[go: up one dir, main page]

JP6831667B2 - Wetting agent - Google Patents

Wetting agent Download PDF

Info

Publication number
JP6831667B2
JP6831667B2 JP2016202577A JP2016202577A JP6831667B2 JP 6831667 B2 JP6831667 B2 JP 6831667B2 JP 2016202577 A JP2016202577 A JP 2016202577A JP 2016202577 A JP2016202577 A JP 2016202577A JP 6831667 B2 JP6831667 B2 JP 6831667B2
Authority
JP
Japan
Prior art keywords
polishing
less
liquid composition
polymer compound
polishing liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016202577A
Other languages
Japanese (ja)
Other versions
JP2018062597A (en
Inventor
佑樹 加藤
佑樹 加藤
五十嵐 正
正 五十嵐
穣史 三浦
穣史 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2016202577A priority Critical patent/JP6831667B2/en
Publication of JP2018062597A publication Critical patent/JP2018062597A/en
Application granted granted Critical
Publication of JP6831667B2 publication Critical patent/JP6831667B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明は濡れ剤、疎水表面用研磨液組成物、並びに疎水表面用研磨液組成物を用いたシリコンウェーハの研磨方法及び半導体基板の製造方法に関する。 The present invention relates to a method for polishing a silicon wafer and a method for manufacturing a semiconductor substrate using a wetting agent, a polishing liquid composition for a hydrophobic surface, and a polishing liquid composition for a hydrophobic surface.

近年、半導体メモリの高記録容量化に対する要求の高まりから半導体装置のデザインルールは微細化が進んでいる。このため半導体装置の製造過程で行われるフォトリソグラフィーにおいて焦点深度は浅くなり、シリコンウェーハ(ベアウェーハ)の欠陥低減や平滑性に対する要求はますます厳しくなっている。 In recent years, the design rules of semiconductor devices have been miniaturized due to the increasing demand for higher recording capacities of semiconductor memories. For this reason, the depth of focus becomes shallow in photolithography performed in the manufacturing process of semiconductor devices, and the demand for defect reduction and smoothness of silicon wafers (bare wafers) is becoming more and more strict.

シリコンウェーハの品質を向上する目的で、シリコンウェーハの研磨は多段階で行われている。特に研磨の最終段階で行われる仕上げ研磨は、表面粗さ(ヘイズ)の抑制と研磨後のシリコンウェーハ表面の濡れ性向上(親水化)によるパーティクルやスクラッチ、ピット等の表面欠陥(LPD:Light point defects)の抑制とを目的として行われている。 For the purpose of improving the quality of silicon wafers, polishing of silicon wafers is performed in multiple stages. In particular, finish polishing, which is performed in the final stage of polishing, suppresses surface roughness (haze) and improves the wettability (hydrophilization) of the silicon wafer surface after polishing, resulting in surface defects (LPD: Light point) such as particles, scratches, and pits. It is done for the purpose of suppressing defects).

仕上げ研磨に用いられる研磨液組成物としては、コロイダルシリカ、及びアルカリ化合物を用いた化学的機械研磨用の研磨液組成物が知られている。さらにヘイズレベルを改善することを目的とした研磨液組成物として、コロイダルシリカ、シリコンウェーハ表面の濡れ性向上に寄与するヒドロキシエチルセルロース(HEC)、及びポリエチレンオキサイド(PEO)を含む化学的機械研磨用の研磨液組成物が知られている(特許文献1)。 As the polishing liquid composition used for finish polishing, a polishing liquid composition for chemical mechanical polishing using colloidal silica and an alkaline compound is known. For chemical mechanical polishing containing colloidal silica, hydroxyethyl cellulose (HEC) that contributes to improving the wettability of the silicon wafer surface, and polyethylene oxide (PEO) as a polishing liquid composition for further improving the haze level. Abrasive liquid compositions are known (Patent Document 1).

一方、表面欠陥(LPD)の数を低減することを目的とした研磨液組成物として、シリコンウェーハ表面に親水膜を形成する、水溶性セルロース又はビニルポリマーを含み、ナトリウムイオン及び酢酸イオンのいずれか一方の濃度が10ppb以下の研磨液組成物が知られている(特許文献2)。うねり及び/又はヘイズ改善を目的とした研磨液組成物として、シリコンウェーハ表面の親水化に寄与する、炭素長鎖構造を有し側鎖としてヒドロキシ低級アルコキシ基を有する鎖状炭化水素系高分子(例えば、エチレンオキサイド付加ポリビニルアルコール)を含有する研磨液組成物が知られている(特許文献3)。段差を有する半導体ウェーハの表面の平坦化に使用される研磨液組成物として、段差解消剤としてポリビニルアルコール類を含む研磨液組成物が知られている(特許文献4)。シリコンウェーハ表面に対する吸着性に優れ、ポリビニルアルコールと炭素数1〜7のアルデヒド化合物とのアセタール化反応により得られるポリビニルアセタールを含み、ウェーハ表面の平滑化、結晶欠陥(COP)の抑制に有効な半導体用濡れ剤及び研磨液組成物が知られている(特許文献5)。シリコン基板に対する濡れ性付与特性に優れた第1単量体単位と、砥粒子に対する吸着特性に優れた第2単量体単位とから構成された共重合体として、例えば、PVA-PVPグラフト共重合体を含む研磨液組成物が知られている(特許文献6)。 On the other hand, the polishing liquid composition for the purpose of reducing the number of surface defects (LPD) contains a water-soluble cellulose or vinyl polymer that forms a hydrophilic film on the surface of a silicon wafer, and is either sodium ion or acetate ion. A polishing liquid composition having a concentration of 10 ppb or less is known (Patent Document 2). As a polishing liquid composition for improving waviness and / or haze, a chain hydrocarbon polymer having a long carbon chain structure and a hydroxy lower alkoxy group as a side chain, which contributes to the hydrophilicity of the silicon wafer surface ( For example, a polishing liquid composition containing (ethylene oxide-added polyvinyl alcohol) is known (Patent Document 3). As a polishing liquid composition used for flattening the surface of a semiconductor wafer having a step, a polishing liquid composition containing polyvinyl alcohol as a step eliminating agent is known (Patent Document 4). A semiconductor that has excellent adsorptivity to the surface of a silicon wafer and contains polyvinyl acetal obtained by the acetalization reaction of polyvinyl alcohol and an aldehyde compound having 1 to 7 carbon atoms, and is effective in smoothing the wafer surface and suppressing crystal defects (COP). Wetting agents and polishing liquid compositions for use are known (Patent Document 5). As a copolymer composed of a first monomer unit having excellent wettability-imparting properties for a silicon substrate and a second monomer unit having excellent adsorption properties for abrasive particles, for example, PVA-PVP graft copolymer weight. Abrasive liquid compositions containing coalescing are known (Patent Document 6).

上記の通り、研磨された表面の改善には、被研磨面の濡れ性が大きく影響する。また、シリコン単結晶からなる半導体基板の製造において、研磨されたシリコンウェーハ表面に表面欠陥(LPD)の原因となるごみ等が付着することを防止するために、研磨されたシリコンウェーハの洗浄に使用されるリンス液組成物や、研磨されたシリコンウェーハを次工程の対象とする前に、槽内で一時保管するための浸漬液等についても、シリコンウェーハに対して濡れ性を付与できることを要する。 As described above, the wettability of the surface to be polished has a great influence on the improvement of the polished surface. Further, in the manufacture of a semiconductor substrate made of a silicon single crystal, it is used for cleaning a polished silicon wafer in order to prevent dust and the like that cause surface defects (LPD) from adhering to the surface of the polished silicon wafer. It is also necessary to be able to impart wettability to the silicon wafer with respect to the rinse liquid composition to be processed, the immersion liquid for temporarily storing the polished silicon wafer in the tank before the target of the next step, and the like.

また、シリコンウェーハ表面、チッ化シリコン膜表面、ポリシリコン膜表面のような疎水表面の研磨速度の向上のためには、被研磨面が濡れていることを要する。 Further, in order to improve the polishing rate of a hydrophobic surface such as a silicon wafer surface, a siliconized silicon film surface, or a polysilicon film surface, it is necessary that the surface to be polished is wet.

特開2004―128089号公報Japanese Unexamined Patent Publication No. 2004-128089 特開2008―53414号公報Japanese Unexamined Patent Publication No. 2008-53414 特開平11−140427号公報Japanese Unexamined Patent Publication No. 11-14427 WO2011/093223WO2011 / 093223 特開2015−76494号公報Japanese Unexamined Patent Publication No. 2015-76494 WO2013/137212WO2013 / 137212

上記の通り、半導体の製造過程においては、表面の濡れを担保する工程が、複数存在する。 As described above, in the semiconductor manufacturing process, there are a plurality of steps for ensuring surface wetting.

また、上記特許文献に記載の研磨液組成物を用いて、シリコンウェーハ表面等の疎水表面の研磨をする際、疎水表面の濡れ性を向上させるために当該表面に対する吸着力が強い研磨助剤を用いると、研磨速度が低下するため、表面欠陥(LPD)及び表面粗さ(ヘイズ)の低減と、研磨速度の向上との両立が、良好に行えない。 Further, when polishing a hydrophobic surface such as a silicon wafer surface by using the polishing liquid composition described in the above patent document, a polishing aid having a strong adsorption force to the surface is used in order to improve the wettability of the hydrophobic surface. If it is used, the polishing speed is lowered, so that it is not possible to achieve both reduction of surface defects (LPD) and surface roughness (haze) and improvement of polishing speed.

そこで、本発明では、半導体の製造の種々の工程で好適に使用でき、疎水表面の研磨の際に使用した場合は、表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減と研磨速度の向上との両立が良好に行える、濡れ剤、疎水表面用研磨液組成物、並びに疎水表面用研磨液組成物を用いたシリコンウェーハの研磨方法及び半導体基板の製造方法に関する。 Therefore, in the present invention, it can be suitably used in various steps of semiconductor manufacturing, and when it is used for polishing a hydrophobic surface, the surface roughness (haze) is reduced, the surface defect (LPD) is reduced, and the polishing speed is reduced. The present invention relates to a method for polishing a silicon wafer and a method for manufacturing a semiconductor substrate using a wetting agent, a polishing liquid composition for a hydrophobic surface, and a polishing liquid composition for a hydrophobic surface, which can be well compatible with the improvement of the above.

本発明の濡れ剤は、下記一般式(1)で表される構成単位Iと、下記一般式(2)で表される構成単位IIと、を含む。ただし、下記一般式(2)において、Z1は窒素原子及び酸素原子のうち1つ以上の原子を含む置換基を示す。
The wetting agent of the present invention includes a structural unit I represented by the following general formula (1) and a structural unit II represented by the following general formula (2). However, in the following general formula (2), Z 1 represents a substituent containing one or more of a nitrogen atom and an oxygen atom.

本発明の疎水表面用研磨液組成物は、
研磨粒子(成分A)と、
アンモニア、アミン化合物及びアンモニウム化合物から選ばれる少なくとも1種類以上の含窒素塩基性化合物(成分B)と、
下記一般式(1)で表される構成単位Iと、下記一般式(2)で表される構成単位IIと、を含む高分子化合物(成分C)と、を含有する。
ただし、上記一般式(2)において、Z1は窒素原子及び酸素原子のうち1つ以上の原子を含む置換基を示す。
The polishing liquid composition for a hydrophobic surface of the present invention
Abrasive particles (component A) and
At least one nitrogen-containing basic compound (component B) selected from ammonia, amine compounds and ammonium compounds, and
It contains a polymer compound (component C) containing a structural unit I represented by the following general formula (1) and a structural unit II represented by the following general formula (2).
However, in the above general formula (2), Z 1 represents a substituent containing one or more of a nitrogen atom and an oxygen atom.

本発明のシリコンウェーハの研磨方法は、本発明の疎水表面用研磨液組成物を用いてシリコンウェーハを研磨する工程を含む。 The method for polishing a silicon wafer of the present invention includes a step of polishing a silicon wafer using the polishing liquid composition for a hydrophobic surface of the present invention.

本発明の半導基板の製造方法は、本発明の疎水表面用研磨液組成物を用いてシリコンウェーハを研磨する工程を含む。 The method for producing a semiconducting substrate of the present invention includes a step of polishing a silicon wafer using the polishing liquid composition for a hydrophobic surface of the present invention.

本発明によれば、半導体の種々の製造工程で好適に使用でき、疎水表面の研磨に使用した場合は、表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減と研磨速度の向上との両立が良好に行える、濡れ剤、疎水表面用研磨液組成物、並びに疎水表面用研磨液組成物を用いたシリコンウェーハの研磨方法及び半導体基板の製造方法に関する。 According to the present invention, it can be suitably used in various manufacturing processes of semiconductors, and when it is used for polishing a hydrophobic surface, it can reduce surface roughness (haze), reduce surface defects (LPD), and improve polishing speed. The present invention relates to a method for polishing a silicon wafer and a method for manufacturing a semiconductor substrate using a wetting agent, a polishing liquid composition for a hydrophobic surface, and a polishing liquid composition for a hydrophobic surface, which can satisfactorily achieve both.

