溶液槽に溶液を導入した後に、前記第1または第2溶液槽のいずれか一方に溶液を導入するステップ、
前記第3溶液槽に溶液を導入した後に、前記第1または第2溶液槽の他方に溶液を導入するステップ、
を有することを特徴とする方法。
A method of introducing a solution into the solution tank device without destroying the solution tank device.
The solution tank device is
An insulating thin film having a thickness of 1 μm or less that separates the first region and the second region,
A first solution tank that supports one side of both sides of the thin film, and
A second solution tank that supports the other side of both sides of the thin film, and
A third solution tank provided outside the first and second solution tanks, and
With
The third solution tank has a sheet resistance of 10 13 Ω or less and has a conductivity of 10 13 Ω or less.
The method is
The step of introducing the solution into the third solution tank,
A step of introducing a solution into either the first or second solution tank after introducing the solution into the third solution tank.
A step of introducing a solution into the other of the first or second solution tank after introducing the solution into the third solution tank.
A method characterized by having.
溶液槽デバイスを破壊することなく前記溶液槽デバイスに対して溶液を導入する方法であって、
前記溶液槽デバイスは、
第1領域と第2領域を隔てる1μm以下の厚さを有する絶縁性の薄膜と、
前記薄膜の両面のうち一方の面側を支持する第1溶液槽と、
前記薄膜の両面のうちもう一方の面側を支持する第2溶液槽と、
前記第1および第2溶液槽の外側に設けられた第3溶液槽と、
を備え、
前記第1溶液槽と前記薄膜の前記一方の面とで囲まれた領域に第1溶液が存在し、前記第2溶液槽と前記薄膜の前記もう一方の面とで囲まれた領域に第2溶液が存在し、前記第3溶液槽と前記第1および第2溶液槽で囲まれた領域に第3溶液が存在しており、
前記方法は、
前記第3溶液槽に溶液を導入するステップ、
前記第3溶液槽に溶液を導入した後に、前記第1または第2溶液槽のいずれか一方に溶液を導入するステップ、
前記第3溶液槽に溶液を導入した後に、前記第1または第2溶液槽の他方に溶液を導入するステップ、
を有することを特徴とする方法。
A method of introducing a solution into the solution tank device without destroying the solution tank device.
The solution tank device is
An insulating thin film having a thickness of 1 μm or less that separates the first region and the second region,
A first solution tank that supports one side of both sides of the thin film, and
A second solution tank that supports the other side of both sides of the thin film, and
A third solution tank provided outside the first and second solution tanks, and
With
The first solution exists in the region surrounded by the first solution tank and the one surface of the thin film, and the second solution exists in the region surrounded by the second solution tank and the other surface of the thin film. The solution exists, and the third solution exists in the region surrounded by the third solution tank and the first and second solution tanks.
The method is
The step of introducing the solution into the third solution tank,
A step of introducing a solution into either the first or second solution tank after introducing the solution into the third solution tank.
A step of introducing a solution into the other of the first or second solution tank after introducing the solution into the third solution tank.
A method characterized by having.
溶液槽デバイスを破壊することなく前記溶液槽デバイスに対して溶液を導入する方法であって、
前記溶液槽デバイスは、
第1領域と第2領域を隔てる1μm以下の厚さを有する絶縁性の薄膜と、
前記薄膜の両面のうち一方の面側を支持する第1溶液槽と、
前記薄膜の両面のうちもう一方の面側を支持する第2溶液槽と、
前記第1および第2溶液槽の外側に設けられた第3溶液槽と、
を備え、
前記第3溶液槽はシート抵抗10 13 Ω以下の導電性を有し、
前記第3溶液槽と前記第1溶液槽または前記第2溶液槽のいずれか一方が流路で接続されており、
前記方法は、
前記第1溶液槽または前記第2溶液槽のいずれか一方と流路で接続されている前記第3溶液槽に溶液を導入するステップ、
前記第3溶液槽に溶液を導入した後に、前記第3溶液槽と流路で接続されていない前記第1溶液槽または前記第2溶液槽に溶液を導入するステップ、
を有することを特徴とする方法。
A method of introducing a solution into the solution tank device without destroying the solution tank device.
The solution tank device is