本発明では、下記一般式(1)で表される構成単位Iと、下記一般式(2)で表される構成単位IIと、を含む高分子化合物が含まれることにより、疎水表面に濡れ性を付与でき、当該高分子化合物を、疎水表面用研磨液組成物(以下、「研磨液組成物」と略称する場合もある。)の調製に用いた場合は、表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減と研磨速度の向上との両立が良好に行える、という知見に基づく。下記一般式(2)において、Z1は窒素原子及び酸素原子のうち1つ以上の原子を含む置換基を示す。
In the present invention, the hydrophobic surface is wetted by containing a polymer compound containing the structural unit I represented by the following general formula (1) and the structural unit II represented by the following general formula (2). When the polymer compound is used for the preparation of a hydrophobic surface polishing liquid composition (hereinafter, may be abbreviated as "polishing liquid composition"), the surface roughness (haze) is reduced. Based on the finding that it is possible to achieve both reduction of surface defects (LPD) and improvement of polishing speed. In the following general formula (2), Z 1 represents a substituent containing one or more of a nitrogen atom and an oxygen atom.

上記本発明の効果の発現機構の詳細は明らかではないが、出願人は、以下のように推定している。 Although the details of the mechanism for expressing the effects of the present invention are not clear, the applicant presumes as follows.

本発明の濡れ剤及び研磨液組成物に含まれる、上記高分子化合物の構成単位Iが疎水表面に吸着する部位である水酸基を含むので、シリコンウェーハ表面等の疎水表面上に高分子化合物の吸着層を形成して、疎水表面を濡らすことができる。そのため、上記高分子化合物を含む濡れ剤を、研磨液組成物の調製に使用した場合は、上記高分子化合物が疎水表面に適度に吸着して、研磨液組成物に含まれる含窒素塩基性化合物等による腐食を抑制することで、良好な表面粗さ(ヘイズ)を達成するとともに、疎水表面に対して良好な濡れ性を発現し、疎水表面の乾燥によるパーティクルの付着を抑制して低表面欠陥(LPD)を可能とする。また、上記高分子化合物が疎水表面に吸着することによって疎水表面の濡れ性が向上するので、疎水表面の研磨の均一性が向上し、このことによっても表面粗さ(ヘイズ)が低減されているものと推察される。 Since the structural unit I of the polymer compound contained in the wetting agent and the polishing liquid composition of the present invention contains a hydroxyl group which is a site to be adsorbed on the hydrophobic surface, the polymer compound is adsorbed on a hydrophobic surface such as a silicon wafer surface. A layer can be formed to wet the hydrophobic surface. Therefore, when a wetting agent containing the above polymer compound is used for preparing the polishing liquid composition, the above polymer compound is appropriately adsorbed on the hydrophobic surface, and the nitrogen-containing basic compound contained in the polishing liquid composition is used. By suppressing corrosion due to such factors, good surface roughness (haze) is achieved, good wettability is exhibited on the hydrophobic surface, and adhesion of particles due to drying of the hydrophobic surface is suppressed to cause low surface defects. (LPD) is possible. In addition, since the polymer compound is adsorbed on the hydrophobic surface, the wettability of the hydrophobic surface is improved, so that the uniformity of polishing of the hydrophobic surface is improved, which also reduces the surface roughness (haze). It is presumed to be.

また、ポリビニルアルコールをアルキル基を有するアルデヒドで変性したアルキル変性ポリビニルアセタールがシリコンウェーハへの吸着性が高く、平滑化、低欠陥に有効なことは知られていた(特許文献5参照)。しかし、アルキル変性ポリビニルアセタールがシリコンウェーハ表面を過度に保護してしまうために、研磨速度が遅いという課題があった。更に、アルカリ条件ではシリカ粒子とシリコンウェーハの表面電荷はともに負に帯電しており、その電荷反発によってシリカ粒子がシリコンウェーハに接近できず、研磨速度が十分に発現できない。本発明では、上記高分子化合物の構成単位IIが、シリカ粒子に吸着する、窒素原子及び酸素原子のうち1つ以上の原子を含む置換基を含んでいるので、上記高分子化合物を含む濡れ剤を研磨液組成物の調製に使用した場合は、上記高分子化合物が、シリカ粒子と疎水表面とのバインダーとして働く。その結果、高分子化合物(成分C)は、シリコンウェーハの研磨速度の向上に寄与しているものと考えられる。 Further, it has been known that an alkyl-modified polyvinyl acetal in which polyvinyl alcohol is modified with an aldehyde having an alkyl group has high adsorptivity to a silicon wafer and is effective for smoothing and low defects (see Patent Document 5). However, there is a problem that the polishing rate is slow because the alkyl-modified polyvinyl acetal excessively protects the surface of the silicon wafer. Further, under alkaline conditions, both the surface charges of the silica particles and the silicon wafer are negatively charged, and the silica particles cannot approach the silicon wafer due to the charge repulsion, so that the polishing rate cannot be sufficiently developed. In the present invention, since the constituent unit II of the polymer compound contains a substituent containing at least one atom of nitrogen atom and oxygen atom adsorbed on the silica particles, a wetting agent containing the polymer compound. When used in the preparation of the abrasive liquid composition, the above polymer compound acts as a binder between the silica particles and the hydrophobic surface. As a result, it is considered that the polymer compound (component C) contributes to the improvement of the polishing speed of the silicon wafer.

以上のとおり、上記高分子化合物を含む本発明の濡れ剤は、半導体の製造における種々の工程で好適に使用でき、疎水表面の研磨に使用した場合は、表面粗さ(ヘイズ)及び表面欠陥(LPD)の低減と研磨速度の向上との両立が良好に行える。また、本発明では、その理由は明らかではないが、研磨助剤として、上記高分子化合物分を含むことにより、アルキル変性ポリビニルアセタールを含む場合よりも、研磨速度が顕著に速く、表面欠陥(LPD)が顕著に少ない。 As described above, the wetting agent of the present invention containing the above polymer compound can be suitably used in various steps in the production of semiconductors, and when used for polishing a hydrophobic surface, surface roughness (haze) and surface defects (haze) and surface defects ( It is possible to achieve both reduction of LPD) and improvement of polishing speed. Further, in the present invention, although the reason is not clear, by containing the above-mentioned polymer compound as a polishing aid, the polishing rate is remarkably faster than in the case of containing an alkyl-modified polyvinyl acetal, and surface defects (LPD) are present. ) Is significantly less.

(高分子化合物)
本発明の濡れ剤及び研磨液組成物に含まれる高分子化合物は、下記一般式(1)で表される構成単位Iと、下記一般式(2)で表される構成単位IIと、を含む。ただし、下記一般式(2)において、Z1は窒素原子及び酸素原子のうち1つ以上の原子を含む置換基を示す。
(Polymer compound)
The polymer compound contained in the wetting agent and the polishing liquid composition of the present invention contains a structural unit I represented by the following general formula (1) and a structural unit II represented by the following general formula (2). .. However, in the following general formula (2), Z 1 represents a substituent containing one or more of a nitrogen atom and an oxygen atom.

高分子化合物における構成単位Iの供給源は、入手容易性及び高分子化合物の合成の容易性の観点から、ポリビニルアルコールである。 The source of the structural unit I in the polymer compound is polyvinyl alcohol from the viewpoint of availability and easiness of synthesizing the polymer compound.

構成単位IIにおける、Z1は、入手容易性及び高分子化合物の合成の容易性の観点から、好ましくは−Y1NR12、−Y1NHCOR3、−Y1CONHR4又は−(AO)m−Hであり、より好ましくは−Y1NHCOR3である。また、Z1は、濡れ性の向上の観点から、高い親水性を呈するアミド骨格(アミド結合を含む骨格)を含むと好ましく、高分子化合物が研磨液組成物の調製に使用された場合の研磨速度の向上の観点から、窒素原子及び酸素原子の両方を含む置換基であると好ましい。 In the structural unit II, Z 1, from the viewpoint of easy synthesis of the availability and high molecular compounds, preferably -Y 1 NR 1 R 2, -Y 1 NHCOR 3, -Y 1 CONHR 4 or - (AO ) M-H, more preferably -Y 1 NHCOR 3 . Further, from the viewpoint of improving wettability, Z 1 preferably contains an amide skeleton exhibiting high hydrophilicity (a skeleton containing an amide bond), and polishing when a polymer compound is used in the preparation of a polishing solution composition. From the viewpoint of improving the speed, a substituent containing both a nitrogen atom and an oxygen atom is preferable.

前記Y1は、入手容易性及び高分子化合物の合成の容易性の観点から、好ましくは、炭素数1以上4以下のアルキレン基であり、より好ましくは、メチレン基又はエチレン基であり、更に好ましくは、メチレン基である。 From the viewpoint of easy availability and synthesis of a polymer compound, Y 1 is preferably an alkylene group having 1 to 4 carbon atoms, more preferably a methylene group or an ethylene group, and further preferably. Is a methylene group.

前記R1、R2、R3及びR4は、入手容易性及び高分子化合物の合成の容易性の観点から、好ましくは、独立に水素原子又は炭素数1以上4以下のアルキル基であり、より好ましくは、独立に水素原子、メチル基又はエチル基であり、更に好ましくは、水素原子又はメチル基である。 The R 1 , R 2 , R 3 and R 4 are preferably hydrogen atoms or alkyl groups having 1 or more and 4 or less carbon atoms independently from the viewpoint of easy availability and synthesis of polymer compounds. It is more preferably a hydrogen atom, a methyl group or an ethyl group independently, and even more preferably a hydrogen atom or a methyl group.

前記AOは、入手容易性及び高分子化合物の合成の容易性の観点から、好ましくは、炭素数が2以上4以下のオキシアルキレン基であり、より好ましくは、エチレンオキシ基(EO)、プロピレンオキシ基(PO)及びブチレンオキシ基(BO)から成る群から選ばれる少なくとも1種のアルキレンオキシ基であり、更に好ましくは、EO及びPOから選ばれる少なくとも1種のアルキレンオキシ基であり、更により好ましくはEOである。 From the viewpoint of easy availability and synthesis of a polymer compound, the AO is preferably an oxyalkylene group having 2 or more and 4 or less carbon atoms, and more preferably an ethyleneoxy group (EO) or propyleneoxy. It is at least one alkyleneoxy group selected from the group consisting of a group (PO) and a butyleneoxy group (BO), more preferably at least one alkyleneoxy group selected from EO and PO, and even more preferably. Is EO.

AOの平均付加モル数mは、研磨速度向上の観点から、好ましくは1以上、より好ましくは3以上、更に好ましくは5以上であり、そして、同様の観点から、好ましくは100以下、より好ましくは75以下、更に好ましくは50以下である。 The average number of moles of AO added is preferably 1 or more, more preferably 3 or more, still more preferably 5 or more from the viewpoint of improving the polishing rate, and preferably 100 or less, more preferably 5 or more from the same viewpoint. It is 75 or less, more preferably 50 or less.

高分子化合物の全構成単位中における、前記構成単位Iの割合は、高分子化合物が研磨液組成物の調製に使用された場合の研磨速度の向上の観点から、好ましくは0モル%を越え、より好ましくは30モル%以上、更に好ましくは50モル%以上、更により好ましくは70モル%以上であり、そして、表面欠陥(LPD)の低減の観点から、好ましくは、90モル%以下、より好ましくは85モル%以下、更に好ましくは80モル%以下である。 The ratio of the structural unit I in all the structural units of the polymer compound preferably exceeds 0 mol% from the viewpoint of improving the polishing rate when the polymer compound is used for preparing the polishing liquid composition. It is more preferably 30 mol% or more, further preferably 50 mol% or more, even more preferably 70 mol% or more, and preferably 90 mol% or less, more preferably from the viewpoint of reducing surface defects (LPD). Is 85 mol% or less, more preferably 80 mol% or less.

高分子化合物の全構成単位中における、前記構成単位IIの割合は、高分子化合物が研磨液組成物の調製に使用された場合の研磨速度の向上の観点から、好ましくは1モル%以上、より好ましくは5モル%以上、更に好ましくは10モル%以上、更により好ましくは15モル%以上であり、そして、保存安定性の向上、表面粗さ(ヘイズ)及び表面欠陥(LPD)の低減の観点から、好ましくは100モル%未満、より好ましくは70モル%以下、更に好ましくは50モル%以下、更により好ましくは30モル%以下、更により好ましくは20モル%以下である。 The ratio of the structural unit II to all the structural units of the polymer compound is preferably 1 mol% or more, from the viewpoint of improving the polishing rate when the polymer compound is used for preparing the polishing liquid composition. It is preferably 5 mol% or more, more preferably 10 mol% or more, still more preferably 15 mol% or more, and from the viewpoint of improving storage stability, reducing surface roughness (haze) and surface defects (LPD). Therefore, it is preferably less than 100 mol%, more preferably 70 mol% or less, still more preferably 50 mol% or less, still more preferably 30 mol% or less, still more preferably 20 mol% or less.

高分子化合物が、前記構成単位IIのZ1がアミド基を含むアミド変性ポリビニルアセタールである場合、疎水性を呈するアセタール構造と高い親水性を呈するアミド骨格を含むので、構成単位Iに含まれる水酸基と相まって、高分子化合物は高い濡れ性を呈する。アミド変性ポリビニルアセタールにおけるアセタール化率は、高分子化合物が研磨液組成物の調製に使用された場合の研磨速度の向上の観点から、好ましくは1モル%以上、より好ましくは5モル%以上、更に好ましくは10モル%以上、更により好ましくは15モル%以上であり、そして、保存安定性の向上、表面粗さ(ヘイズ)及び表面欠陥(LPD)の低減の観点から、好ましくは、100モル%未満、より好ましくは70モル%以下、更に好ましくは50モル%以下、更により好ましくは30モル%以下、更により好ましくは20モル%以下である。アセタール化率は、1H-NMR(Agilent Technologies社製、400MHz)を用いて、反応剤の導入率を計算し、OH基の消費された割合をアセタール化率とした。 When Z 1 of the structural unit II is an amide-modified polyvinyl acetal containing an amide group, the polymer compound contains an acetal structure exhibiting hydrophobicity and an amide skeleton exhibiting high hydrophilicity, and thus the hydroxyl group contained in the structural unit I. Coupled with this, the polymer compound exhibits high wettability. The acetalization rate of the amide-modified polyvinyl acetal is preferably 1 mol% or more, more preferably 5 mol% or more, and further, from the viewpoint of improving the polishing rate when the polymer compound is used for preparing the polishing liquid composition. It is preferably 10 mol% or more, even more preferably 15 mol% or more, and is preferably 100 mol% from the viewpoint of improving storage stability, reducing surface roughness (haze) and surface defects (LPD). Less than, more preferably 70 mol% or less, still more preferably 50 mol% or less, even more preferably 30 mol% or less, still more preferably 20 mol% or less. For the acetalization rate, the introduction rate of the reactant was calculated using 1H-NMR (manufactured by Agilent Technologies, 400 MHz), and the rate of consumption of OH groups was taken as the acetalization rate.

前記高分子化合物は、高分子化合物が研磨液組成物の調製に使用された場合の研磨速度の向上の観点から、構成単位I及び構成単位II以外に、下記一般式(3)で表される構成単位IIIを含んでいてもよい。
The polymer compound is represented by the following general formula (3) in addition to the structural unit I and the structural unit II from the viewpoint of improving the polishing rate when the polymer compound is used for preparing the polishing liquid composition. It may include building blocks III.

上記一般式(3)において、X1は窒素原子又は酸素原子を示し、nは1以上5以下の数を示す。X1は、入手容易性及び高分子化合物の合成の容易性の観点から、好ましくは窒素原子である。nは、入手容易性及び高分子化合物の合成の容易性の観点から、好ましくは2以上4以下であり、より好ましくは3である。 In the above general formula (3), X 1 represents a nitrogen atom or an oxygen atom, and n represents a number of 1 or more and 5 or less. X 1 is preferably a nitrogen atom from the viewpoint of availability and easiness of synthesizing a polymer compound. From the viewpoint of availability and easiness of synthesizing the polymer compound, n is preferably 2 or more and 4 or less, and more preferably 3.

高分子化合物の全構成単位中における、前記構成単位IIIの割合は、高分子化合物が研磨液組成物の調製に使用された場合の研磨速度の向上の観点から、好ましくは0.01モル%以上、より好ましくは0.05モル%以上、更に好ましくは2モル%以上であり、そして、保存安定性及び表面欠陥(LPD)の低減の観点から、好ましくは90モル%以下、より好ましくは70モル%以下、更に好ましくは60モル%以下、更により好ましくは50モル%以下である。 The ratio of the structural unit III to all the structural units of the polymer compound is preferably 0.01 mol% or more from the viewpoint of improving the polishing rate when the polymer compound is used for preparing the polishing liquid composition. , More preferably 0.05 mol% or more, still more preferably 2 mol% or more, and from the viewpoint of storage stability and reduction of surface defects (LPD), preferably 90 mol% or less, more preferably 70 mol. % Or less, more preferably 60 mol% or less, even more preferably 50 mol% or less.

高分子化合物は、濡れ性が損なわれない範囲で、前記構成単位I〜III以外の構成単位を含んでいてもよい。前記構成単位I〜III以外の構成単位を形成する単量体成分としては、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステル、スチレン、スチレンスルホン酸、ビニルピロリドン、エチルオキサゾリン、ポリエチレングリコールアクリレート、ポリエチレングリコールメタクリレート、アクリルアミド、ジメチルアクリルアミド、ジエチルアクリルアミド、イソプロピルアクリルアミド、ヒドロキシエチルアクリルアミド等が挙げられる。 The polymer compound may contain structural units other than the structural units I to III as long as the wettability is not impaired. Examples of the monomer component forming the structural units other than the structural units I to III include acrylic acid, acrylic acid ester, methacrylic acid, methacrylic acid ester, styrene, styrenesulfonic acid, vinylpyrrolidone, ethyloxazoline, and polyethylene glycol acrylate. Examples thereof include polyethylene glycol methacrylate, acrylamide, dimethylacrylamide, diethylacrylamide, isopropylacrylamide, hydroxyethylacrylamide and the like.

高分子化合物の全構成単位中における、前記構成単位I及び前記構成単位IIの合計の質量割合は、高分子化合物が研磨液組成物の調製に使用された場合の、研磨速度向上と、表面粗さ(ヘイズ)及び表面欠陥(LPD)の低減の両立の観点から、好ましくは10質量%以上、より好ましくは20質量%以上、更により好ましくは30質量%以上、更により好ましくは50質量%以上、更により好ましくは80質量%以上であり、更により好ましくは実質的に100質量%であり、更により好ましくは100質量%である。 The total mass ratio of the structural unit I and the structural unit II in all the structural units of the polymer compound is the improvement of the polishing speed and the surface roughness when the polymer compound is used for the preparation of the polishing liquid composition. From the viewpoint of achieving both reduction of haze and surface defects (LPD), it is preferably 10% by mass or more, more preferably 20% by mass or more, still more preferably 30% by mass or more, still more preferably 50% by mass or more. It is even more preferably 80% by mass or more, even more preferably substantially 100% by mass, and even more preferably 100% by mass.

高分子化合物における各構成単位の配列は、ブロックでもランダムでもよい。 The arrangement of each structural unit in the polymer compound may be block or random.

高分子化合物の重量平均分子量は、高分子化合物が研磨液組成物の調製に使用された場合の研磨速度の向上の観点から、好ましくは1,000以上、より好ましくは10,000以上、更に好ましくは20,000以上、更により好ましくは50,000以上であり、そして、高分子化合物の合成の容易性の観点から、好ましくは500,000以下、より好ましくは200,000以下、更に好ましくは100,000以下である。高分子化合物の重量平均分子量は、例えば、実施例に記載の方法により測定できる。 The weight average molecular weight of the polymer compound is preferably 1,000 or more, more preferably 10,000 or more, still more preferably 10,000 or more, from the viewpoint of improving the polishing rate when the polymer compound is used in the preparation of the polishing liquid composition. Is 20,000 or more, more preferably 50,000 or more, and from the viewpoint of easiness of synthesizing the polymer compound, preferably 500,000 or less, more preferably 200,000 or less, still more preferably 100. It is less than 000. The weight average molecular weight of the polymer compound can be measured, for example, by the method described in Examples.

(高分子化合物の製造方法)
本発明における高分子化合物の一例は、例えば、ポリビニルアルコールとアセトアミド化合物とを酸触媒の存在下で脱水縮合反応させて、ポリビニルアルコールの水酸基の一部をアセタール基に変性させることにより得ることができる。水酸基のアセタール化は、従来公知の方法により行える。
(Manufacturing method of polymer compound)
An example of the polymer compound in the present invention can be obtained, for example, by subjecting polyvinyl alcohol and an acetamide compound to a dehydration condensation reaction in the presence of an acid catalyst to modify a part of the hydroxyl groups of polyvinyl alcohol into acetal groups. .. The hydroxyl group can be acetalized by a conventionally known method.

アセトアミド化合物としては、例えば、N-(2,2-ジメトキシエチル)アセトアミド、N-メチル-N-(2,2-ジメトキシエチル)アセトアミド、N-(4,4-ジメトキシブチル)アセトアミド、N-(3,3-ジメトキシプロピル)アセトアミド、N ,N-ジメトキシアセトアミド、N-メチル-N-(2,2-ジメトキシエチル)-2-アミノアセトアミド、N ,N-ジエチル-2,2-ジメトキシアセトアミド等が挙げられる。アセトアミド化合物は、入手容易性及び高分子化合物の合成の容易性の観点から、好ましくはN-メチル-N-(2,2-ジメトキシエチル)アセトアミド、N-(4,4-ジメトキシブチル)アセトアミドより好ましくはN-(2,2-ジメトキシエチル)アセトアミドである。 Examples of the acetamide compound include N- (2,2-dimethoxyethyl) acetamide, N-methyl-N- (2,2-dimethoxyethyl) acetamide, N- (4,4-dimethoxybutyl) acetamide, and N-( 3,3-Dimethoxypropyl) acetamide, N, N-dimethoxyacetamide, N-methyl-N- (2,2-dimethoxyethyl) -2-aminoacetamide, N, N-diethyl-2,2-dimethoxyacetamide, etc. Can be mentioned. The acetamide compound is preferably more than N-methyl-N- (2,2-dimethoxyethyl) acetamide and N- (4,4-dimethoxybutyl) acetamide from the viewpoint of easy availability and synthesis of polymer compounds. It is preferably N- (2,2-dimethoxyethyl) acetamide.

[濡れ剤]
本発明の濡れ剤は、上記高分子化合物と水系媒体とを含む。本発明の濡れ剤には、高分子化合物の濡れ剤としての機能が損なわれない範囲で、更に、上記高分子化合物以外の水溶性高分子化合物、pH調整剤、防腐剤、アルコール類、キレート剤、アニオン性界面活性剤、及びノニオン性界面活性剤から選ばれる少なくとも1種の任意成分が含まれてもよい。
[Weting agent]
The wetting agent of the present invention contains the above polymer compound and an aqueous medium. The wetting agent of the present invention includes water-soluble polymer compounds other than the above-mentioned polymer compounds, pH adjusters, preservatives, alcohols, chelating agents, as long as the function of the polymer compound as a wetting agent is not impaired. , Anionic surfactants, and at least one optional component selected from nonionic surfactants may be included.

本発明の濡れ剤における上記高分子化合物の含有量は、濡れ性の向上の観点から、好ましくは0.001質量%以上、より好ましくは0.005質量%以上であり、更に好ましくは0.008質量%以上であり、そして、経済性の観点から、好ましくは10質量%以下、より好ましくは5質量%以下であり、更に好ましくは3質量%以下であり、更により好ましくは1質量%以下であり、更により好ましくは0.5質量%以下であり、更により好ましくは0.1質量%以下である。 The content of the polymer compound in the wetting agent of the present invention is preferably 0.001% by mass or more, more preferably 0.005% by mass or more, still more preferably 0.008, from the viewpoint of improving wettability. It is preferably 10% by mass or less, more preferably 5% by mass or less, still more preferably 3% by mass or less, still more preferably 1% by mass or less, from the viewpoint of economic efficiency. Yes, more preferably 0.5% by mass or less, and even more preferably 0.1% by mass or less.

本発明の濡れ剤に含まれる水系媒体としては、イオン交換水や超純水等の水、又は水と溶媒との混合媒体等が挙げられ、上記溶媒としては、水と混合可能な溶媒(例えば、エタノール等のアルコール)が好ましい。水系媒体としては、なかでも、イオン交換水又は超純水がより好ましく、超純水が更に好ましい。水系媒体が、水と溶媒との混合媒体である場合、混合媒体全体に対する水の割合は、特に限定されるわけではないが、経済性の観点から、95質量%以上が好ましく、98質量%以上がより好ましく、実質的に100質量%が更に好ましい。 Examples of the aqueous medium contained in the wetting agent of the present invention include water such as ion-exchanged water and ultrapure water, or a mixed medium of water and a solvent, and examples of the solvent include a solvent that can be mixed with water (for example,). , An alcohol such as ethanol) is preferable. As the aqueous medium, ion-exchanged water or ultrapure water is more preferable, and ultrapure water is even more preferable. When the aqueous medium is a mixed medium of water and a solvent, the ratio of water to the entire mixed medium is not particularly limited, but from the viewpoint of economy, 95% by mass or more is preferable, and 98% by mass or more. Is more preferable, and substantially 100% by mass is further preferable.

本発明の濡れ剤における水系媒体の含有量は、濡れ剤の取り扱いが良ければ特に制限はなく、高分子化合物及び任意成分の残余であってよい。 The content of the aqueous medium in the wetting agent of the present invention is not particularly limited as long as the wetting agent can be handled well, and may be the residue of the polymer compound and any component.

[疎水表面用研磨液組成物]
本発明の研磨液組成物は、シリカ粒子(成分A)と、含窒素塩基性化合物(成分B)と、上記高分子化合物(成分C)と、水系媒体とを含む研磨液組成物であって、シリコンウェーハ表面の研磨に適している。
[Polishing liquid composition for hydrophobic surface]
The polishing liquid composition of the present invention is a polishing liquid composition containing silica particles (component A), a nitrogen-containing basic compound (component B), the above polymer compound (component C), and an aqueous medium. Suitable for polishing the surface of silicon wafers.

[シリカ粒子(成分A)]
本発明の研磨液組成物には、研磨材として、シリカ粒子が含まれる。シリカ粒子の具体例としては、コロイダルシリカ、フュームドシリカ等が挙げられるが、シリコンウェーハの表面平滑性を向上させる観点から、コロイダルシリカがより好ましい。
[Silica particles (component A)]
The polishing liquid composition of the present invention contains silica particles as an abrasive. Specific examples of the silica particles include colloidal silica and fumed silica, but colloidal silica is more preferable from the viewpoint of improving the surface smoothness of the silicon wafer.

シリカ粒子の使用形態としては、操作性の観点からスラリー状が好ましい。本発明の研磨液組成物に含まれる研磨材がコロイダルシリカである場合、アルカリ金属やアルカリ土類金属等によるシリコンウェーハの汚染を防止する観点から、コロイダルシリカは、アルコキシシランの加水分解物から得たものであることが好ましい。アルコキシシランの加水分解物から得られるシリカ粒子は、従来から公知の方法によって作製できる。 As the usage form of the silica particles, a slurry is preferable from the viewpoint of operability. When the abrasive contained in the polishing liquid composition of the present invention is colloidal silica, colloidal silica is obtained from a hydrolyzate of alkoxysilane from the viewpoint of preventing contamination of the silicon wafer by alkali metals, alkaline earth metals and the like. It is preferable that the material is silica. Silica particles obtained from a hydrolyzate of alkoxysilane can be produced by a conventionally known method.

本発明の研磨液組成物に含まれるシリカ粒子の平均一次粒子径は、研磨速度の確保の観点から、10nm以上が好ましく、15nm以上がより好ましく、20nm以上が更に好ましく、そして、研磨速度の確保と、シリコンウェーハの表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減の両立の観点から、40nm以下が好ましく、35nm以下がより好ましく、30nm以下が更に好ましい。 The average primary particle size of the silica particles contained in the polishing liquid composition of the present invention is preferably 10 nm or more, more preferably 15 nm or more, further preferably 20 nm or more, and ensuring the polishing rate from the viewpoint of ensuring the polishing rate. From the viewpoint of achieving both reduction of surface roughness (haze) and reduction of surface defects (LPD) of the silicon wafer, 40 nm or less is preferable, 35 nm or less is more preferable, and 30 nm or less is further preferable.

特に、シリカ粒子としてコロイダルシリカを用いた場合には、平均一次粒子径は、研磨速度の確保の観点から、10nm以上が好ましく、15nm以上がより好ましく、20nm以上が更に好ましく、そして、研磨速度の確保と、シリコンウェーハの表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減の両立の観点から、40nm以下が好ましく、35nm以下がより好ましく、30nm以下が更に好ましい。 In particular, when colloidal silica is used as the silica particles, the average primary particle size is preferably 10 nm or more, more preferably 15 nm or more, further preferably 20 nm or more, and the polishing speed. From the viewpoint of ensuring, reducing the surface roughness (haze) of the silicon wafer, and reducing the surface defects (LPD), 40 nm or less is preferable, 35 nm or less is more preferable, and 30 nm or less is further preferable.

シリカ粒子の平均一次粒子径は、BET(窒素吸着)法によって算出される比表面積S(m2/g)を用いて算出される。比表面積は、例えば、実施例に記載の方法により測定できる。 The average primary particle size of the silica particles is calculated using the specific surface area S (m 2 / g) calculated by the BET (nitrogen adsorption) method. The specific surface area can be measured, for example, by the method described in Examples.

シリカ粒子の会合度は、研磨速度の確保、及び表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減の両立の観点から、3.0以下が好ましく、1.1以上3.0以下がより好ましく、1.8以上2.5以下が更に好ましく、2.0以上2.3以下が更により好ましい。シリカ粒子の形状はいわゆる球型といわゆるマユ型であることが好ましい。シリカ粒子がコロイダルシリカである場合、その会合度は、研磨速度の確保、及びシリコンウェーハの表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減の両立の観点から、3.0以下が好ましく、1.1以上3.0以下がより好ましく、1.8以上2.5以下が更に好ましく、2.0以上2.3以下が更により好ましい。 The degree of association of the silica particles is preferably 3.0 or less, preferably 1.1 or more and 3.0 or less, from the viewpoint of ensuring the polishing rate and achieving both reduction of surface roughness (haze) and reduction of surface defects (LPD). Is more preferable, 1.8 or more and 2.5 or less is further preferable, and 2.0 or more and 2.3 or less is even more preferable. The shape of the silica particles is preferably so-called spherical and so-called eyebrows. When the silica particles are colloidal silica, the degree of association is 3.0 or less from the viewpoint of ensuring the polishing rate, reducing the surface roughness (haze) of the silicon wafer and reducing the surface defects (LPD). Preferably, 1.1 or more and 3.0 or less are more preferable, 1.8 or more and 2.5 or less are further preferable, and 2.0 or more and 2.3 or less are even more preferable.

シリカ粒子の会合度とは、シリカ粒子の形状を表す係数であり、下記式により算出される。平均二次粒子径は、動的光散乱法によって測定される値であり、例えば、実施例に記載の装置を用いて測定できる。
会合度=平均二次粒子径/平均一次粒子径
The degree of association of silica particles is a coefficient representing the shape of silica particles, and is calculated by the following formula. The average secondary particle size is a value measured by a dynamic light scattering method, and can be measured using, for example, the apparatus described in the examples.
Association = average secondary particle size / average primary particle size

シリカ粒子の会合度の調整方法としては、特に限定されないが、例えば、特開平6−254383号公報、特開平11−214338号公報、特開平11−60232号公報、特開2005−060217号公報、特開2005−060219号公報等に記載の方法を採用することができる。 The method for adjusting the degree of association of silica particles is not particularly limited, and for example, JP-A-6-254383, JP-A-11-214338, JP-A-11-60232, JP-A-2005-060217, The method described in Japanese Patent Application Laid-Open No. 2005-060219 can be adopted.

本発明の研磨液組成物に含まれるシリカ粒子の含有量は、研磨速度の確保の観点から、SiO2換算で、0.01質量%以上が好ましく、0.07質量%以上がより好ましく、0.10質量%以上が更に好ましく、そして、表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減の両立の観点から、SiO2換算で、0.5質量%以下が好ましく、0.3質量%以下がより好ましく、0.2質量%以下が更に好ましい。 The content of the silica particles contained in the polishing liquid composition of the present invention is preferably 0.01% by mass or more, more preferably 0.07% by mass or more, and 0, in terms of SiO 2 , from the viewpoint of ensuring the polishing speed. .10% by mass or more is more preferable, and from the viewpoint of achieving both reduction of surface roughness (haze) and reduction of surface defects (LPD), 0.5% by mass or less is preferable in terms of SiO 2 , and 0.3. It is more preferably mass% or less, and further preferably 0.2 mass% or less.

[含窒素塩基性化合物(成分B)]
本発明の研磨液組成物は、研磨液組成物の保存安定性の向上、研磨速度の確保、表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減の両立の観点から、水溶性の塩基性化合物を含有する。水溶性の塩基性化合物としては、アンモニア、アミン化合物及びアンモニウム化合物から選ばれる少なくとも1種類以上の含窒素塩基性化合物である。ここで、「水溶性」とは、水に対して2g/100ml以上の溶解度を有することをいい、「水溶性の塩基性化合物」とは、水に溶解したとき、塩基性を示す化合物をいう。
[Nitrogen-containing basic compound (component B)]
The polishing liquid composition of the present invention is water-soluble from the viewpoint of improving the storage stability of the polishing liquid composition, ensuring the polishing speed, reducing the surface roughness (haze) and reducing the surface defects (LPD). Contains basic compounds. The water-soluble basic compound is at least one kind of nitrogen-containing basic compound selected from ammonia, amine compounds and ammonium compounds. Here, "water-soluble" means having a solubility in water of 2 g / 100 ml or more, and "water-soluble basic compound" means a compound showing basicity when dissolved in water. ..

前記含窒素塩基性化合物としては、例えば、アンモニア、水酸化アンモニウム、炭酸アンモニウム、炭酸水素アンモニウム、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N一メチルエタノールアミン、N−メチル−N,N一ジエタノ−ルアミン、N,N−ジメチルエタノールアミン、N,N−ジエチルエタノールアミン、N,N−ジブチルエタノールアミン、N−(β−アミノエチル)エタノ−ルアミン、モノイソプロパノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、エチレンジアミン、ヘキサメチレンジアミン、ピペラジン・六水和物、無水ピペラジン、1−(2−アミノエチル)ピペラジン、N−メチルピペラジン、ジエチレントリアミン、及び水酸化テトラメチルアンモニウムが挙げられる。これらの含窒素塩基性化合物は2種以上を混合して用いてもよい。本発明の研磨液組成物に含まれ得る含窒素塩基性化合物としては、表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減の両立の観点、研磨液組成物の保存安定性の向上、及び、研磨速度の確保の観点からアンモニアがより好ましい。 Examples of the nitrogen-containing basic compound include ammonia, ammonium hydroxide, ammonium carbonate, ammonium hydrogencarbonate, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, and N-1. Methylethanolamine, N-methyl-N, N monodietanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, N, N-dibutylethanolamine, N- (β-aminoethyl) ethano- Luamine, monoisopropanolamine, diisopropanolamine, triisopropanolamine, ethylenediamine, hexamethylenediamine, piperazine / hexahydrate, piperazine anhydride, 1- (2-aminoethyl) piperazine, N-methylpiperazin, diethylenetriamine, and hydroxide. Tetramethylammonium can be mentioned. Two or more of these nitrogen-containing basic compounds may be mixed and used. As the nitrogen-containing basic compound that can be contained in the polishing liquid composition of the present invention, the storage stability of the polishing liquid composition is improved from the viewpoint of achieving both reduction of surface roughness (haze) and reduction of surface defects (LPD). , And ammonia is more preferable from the viewpoint of ensuring the polishing rate.

本発明の研磨液組成物に含まれる含窒素塩基性化合物の含有量は、表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減の両立の観点から、0.001質量%以上が好ましく、0.005質量%以上がより好ましく、0.007質量%以上が更に好ましく、0.010質量%以上が更により好ましく、0.012質量%以上が更により好ましく、そして、同様の観点から、0.1質量%以下が好ましく、0.05質量%以下がより好ましく、0.025質量%以下が更に好ましく、0.018質量%以下が更により好ましく、0.014質量%以下が更により好ましい。 The content of the nitrogen-containing basic compound contained in the polishing liquid composition of the present invention is preferably 0.001% by mass or more from the viewpoint of achieving both reduction of surface roughness (haze) and reduction of surface defects (LPD). , 0.005% by mass or more is more preferable, 0.007% by mass or more is further preferable, 0.010% by mass or more is further preferable, 0.012% by mass or more is even more preferable, and from the same viewpoint, 0.1% by mass or less is preferable, 0.05% by mass or less is more preferable, 0.025% by mass or less is further preferable, 0.018% by mass or less is further preferable, and 0.014% by mass or less is further preferable. ..

[高分子化合物(成分C)]
本発明の研磨液組成物に含まれる高分子化合物(成分C)の含有量は、表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減の両立の観点から、0.001質量%以上が好ましく、0.002質量%以上がより好ましく、0.004質量%以上が更に好ましく、0.007質量%以上が更により好ましく、そして、同様の観点から、0.1質量%以下が好ましく、0.05質量%以下がより好ましく、0.035質量%以下が更に好ましく、0.030質量%以下が更により好ましい。
[Polymer compound (component C)]
The content of the polymer compound (component C) contained in the polishing liquid composition of the present invention is 0.001% by mass or more from the viewpoint of achieving both reduction of surface roughness (haze) and reduction of surface defects (LPD). Is more preferable, 0.002% by mass or more is more preferable, 0.004% by mass or more is further preferable, 0.007% by mass or more is even more preferable, and from the same viewpoint, 0.1% by mass or less is preferable. It is more preferably 0.05% by mass or less, further preferably 0.035% by mass or less, and even more preferably 0.030% by mass or less.

[水系媒体]
本発明の研磨液組成物に含まれる水系媒体としては、本発明の濡れ剤に含まれる水系媒体と同じものを用いることができる。本発明の研磨液組成物における水系媒体の含有量は、特に限定されるわけではなく、成分A〜C及び後述する任意成分の残余であってよい。
[Aqueous medium]
As the aqueous medium contained in the polishing liquid composition of the present invention, the same aqueous medium contained in the wetting agent of the present invention can be used. The content of the aqueous medium in the polishing liquid composition of the present invention is not particularly limited, and may be the residue of components A to C and any component described later.

本発明の研磨液組成物の25℃におけるpHは、研磨速度の向上、及び表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減の観点から、8.0以上が好ましく、9.0以上がより好ましく、10.0以上が更に好ましく、そして、表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減の両立の観点から、12.0以下が好ましく、11.5以下がより好ましく、11.0以下が更に好ましい。pHの調整は、必要に応じて、含窒素塩基性化合物(成分B)及び/又はpH調整剤を適宜添加して行うことができる。ここで、25℃におけるpHは、pHメータ(東亜電波工業株式会社、HM−30G)を用いて測定でき、電極の研磨液組成物への浸漬後1分後の数値である。 The pH of the polishing liquid composition of the present invention at 25 ° C. is preferably 8.0 or more, preferably 9.0 or more, from the viewpoint of improving the polishing rate, reducing the surface roughness (haze) and reducing the surface defects (LPD). The above is more preferable, 10.0 or more is further preferable, and 12.0 or less is preferable, and 11.5 or less is more preferable from the viewpoint of achieving both reduction of surface roughness (haze) and reduction of surface defects (LPD). It is preferable, and 11.0 or less is more preferable. The pH can be adjusted by appropriately adding a nitrogen-containing basic compound (component B) and / or a pH adjusting agent, if necessary. Here, the pH at 25 ° C. can be measured using a pH meter (Toa Denpa Kogyo Co., Ltd., HM-30G), and is a value 1 minute after the electrode is immersed in the polishing liquid composition.

[任意成分(助剤)]
本発明の研磨液組成物には、本発明の効果が妨げられない範囲で、更に、高分子化合物(成分C)以外の水溶性高分子化合物(成分D)、pH調整剤、防腐剤、アルコール類、キレート剤、アニオン性界面活性剤、及びノニオン性界面活性剤から選ばれる少なくとも1種の任意成分が含まれてもよい。
[Arbitrary ingredient (auxiliary agent)]
The polishing liquid composition of the present invention includes a water-soluble polymer compound (component D) other than the polymer compound (component C), a pH adjuster, a preservative, and an alcohol, as long as the effects of the present invention are not impaired. At least one optional component selected from the class, chelating agent, anionic surfactant, and nonionic surfactant may be contained.

[水溶性高分子化合物(成分D)]
本発明の研磨液組成物には、シリコンウェーハの表面欠陥の低減の観点から、更に高分子化合物(成分C)以外の水溶性高分子化合物(成分D)を含有してもよい。この水溶性高分子化合物(成分D)は、親水基を有する高分子化合物であり、水溶性高分子化合物(成分D)の重量平均分子量は、研磨速度の確保、シリコンウェーハの表面欠陥の低減の観点から、10,000以上が好ましく、100,000以上がより好ましい。上記成分Eを構成する供給源である単量体としては、例えば、アミド基、水酸基、カルボキシル基、カルボン酸エステル基、スルホン酸基等の水溶性基を有する単量体が挙げられる。このような水溶性高分子化合物(成分D)としては、ポリアミド、ポリ(N−アシルアルキレンイミン)、セルロース誘導体、ポリビニルアルコール、ポリエチレンオキサイド等が例示できる。ポリアミドとしては、ポリビニルピロリドン、ポリアクリルアミド、ポリオキサゾリン、ポリジメチルアクリルアミド、ポリジエチルアクリルアミド、ポリイソプロピルアクリルアミド、ポリヒドロキシエチルアクリルアミド等が挙げられる。ポリ(N−アシルアルキレンイミン)としては、ポリ(N−アセチルエチレンイミン)、ポリ(N−プロピオニルエチレンイミン)、ポリ(N−カプロイルエチレンイミン)、ポリ(N−ベンゾイルエチレンイミン)、ポリ(N−ノナデゾイルエチレンイミン)、ポリ(N−アセチルプロピレンイミン)、ポリ(N−ブチオニルエチレンイミン)等があげられる。セルロース誘導体としては、カルボキシメチルセルロ−ス、ヒドロキシエチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシエチルエチルセルロース、及びカルボキシメチルエチルセルロース等が挙げられる。これらの水溶性高分子化合物は任意の割合で2種以上を混合して用いてもよい。
[Water-soluble polymer compound (component D)]
From the viewpoint of reducing surface defects of the silicon wafer, the polishing liquid composition of the present invention may further contain a water-soluble polymer compound (component D) other than the polymer compound (component C). This water-soluble polymer compound (component D) is a polymer compound having a hydrophilic group, and the weight average molecular weight of the water-soluble polymer compound (component D) is such that the polishing rate is secured and the surface defects of the silicon wafer are reduced. From the viewpoint, 10,000 or more is preferable, and 100,000 or more is more preferable. Examples of the monomer as a supply source constituting the component E include a monomer having a water-soluble group such as an amide group, a hydroxyl group, a carboxyl group, a carboxylic acid ester group, and a sulfonic acid group. Examples of such a water-soluble polymer compound (component D) include polyamide, poly (N-acylalkyleneimine), cellulose derivative, polyvinyl alcohol, polyethylene oxide and the like. Examples of the polyamide include polyvinylpyrrolidone, polyacrylamide, polyoxazoline, polydimethylacrylamide, polydiethylacrylamide, polyisopropylacrylamide, polyhydroxyethylacrylamide and the like. Examples of poly (N-acylalkyleneimine) include poly (N-acetylethyleneimine), poly (N-propionylethyleneimine), poly (N-caproylethyleneimine), poly (N-benzoylethyleneimine), and poly (N-benzoylethyleneimine). N-nonadezoylethyleneimine), poly (N-acetylpropyleneimine), poly (N-butionylethyleneimine) and the like can be mentioned. Examples of the cellulose derivative include carboxymethyl cellulose, hydroxyethyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, ethyl cellulose, hydroxyethyl ethyl cellulose, and carboxymethyl ethyl cellulose. Two or more of these water-soluble polymer compounds may be mixed and used at an arbitrary ratio.

[pH調整剤]
pH調整剤としては、酸性化合物等が挙げられる。酸性化合物としては、硫酸、塩酸、硝酸又はリン酸等の無機酸、酢酸、シュウ酸、コハク酸、グリコール酸、リンゴ酸、クエン酸又は安息香酸等の有機酸等が挙げられる。
[pH regulator]
Examples of the pH adjuster include acidic compounds. Examples of the acidic compound include inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid and phosphoric acid, and organic acids such as acetic acid, oxalic acid, succinic acid, glycolic acid, malic acid, citric acid and benzoic acid.

[防腐剤]
防腐剤としては、ベンザルコニウムクロライド、ベンゼトニウムクロライド、1,2−ベンズイソチアゾリン−3−オン、(5−クロロ−)2−メチル−4−イソチアゾリン−3−オン、過酸化水素、又は次亜塩素酸塩等が挙げられる。
[Preservative]
Preservatives include benzalkonium chloride, benzethonium chloride, 1,2-benzisothiazolin-3-one, (5-chloro-) 2-methyl-4-isothiazolin-3-one, hydrogen peroxide, or hypochlorite. Examples thereof include acid salts.

[アルコール類]
アルコール類としては、メタノール、エタノール、プロパノール、ブタノール、イソプロピルアルコール、2−メチル−2−プロパノオール、エチレングリコール、プロピレングリコール、ポリエチレングリコール、グリセリン等が挙げられる。本発明の研磨液組成物におけるアルコール類の含有量は、0.1質量%〜5質量%が好ましい。
[Alcohol]
Examples of alcohols include methanol, ethanol, propanol, butanol, isopropyl alcohol, 2-methyl-2-propanol, ethylene glycol, propylene glycol, polyethylene glycol, glycerin and the like. The content of alcohols in the polishing liquid composition of the present invention is preferably 0.1% by mass to 5% by mass.

[キレート剤]
キレート剤としては、エチレンジアミン四酢酸、エチレンジアミン四酢酸ナトリウム、ニトリロ三酢酸、ニトリロ三酢酸ナトリウム、ニトリロ三酢酸アンモニウム、ヒドロキシエチルエチレンジアミン三酢酸、ヒドロキシエチルエチレンジアミン三酢酸ナトリウム、トリエチレンテトラミン六酢酸、トリエチレンテトラミン六酢酸ナトリウム等が挙げられる。本発明の研磨液組成物におけるキレート剤の含有量は、0.01質量%〜1質量%が好ましい。
[Chelating agent]
Chelating agents include ethylenediaminetetraacetic acid, sodium ethylenediaminetetraacetate, nitrilotriacetic acid, sodium nitrilotriacetate, ammonium nitrilotriacetate, hydroxyethylethylenediaminetriacetic acid, sodium hydroxyethylethylenediaminetriacetate, triethylenetetramine hexaacetic acid, triethylenetetramine. Examples include sodium hexaacetate. The content of the chelating agent in the polishing liquid composition of the present invention is preferably 0.01% by mass to 1% by mass.

[アニオン性界面活性剤]
アニオン性界面活性剤としては、例えば、脂肪酸石鹸、アルキルエーテルカルボン酸塩等のカルボン酸塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩等のスルホン酸塩、高級アルコール硫酸エステル塩、アルキルエーテル硫酸塩等の硫酸エステル塩、アルキルリン酸エステル等のリン酸エステル塩などが挙げられる。
[Anionic surfactant]
Examples of the anionic surfactant include fatty acid soaps, carboxylates such as alkyl ether carboxylates, sulfonates such as alkylbenzene sulfonates and alkylnaphthalene sulfonates, higher alcohol sulfates, and alkyl ether sulfates. Sulfate salts such as, and phosphoric acid ester salts such as alkyl phosphates can be mentioned.

[非イオン性界面活性剤]
非イオン性界面活性剤としては、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビット脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシアルキレン(硬化)ヒマシ油等のポリエチレングリコール型と、ショ糖脂肪酸エステル、ポリグリセリンアルキルエーテル、ポリグリセリン脂肪酸エステル、アルキルグリコシド等の多価アルコール型及び脂肪酸アルカノールアミド等が挙げられる。
[Nonionic surfactant]
Examples of nonionic surfactants include polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbit fatty acid ester, polyoxyethylene glycerin fatty acid ester, polyoxyethylene fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, and poly. Examples thereof include polyethylene glycol type such as oxyalkylene (hardened) castor oil, polyhydric alcohol type such as sucrose fatty acid ester, polyglycerin alkyl ether, polyglycerin fatty acid ester and alkyl glycoside, and fatty acid alkanolamide.

尚、上記において説明した各成分の含有量は、使用時における含有量であるが、本発明の研磨液組成物は、その保存安定性が損なわれない範囲で濃縮された状態で保存及び供給されてもよい。この場合、製造及び輸送コストを更に低くできる点で好ましい。濃縮液は、必要に応じて前述の水系媒体で適宜希釈して使用すればよい。濃縮倍率としては、希釈した後の研磨時の濃度を確保できれば、特に限定するものではないが、製造及び輸送コストを更に低くできる観点から、2倍以上が好ましく、10倍以上がより好ましく、20倍以上が更に好ましく、30倍以上が更により好ましく、また、100倍以下が好ましく、80倍以下がより好ましく、60倍以下が更に好ましく、50倍以下が更により好ましい。 The content of each component described above is the content at the time of use, but the polishing liquid composition of the present invention is stored and supplied in a concentrated state within a range in which the storage stability is not impaired. You may. In this case, it is preferable in that the manufacturing and transportation costs can be further reduced. The concentrated solution may be used by appropriately diluting it with the above-mentioned aqueous medium, if necessary. The concentration ratio is not particularly limited as long as the concentration at the time of polishing after dilution can be secured, but from the viewpoint of further reducing the production and transportation costs, 2 times or more is preferable, 10 times or more is more preferable, and 20 times or more is preferable. More than twice, more preferably 30 times or more, still more preferably 100 times or less, more preferably 80 times or less, even more preferably 60 times or less, even more preferably 50 times or less.

本発明の研磨液組成物が上記濃縮液である場合、濃縮液におけるシリカ粒子(成分A)の含有量は、製造及び輸送コストを低くする観点から、SiO2換算で、2質量%以上が好ましく、4質量%以上がより好ましく、6質量%以上が更に好ましく、そして、保存安定性を向上させる観点から、SiO2換算で、40質量%以下が好ましく、35質量%以下がより好ましく、20質量%以下が更に好ましく、15質量%以下が更により好ましく、9質量%以下が更により好ましい。 When the polishing liquid composition of the present invention is the concentrated liquid, the content of silica particles (component A) in the concentrated liquid is preferably 2% by mass or more in terms of SiO 2 from the viewpoint of reducing production and transportation costs. 4, 4% by mass or more is more preferable, 6% by mass or more is further preferable, and from the viewpoint of improving storage stability, 40% by mass or less is preferable, 35% by mass or less is more preferable, and 20% by mass is obtained in terms of SiO 2. % Or less is even more preferable, 15% by mass or less is even more preferable, and 9% by mass or less is even more preferable.

本発明の研磨液組成物が上記濃縮液である場合、濃縮液における含窒素塩基性化合物(成分B)の含有量は、製造及び輸送コストを低くする観点から、0.02質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が更に好ましく、そして、保存安定性の向上の観点から、5質量%以下が好ましく、2質量%以下がより好ましく、1質量%以下が更に好ましい。 When the polishing liquid composition of the present invention is the concentrated liquid, the content of the nitrogen-containing basic compound (component B) in the concentrated liquid is preferably 0.02% by mass or more from the viewpoint of reducing the production and transportation costs. , 0.05% by mass or more, more preferably 0.1% by mass or more, and from the viewpoint of improving storage stability, 5% by mass or less is preferable, 2% by mass or less is more preferable, and 1% by mass is used. The following is more preferable.

本発明の研磨液組成物が上記濃縮液である場合、濃縮液における高分子化合物(成分C)の含有量は、製造及び輸送コストを低くする観点から、0.005質量%以上が好ましく、0.01質量%以上がより好ましく、0.02質量%以上が更に好ましく、0.05質量%以上が更により好ましく、0.1質量%以上が更により好ましく、そして、保存安定性の向上の観点から、5質量%以下が好ましく、3質量%以下がより好ましく、2質量%以下が更に好ましく、1.5質量%以下が更により好ましい。 When the polishing liquid composition of the present invention is the concentrated liquid, the content of the polymer compound (component C) in the concentrated liquid is preferably 0.005% by mass or more, preferably 0, from the viewpoint of reducing the production and transportation costs. 0.01% by mass or more is more preferable, 0.02% by mass or more is further preferable, 0.05% by mass or more is further preferable, 0.1% by mass or more is even more preferable, and from the viewpoint of improving storage stability. Therefore, 5% by mass or less is preferable, 3% by mass or less is more preferable, 2% by mass or less is further preferable, and 1.5% by mass or less is even more preferable.

本発明の研磨液組成物が上記濃縮液である場合、上記濃縮液の25℃におけるpHは、8.0以上が好ましく、9.0以上がより好ましく、9.5以上が更に好しく、そして、12.0以下が好ましく、11.5以下がより好ましく、11.0以下が更に好ましい。 When the polishing liquid composition of the present invention is the concentrated liquid, the pH of the concentrated liquid at 25 ° C. is preferably 8.0 or more, more preferably 9.0 or more, still more preferably 9.5 or more, and 12.0 or less is preferable, 11.5 or less is more preferable, and 11.0 or less is further preferable.

次に、本発明の研磨液組成物の製造方法の一例について説明する。 Next, an example of the method for producing the polishing liquid composition of the present invention will be described.

本発明の研磨液組成物の製造方法の一例は、何ら制限されず、例えば、シリカ粒子(成分A)と、含窒素塩基性化合物(成分B)と、高分子化合物(成分C)と、水系媒体と、必要に応じて任意成分とを混合することによって調製できる。 An example of the method for producing the polishing liquid composition of the present invention is not limited in any way, and for example, silica particles (component A), a nitrogen-containing basic compound (component B), a polymer compound (component C), and an aqueous system are used. It can be prepared by mixing the medium with any component, if necessary.

シリカ粒子の水系媒体への分散は、例えば、ホモミキサー、ホモジナイザー、超音波分散機、湿式ボールミル、又はビーズミル等の撹拌機等を用いて行うことができる。シリカ粒子の凝集等により生じた粗大粒子が水系媒体中に含まれる場合、遠心分離やフィルターを用いたろ過等により、当該粗大粒子を除去すると好ましい。シリカ粒子の水系媒体への分散は、高分子化合物(成分C)の存在下で行うと好ましい。具体的には、高分子化合物(成分C)と水系媒体とを含む濡れ剤を調製した後、当該濡れ剤とシリカ粒子とを混合し、次いで、必要に応じて、濡れ剤とシリカ粒子の混合物を水系媒体で希釈すると好ましい。 Dispersion of silica particles in an aqueous medium can be performed using, for example, a stirrer such as a homomixer, a homogenizer, an ultrasonic disperser, a wet ball mill, or a bead mill. When coarse particles generated by aggregation of silica particles are contained in an aqueous medium, it is preferable to remove the coarse particles by centrifugation, filtration using a filter, or the like. The dispersion of the silica particles in the aqueous medium is preferably performed in the presence of the polymer compound (component C). Specifically, after preparing a wetting agent containing a polymer compound (component C) and an aqueous medium, the wetting agent and silica particles are mixed, and then, if necessary, a mixture of the wetting agent and silica particles. Is preferably diluted with an aqueous medium.

本発明の研磨液組成物は、例えば、半導体基板の製造過程における、シリコンウェーハを研磨する研磨工程や、シリコンウェーハを研磨する研磨工程を含むシリコンウェーハの研磨方法に用いられる。 The polishing liquid composition of the present invention is used, for example, in a silicon wafer polishing method including a polishing step of polishing a silicon wafer and a polishing step of polishing a silicon wafer in a process of manufacturing a semiconductor substrate.

前記シリコンウェーハを研磨する研磨工程には、シリコン単結晶インゴットを薄円板状にスライスすることにより得られたシリコンウェーハを平面化するラッピング(粗研磨)工程と、ラッピングされたシリコンウェーハをエッチングした後、シリコンウェーハ表面を鏡面化する仕上げ研磨工程とがある。本発明の研磨液組成物は、上記仕上げ研磨工程で用いられるとより好ましい。 In the polishing step of polishing the silicon wafer, a wrapping (coarse polishing) step of flattening the silicon wafer obtained by slicing a silicon single crystal ingot into a thin disk shape and an etching of the wrapped silicon wafer. After that, there is a finish polishing step of mirroring the surface of the silicon wafer. The polishing liquid composition of the present invention is more preferably used in the above-mentioned finish polishing step.

前記半導体基板の製造方法や前記シリコンウェーハの研磨方法では、シリコンウェーハを研磨する研磨工程の前に、本発明の研磨液組成物(濃縮液)を希釈する希釈工程を含んでいてもよい。希釈媒には、前記水系媒体を用いればよい。 The method for manufacturing a semiconductor substrate and the method for polishing a silicon wafer may include a diluting step for diluting the polishing liquid composition (concentrated liquid) of the present invention before the polishing step for polishing the silicon wafer. The aqueous medium may be used as the dilution medium.

前記希釈工程で希釈される濃縮液は、製造及び輸送コスト低減、保存安定性の向上の観点から、例えば、成分Aを2〜40質量%、成分Bを0.02〜5質量%、成分Cを0.005〜5質量%含んでいると好ましい。 The concentrate diluted in the dilution step contains, for example, 2 to 40% by mass of component A, 0.02 to 5% by mass of component B, and 0.02 to 5% by mass of component C from the viewpoints of reducing manufacturing and transportation costs and improving storage stability. Is preferably contained in an amount of 0.005 to 5% by mass.

下記の実施例1〜4及び比較例1〜5で用いた表1中の高分子化合物a〜iの合成方法等は下記のとおりである。 The methods for synthesizing the polymer compounds a to i in Table 1 used in Examples 1 to 4 and Comparative Examples 1 to 5 below are as follows.

(1)高分子化合物の合成方法等
(1−1)N-(2,2-ジメトキシエチル)アセトアミドの合成
表1に記載のアミド変性ポリビニルアセタールの合成に使用したN-(2,2-ジメトキシエチル)アセトアミドの合成は、下記の通り行った。
窒素置換を行った反応器中で、テトラヒドロフラン(250g)に溶解した2,2-ジメトキシエチルアミン(15.7g)に無水酢酸(18.3g)とトリエチルアミン(18.2g)を加えて室温下で2時間撹拌を行った。反応終了後、エバポレーションで部分的に揮発させた後、飽和炭酸水素ナトリウム水溶液で中和した。次いで、油層と水層とに分離し、水層からジクロロメタンで油分を3回抽出した。続いて、抽出により得た油分と油層とを混合し、それを飽和食塩水で洗浄した。そして、無水硫酸ナトリウムで水を除去した後、濾過、乾燥によってオイル状のN-(2,2-ジメトキシエチル)アセトアミド18.0gを得た。
(1) Method for synthesizing polymer compounds, etc. (1-1) Synthesis of N- (2,2-dimethoxyethyl) acetamide N- (2,2-dimethoxy) used for the synthesis of the amide-modified polyvinyl acetal shown in Table 1. The synthesis of ethyl) acetamide was carried out as follows.
In a nitrogen-substituted reactor, acetic anhydride (18.3 g) and triethylamine (18.2 g) were added to 2,2-dimethoxyethylamine (15.7 g) dissolved in tetrahydrofuran (250 g), and the mixture was stirred at room temperature for 2 hours. went. After completion of the reaction, the mixture was partially volatilized by evaporation and then neutralized with saturated aqueous sodium hydrogen carbonate solution. Then, it was separated into an oil layer and an aqueous layer, and the oil content was extracted from the aqueous layer with dichloromethane three times. Subsequently, the oil content obtained by extraction and the oil layer were mixed, and the oil layer was washed with saturated brine. Then, after removing water with anhydrous sodium sulfate, 18.0 g of oily N- (2,2-dimethoxyethyl) acetamide was obtained by filtration and drying.

(1−2)高分子化合物aの合成
クラレポバールPVA-117(けん化度98-99%、重量平均分子量7万)10.0gを熱水90.0gに溶解した後、室温まで冷却した。得られたPVA溶液に、N-(2,2-ジメトキシエチル)アセトアミド3.68gと濃塩酸10.0gを添加し、室温下で24時間撹拌した。続いて、5質量%水酸化ナトリウム水溶液でpH7に中和した。得られた反応液を透析膜(スペクトラポア7 RC透析チューブ分画分子量1,000、Spectrum Laboratories Inc.製)で限外濾過した。濾過処理された反応液を凍結乾燥して、白色固体(アミド変性ポリビニルアセタール、重量平均分子量7万、アセタール化率11%)10.3gを得た。1H−NMRによって、11mol%のOH基がアセタール基に変性していることを確認した。尚、一般式(2)中、Z1は、−Y1NR12であり、Y1、はメチレン基、R1及びR2はともにメチル基である。
(1-2) Synthesis of Polymer Compound a 10.0 g of Kuraray Poval PVA-117 (saponification degree 98-99%, weight average molecular weight 70,000) was dissolved in 90.0 g of hot water and then cooled to room temperature. To the obtained PVA solution, 3.68 g of N- (2,2-dimethoxyethyl) acetamide and 10.0 g of concentrated hydrochloric acid were added, and the mixture was stirred at room temperature for 24 hours. Subsequently, it was neutralized to pH 7 with a 5 mass% sodium hydroxide aqueous solution. The obtained reaction solution was ultrafiltered through a dialysis membrane (Spectrapore 7 RC dialysis tube fractional molecular weight 1,000, manufactured by Spectrum Laboratories Inc.). The filtered reaction solution was freeze-dried to obtain 10.3 g of a white solid (amide-modified polyvinyl acetal, weight average molecular weight 70,000, acetalization rate 11%). By 1H-NMR, it was confirmed that 11 mol% of OH groups were denatured into acetal groups. In the general formula (2), Z1 is −Y 1 NR 1 R 2 , Y 1 is a methylene group, and R 1 and R 2 are both methyl groups.

(1−3)高分子化合物bの合成
N-(2,2-ジメトキシエチル)アセトアミドの添加量を4.68gとしたこと以外は高分子化合物aの合成方法と同様の方法で白色固体(アミド変性ポリビニルアセタール、重量平均分子量7万、アセタール化率17%)10.7gを得た。1H−NMRによって、17mol%のOH基がアセタール基に変性していることを確認した。
(1-3) Synthesis of polymer compound b
White solid (amide-modified polyvinyl acetal, weight average molecular weight 70,000, acetalization) by the same method as the method for synthesizing the polymer compound a except that the amount of N- (2,2-dimethoxyethyl) acetamide added was 4.68 g. Rate 17%) 10.7 g was obtained. By 1H-NMR, it was confirmed that 17 mol% of OH groups were denatured into acetal groups.

(1−4)高分子化合物cの合成
N-(2,2-ジメトキシエチル)アセトアミドの添加量を6.69gとしたこと以外は高分子化合物aの合成方法と同様の方法で,白色固体(アミド変性ポリビニルアセタール、重量平均分子量7万、アセタール化率23%)12.0gを得た。1H−NMRによって、23mol%のOH基がアセタール基に変性していることを確認した。
(1-4) Synthesis of polymer compound c
White solid (amide-modified polyvinyl acetal, weight average molecular weight 70,000, acetal) by the same method as the method for synthesizing the polymer compound a except that the amount of N- (2,2-dimethoxyethyl) acetamide added was 6.69 g. Conversion rate 23%) 12.0 g was obtained. By 1H-NMR, it was confirmed that 23 mol% of OH groups were denatured into acetal groups.

(1−5)高分子化合物dの合成
クラレポバールPVA-117の代わりに、クラレポバールPVA-105(けん化度98-99%、重量平均分子量2万)を使用したこと以外は、高分子化合物bの合成方法と同様の方法で白色固体(アミド変性ポリビニルアセタール、重量平均分子量2万、アセタール化率17%)10.5gを得た。1H−NMRによって、17mol%のOH基がアセタール基に変性していることを確認した。
(1-5) Synthesis of polymer compound d Polymer compound b, except that Clarepovar PVA-105 (saponification degree 98-99%, weight average molecular weight 20,000) was used instead of Clarepovar PVA-117. 10.5 g of a white solid (amide-modified polyvinyl acetal, weight average molecular weight 20,000, acetalization rate 17%) was obtained by the same method as the synthesis method of. By 1H-NMR, it was confirmed that 17 mol% of OH groups were denatured into acetal groups.

(1−6)高分子化合物e
高分子化合物eとして,クラレポバールPVA-105(PVA、けん化度98-99%、重量平均分子量2万、アセタール化率0%)を用いた。
(1-6) Polymer compound e
As the polymer compound e, Kuraray Povar PVA-105 (PVA, saponification degree 98-99%, weight average molecular weight 20,000, acetalization rate 0%) was used.

(1−7)高分子化合物f
ポリ(1-ビニルピロリドン-co-ビニルアセテート)(シグマアルドリッチ#190845)20.0gをメタノール180gに溶解させ、更にNaOH 2.00gを添加し、40℃で6時間撹拌を保持した。得られた反応液を乾燥してメタノールを除去した後、透析膜(スペクトラポア7 RC透析チューブ分画分子量1,000、Spectrum Laboratories Inc.製)で限外濾過した。濾過処理された反応液を凍結乾燥して、白色固体(PVA―co―PVA、重量平均分子量5万)15.2gを得た。
(1-7) Polymer compound f
20.0 g of poly (1-vinylpyrrolidone-co-vinyl acetate) (Sigma-Aldrich # 190845) was dissolved in 180 g of methanol, 2.00 g of NaOH was further added, and stirring was maintained at 40 ° C. for 6 hours. The obtained reaction solution was dried to remove methanol, and then ultrafiltered with a dialysis membrane (Spectrapore 7 RC dialysis tube fractional molecular weight 1,000, manufactured by Spectrum Laboratories Inc.). The filtered reaction solution was freeze-dried to obtain 15.2 g of a white solid (PVA-co-PVA, weight average molecular weight of 50,000).

(1−8)高分子化合物g
高分子化合物gとして、エチレンオキサイド付加ポリビニルアルコール(EO変性PVA、商品名:エコマティ320R、重量平均分子量7万、日本合成化学工業社製)を用いた。
(1-8) Polymer compound g
As the polymer compound g, ethylene oxide-added polyvinyl alcohol (EO-modified PVA, trade name: Ekomati 320R, weight average molecular weight 70,000, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) was used.

(1−9)高分子化合物h
特開2015-076494(特願2013-211489)の製造例2に記載の方法にてアルキル変性ポリビニルアセタールを合成し、高分子化合物hとした。1H−NMRによって、OH基の28mol%がアルキル基を有するアセタール基に変化している事が判った。また、重量平均分子量は3万であった。
(1-9) Polymer compound h
An alkyl-modified polyvinyl acetal was synthesized by the method described in Production Example 2 of JP-A-2015-076494 (Japanese Patent Application No. 2013-211489) to obtain a polymer compound h. By 1H-NMR, it was found that 28 mol% of the OH groups were changed to acetal groups having alkyl groups. The weight average molecular weight was 30,000.

(1−10)高分子化合物i
特開2009-147267に準じて、PVA−PVPグラフト共重合体を合成した。PVAにはクラレポバールPVA-105(PVA、けん化度98-99%、重量平均分子量2万)を使用し、N-ビニル-2-ピロリドンは43wt%(対PVA)使用した。その結果、高分子化合物iとして、PVA−PVPグラフト共重合体(重量平均分子量5万)を得た。
(1-10) Polymer compound i
A PVA-PVP graft copolymer was synthesized according to JP-A-2009-147267. Kuraray Povar PVA-105 (PVA, saponification degree 98-99%, weight average molecular weight 20,000) was used for PVA, and 43 wt% (vs. PVA) of N-vinyl-2-pyrrolidone was used. As a result, a PVA-PVP graft copolymer (weight average molecular weight of 50,000) was obtained as the polymer compound i.

(2)各種パラメーターの測定方法
(2−1)高分子化合物の重量平均分子量の測定
表1に記載の高分子化合物の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法を下記の条件で適用して得たクロマトグラム中のピークに基づき算出した。尚、高分子化合物eの重量平均分子量についてはカタログ値である。
〈測定条件〉
装置:HLC-8320 GPC(東ソー株式会社、検出器一体型)
カラム:GMPWXL+GMPWXL(アニオン)
溶離液:0.2Mリン酸バッファー/CH3CN=9/1
流量:0.5ml/min
カラム温度:40℃
検出器:RI 検出器
標準物質:ポリエチレングリコール
(2) Measurement method of various parameters (2-1) Measurement of weight average molecular weight of polymer compound The weight average molecular weight of the polymer compound shown in Table 1 is determined by gel permeation chromatography (GPC) method under the following conditions. Calculated based on the peaks in the chromatogram obtained by application. The weight average molecular weight of the polymer compound e is a catalog value.
<Measurement condition>
Equipment: HLC-8320 GPC (Tosoh Corporation, integrated detector)
Column: GMPWXL + GMPWXL (anion)
Eluent: 0.2M phosphate buffer / CH 3 CN = 9/1
Flow rate: 0.5 ml / min
Column temperature: 40 ° C
Detector: RI Detector Standard Material: Polyethylene Glycol

(2−2)シリカ粒子の平均一次粒子径
シリカ粒子の平均一次粒子径(nm)は、BET(窒素吸着)法によって算出される比表面積S(m2/g)を用いて下記式で算出した。
平均一次粒子径(nm)=2727/S
(2-2) Average primary particle diameter of silica particles The average primary particle diameter (nm) of silica particles is calculated by the following formula using the specific surface area S (m 2 / g) calculated by the BET (nitrogen adsorption) method. did.
Average primary particle size (nm) = 2727 / S

シリカ粒子の比表面積は、下記の[前処理]をした後、測定サンプル約0.1gを測定セルに小数点以下4桁まで精量し、比表面積の測定直前に110℃の雰囲気下で30分間乾燥した後、比表面積測定装置(マイクロメリティック自動比表面積測定装置 フローソーブIII2305、島津製作所製)を用いて窒素吸着法(BET法)により測定した。 For the specific surface area of the silica particles, after performing the following [pretreatment], about 0.1 g of the measurement sample is concentrated in the measurement cell to 4 digits after the decimal point, and immediately before the measurement of the specific surface area, 30 minutes in an atmosphere of 110 ° C. After drying, it was measured by the nitrogen adsorption method (BET method) using a specific surface area measuring device (micromeritic automatic specific surface area measuring device Flowsorb III2305, manufactured by Shimadzu Corporation).

[前処理]
(a)スラリー状のシリカ粒子を硝酸水溶液でpH2.5±0.1に調整する。
(b)pH2.5±0.1に調整されたスラリー状のシリカ粒子をシャーレにとり150℃の熱風乾燥機内で1時間乾燥させる。
(c)乾燥後、得られた試料をメノウ乳鉢で細かく粉砕する。
(d)粉砕された試料を40℃のイオン交換水に懸濁させ、孔径1μmのメンブランフィルターで濾過する。
(e)フィルター上の濾過物を20gのイオン交換水(40℃)で5回洗浄する。
(f)濾過物が付着したフィルターをシャーレにとり、110℃の雰囲気下で4時間乾燥させる。
(g)乾燥した濾過物(砥粒)をフィルター屑が混入しないようにとり、乳鉢で細かく粉砕して測定サンプルを得た。
[Preprocessing]
(A) The slurry-like silica particles are adjusted to pH 2.5 ± 0.1 with an aqueous nitric acid solution.
(B) The slurry-like silica particles adjusted to pH 2.5 ± 0.1 are taken in a petri dish and dried in a hot air dryer at 150 ° C. for 1 hour.
(C) After drying, the obtained sample is finely crushed in an agate mortar.
(D) The pulverized sample is suspended in ion-exchanged water at 40 ° C. and filtered through a membrane filter having a pore size of 1 μm.
(E) The filtrate on the filter is washed 5 times with 20 g of ion-exchanged water (40 ° C.).
(F) Take the filter to which the filter material is attached in a petri dish and dry it in an atmosphere of 110 ° C. for 4 hours.
(G) A dried filter (abrasive grains) was taken so as not to be mixed with filter debris, and finely pulverized in a mortar to obtain a measurement sample.

(2−3)シリカ粒子の平均二次粒子径
シリカ粒子の平均二次粒子径(nm)は、シリカ粒子の濃度が0.25質量%となるようにシリカ粒子をイオン交換水に添加した後、得られた水溶液をDisposable Sizing Cuvette(ポリスチレン製 10mmセル)に下底からの高さ10mmまで入れ、動的光散乱法(装置名:ゼータサイザーNano ZS、シスメックス(株)製)を用いて測定した。
(2-3) Average Secondary Particle Diameter of Silica Particles The average secondary particle diameter (nm) of silica particles is obtained after adding silica particles to ion-exchanged water so that the concentration of silica particles is 0.25% by mass. , The obtained aqueous solution was put into a Disposable Particle Cuvette (10 mm cell made of polystyrene) up to a height of 10 mm from the bottom, and measured using a dynamic light scattering method (device name: Zetasizer Nano ZS, manufactured by Sysmex Co., Ltd.). did.

(3)研磨液組成物の調製
シリカ粒子(コロイダルシリカ、平均一次粒子径35nm、平均二次粒子径70nm、会合度2)、高分子化合物、28質量%アンモニア水(キシダ化学(株)試薬特級)、イオン交換水を攪拌混合して、実施例1〜4、比較例1〜5の研磨液組成物(いずれも濃縮液、pH10.6±0.1(25℃))を得た。尚、表1における各評価は、前記研磨液組成物をイオン交換水で40倍に希釈して得た研磨液組成物を用いた値である。濃縮液を40倍に希釈して得た研磨液組成物(pH10.6±0.1(25℃))における、シリカ粒子、高分子化合物、アンモニアの含有量は、各々、0.17質量%(SiO2換算濃度)、0.01質量%、0.01質量%とした。
(3) Preparation of polishing liquid composition Silica particles (colloidal silica, average primary particle diameter 35 nm, average secondary particle diameter 70 nm, degree of association 2), polymer compound, 28% by mass ammonia water (Kishida Chemical Co., Ltd. reagent special grade) ), Ion-exchanged water was stirred and mixed to obtain polishing solution compositions of Examples 1 to 4 and Comparative Examples 1 to 5 (concentrated solution, pH 10.6 ± 0.1 (25 ° C.)). Each evaluation in Table 1 is a value using the polishing liquid composition obtained by diluting the polishing liquid composition 40 times with ion-exchanged water. The content of silica particles, polymer compound, and ammonia in the polishing liquid composition (pH 10.6 ± 0.1 (25 ° C.)) obtained by diluting the concentrated liquid 40 times is 0.17% by mass (SiO 2 equivalent), respectively. Concentration), 0.01% by mass, and 0.01% by mass.

(4)各種評価方法
(4−1)研磨方法
濃縮液を40倍に希釈して得た研磨液組成物を研磨直前にフィルター(コンパクトカートリッジフィルター MCP−LX−C10S アドバンテック株式会社)にてろ過し、下記の研磨条件で下記のシリコンウェーハ(直径200mmのシリコン片面鏡面ウェーハ(伝導型:P、結晶方位:100、抵抗率0.1Ω・cm以上100Ω・cm未満)に対して仕上げ研磨を行った。当該仕上げ研磨に先立ってシリコンウェーハに対して市販の研磨剤組成物を用いてあらかじめ粗研磨を実施した。粗研磨を終了し仕上げ研磨に供したシリコンウェーハの表面粗さ(ヘイズ)は、2.775(ppm)であった。表面粗さ(ヘイズ)は、KLA Tencor社製のSurfscan SP1(商品名)を用いて測定される暗視野ワイド斜入射チャンネル(DWO)での値である。
(4) Various evaluation methods (4-1) Polishing method The polishing liquid composition obtained by diluting the concentrated liquid 40 times is filtered with a filter (compact cartridge filter MCP-LX-C10S Advantech Co., Ltd.) immediately before polishing. Finish polishing was performed on the following silicon wafers (silicon single-sided mirror wafers with a diameter of 200 mm (conduction type: P, crystal orientation: 100, resistance 0.1Ω ・ cm or more and less than 100Ω ・ cm) under the following polishing conditions. Prior to the finish polishing, the silicon wafer was roughly polished using a commercially available polishing agent composition. The surface roughness (haze) of the silicon wafer after the rough polishing was completed and subjected to the finish polishing was 2.775. It was (ppm). The surface roughness (haze) is a value in the dark field wide oblique incident channel (DWO) measured using Surfscan SP1 (trade name) manufactured by KLA Tencor.

<仕上げ研磨条件>
研磨機:片面8インチ研磨機GRIND-X SPP600s(岡本工作製)
研磨パッド:スエードパッド(東レ コーテックス社製 アスカー硬度64 厚さ 1.37mm ナップ長450um 開口径60um)
シリコンウェーハ研磨圧力:100g/cm2
定盤回転速度:60rpm
研磨時間:5分
研磨剤組成物の供給速度:150ml/cm2
研磨剤組成物の温度:23℃
キャリア回転速度:60rpm
<Finishing conditions>
Polishing machine: Single-sided 8-inch polishing machine GRIND-X SPP600s (manufactured by Okamoto)
Polishing pad: Suede pad (Toray Coatex Asker Hardness 64 Thickness 1.37mm Knap length 450um Opening diameter 60um)
Silicon wafer polishing pressure: 100 g / cm 2
Surface plate rotation speed: 60 rpm
Polishing time: 5 minutes Supply rate of abrasive composition: 150 ml / cm 2
Abrasive composition temperature: 23 ° C
Carrier rotation speed: 60 rpm

仕上げ研磨後、シリコンウェーハに対して、オゾン洗浄と希フッ酸洗浄を下記のとおり行った。オゾン洗浄では、20ppmのオゾンを含んだ水溶液をノズルから流速1L/minで600rpmで回転するシリコンウェーハの中央に向かって3分間噴射した。このときオゾン水の温度は常温とした。次に希フッ酸洗浄を行った。希フッ酸洗浄では、0.5%のフッ化水素アンモニウム(特級:ナカライテクス株式会社)を含んだ水溶液をノズルから流速1L/minで600rpmで回転するシリコンウェーハの中央に向かって6秒間噴射した。上記オゾン洗浄と希フッ酸洗浄を1セットとして計2セット行い、最後にスピン乾燥を行った。スピン乾燥では1500rpmでシリコンウェーハを回転させた。 After finish polishing, the silicon wafer was subjected to ozone cleaning and dilute hydrofluoric acid cleaning as follows. In ozone cleaning, an aqueous solution containing 20 ppm of ozone was sprayed from a nozzle toward the center of a silicon wafer rotating at a flow rate of 1 L / min at 600 rpm for 3 minutes. At this time, the temperature of ozone water was set to room temperature. Next, dilute hydrofluoric acid washing was performed. In dilute hydrofluoric acid cleaning, an aqueous solution containing 0.5% ammonium hydrogen fluoride (special grade: Nacalai Tesque, Inc.) was sprayed from a nozzle toward the center of a silicon wafer rotating at a flow rate of 1 L / min at 600 rpm for 6 seconds. A total of two sets were performed with the above ozone cleaning and dilute hydrofluoric acid cleaning as one set, and finally spin drying was performed. In spin drying, the silicon wafer was rotated at 1500 rpm.

(4−2)研磨速度
研磨前後の各シリコンウェーハの重さを精密天秤(Sartorius社製「BP−210S」)を用いて測定し、得られた重量差をシリコンウェーハの密度、面積および研磨時間で除して、単位時間当たりの片面研磨速度を求めた。
(4-2) Polishing speed The weight of each silicon wafer before and after polishing was measured using a precision balance (“BP-210S” manufactured by Sartorius), and the obtained weight difference was measured as the density, area and polishing time of the silicon wafer. Divided by, the single-sided polishing rate per unit time was determined.

(4−3)シリコンウェーハの表面粗さ(ヘイズ)及び表面欠陥(LPD)の評価
洗浄後のシリコンウェーハ表面の表面粗さ(ヘイズ)の評価には、表面粗さ測定装置「Surfscan SP1-DLS」(KLA Tencor社製)を用いて測定される、暗視野ワイド斜入射チャンネル(DWO)での値を用いた。また、表面欠陥(LPD)はHaze測定時に同時に測定され、シリコンウェーハ表面上の粒径が45nm以上のパーティクル数を測定することによって評価した。表面欠陥(LPD)の評価結果は、数値が小さいほど表面欠陥が少ないことを示す。また、Hazeの数値は小さいほど表面の平坦性が高いことを示す。研磨速度、表面欠陥(LPD)及び表面粗さ(ヘイズ)の結果を表1に示した。研磨速度、表面粗さ(ヘイズ)及び表面欠陥(LPD)の測定は、2枚のシリコンウェーハに対して行い、各々平均値を示した。
(4-3) Evaluation of Surface Roughness (Haze) and Surface Defects (LPD) of Silicon Wafer For evaluation of surface roughness (haze) of silicon wafer surface after cleaning, the surface roughness measuring device "Surfscan SP1-DLS" The value at the dark field wide oblique incident channel (DWO) measured using (KLA Tencor) was used. Further, the surface defect (LPD) was measured at the same time as the Haze measurement, and was evaluated by measuring the number of particles having a particle size of 45 nm or more on the surface of the silicon wafer. The evaluation result of the surface defect (LPD) shows that the smaller the value, the smaller the surface defect. Further, the smaller the value of Haze, the higher the flatness of the surface. The results of polishing rate, surface defects (LPD) and surface roughness (haze) are shown in Table 1. The polishing speed, surface roughness (haze) and surface defect (LPD) were measured on two silicon wafers, and the average values were shown for each.

表1に示されるように、実施例1〜4の研磨液組成物を用いることで、比較例1〜5の研磨液組成物を用いた場合に比べて、研磨速度の向上と、表面粗さ(ヘイズ)と表面欠陥(LPD)の低減の両立が可能になった。 As shown in Table 1, by using the polishing liquid compositions of Examples 1 to 4, the polishing speed is improved and the surface roughness is improved as compared with the case where the polishing liquid compositions of Comparative Examples 1 to 5 are used. It has become possible to achieve both reduction of (haze) and surface defects (LPD).

本発明の濡れ剤を用いれば、シリコンウェーハ表面、チッ化シリコン膜表面、ポリシリコン膜表面のような疎水表面を良好に濡らすことができる。また、本発明の濡れ剤を疎水表面の研磨に使用すれば、研磨速度の向上と、表面粗さ(ヘイズ)と表面欠陥(LPD)の低減とを両立できる。よって、本発明の研磨液組成物は、半導体の製造の種々の工程で有用であり、なかでも、シリコンウェーハの仕上げ研磨用の研磨液組成物として有用である。 By using the wetting agent of the present invention, it is possible to satisfactorily wet a hydrophobic surface such as a silicon wafer surface, a siliconized silicon film surface, and a polysilicon film surface. Further, if the wetting agent of the present invention is used for polishing a hydrophobic surface, it is possible to improve the polishing speed and reduce the surface roughness (haze) and the surface defect (LPD) at the same time. Therefore, the polishing liquid composition of the present invention is useful in various steps of manufacturing a semiconductor, and in particular, is useful as a polishing liquid composition for finish polishing of a silicon wafer.

Claims (10)

下記一般式(1)で表される構成単位Iと、下記一般式(2)で表される構成単位IIと、下記一般式(3)で表される構成単位IIIとを含む高分子化合物を含有する濡れ剤。
ただし、上記一般式(2)において、Z1は窒素原子及び酸素原子のうち1つ以上の原子を含む置換基を示す。
ただし、上記一般式(3)において、X 1 は窒素原子又は酸素原子を示し、nは1以上5以下の数を示す。
A polymer compound containing a structural unit I represented by the following general formula (1), a structural unit II represented by the following general formula (2), and a structural unit III represented by the following general formula (3). Wetting agent contained.
However, in the above general formula (2), Z 1 represents a substituent containing one or more of a nitrogen atom and an oxygen atom.
However, in the above general formula (3), X 1 represents a nitrogen atom or an oxygen atom, and n represents a number of 1 or more and 5 or less.
前記一般式(2)において、Z1が、−Y1NR12、−Y1NHCOR3、−Y1CONHR4又は−(AO)m−Hであり、Y1は、炭素数1以上4以下のアルキレン基であり、R1、R2、R3及びR4は独立に水素原子又は炭素数1以上4以下のアルキル基であり、AOは炭素数が2以上4以下のオキシアルキレン基、mはAOの平均付加モル数であって1以上100以下を表す数である、請求項1に記載の濡れ剤。 In the general formula (2), Z 1 is, -Y 1 NR 1 R 2, -Y 1 NHCOR 3, -Y 1 CONHR 4 or - (AO) m-H, Y 1 is 1 or more carbon atoms It is an alkylene group of 4 or less, R 1 , R 2 , R 3 and R 4 are independently hydrogen atoms or alkyl groups having 1 or more and 4 or less carbon atoms, and AO is an oxyalkylene group having 2 or more and 4 or less carbon atoms. The wetting agent according to claim 1, wherein m is an average number of added moles of AO, which is a number representing 1 or more and 100 or less. 前記高分子化合物は、前記構成単位IIを1mol%以上含む、請求項1又は2に記載の濡れ剤。 The wetting agent according to claim 1 or 2 , wherein the polymer compound contains 1 mol% or more of the structural unit II. 前記高分子化合物の重量平均分子量が、1,000以上500,000以下である、請求項1からのいずれか一項に記載の濡れ剤。 The wetting agent according to any one of claims 1 to 3 , wherein the polymer compound has a weight average molecular weight of 1,000 or more and 500,000 or less. シリカ粒子(成分A)と、
アンモニア、アミン化合物及びアンモニウム化合物から選ばれる少なくとも1種類以上の含窒素塩基性化合物(成分B)と、
下記一般式(1)で表される構成単位Iと、下記一般式(2)で表される構成単位IIと、を含む高分子化合物(成分C)と、を含有する、疎水表面用研磨液組成物。
ただし、上記一般式(2)において、Z1は窒素原子及び酸素原子のうち1つ以上の原子を含む置換基を示す。
Silica particles (component A) and
At least one nitrogen-containing basic compound (component B) selected from ammonia, amine compounds and ammonium compounds, and
A polishing liquid for a hydrophobic surface containing a polymer compound (component C) containing a structural unit I represented by the following general formula (1) and a structural unit II represented by the following general formula (2). Composition.
However, in the above general formula (2), Z 1 represents a substituent containing one or more of a nitrogen atom and an oxygen atom.
前記一般式(2)において、Z1が、−Y1NR12、−Y1NHCOR3、−Y1CONHR4又は−(AO)m−Hであり、Y1は、炭素数1以上4以下のアルキレン基であり、R1、R2、R3及びR4は独立に水素原子又は炭素数1以上4以下のアルキル基であり、AOは炭素数が2以上4以下のオキシアルキレン基、mはAOの平均付加モル数であって1以上100以下を表す数である、請求項に記載の疎水表面用研磨液組成物。 In the general formula (2), Z 1 is, -Y 1 NR 1 R 2, -Y 1 NHCOR 3, -Y 1 CONHR 4 or - (AO) m-H, Y 1 is 1 or more carbon atoms It is an alkylene group of 4 or less, R 1 , R 2 , R 3 and R 4 are independently hydrogen atoms or alkyl groups having 1 or more and 4 or less carbon atoms, and AO is an oxyalkylene group having 2 or more and 4 or less carbon atoms. , M is the average number of added moles of AO, which is a number representing 1 or more and 100 or less. The polishing liquid composition for a hydrophobic surface according to claim 5 . 25℃におけるpHが8.0以上12.0以下である、請求項又はに記載の疎水表面用研磨液組成物。 The polishing solution composition for a hydrophobic surface according to claim 5 or 6 , wherein the pH at 25 ° C. is 8.0 or more and 12.0 or less. 前記疎水表面用研磨液組成物は、シリコン単結晶を研磨するためのシリコンウェーハ用研磨液組成物である、請求項からのいずれか一項に記載の疎水表面用研磨液組成物。 The hydrophobic surface polishing liquid composition according to any one of claims 5 to 7 , wherein the hydrophobic surface polishing liquid composition is a silicon wafer polishing liquid composition for polishing a silicon single crystal. 請求項からのいずれか一項に記載の疎水表面用研磨液組成物を用いてシリコンウェーハを研磨する工程を含む、シリコンウェーハの研磨方法。 A method for polishing a silicon wafer, which comprises a step of polishing the silicon wafer using the polishing liquid composition for a hydrophobic surface according to any one of claims 5 to 8 . 請求項からのいずれか一項に記載の疎水表面用研磨液組成物を用いてシリコンウェーハを研磨する工程を含む、半導体基板の製造方法。 A method for manufacturing a semiconductor substrate, which comprises a step of polishing a silicon wafer using the polishing liquid composition for a hydrophobic surface according to any one of claims 5 to 8 .
JP2016202577A 2016-10-14 2016-10-14 Wetting agent Active JP6831667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016202577A JP6831667B2 (en) 2016-10-14 2016-10-14 Wetting agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016202577A JP6831667B2 (en) 2016-10-14 2016-10-14 Wetting agent

Publications (2)

Publication Number Publication Date
JP2018062597A JP2018062597A (en) 2018-04-19
JP6831667B2 true JP6831667B2 (en) 2021-02-17

Family

ID=61967497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016202577A Active JP6831667B2 (en) 2016-10-14 2016-10-14 Wetting agent

Country Status (1)

Country Link
JP (1) JP6831667B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210144815A (en) * 2019-03-28 2021-11-30 가부시키가이샤 후지미인코퍼레이티드 polishing composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19639897A1 (en) * 1996-09-27 1998-04-02 Sun Chemical Corp Water-soluble and oxygen-blocking polymer layers and their use for light-sensitive materials
JP2005275231A (en) * 2004-03-26 2005-10-06 Fuji Photo Film Co Ltd Photosensitive lithographic printing plate
JP6232243B2 (en) * 2013-10-09 2017-11-15 東亞合成株式会社 Semiconductor wetting agent and polishing composition
JP2015095582A (en) * 2013-11-13 2015-05-18 Jsr株式会社 Chemical mechanical polishing pad and chemical mechanical polishing method by use thereof
JP2016124943A (en) * 2014-12-26 2016-07-11 ニッタ・ハース株式会社 Polishing composition

Also Published As

Publication number Publication date
JP2018062597A (en) 2018-04-19

Similar Documents

Publication Publication Date Title
JP5893706B2 (en) Polishing liquid composition for silicon wafer
JP5822356B2 (en) Polishing liquid composition for silicon wafer
JP6836671B2 (en) Polishing liquid composition for silicon wafer or polishing liquid composition kit for silicon wafer
CN109844908A (en) Silicon wafer rinse compositions
JP6678076B2 (en) Polishing liquid composition for silicon wafer
JP2016213216A (en) Polishing liquid composition for silicon wafers
JP6087143B2 (en) Polishing liquid composition for silicon wafer
JP6039419B2 (en) Polishing liquid composition for silicon wafer
TW201518488A (en) Polishing composition and method for producing same
WO2018079675A1 (en) Rinsing agent composition for silicon wafers
JP6893835B2 (en) Finish polishing liquid composition for silicon wafer
JP6245939B2 (en) Polishing liquid composition for silicon wafer
JP2018074048A (en) Polishing liquid composition for silicon wafer
JP6831667B2 (en) Wetting agent
JP6086725B2 (en) Polishing liquid composition for silicon wafer
JP5995659B2 (en) Polishing liquid composition for silicon wafer
JP6265542B2 (en) Manufacturing method of semiconductor substrate
JP6168984B2 (en) Polishing liquid composition for silicon wafer
JP6366139B2 (en) Method for producing polishing composition for silicon wafer
JP6169938B2 (en) Polishing liquid composition for silicon wafer
JP6792413B2 (en) Abrasive liquid composition for silicon wafer
JP2016119418A (en) Polishing liquid composition for silicon wafer
JP6418941B2 (en) Polishing liquid composition for silicon wafer
JP6367113B2 (en) Polishing liquid composition for silicon wafer
JP2020109864A (en) Polishing liquid composition for silicon wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210129

R151 Written notification of patent or utility model registration

Ref document number: 6831667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250