An insulating thin film having a thickness of 1 μm or less that separates the first region and the second region,
A first solution tank that supports one side of both sides of the thin film, and
A second solution tank that supports the other side of both sides of the thin film, and
A third solution tank provided outside the first and second solution tanks, and
With
The third solution tank has a sheet resistance of 10 13 Ω or less and has a conductivity of 10 13 Ω or less.
The third solution tank and either the first solution tank or the second solution tank are connected by a flow path.
The method is
A step of introducing a solution into the third solution tank, which is connected to either the first solution tank or the second solution tank by a flow path.
A step of introducing a solution into the first solution tank or the second solution tank which is not connected to the third solution tank by a flow path after the solution is introduced into the third solution tank.
A method characterized by having.
溶液槽デバイスを破壊することなく前記溶液槽デバイスに対して溶液を導入する方法であって、
前記溶液槽デバイスは、
第1領域と第2領域を隔てる1μm以下の厚さを有する絶縁性の薄膜と、
前記薄膜の両面のうち一方の面側を支持する第1溶液槽と、
前記薄膜の両面のうちもう一方の面側を支持する第2溶液槽と、
前記第1および第2溶液槽の外側に設けられた第3溶液槽と、
を備え、
前記第1溶液槽と前記薄膜の前記一方の面とで囲まれた領域に第1溶液が存在し、前記第2溶液槽と前記薄膜の前記もう一方の面とで囲まれた領域に第2溶液が存在し、前記第3溶液槽と前記第1および第2溶液槽で囲まれた領域に第3溶液が存在しており、
前記第3溶液槽と前記第1溶液槽または前記第2溶液槽のいずれか一方が流路で接続されており、
前記方法は、
前記第1溶液槽または前記第2溶液槽のいずれか一方と流路で接続されている前記第3溶液槽に溶液を導入するステップ、
前記第3溶液槽に溶液を導入した後に、前記第3溶液槽と流路で接続されていない前記第1溶液槽または前記第2溶液槽に溶液を導入するステップ、
を有することを特徴とする方法。
A method of introducing a solution into the solution tank device without destroying the solution tank device.
The solution tank device is
An insulating thin film having a thickness of 1 μm or less that separates the first region and the second region,
A first solution tank that supports one side of both sides of the thin film, and
A second solution tank that supports the other side of both sides of the thin film, and
A third solution tank provided outside the first and second solution tanks, and
With
The first solution exists in the region surrounded by the first solution tank and the one surface of the thin film, and the second solution exists in the region surrounded by the second solution tank and the other surface of the thin film. The solution exists, and the third solution exists in the region surrounded by the third solution tank and the first and second solution tanks.
The third solution tank and either the first solution tank or the second solution tank are connected by a flow path.
The method is
A step of introducing a solution into the third solution tank, which is connected to either the first solution tank or the second solution tank by a flow path.
A step of introducing a solution into the first solution tank or the second solution tank which is not connected to the third solution tank by a flow path after the solution is introduced into the third solution tank.
A method characterized by having.
溶液槽デバイスを破壊することなく前記溶液槽デバイスに対して溶液を導入するとともに孔を電気的に加工する方法であって、
前記溶液槽デバイスは、
第1領域と第2領域を隔てる1μm以下の厚さを有する絶縁性の薄膜と、
前記薄膜の両面のうち一方の面側を支持する第1溶液槽と、
前記薄膜の両面のうちもう一方の面側を支持する第2溶液槽と、
前記第1および第2溶液槽の外側に設けられた第3溶液槽と、
を備え、
前記第3溶液槽はシート抵抗10 13 Ω以下の導電性を有し、
前記第1溶液と前記第2溶液にはそれぞれ電極が設けられており、
前記方法は、
前記第3溶液槽に溶液を導入するステップ、
前記第3溶液槽に溶液を導入した後に、前記第1または第2溶液槽のいずれか一方に溶液を導入するステップ、
前記第3溶液槽に溶液を導入した後に、前記第1または第2溶液槽の他方に溶液を導入するステップ、
前記電極間に電圧を印加することにより前記薄膜に孔を加工するステップ、
を有することを特徴とする方法。
A method of introducing a solution into the solution tank device and electrically processing holes without destroying the solution tank device.
The solution tank device is
An insulating thin film having a thickness of 1 μm or less that separates the first region and the second region,
A first solution tank that supports one side of both sides of the thin film, and
A second solution tank that supports the other side of both sides of the thin film, and
A third solution tank provided outside the first and second solution tanks, and
With
The third solution tank has a sheet resistance of 10 13 Ω or less and has a conductivity of 10 13 Ω or less.
Electrodes are provided in the first solution and the second solution, respectively.
The method is
The step of introducing the solution into the third solution tank,
A step of introducing a solution into either the first or second solution tank after introducing the solution into the third solution tank.
A step of introducing a solution into the other of the first or second solution tank after introducing the solution into the third solution tank.
A step of forming holes in the thin film by applying a voltage between the electrodes.
A method characterized by having.
溶液槽デバイスを破壊することなく前記溶液槽デバイスに対して溶液を導入するとともに孔を電気的に加工する方法であって、
前記溶液槽デバイスは、
第1領域と第2領域を隔てる1μm以下の厚さを有する絶縁性の薄膜と、
前記薄膜の両面のうち一方の面側を支持する第1溶液槽と、
前記薄膜の両面のうちもう一方の面側を支持する第2溶液槽と、
前記第1および第2溶液槽の外側に設けられた第3溶液槽と、
を備え、
前記第1溶液槽と前記薄膜の前記一方の面とで囲まれた領域に第1溶液が存在し、前記第2溶液槽と前記薄膜のもう一方の面とで囲まれた領域に第2溶液が存在し、前記第3溶液槽と前記第1および第2溶液槽で囲まれた領域に第3溶液が存在し、
前記第1溶液と前記第2溶液にはそれぞれ電極が設けられており、
前記方法は、
前記第3溶液槽に溶液を導入するステップ、
前記第3溶液槽に溶液を導入した後に、前記第1または第2溶液槽のいずれか一方に溶液を導入するステップ、
前記第3溶液槽に溶液を導入した後に、前記第1または第2溶液槽の他方に溶液を導入するステップ、
前記電極間に電圧を印加することにより前記薄膜に孔を加工するステップ、
を有することを特徴とする方法。
A method of introducing a solution into the solution tank device and electrically processing holes without destroying the solution tank device.
The solution tank device is
An insulating thin film having a thickness of 1 μm or less that separates the first region and the second region,
A first solution tank that supports one side of both sides of the thin film, and
A second solution tank that supports the other side of both sides of the thin film, and
A third solution tank provided outside the first and second solution tanks, and
With
The first solution exists in the region surrounded by the first solution tank and the one surface of the thin film, and the second solution is present in the region surrounded by the second solution tank and the other surface of the thin film. Is present, and the third solution is present in the region surrounded by the third solution tank and the first and second solution tanks.
Electrodes are provided in the first solution tank and the second solution tank, respectively.
The method is
The step of introducing the solution into the third solution tank,
A step of introducing a solution into either the first or second solution tank after introducing the solution into the third solution tank.
A step of introducing a solution into the other of the first or second solution tank after introducing the solution into the third solution tank.
A step of forming holes in the thin film by applying a voltage between the electrodes.
A method characterized by having.
JP2017153796A 2017-08-09 2017-08-09 Solution tank device Expired - Fee Related JP6846309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017153796A JP6846309B2 (en) 2017-08-09 2017-08-09 Solution tank device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017153796A JP6846309B2 (en) 2017-08-09 2017-08-09 Solution tank device

Publications (2)

Publication Number Publication Date
JP2019032250A JP2019032250A (en) 2019-02-28
JP6846309B2 true JP6846309B2 (en) 2021-03-24

Family

ID=65523351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017153796A Expired - Fee Related JP6846309B2 (en) 2017-08-09 2017-08-09 Solution tank device

Country Status (1)

Country Link
JP (1) JP6846309B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2757493B2 (en) * 1989-09-29 1998-05-25 株式会社島津製作所 Cell incubator and antibody detection method
JP3494756B2 (en) * 1994-05-25 2004-02-09 富士写真フイルム株式会社 Monitoring method of washing water for developing photosensitive material
DE102006035072B4 (en) * 2006-07-28 2009-03-12 Westfälische Wilhelms-Universität Münster Device and method for detecting particles with pipette and nanopore
JP5670278B2 (en) * 2011-08-09 2015-02-18 株式会社日立ハイテクノロジーズ Nanopore analyzer
JP2013090576A (en) * 2011-10-24 2013-05-16 Hitachi Ltd Nucleic acid analyzing device and nucleic acid analyzer using the same
JP6033602B2 (en) * 2012-08-08 2016-11-30 株式会社日立ハイテクノロジーズ Biomolecule detection method, biomolecule detection apparatus, and analytical device
JP6209122B2 (en) * 2014-04-02 2017-10-04 株式会社日立ハイテクノロジーズ Hole forming method and measuring apparatus
JP6259929B2 (en) * 2014-11-12 2018-01-10 株式会社日立製作所 Biological polymer analyzer and biological polymer analyzing method

Also Published As

Publication number Publication date
JP2019032250A (en) 2019-02-28

Similar Documents

Publication Publication Date Title
JP4897681B2 (en) Method and apparatus for detecting a time-varying current through an ion channel
CN104160484B (en) The RESEARCH ON Sound Insulation of extremely low current measurement in biochemistry is applied
CA2385482A1 (en) A substrate and a method for determining and/or monitoring electrophysiological properties of ion channels
Healy et al. Fabrication and characterization of nanopores with insulated transverse nanoelectrodes for DNA sensing in salt solution
JP6228613B2 (en) Nanopore forming method, nanopore forming apparatus and set
US9279758B2 (en) Method and apparatus for diagnosing status of parts in real time in plasma processing equipment
JP6688881B2 (en) Membrane device, measuring device, membrane device manufacturing method
JP2018508745A (en) Integration of nanopore sensors in multiple microfluidic channel arrays using controlled breakdown
Pedone et al. Fabrication and electrical characterization of a pore–cavity–pore device
JP6846309B2 (en) Solution tank device
JP2015532089A (en) Apparatus for nucleic acid sequencing using tunneling current analysis
JP6482687B2 (en) Solution bath device
JP7392135B2 (en) Sensor with membrane for concentration measurement of analysis fluid opened by recess
JP2013531251A (en) Device for measuring the characteristics of gas in the measurement gas space
JP6259929B2 (en) Biological polymer analyzer and biological polymer analyzing method
JP2010232344A (en) Plasma monitoring method
JP2009291135A (en) Cellular electrophysiological sensor
JP2019138861A (en) Analysis element and analyzer
Do et al. Partial discharges in silicone gel in the temperature range 20-150 C
JP7312930B2 (en) measuring device
JP2023160374A (en) Impedance measurement apparatus and impedance measurement method
EP4458941A1 (en) Membrane formation apparatus and membrane formation method
JP2023160373A (en) Impedance measurement apparatus and impedance measurement method
JP6714924B2 (en) Sample detection device, sample detection device, and ion current detection method
Martínez Morales New supercapacitor based on nanostructured devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210301

R150 Certificate of patent or registration of utility model

Ref document number: 6846309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees