JP6830751B2 - Wavelength conversion member and light emitting device - Google Patents
Wavelength conversion member and light emitting device Download PDFInfo
- Publication number
- JP6830751B2 JP6830751B2 JP2014206144A JP2014206144A JP6830751B2 JP 6830751 B2 JP6830751 B2 JP 6830751B2 JP 2014206144 A JP2014206144 A JP 2014206144A JP 2014206144 A JP2014206144 A JP 2014206144A JP 6830751 B2 JP6830751 B2 JP 6830751B2
- Authority
- JP
- Japan
- Prior art keywords
- wavelength conversion
- conversion member
- glass
- glass powder
- phosphor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000006243 chemical reaction Methods 0.000 title claims description 93
- 239000011521 glass Substances 0.000 claims description 120
- 239000000843 powder Substances 0.000 claims description 92
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 67
- 239000002994 raw material Substances 0.000 claims description 28
- 230000005284 excitation Effects 0.000 claims description 24
- 150000001768 cations Chemical class 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 239000011159 matrix material Substances 0.000 claims description 11
- 239000002096 quantum dot Substances 0.000 claims description 10
- 238000002425 crystallisation Methods 0.000 claims description 5
- 230000008025 crystallization Effects 0.000 claims description 5
- 230000001678 irradiating effect Effects 0.000 claims description 4
- 125000000129 anionic group Chemical group 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 125000002091 cationic group Chemical group 0.000 claims 2
- 238000002834 transmittance Methods 0.000 description 32
- 230000007423 decrease Effects 0.000 description 31
- 230000000694 effects Effects 0.000 description 25
- 239000000126 substance Substances 0.000 description 18
- 238000004031 devitrification Methods 0.000 description 17
- 238000002844 melting Methods 0.000 description 15
- 230000008018 melting Effects 0.000 description 15
- 239000000203 mixture Substances 0.000 description 13
- 238000005245 sintering Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 9
- 239000012298 atmosphere Substances 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 150000001450 anions Chemical class 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 7
- 238000010828 elution Methods 0.000 description 6
- 238000010304 firing Methods 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 150000004767 nitrides Chemical class 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 229910052688 Gadolinium Inorganic materials 0.000 description 4
- 229910003564 SiAlON Inorganic materials 0.000 description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 4
- 230000032683 aging Effects 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 4
- 238000004040 coloring Methods 0.000 description 4
- 239000006063 cullet Substances 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- -1 halide ion Chemical class 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910052712 strontium Inorganic materials 0.000 description 4
- 210000003462 vein Anatomy 0.000 description 4
- 229910017639 MgSi Inorganic materials 0.000 description 3
- 229910052788 barium Inorganic materials 0.000 description 3
- 238000002845 discoloration Methods 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000006060 molten glass Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910004283 SiO 4 Inorganic materials 0.000 description 2
- 229910003668 SrAl Inorganic materials 0.000 description 2
- 150000004645 aluminates Chemical class 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 150000002222 fluorine compounds Chemical class 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- YBNMDCCMCLUHBL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-pyren-1-ylbutanoate Chemical compound C=1C=C(C2=C34)C=CC3=CC=CC4=CC=C2C=1CCCC(=O)ON1C(=O)CCC1=O YBNMDCCMCLUHBL-UHFFFAOYSA-N 0.000 description 1
- 229910015999 BaAl Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910004613 CdTe Inorganic materials 0.000 description 1
- 229910020068 MgAl Inorganic materials 0.000 description 1
- 101100476480 Mus musculus S100a8 gene Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910008449 SnF 2 Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001649 bromium compounds Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000004017 vitrification Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Landscapes
- Glass Compositions (AREA)
- Luminescent Compositions (AREA)
- Led Device Packages (AREA)
Description
本発明は、発光ダイオード(LED:Light Emitting Diode)やレーザーダイオード(LD:Laser Diode)等の発する光の波長を別の波長に変換する波長変換部材を作製するために用いられる波長変換部材用原料粉末に関する。 The present invention is a raw material for a wavelength conversion member used for producing a wavelength conversion member that converts the wavelength of light emitted by a light emitting diode (LED: Light Emitting Diode), a laser diode (LD: Laser Diode), or the like into another wavelength. Regarding powder.
近年、白色LEDは、白熱電球や蛍光灯に代わる次世代の光源として、照明用途への応用が進みつつある。そのような次世代光源の一例として、例えば特許文献1には、青色光を出射するLED上に、LEDからの光の一部を吸収して黄色光に変換する波長変換部材が配置された光源が開示されている。この光源は、LEDから出射された青色光と、波長変換部材から出射された黄色光との合成光である白色光を発する。 In recent years, white LEDs have been increasingly applied to lighting applications as next-generation light sources to replace incandescent lamps and fluorescent lamps. As an example of such a next-generation light source, for example, in Patent Document 1, a light source in which a wavelength conversion member that absorbs a part of the light from the LED and converts it into yellow light is arranged on an LED that emits blue light. Is disclosed. This light source emits white light, which is a composite light of blue light emitted from an LED and yellow light emitted from a wavelength conversion member.
波長変換部材としては、従来、樹脂マトリクス中に蛍光体を分散させたものが用いられていた。しかしながら、当該波長変換部材を用いた場合、LEDからの光により樹脂マトリクスが劣化し、光源の輝度が低くなりやすいという問題がある。具体的には、LEDが発する熱や高エネルギーの短波長(青色〜紫外)光によって樹脂マトリクスが劣化し、変色や変形を起こすという問題がある。 Conventionally, as the wavelength conversion member, a member in which a phosphor is dispersed in a resin matrix has been used. However, when the wavelength conversion member is used, there is a problem that the resin matrix is deteriorated by the light from the LED and the brightness of the light source tends to be lowered. Specifically, there is a problem that the resin matrix is deteriorated by the heat generated by the LED or high-energy short-wavelength (blue to ultraviolet) light, causing discoloration or deformation.
上記問題を解決するために、特許文献2には、500℃以上の軟化点を有する非鉛系ガラス粉末と蛍光体を含む材料をガラスの屈伏点付近の温度で焼結することで、ガラスマトリクス中に蛍光体を分散させた波長変換部材が提案されている。当該波長変換部材は、蛍光体が無機材料であるガラスマトリクス中に分散されているため、化学的に安定で劣化が少なく、しかも励起光による部材の変色も生じにくいという利点を有する。しかしながら、蛍光体の中には耐熱性の低いものがあり、これを500℃以上の軟化点を有する非鉛系ガラス粉末とともに焼結すると、蛍光体が熱劣化して発光効率が低下するという問題がある。 In order to solve the above problem, Patent Document 2 describes a glass matrix by sintering a material containing a lead-free glass powder having a softening point of 500 ° C. or higher and a phosphor at a temperature near the bending point of glass. A wavelength conversion member in which a phosphor is dispersed therein has been proposed. Since the wavelength conversion member is dispersed in a glass matrix which is an inorganic material, the wavelength conversion member has an advantage that it is chemically stable and has little deterioration, and that discoloration of the member due to excitation light is unlikely to occur. However, some phosphors have low heat resistance, and when they are sintered together with lead-free glass powder having a softening point of 500 ° C. or higher, the phosphor is thermally deteriorated and the luminous efficiency is lowered. There is.
そこで、蛍光体の熱劣化を抑制するため、ガラス転移点が500℃未満のガラスマトリクス中に蛍光体を分散させる方法が提案されている(例えば、特許文献3参照)。 Therefore, in order to suppress thermal deterioration of the phosphor, a method of dispersing the phosphor in a glass matrix having a glass transition point of less than 500 ° C. has been proposed (see, for example, Patent Document 3).
特許文献3に記載の波長変換部材も、焼結温度が500℃以上と依然として高いため、焼結時に、耐熱性の低い蛍光体はそれ自体が劣化したり、焼結時にガラスと反応してガラスに変色をもたらすという問題が生じやすい。また、ガラスマトリクスの耐候性が低いため、特に湿度の高い環境下では、使用中に波長変換部材の表面が変質して光透過率が低下し、発光効率が大幅に低下するという問題もある。 Since the wavelength conversion member described in Patent Document 3 also has a high sintering temperature of 500 ° C. or higher, the phosphor having low heat resistance deteriorates during sintering, or reacts with glass during sintering to form glass. The problem of causing discoloration is likely to occur. Further, since the weather resistance of the glass matrix is low, there is also a problem that the surface of the wavelength conversion member is deteriorated during use, the light transmittance is lowered, and the luminous efficiency is significantly lowered, particularly in an environment with high humidity.
以上に鑑み、本発明は、耐熱性の低い蛍光体でも、焼結時に劣化しにくく、さらに耐候性に優れ、長期間に亘って使用しても経時変化により劣化しにくい波長変換部材を得ることが可能な波長変換部材用原料粉末を提供することを目的とする。 In view of the above, the present invention provides a wavelength conversion member which is less likely to deteriorate during sintering even with a phosphor having low heat resistance, is also excellent in weather resistance, and is less likely to deteriorate due to aging even when used for a long period of time. It is an object of the present invention to provide a raw material powder for a wavelength conversion member capable of producing the same.
本発明は、カチオン%で、P5+ 0.1%以上、及びSn2+ 1%以上、アニオン%で、F−+Cl− 0.1〜70%を含有するガラス粉末と、蛍光体と、を含むことを特徴とする波長変換部材用原料粉末に関する。 The present invention includes a glass powder containing P 5+ 0.1% or more in% cation, and F − + Cl − 0.1 to 70% in% Sn 2 + 1% and% anion, and a phosphor. The present invention relates to a raw material powder for a wavelength conversion member.
本発明の波長変換部材用原料粉末に用いられるガラス粉末は、ガラス組成中に所定量のSn2+を含有しているため、耐侯性や化学的耐久性に優れており、さらに、ガラスを構成する陰イオンとして、F−及びCl−を上記所定範囲で含有するため、屈伏点の低いガラスとなる。よって、本発明の波長変換部材用原料粉末は、焼結時に蛍光体が劣化しにくく、さらに耐候性に優れ、長期間に亘って使用しても経時変化により劣化しにくい波長変換部材を得ることが可能である。 Since the glass powder used in the raw material powder for the wavelength conversion member of the present invention contains a predetermined amount of Sn 2+ in the glass composition, it is excellent in weather resistance and chemical durability, and further constitutes glass. Since F − and Cl − are contained in the above-mentioned predetermined ranges as anions, the glass has a low yield point. Therefore, the raw material powder for a wavelength conversion member of the present invention can obtain a wavelength conversion member whose phosphor is less likely to deteriorate during sintering, has excellent weather resistance, and is less likely to deteriorate due to aging even when used for a long period of time. Is possible.
本発明の波長変換部材用原料粉末において、ガラス粉末が、カチオン%で、P5++Sn2+ 70.5%以上を含有することが好ましい。当該構成によれば、ガラス粉末の耐失透性や機械的強度を向上させることが可能となる。 In the raw material powder for a wavelength conversion member of the present invention, it is preferable that the glass powder contains P 5+ + Sn 2+ 70.5% or more in% of cation. According to this configuration, it is possible to improve the devitrification resistance and mechanical strength of the glass powder.
本発明の波長変換部材用原料粉末において、ガラス粉末が、カチオン%で、Sn2+ 10〜90%、及びP5+ 10〜70%を含有することが好ましい。 In the raw material powder for a wavelength conversion member of the present invention, the glass powder preferably contains Sn 2+ 10 to 90% and P 5+ 10 to 70% in% of cation.
本発明の波長変換部材用原料粉末において、ガラス粉末が、In3+を含有しないことが好ましい。In3+は失透傾向が強いため、In3+を含有しないことによりガラス成形時に失透が生じにくい。 In the raw material powder for a wavelength conversion member of the present invention, it is preferable that the glass powder does not contain In 3+ . Since In 3+ has a strong tendency to devitrify, devitrification is unlikely to occur during glass molding because it does not contain In 3+ .
本発明の波長変換部材用原料粉末において、ガラス粉末が、Pb2+及びAs3+を含有しないことが好ましい。Pb2+及びAs3+は環境負荷物質であるため、これらの成分を含有させないことにより、環境上好ましいガラス粉末となる。 In the raw material powder for a wavelength conversion member of the present invention, it is preferable that the glass powder does not contain Pb 2+ and As 3+ . Since Pb 2+ and As 3+ are environmentally hazardous substances, by not containing these components, the glass powder is environmentally preferable.
本発明の波長変換部材用原料粉末において、ガラス粉末が、カチオン%で、B3++Zn2++Si4++Al3+を0〜50%含有することが好ましい。当該構成により、耐侯性や化学耐久性にも優れたガラス粉末が得られやすくなる。 In the raw material powder for a wavelength conversion member of the present invention, it is preferable that the glass powder contains 0 to 50% of B 3+ + Zn 2+ + Si 4+ + Al 3+ in% cation. With this configuration, it becomes easy to obtain a glass powder having excellent weather resistance and chemical durability.
本発明の波長変換部材用原料粉末において、ガラス粉末が、カチオン%で、Mg2++Ca2++Sr2++Ba2+を0〜10%含有することが好ましい。これにより、耐侯性や化学耐久性にも優れたガラス粉末が得られやすくなる。 In the raw material powder for a wavelength conversion member of the present invention, it is preferable that the glass powder contains 0 to 10% of Mg 2+ + Ca 2+ + Sr 2+ + Ba 2+ in% cation. This makes it easier to obtain glass powder with excellent weather resistance and chemical durability.
本発明の波長変換部材用原料粉末において、ガラス粉末の屈折率が1.6以上であることが好ましい。当該構成によれば、波長変換部材からの光の取り出し効率が向上しやすくなる。また、ガラス粉末と蛍光体との屈折率差を小さくすることにより、両者の界面での光散乱ロスが低減され、発光強度の向上が期待できる。 In the raw material powder for a wavelength conversion member of the present invention, the refractive index of the glass powder is preferably 1.6 or more. According to this configuration, the efficiency of extracting light from the wavelength conversion member is likely to be improved. Further, by reducing the difference in refractive index between the glass powder and the phosphor, the light scattering loss at the interface between the two is reduced, and the emission intensity can be expected to be improved.
本発明の波長変換部材用原料粉末において、ガラス粉末の屈伏点が300℃以下であることが好ましい。当該構成によれば、波長変換部材用原料粉末の焼結時に蛍光体が劣化しにくくなる。 In the raw material powder for a wavelength conversion member of the present invention, the yield point of the glass powder is preferably 300 ° C. or lower. According to this configuration, the phosphor is less likely to deteriorate during sintering of the raw material powder for the wavelength conversion member.
本発明の波長変換部材用原料粉末において、ガラス粉末のJOGISに基づく耐水性が3級以上であることが好ましい。当該構成によれば、長期間に亘って使用しても経時変化により劣化しにくい波長変換部材を得ることが可能となる。 In the raw material powder for a wavelength conversion member of the present invention, it is preferable that the water resistance of the glass powder based on JOBIS is grade 3 or higher. According to this configuration, it is possible to obtain a wavelength conversion member that does not easily deteriorate due to aging even when used for a long period of time.
本発明の波長変換部材用原料粉末において、ガラス粉末の着色度λ70が500nm未満であることが好ましい。当該構成によれば、波長変換部材の可視域または近紫外域における光透過率に優れるため、発光強度を向上させることが可能となる。 In the raw material powder for a wavelength conversion member of the present invention, the degree of coloration λ 70 of the glass powder is preferably less than 500 nm. According to this configuration, since the wavelength conversion member has excellent light transmittance in the visible region or the near-ultraviolet region, it is possible to improve the light emission intensity.
本発明の波長変換部材用原料粉末において、蛍光体が、窒化物蛍光体、酸窒化物蛍光体、酸化物蛍光体、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体、アルミン酸塩蛍光体及び量子ドット蛍光体から選択される1種以上であることが好ましい。 In the raw material powder for a wavelength conversion member of the present invention, the phosphors are nitride phosphors, oxynitride phosphors, oxide phosphors, sulfide phosphors, acid sulfide phosphors, halide phosphors, and aluminates. It is preferably one or more selected from a fluorescent substance and a quantum dot phosphor.
本発明の波長変換部材は、上記の波長変換部材用原料粉末の焼結体からなることを特徴とする。 The wavelength conversion member of the present invention is characterized by being made of a sintered body of the above-mentioned raw material powder for a wavelength conversion member.
本発明の波長変換部材は、カチオン%で、P5+ 0.1%以上、及びSn2+ 1%以上、アニオン%で、F−+Cl− 0.1〜70%を含有するガラスマトリクス中に蛍光体が分散してなることを特徴とする。 The wavelength conversion member of the present invention is a phosphor in a glass matrix containing P 5+ 0.1% or more in% cation, and F − + Cl − 0.1 to 70% in Sn 2 + 1% or more and% anion. Is characterized by being dispersed.
本発明の発光装置は、上記の波長変換部材と、波長変換部材に対して、蛍光体の励起光を照射する光源と、を備えることを特徴とする。 The light emitting device of the present invention is characterized by including the above-mentioned wavelength conversion member and a light source for irradiating the wavelength conversion member with excitation light of a phosphor.
本発明によれば、耐熱性の低い蛍光体でも、焼結時に劣化しにくく、さらに耐候性に優れ、長期間に亘って使用しても経時変化により劣化しにくい波長変換部材を得ることが可能な波長変換部材用原料粉末を提供することが可能となる。 According to the present invention, it is possible to obtain a wavelength conversion member that does not easily deteriorate during sintering even with a phosphor having low heat resistance, has excellent weather resistance, and does not easily deteriorate due to aging even when used for a long period of time. It is possible to provide a raw material powder for a wavelength conversion member.
本発明の波長変換部材用原料粉末は、ガラス粉末と、蛍光体と、を含むことを特徴とする。ガラス粉末は、カチオン%で、P5+ 0.1%以上、及びSn2+ 1%以上、アニオン%で、F−+Cl− 0.1〜70%を含有する。以下に、ガラス粉末における各成分の含有量をこのように限定した理由を説明する。なお、特に断りがない場合、以下の各成分の含有量に関する説明において、「%」は「カチオン%」または「アニオン%」を意味する。 The raw material powder for a wavelength conversion member of the present invention is characterized by containing a glass powder and a phosphor. The glass powder contains P 5+ 0.1% or more in terms of cation% and Sn 2 + 1% or more and F − + Cl − 0.1 to 70% in anion%. The reason for limiting the content of each component in the glass powder in this way will be described below. Unless otherwise specified, "%" means "cation%" or "anion%" in the following description of the content of each component.
P5+はガラス骨格の構成成分である。また、光透過率を高める効果を有し、特に紫外域付近の光透過率低下を抑制する効果が高い。特に、高屈折率のガラスの場合は、P5+による光透過率向上の効果が得られやすい。また、失透を抑制する効果や屈伏点を低下させる作用も有する。P5+の含有量は0.1%以上であり、1%以上であることが好ましく、5%以上であることがより好ましく、10%以上であることがさらに好ましく、20%以上であることが特に好ましい。P5+の含有量が少なすぎると、前記効果が得られにくくなる。一方、P5+の含有量が多すぎると、Sn2+の含有量が相対的に少なくなって、屈折率が低下しやすくなるとともに、耐候性が低下しやすくなる。よって、P5+の含有量は70%以下であることが好ましく、65%以下であることがより好ましく、60%以下であることがさらに好ましく、55%以下であることが特に好ましく、50%以下であることが最も好ましい。 P 5+ is a component of the glass skeleton. In addition, it has the effect of increasing the light transmittance, and is particularly effective in suppressing the decrease in the light transmittance in the vicinity of the ultraviolet region. In particular, in the case of glass having a high refractive index, the effect of improving the light transmittance by P 5+ can be easily obtained. It also has the effect of suppressing devitrification and the effect of lowering the yield point. The content of P 5+ is 0.1% or more, preferably 1% or more, more preferably 5% or more, further preferably 10% or more, and preferably 20% or more. Especially preferable. If the content of P 5+ is too small, it becomes difficult to obtain the above effect. On the other hand, if the content of P 5+ is too large, the content of Sn 2+ is relatively small, and the refractive index tends to decrease and the weather resistance tends to decrease. Therefore, the content of P 5+ is preferably 70% or less, more preferably 65% or less, further preferably 60% or less, particularly preferably 55% or less, and 50% or less. Is most preferable.
Sn2+は高屈折率の光学特性を達成し、化学耐久性や耐候性を向上させるための必須成分である。また、屈伏点を低下させる効果もある。Sn2+の含有量は1%以上であり、5%以上であることが好ましく、10%以上であることがより好ましく、15%以上であることがさらに好ましく、20%以上であることが特に好ましく、25%以上であることが最も好ましい。Sn2+の含有量が少なすぎると、上記効果が得られにくくなる。一方、Sn2+の含有量が多すぎると、ガラス化しにくくなったり、耐失透性が低下しやすくなる。よって、Sn2+の含有量は90%以下であることが好ましく、87.5%以下であることがより好ましく、85%以下であることがさらに好ましく、82.5%以下であることが特に好ましい。 Sn 2+ is an essential component for achieving high refractive index optical properties and improving chemical durability and weather resistance. It also has the effect of lowering the yield point. The Sn 2+ content is 1% or more, preferably 5% or more, more preferably 10% or more, further preferably 15% or more, and particularly preferably 20% or more. , 25% or more is most preferable. If the content of Sn 2+ is too small, it becomes difficult to obtain the above effect. On the other hand, if the Sn 2+ content is too high, it becomes difficult to vitrify and the devitrification resistance tends to decrease. Therefore, the Sn 2+ content is preferably 90% or less, more preferably 87.5% or less, further preferably 85% or less, and particularly preferably 82.5% or less. ..
P5++Sn2+の含有量は50%以上であることが好ましく、70.5%以上であることがより好ましく、75%以上であることがさらに好ましく、80%以上であることが特に好ましく、85%以上であることが最も好ましい。P5++Sn2+の含有量が少なすぎると、耐失透性や機械的強度が低下しやすくなる。なお、上限は特に限定されず、P5++Sn2+の含有量が100%であってもよいが、他の成分を含有する場合は、99.9%以下であることが好ましく、99%以下であることがより好ましく、95%以下であることがさらに好ましく、90%以下であることが特に好ましい。 The content of P 5+ + Sn 2+ is preferably 50% or more, more preferably 70.5% or more, further preferably 75% or more, particularly preferably 80% or more, 85. % Or more is most preferable. If the content of P 5+ + Sn 2+ is too small, the devitrification resistance and mechanical strength tend to decrease. The upper limit is not particularly limited, and the content of P 5+ + Sn 2+ may be 100%, but when it contains other components, it is preferably 99.9% or less, and 99% or less. It is more preferably 95% or less, and particularly preferably 90% or less.
ガラス粉末には、カチオン成分としてさらに以下の成分を含有させることができる。 The glass powder can further contain the following components as cation components.
B3+、Zn2+、Si4+及びAl3+はガラス骨格の構成成分であり、特に化学耐久性を向上させる効果が大きい。B3++Zn2++Si4++Al3+の含有量は0〜50%であることが好ましく、0〜30%であることがより好ましく、0.1〜25%であることがさらに好ましく、0.5〜20%であることが特に好ましく、0.75〜15%であることが最も好ましい。B3++Zn2++Si4++Al3+の含有量が多すぎると、耐失透性が低下しやすくなる。また、溶融温度の上昇に伴いSn金属等が析出し、光透過率が低下しやすくなる。また、屈伏点が上昇しやすくなる。さらに、高屈折なガラスが得られにくくなる。なお、耐候性を向上させる観点からは、B3++Zn2++Si4++Al3+を0.1%以上含有させることが好ましい。 B 3+ , Zn 2+ , Si 4+ and Al 3+ are constituents of the glass skeleton, and are particularly effective in improving chemical durability. The content of B 3+ + Zn 2+ + Si 4+ + Al 3+ is preferably 0 to 50%, more preferably 0 to 30%, further preferably 0.1 to 25%, and 0.5 to 25%. It is particularly preferably 20%, most preferably 0.75 to 15%. If the content of B 3+ + Zn 2+ + Si 4+ + Al 3+ is too large, the devitrification resistance tends to decrease. Further, as the melting temperature rises, Sn metal and the like are precipitated, and the light transmittance tends to decrease. In addition, the yield point tends to rise. Further, it becomes difficult to obtain high-refractive glass. From the viewpoint of improving weather resistance, it is preferable to contain B 3+ + Zn 2+ + Si 4+ + Al 3+ in an amount of 0.1% or more.
なお、各成分の好ましい含有量範囲は以下の通りである。 The preferable content range of each component is as follows.
B3+はガラス骨格を構成する成分である。また、耐候性を向上させる効果があり、特に、ガラス中のP5+等の成分が水中へ選択的に溶出することを抑制する効果が大きい。B3+の含有量は0〜50%であることが好ましく、0.1〜45%であることがより好ましく、0.5〜40%であることがさらに好ましい。B3+の含有量が多すぎると、屈折率や耐失透性が低下しやすくなる。また、光透過率が低下する傾向がある。 B 3+ is a component constituting the glass skeleton. In addition, it has the effect of improving weather resistance, and in particular, it has a great effect of suppressing the selective elution of components such as P5 + in the glass into water. The content of B 3+ is preferably 0 to 50%, more preferably 0.1 to 45%, and even more preferably 0.5 to 40%. If the content of B 3+ is too large, the refractive index and devitrification resistance tend to decrease. In addition, the light transmittance tends to decrease.
Zn2+は融剤として作用する成分である。また、耐候性を向上させ、研磨洗浄水等の各種洗浄溶液中へのガラス成分の溶出を抑制したり、高温多湿状態でのガラス表面の変質を抑制したりする効果がある。また、Zn2+はガラス化を安定にする効果もある。以上に鑑み、Zn2+の含有量は0〜40%であることが好ましく、0.1〜30%であることがより好ましく、0.2〜20%であることがさらに好ましい。Zn2+の含有量が多すぎると、光透過率が低下したり、失透しやすくなる。 Zn 2+ is a component that acts as a flux. In addition, it has the effects of improving weather resistance, suppressing elution of glass components into various cleaning solutions such as polishing cleaning water, and suppressing deterioration of the glass surface in a high temperature and high humidity state. In addition, Zn 2+ also has the effect of stabilizing vitrification. In view of the above, the content of Zn 2+ is preferably 0 to 40%, more preferably 0.1 to 30%, and even more preferably 0.2 to 20%. If the content of Zn 2+ is too large, the light transmittance is lowered and the light is easily devitrified.
Si4+もガラス骨格を構成する成分である。また、耐候性を向上させる効果があり、特に、ガラス中のP5+等の成分が水中へ選択的に溶出することを抑制する効果が大きい。Si4+の含有量は0〜20%であることが好ましく、0.1〜15%であることがより好ましい。Si4+の含有量が多すぎると、屈折率が低下したり、屈伏点が高くなりやすい。また、未溶解による脈理や気泡がガラス中に残存しやすくなる。 Si 4+ is also a component constituting the glass skeleton. In addition, it has the effect of improving weather resistance, and in particular, it has a great effect of suppressing the selective elution of components such as P5 + in the glass into water. The content of Si 4+ is preferably 0 to 20%, more preferably 0.1 to 15%. If the content of Si 4+ is too large, the refractive index tends to decrease and the yield point tends to increase. In addition, veins and bubbles due to undissolution tend to remain in the glass.
Al3+は、Si4+やB3+とともにガラス骨格を構成することが可能な成分である。また、耐候性を向上させる効果があり、特に、ガラス中のP5+等の成分が水中へ選択的に溶出することを抑制する効果が大きい。Al3+の含有量は0〜20%であることが好ましく、0.1〜15%であることがより好ましい。Al3+の含有量が多すぎると、失透しやすくなる。また、光透過率が低下する傾向がある。さらに、溶融温度が高くなって、未溶解による脈理や気泡がガラス中に残存しやすくなる。 Al 3+ is a component capable of forming a glass skeleton together with Si 4+ and B 3+ . In addition, it has the effect of improving weather resistance, and in particular, it has a great effect of suppressing the selective elution of components such as P5 + in the glass into water. The content of Al 3+ is preferably 0 to 20%, more preferably 0.1 to 15%. If the content of Al 3+ is too large, devitrification is likely to occur. In addition, the light transmittance tends to decrease. Further, the melting temperature becomes high, and the veins and bubbles due to undissolution tend to remain in the glass.
Mg2+、Ca2+、Sr2+及びBa2+(アルカリ土類金属イオン)は融剤として作用する成分である。また、耐候性を向上させ、研磨洗浄水等の各種洗浄溶液中へのガラス成分の溶出を抑制したり、高温多湿状態でのガラス表面の変質を抑制したりする効果がある。また、ガラスの硬度を高める成分である。但し、これらの成分の含有量が多すぎると、液相温度が上昇(液相粘度が低下)して、溶融または成形工程中に失透物が析出しやすくなる傾向がある。その結果、量産化しにくくなる。なお、これらの成分は屈折率を大きく変動させないという特徴がある。以上に鑑み、Mg2++Ca2++Sr2++Ba2+の含有量は0〜10%であることが好ましく、0〜7.5%であることがより好ましく、0.1〜5%であることがさらに好ましく、0.2〜1.5%であることが特に好ましい。 Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ (alkaline earth metal ions) are components that act as fluxes. In addition, it has the effects of improving weather resistance, suppressing elution of glass components into various cleaning solutions such as polishing cleaning water, and suppressing deterioration of the glass surface in a high temperature and high humidity state. It is also a component that increases the hardness of glass. However, if the content of these components is too large, the liquidus temperature rises (the liquidus viscosity decreases), and devitrified substances tend to precipitate during the melting or molding process. As a result, it becomes difficult to mass-produce. It should be noted that these components are characterized in that the refractive index does not fluctuate significantly. In view of the above, the content of Mg 2+ + Ca 2+ + Sr 2+ + Ba 2+ is preferably 0 to 10%, more preferably 0 to 7.5%, and further preferably 0.1 to 5%. It is preferably 0.2 to 1.5%, and particularly preferably 0.2 to 1.5%.
Li+は、アルカリ金属酸化物のなかで最も軟化点を低下させる効果が大きい成分である。また、B3+、Si4+またはAl3+と置換することにより、屈折率を向上させることができる。ただし、Li+は分相性が強いため、その含有量が多すぎると、液相温度が上昇して失透物が析出しやすくなり、作業性が低下するおそれがある。また、Li+は化学耐久性を低下させやすく、光透過率も低下させやすい。さらに、Li+がガラス粉末から溶出すると蛍光体の発光を著しく低下させる場合がある。したがって、Li+の含有量は好ましくは0〜10%、より好ましくは0〜5%、さらに好ましくは0〜1%、特に好ましくは0〜0.1%である。 Li + is a component having the greatest effect of lowering the softening point among alkali metal oxides. Further, the refractive index can be improved by substituting with B 3+ , Si 4+ or Al 3+ . However, since Li + has a strong phase separation property, if its content is too large, the liquidus temperature rises and devitrified substances are likely to precipitate, which may reduce workability. In addition, Li + tends to reduce chemical durability and light transmittance. Furthermore, when Li + elutes from the glass powder, the emission of the phosphor may be significantly reduced. Therefore, the Li + content is preferably 0 to 10%, more preferably 0 to 5%, still more preferably 0 to 1%, and particularly preferably 0 to 0.1%.
Na+は、Li+と同様に軟化点を低下させる効果を有する。また、B3+、Si4+またはAl3+と置換することにより、屈折率を向上させることができる。ただし、その含有量が多すぎると、屈折率が大幅に低下したり、脈理の生成を助長したりする傾向がある。また、液相温度が上昇して、ガラス中に失透物が析出しやすくなる。また、Li+は化学耐久性を低下させやすく、光透過率も低下させやすい。さらに、Na+がガラス粉末から溶出すると蛍光体の発光を著しく低下させる場合がある。したがって、Na+の含有量は好ましくは0〜10%、より好ましくは0〜5%、さらに好ましくは0〜1%、特に好ましくは0〜0.1%である。 Na + has the same effect of lowering the softening point as Li + . Further, the refractive index can be improved by substituting with B 3+ , Si 4+ or Al 3+ . However, if the content is too high, the refractive index tends to be significantly reduced or the generation of veins tends to be promoted. In addition, the liquidus temperature rises, and devitrified substances are likely to precipitate in the glass. In addition, Li + tends to reduce chemical durability and light transmittance. Furthermore, when Na + elutes from the glass powder, the emission of the phosphor may be significantly reduced. Therefore, the Na + content is preferably 0 to 10%, more preferably 0 to 5%, still more preferably 0 to 1%, and particularly preferably 0 to 0.1%.
K+も、Li+と同様に軟化点を低下させる効果を有する。また、B3+、Si4+またはAl3+と置換することにより、屈折率を向上させることができる。ただし、その含有量が多すぎると、屈折率が大幅に低下したり、耐候性が低下したりする傾向がある。また、液相温度が上昇して、ガラス中に失透物が析出しやすくなる。さらに、K+がガラス粉末から溶出すると蛍光体の発光を著しく低下させる場合がある。なお、K+は化学耐久性を低下させやすく、光透過率も低下させやすい。したがって、K2Oの含有量は好ましくは0〜10%、より好ましくは0〜5%、さらに好ましくは0〜1%、特に好ましくは0〜0.1%である。 Like Li + , K + also has the effect of lowering the softening point. Further, the refractive index can be improved by substituting with B 3+ , Si 4+ or Al 3+ . However, if the content is too large, the refractive index tends to be significantly lowered and the weather resistance tends to be lowered. In addition, the liquidus temperature rises, and devitrified substances are likely to precipitate in the glass. Furthermore, when K + elutes from the glass powder, the emission of the phosphor may be significantly reduced. It should be noted that K + tends to reduce the chemical durability and the light transmittance. Accordingly, the content of K 2 O is preferably 0 to 10%, more preferably 0-5%, more preferably 0 to 1%, particularly preferably 0 to 0.1%.
なお、Li++Na++K+の含有量は0〜10%であることが好ましく、0〜5%であることがより好ましく、0〜1%であることがさらに好ましく、0〜0,1%であることが特に好ましい。Li++Na++K+の含有量が多すぎると、失透しやすくなり、化学耐久性も低下する傾向がある。また、所望の光学特性が得られにくくなる。 The content of Li + + Na + + K + is preferably 0 to 10%, more preferably 0 to 5%, further preferably 0 to 1%, and 0 to 0.1%. Is particularly preferable. If the content of Li + + Na + + K + is too large, devitrification tends to occur and the chemical durability tends to decrease. In addition, it becomes difficult to obtain desired optical characteristics.
なお、アルカリ金属成分としてCs+を含有させてもよい。Cs+は軟化点を低下させる効果を有する。ただし、その含有量が多すぎると、屈折率が大幅に低下したり、耐候性が低下したりする傾向がある。また、液相温度が上昇して失透物が析出しやすくなる。したがって、Cs+の含有量は好ましくは0〜1%、より好ましくは0〜0.5%であり、含有しないことがさらに好ましい。 Cs + may be contained as an alkali metal component. Cs + has the effect of lowering the softening point. However, if the content is too large, the refractive index tends to be significantly lowered and the weather resistance tends to be lowered. In addition, the liquidus temperature rises and devitrified substances are likely to precipitate. Therefore, the content of Cs + is preferably 0 to 1%, more preferably 0 to 0.5%, and more preferably not contained.
La3+及びGd3+は、光透過率をほとんど低下させることなく、屈折率を向上させる成分である。ただし、その含有量が多すぎると耐失透性が低下しやすくなる。したがって、これらの成分の含有量は、それぞれ好ましくは0〜10%、より好ましくは0.1〜7.5%、さらに好ましくは1〜5%である。 La 3+ and Gd 3+ are components that improve the refractive index with almost no decrease in light transmittance. However, if the content is too large, the devitrification resistance tends to decrease. Therefore, the content of these components is preferably 0 to 10%, more preferably 0.1 to 7.5%, and even more preferably 1 to 5%, respectively.
Ta5+、W6+及びNb5+は、光透過率をほとんど低下させることなく、屈折率を高める効果がある。ただし、その含有量が多すぎると、耐失透性が低下しやすくなる。したがって、これらの成分の含有量は、それぞれ好ましくは0〜10%、より好ましくは0.1〜7.5%、さらに好ましくは1〜5%である。 Ta 5+ , W 6+ and Nb 5+ have the effect of increasing the refractive index with almost no decrease in light transmittance. However, if the content is too large, the devitrification resistance tends to decrease. Therefore, the content of these components is preferably 0 to 10%, more preferably 0.1 to 7.5%, and even more preferably 1 to 5%, respectively.
Ti4+は屈折率を高める効果がある成分である。また、Nb5+及びW6+に比べて、耐失透性の向上に有効な成分である。ただし、その含有量が多すぎると、光透過率が低下する傾向がある。特に、不純物としてFe成分がガラス中に多く含まれる場合(例えば20ppm以上)に光透過率が顕著に低下する傾向がある。また、耐失透性が低下しやすくなる。したがって、Ti4+の含有量は好ましくは0〜10%、より好ましくは0.1〜7.5%、さらに好ましくは1〜5%以下である。 Ti 4+ is a component that has the effect of increasing the refractive index. Further, it is an effective component for improving devitrification resistance as compared with Nb 5+ and W 6+ . However, if the content is too large, the light transmittance tends to decrease. In particular, when the glass contains a large amount of Fe component as an impurity (for example, 20 ppm or more), the light transmittance tends to decrease remarkably. In addition, the devitrification resistance tends to decrease. Therefore, the content of Ti 4+ is preferably 0 to 10%, more preferably 0.1 to 7.5%, and even more preferably 1 to 5% or less.
Y3+、Yb3+及びGe4+は、光透過率をほとんど低下させることなく、屈折率を高める効果がある。ただし、その含有量が多すぎると、耐失透性が低下しやすくなる。したがって、これらの成分の含有量は、それぞれ好ましくは0〜10%、より好ましくは0.1〜7.5%、さらに好ましくは1〜5%である。 Y 3+ , Yb 3+ and Ge 4+ have the effect of increasing the refractive index with almost no decrease in light transmittance. However, if the content is too large, the devitrification resistance tends to decrease. Therefore, the content of these components is preferably 0 to 10%, more preferably 0.1 to 7.5%, and even more preferably 1 to 5%, respectively.
Te4+及びBi3+は、光透過率を低下させやすい成分であり、特に酸素濃度の低い溶融条件では、黒化し、光透過率の低下が著しい。従って、Te4+及びBi3+の含有量はそれぞれ0〜1%であることが好ましく、含有しないことがより好ましい。 Te 4+ and Bi 3+ are components that easily reduce the light transmittance, and are blackened and the light transmittance is significantly reduced, especially under melting conditions where the oxygen concentration is low. Therefore, the contents of Te 4+ and Bi 3+ are preferably 0 to 1%, and more preferably not contained.
Zr4+は、化学耐久性や耐候性を向上させ、高屈折率な光学特性を得るための成分である。Zr4+の含有量は0〜5%であることが好ましく、0〜4%であることがより好ましく、0.1%〜3%であることがさらに好ましく、0.2〜2%であることが特に好ましい。Zr4+の含有量が多すぎると、耐失透性が低下しやすくなったり、溶融温度が上昇して光透過率が低下しやすくなる。 Zr 4+ is a component for improving chemical durability and weather resistance and obtaining optical characteristics having a high refractive index. The content of Zr 4+ is preferably 0 to 5%, more preferably 0 to 4%, further preferably 0.1% to 3%, and 0.2 to 2%. Is particularly preferable. If the content of Zr 4+ is too large, the devitrification resistance tends to decrease, or the melting temperature rises and the light transmittance tends to decrease.
La3++Gd3++Ta5++W6++Nb5++Ti4++Y3++Yb3++Ge4+の含有量は0〜10%であることが好ましく、0.1〜7.5%であることがより好ましく、0.2〜5%であることがさらに好ましく、0.3〜2.5%であることが最も好ましい。La3++Gd3++Ta5++W6++Nb5++Ti4++Y3++Yb3++Ge4+の含有量が多すぎると、耐失透性が低下しやすくなったり、溶融温度が上昇して光透過率が低下しやすくなる。なお、高屈折率であり、耐侯性に優れたガラスを得るためには、La3++Gd3++Ta5++W6++Nb5++Ti4++Y3++Yb3++Ge4+を0.1%以上含有させることが好ましい。 The content of La 3+ + Gd 3+ + Ta 5+ + W 6+ + Nb 5+ + Ti 4+ + Y 3+ + Yb 3+ + Ge 4+ is preferably 0 to 10%, more preferably 0.1 to 7.5%, and 0.2. It is more preferably ~ 5%, and most preferably 0.3 ~ 2.5%. If the content of La 3+ + Gd 3+ + Ta 5+ + W 6+ + Nb 5+ + Ti 4+ + Y 3+ + Yb 3+ + Ge 4+ is too large, the devitrification resistance tends to decrease or the melting temperature tends to increase and the light transmittance tends to decrease. Become. In order to obtain a glass having a high refractive index and excellent weather resistance, it is preferable to contain La 3+ + Gd 3+ + Ta 5+ + W 6+ + Nb 5+ + Ti 4+ + Y 3+ + Yb 3+ + Ge 4+ in an amount of 0.1% or more.
Fe3+、Ni2+及びCo2+は、光透過率を低下させる成分である。よって、これら成分の含有量は、それぞれ0.1%以下であることが好ましく、含有させないことがより好ましい。 Fe 3+ , Ni 2+ and Co 2+ are components that reduce the light transmittance. Therefore, the content of each of these components is preferably 0.1% or less, and more preferably not contained.
また、Ce4+、Pr3+、Nd3+、Eu3+、Tb3+及びEr3+等の希土類成分も光透過率を低下させるおそれがあるため、これらの成分の含有量はそれぞれ0.1%未満であることが好ましく、含有させないことがより好ましい。 In addition, rare earth components such as Ce 4+ , Pr 3+ , Nd 3+ , Eu 3+ , Tb 3+ and Er 3+ may also reduce the light transmittance, so the content of each of these components is less than 0.1%. It is preferable, and it is more preferable not to contain it.
In3+は失透傾向が強いため、含有しないことが好ましい。 Since In 3+ has a strong tendency to devitrify, it is preferable not to contain it.
なお、環境上の理由から、Pb2+及びAs3+を含有しないことが好ましい。 For environmental reasons, it is preferable that Pb 2+ and As 3+ are not contained.
本発明におけるガラス粉末は、アニオンとして、ハロゲン化物イオンであるF−またはCl−を含有する。F−及びCl−は屈伏点を低下させる作用や光透過率を高める効果を有する。ただし、その含有量が多すぎると、溶融時の揮発性が高くなり脈理が発生しやすくなる。また、失透しやすくなる。本発明におけるガラス粉末は、アニオン%で、F−+Cl− 0.1〜70%を含有し、F−+Cl− 1〜67.5%を含有することが好ましく、F−+Cl− 5〜65%を含有することがより好ましく、F−+Cl− 2〜30%を含有することがさらに好ましく、F−+Cl− 10〜60%を含有することが特に好ましい。なお、F−やCl−を導入するための原料としては、SnF2やSnCl2の他、La、Gd、Ta、W、Nb、Y、Yb、Ge、Mg、Ca、SrまたはBaのフッ化物及び塩化物が挙げられる。 The glass powder in the present invention contains a halide ion F − or Cl − as an anion. F − and Cl − have the effect of lowering the yield point and the effect of increasing the light transmittance. However, if the content is too large, the volatility at the time of melting becomes high and the veins are likely to occur. In addition, it becomes easy to devitrify. Glass powder in the present invention, with anionic%, F - + Cl - containing 0.1~70%, F - + Cl - to preferably contains 1~67.5%, F - + Cl - 5~65% It is more preferable to contain F − + Cl − 2 to 30%, and it is particularly preferable to contain F − + Cl − 10 to 60%. In addition to SnF 2 and SnCl 2 , fluorides of La, Gd, Ta, W, Nb, Y, Yb, Ge, Mg, Ca, Sr or Ba can be used as raw materials for introducing F − and Cl −. And chlorides.
ハロゲン化物イオンとしては、上記成分以外にもBr−等を含有させてもよい。ハロゲン化物イオン以外としては、通常、酸素イオン(O2−)を含有する。 As the halide ion, Br − or the like may be contained in addition to the above components. Other than the halide ion, it usually contains an oxygen ion (O 2- ).
ガラス粉末の屈折率(nd)は、好ましくは1.6以上、より好ましくは1.65以上、さらに好ましくは1.7以上、特に好ましくは1.72以上である。ガラス粉末の屈折率が小さすぎると、波長変換部材からの光の取り出し効率が低下しやすくなる。また、ガラス粉末と蛍光体との屈折率差が大きくなり、両者の界面での光散乱ロスが大きくなって、発光強度が低下するおそれがある。なお、上限については特に限定されないが、屈折率が高すぎると、ガラスが不安定になる傾向があるため、好ましくは1.95以下、より好ましくは1.9以下である。 The refractive index (nd) of the glass powder is preferably 1.6 or more, more preferably 1.65 or more, still more preferably 1.7 or more, and particularly preferably 1.72 or more. If the refractive index of the glass powder is too small, the efficiency of extracting light from the wavelength conversion member tends to decrease. In addition, the difference in refractive index between the glass powder and the phosphor becomes large, the light scattering loss at the interface between the two becomes large, and the emission intensity may decrease. The upper limit is not particularly limited, but if the refractive index is too high, the glass tends to become unstable, so the upper limit is preferably 1.95 or less, more preferably 1.9 or less.
ガラス粉末の着色度λ70は500nm未満であることが好ましく、470nm以下であることがより好ましく、460nm以下であることがさらに好ましい。着色度λ70が大きすぎると、近紫外域〜可視域における光透過率に劣る傾向がある。結果として、蛍光体に照射される励起光量が低下したり、波長変換部材から所望の色合いの出射光が得られにくくなる。 The degree of coloration λ 70 of the glass powder is preferably less than 500 nm, more preferably 470 nm or less, and further preferably 460 nm or less. If the degree of coloring λ 70 is too large, the light transmittance in the near-ultraviolet region to the visible region tends to be inferior. As a result, the amount of excitation light irradiated to the phosphor is reduced, and it becomes difficult to obtain emitted light having a desired color from the wavelength conversion member.
ガラス粉末の屈伏点は300℃以下であることが好ましく、280℃以下であることがより好ましく、260℃以下であることがさらに好ましく、250℃以下であることが特に好ましい。ガラス粉末の屈伏点が上記範囲を満たすことにより、低温での焼結が可能となり、蛍光体の劣化を抑制することができる。 The yield point of the glass powder is preferably 300 ° C. or lower, more preferably 280 ° C. or lower, further preferably 260 ° C. or lower, and particularly preferably 250 ° C. or lower. When the yield point of the glass powder satisfies the above range, sintering at a low temperature becomes possible, and deterioration of the phosphor can be suppressed.
本発明の粉末ガラスは、軟化温度(TF)と結晶化温度(Tc)との差が30℃以上であることが好ましく、40℃以上であることがより好ましく、50℃以上であることがさらに好ましい。軟化温度(TF)と結晶化温度(Tc)との差が小さすぎると、焼結中に結晶が析出しやすくなる。結果として、光透過率が低下したり、焼結が不十分になって緻密な焼結体が得られにくくなる。 In the powdered glass of the present invention, the difference between the softening temperature (TF) and the crystallization temperature (Tc) is preferably 30 ° C. or higher, more preferably 40 ° C. or higher, and further preferably 50 ° C. or higher. preferable. If the difference between the softening temperature (TF) and the crystallization temperature (Tc) is too small, crystals are likely to precipitate during sintering. As a result, the light transmittance is lowered and the sintering is insufficient, making it difficult to obtain a dense sintered body.
ガラス粉末の20〜100℃における熱膨張係数は80×10−7〜200×10−7/℃であることが好ましく、100×10−7〜190×10−7/℃であることがより好ましく、120×10−7〜180×10−7/℃であることがさらに好ましい。熱膨張係数が低すぎる、或いは高すぎると、波長変換部材を固定するための基材や、波長変換部材と基材を接着するための接着材との熱膨張係数が整合しなくなって、高温下での使用時にクラックが発生しやすくなる。 The coefficient of thermal expansion of the glass powder at 20 to 100 ° C. is preferably 80 × 10-7 to 200 × 10-7 / ° C., more preferably 100 × 10-7 to 190 × 10-7 / ° C. , 120 × 10 -7 to 180 × 10 -7 / ° C., more preferably. If the coefficient of thermal expansion is too low or too high, the coefficient of thermal expansion of the base material for fixing the wavelength conversion member and the adhesive material for adhering the wavelength conversion member and the base material will not match, and the temperature will be high. Cracks are likely to occur when used in.
ガラス粉末のJOGISに準じた耐水性は3級以上であることが好ましい。耐水性が上記範囲外になると、波長変換部材の製造工程(例えば洗浄工程)において白濁して光透過率が低下するおそれがある。 The water resistance of the glass powder according to JOBIS is preferably grade 3 or higher. If the water resistance is out of the above range, the wavelength conversion member may become cloudy in a manufacturing process (for example, a cleaning process) and the light transmittance may decrease.
ガラス粉末は以下のようにして製造することができる。まず、所望の組成になるように原料を調合した後、溶融炉中で溶融を行う。原料としては、酸化物、炭酸塩、硝酸塩、リン酸塩、ハロゲン化合物(フッ化物、塩化物、臭化物、ヨウ化物、アスタチン化物)等を使用することができる。ここで、一次溶融によりカレットを作製後、当該カレットを用いて二次溶融を行なうことにより、屈折率の調整や組成の均質化を図ることができる。組成が均質化されることにより、光透過率の高いガラスを得ることができる。なお、二次溶融の際、屈折率の高いカレットと屈折率の低いカレットを用いることにより、屈折率の精密制御が可能となる。溶融雰囲気は不活性雰囲気または還元性雰囲気とすることが好ましい。例えば、窒素やアルゴン等の不活性雰囲気中で溶融することで、均質なガラスが得られやすくなる。ガラス溶融用容器としては、白金や金等の金属、耐火物、石英ガラス、グラッシーカーボン等が使用できる。特に金製容器は、Sn2+との合金反応が起こりにくいため好ましい。なお、金属製容器としては、ZrO2等の酸化物を分散させた強化材を使用することが好ましい。 The glass powder can be produced as follows. First, the raw materials are prepared so as to have a desired composition, and then melted in a melting furnace. As the raw material, oxides, carbonates, nitrates, phosphates, halogen compounds (fluorides, chlorides, bromides, iodides, astatates) and the like can be used. Here, after the cullet is produced by the primary melting, the refractive index can be adjusted and the composition can be homogenized by performing the secondary melting using the cullet. By homogenizing the composition, glass having high light transmittance can be obtained. At the time of secondary melting, the refractive index can be precisely controlled by using a cullet having a high refractive index and a cullet having a low refractive index. The melting atmosphere is preferably an inert atmosphere or a reducing atmosphere. For example, by melting in an inert atmosphere such as nitrogen or argon, a homogeneous glass can be easily obtained. As the glass melting container, metals such as platinum and gold, refractories, quartz glass, glassy carbon and the like can be used. A gold container is particularly preferable because an alloy reaction with Sn 2+ is unlikely to occur. As the metal container, it is preferable to use a reinforcing material in which an oxide such as ZrO 2 is dispersed.
次に、溶融ガラスをフィルム状に成形し、ボールミルを用い、粉末ガラスを得る。 Next, the molten glass is formed into a film, and a ball mill is used to obtain powdered glass.
ガラス粉末の粒子径は特に限定されないが、例えば、最大粒子径D99が200μm以下(特に150μm以下、さらには105μm以下)、かつ、平均粒子径D50が0.1μm以上(特に1μm以上、さらには2μm以上)であることが好ましい。ガラス粉末の最大粒子径D99が大きすぎると、波長変換部材において、励起光が散乱しにくくなり発光効率が低下しやすくなる。また、平均粒子径D50が小さすぎると、波長変換部材において、励起光が過剰に散乱して発光効率が低下しやすくなる。 The particle size of the glass powder is not particularly limited, but for example, the maximum particle size D 99 is 200 μm or less (particularly 150 μm or less, further 105 μm or less), and the average particle size D 50 is 0.1 μm or more (particularly 1 μm or more, further. Is preferably 2 μm or more). If the maximum particle size D 99 of the glass powder is too large, the excitation light is less likely to be scattered in the wavelength conversion member, and the luminous efficiency is likely to decrease. Further, if the average particle diameter D 50 is too small, the excitation light is excessively scattered in the wavelength conversion member, and the luminous efficiency tends to decrease.
なお、本発明において、平均粒子径D50及び最大粒子径D99はレーザー回折法により測定した値を指す。 In the present invention, the average particle diameter D 50 and the maximum particle diameter D 99 refer to the values measured by the laser diffraction method.
蛍光体としては、一般に市場で入手できるものであれば特に限定されない。例えば、窒化物蛍光体、酸窒化物蛍光体、酸化物蛍光体(YAG蛍光体等のガーネット系蛍光体を含む)、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体(ハロリン酸塩化物蛍光体等)及びアルミン酸塩蛍光体等が挙げられる。これらの蛍光体は通常、粉末上である。これらの蛍光体のうち、窒化物蛍光体、酸窒化物蛍光体及び酸化物蛍光体は耐熱性が高く、焼成時に比較的劣化しにくいため好ましい。なお、窒化物蛍光体及び酸窒化物蛍光体は、近紫外〜青の励起光を緑〜赤という幅広い波長領域に変換し、しかも発光強度も比較的高いという特徴を有している。そのため、窒化物蛍光体及び酸窒化物蛍光体は、特に白色LED素子用波長変換部材に用いられる蛍光体として有効である。 The phosphor is not particularly limited as long as it is generally available on the market. For example, nitride phosphors, oxynitride phosphors, oxide phosphors (including garnet-based phosphors such as YAG phosphors), sulfide phosphors, acid sulfide phosphors, halide phosphors (halophosphate formation). Fluorescent materials, etc.) and aluminate phosphors, etc. can be mentioned. These phosphors are usually on powder. Of these phosphors, nitride phosphors, oxynitride phosphors, and oxide phosphors are preferable because they have high heat resistance and are relatively resistant to deterioration during firing. The nitride phosphor and the oxynitride phosphor have a feature that the excitation light of near-ultraviolet to blue is converted into a wide wavelength region of green to red, and the emission intensity is relatively high. Therefore, the nitride phosphor and the oxynitride phosphor are particularly effective as phosphors used in wavelength conversion members for white LED elements.
上記蛍光体としては、波長300〜500nmに励起帯を有し波長380〜780nmに発光ピークを有するもの、特に青色(波長440〜480nm)、緑色(波長500〜540nm)、黄色(波長540〜595nm)または赤色(波長600〜700nm)に発光するものが挙げられる。 The phosphor has an excitation band at a wavelength of 300 to 500 nm and an emission peak at a wavelength of 380 to 780 nm, particularly blue (wavelength 440 to 480 nm), green (wavelength 500 to 540 nm), and yellow (wavelength 540 to 595 nm). ) Or red (wavelength 600 to 700 nm).
波長300〜440nmの紫外〜近紫外の励起光を照射すると青色の発光を発する蛍光体としては、(Sr,Ba)MgAl10O17:Eu2+、(Sr,Ba)3MgSi2O8:Eu2+等が挙げられる。 Examples of phosphors that emit blue light when irradiated with ultraviolet to near-ultraviolet excitation light with a wavelength of 300 to 440 nm include (Sr, Ba) MgAl 10 O 17 : Eu 2+ , (Sr, Ba) 3 MgSi 2 O 8 : Eu. 2+ and the like can be mentioned.
波長300〜440nmの紫外〜近紫外の励起光を照射すると緑色の蛍光を発する蛍光体としては、SrAl2O4:Eu2+、SrBaSiO4:Eu2+、Y3(Al,Gd)5O12:Ce3+、SrSiOn:Eu2+、BaMgAl10O17:Eu2+,Mn2+、Ba2MgSi2O7:Eu2+、Ba2SiO4:Eu2+、Ba2Li2Si2O7:Eu2+、BaAl2O4:Eu2+等が挙げられる。 Examples of phosphors that emit green fluorescence when irradiated with excitation light with a wavelength of 300 to 440 nm from ultraviolet to near ultraviolet are SrAl 2 O 4 : Eu 2+ , SrBaSiO 4 : Eu 2+ , Y 3 (Al, Gd) 5 O 12 : Ce 3+ , SrSiO n : Eu 2+ , BaMgAl 10 O 17 : Eu 2+ , Mn 2+ , Ba 2 MgSi 2 O 7 : Eu 2+ , Ba 2 SiO 4 : Eu 2+ , Ba 2 Li 2 Si 2 O 7 : Eu 2+ , BaAl 2 O 4 : Eu 2+ and the like.
波長440〜480nmの青色の励起光を照射すると緑色の蛍光を発する蛍光体としては、SrAl2O4:Eu2+、SrBaSiO4:Eu2+、Y3(Al,Gd)5O12:Ce3+、SrSiOn:Eu2+、β−SiAlON:Eu2+等が挙げられる。 Examples of phosphors that emit green fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm include SrAl 2 O 4 : Eu 2+ , SrBaSiO 4 : Eu 2+ , Y 3 (Al, Gd) 5 O 12 : Ce 3+ , Examples thereof include SrSiOn: Eu 2+ and β-SiAlON: Eu 2+ .
波長300〜440nmの紫外〜近紫外の励起光を照射すると黄色の蛍光を発する蛍光体としては、La3Si6N11:Ce3+等が挙げられる。 Examples of the phosphor that emits yellow fluorescence when irradiated with ultraviolet-near-ultraviolet excitation light having a wavelength of 300 to 440 nm include La 3 Si 6 N 11 : Ce 3+ and the like.
波長440〜480nmの青色の励起光を照射すると黄色の蛍光を発する蛍光体としては、Y3(Al,Gd)5O12:Ce3+、Sr2SiO4:Eu2+が挙げられる。 Examples of the phosphor that emits yellow fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm include Y 3 (Al, Gd) 5 O 12 : Ce 3+ and Sr 2 SiO 4 : Eu 2+ .
波長300〜440nmの紫外〜近紫外の励起光を照射すると赤色の蛍光を発する蛍光体としては、CaGa2S4:Mn2+、MgSr3Si2O8:Eu2+,Mn2+、Ca2MgSi2O7:Eu2+,Mn2+等が挙げられる。 CaGa 2 S 4 : Mn 2+ , MgSr 3 Si 2 O 8 : Eu 2+ , Mn 2+ , Ca 2 MgSi 2 are examples of phosphors that emit red fluorescence when irradiated with ultraviolet-near-ultraviolet excitation light with a wavelength of 300 to 440 nm. O 7 : Eu 2+ , Mn 2+ and the like can be mentioned.
波長440〜480nmの青色の励起光を照射すると赤色の蛍光を発する蛍光体としては、CaAlSiN3:Eu2+、CaSiN3:Eu2+、(Ca,Sr)2Si5N8:Eu2+、α−SiAlON:Eu2+等が挙げられる。 Examples of phosphors that emit red fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm include CaAlSiN 3 : Eu 2+ , CaSiN 3 : Eu 2+ , (Ca, Sr) 2 Si 5 N 8 : Eu 2+ , α-. SiAlON: Eu 2+ and the like.
上記蛍光体の他に量子ドット蛍光体を使用することもできる。量子ドット蛍光体の具体例としては、CdSe、CdTe、ZnSe、CdS、PbSe、PbS、CIS、ZCIS、ZCIGS、CdSe/ZnS、ZnS/CdSe/ZnS、CdSe/ZnSe/ZnS等が挙げられる。量子ドット蛍光体は通常、有機溶媒に分散させた状態で取り扱われる。 In addition to the above phosphor, a quantum dot phosphor can also be used. Specific examples of the quantum dot phosphor include CdSe, CdTe, ZnSe, CdS, PbSe, PbS, CIS, ZCIS, ZCIGS, CdSe / ZnS, ZnS / CdSe / ZnS, CdSe / ZnSe / ZnS, and the like. Quantum dot phosphors are usually handled in a state of being dispersed in an organic solvent.
なお、励起光や発光の波長域に合わせて、複数の蛍光体を混合して用いてもよい。例えば、紫外域の励起光を照射して白色光を得る場合は、青色、緑色、黄色、赤色の蛍光を発する蛍光体を混合して使用すればよい。 A plurality of phosphors may be mixed and used according to the wavelength range of excitation light or emission. For example, when white light is obtained by irradiating excitation light in the ultraviolet region, phosphors that emit blue, green, yellow, and red fluorescence may be mixed and used.
波長変換部材における蛍光体の含有量が多すぎると、焼結しにくくなったり、気孔率が大きくなる傾向がある。その結果、得られる波長変換部材において、励起光が効率良く蛍光体に照射されにくくなったり、機械強度が低下しやすくなる等の問題が生じる。一方、蛍光体の含有量が少なすぎると、所望の発光強度を得ることが困難になる。このような観点から、波長変換部材における蛍光体の含有量は、質量%で、好ましくは0.01〜50%、より好ましくは0.05〜40%、さらに好ましくは0.1〜30%の範囲で調整される。 If the content of the phosphor in the wavelength conversion member is too large, it tends to be difficult to sinter and the porosity tends to increase. As a result, in the obtained wavelength conversion member, problems such as difficulty in efficiently irradiating the phosphor with excitation light and a tendency to reduce the mechanical strength occur. On the other hand, if the content of the phosphor is too small, it becomes difficult to obtain a desired emission intensity. From this point of view, the content of the phosphor in the wavelength conversion member is mass%, preferably 0.01 to 50%, more preferably 0.05 to 40%, still more preferably 0.1 to 30%. Adjusted in range.
なお、波長変換部材において発生した蛍光を、励起光入射側へ反射させ、主に蛍光のみを外部に取り出すことを目的とした波長変換部材においては、上記の限りではなく、発光強度が最大になるように、蛍光体の含有量を多くする(例えば、質量%で、50%〜80%、さらには55〜75%)ことができる。 In addition, in the wavelength conversion member whose purpose is to reflect the fluorescence generated in the wavelength conversion member to the excitation light incident side and mainly extract only the fluorescence to the outside, the emission intensity is maximized, not limited to the above. As described above, the content of the phosphor can be increased (for example, 50% to 80% by mass, and further 55 to 75%).
本発明の波長変換部材は、上記の波長変換部材用原料粉末を焼結してなるものである。具体的には、本発明の波長変換部材は、カチオン%で、P5+ 0.1%以上、及びSn2+ 1%以上、アニオン%で、F−+Cl− 0.1〜70%を含有するガラスマトリクス中に蛍光体が分散してなることを特徴とする。ここで、ガラスマトリクスの特徴は既述のガラス粉末の特徴と同じであり、蛍光体の特徴も既述の通りであるため、説明は割愛する。 The wavelength conversion member of the present invention is obtained by sintering the above-mentioned raw material powder for a wavelength conversion member. Specifically, the wavelength conversion member of the present invention is a glass containing P 5+ 0.1% or more in% cation, Sn 2 + 1% or more, and F − + Cl − 0.1 to 70% in% anion. It is characterized in that the phosphor is dispersed in the matrix. Here, since the characteristics of the glass matrix are the same as those of the glass powder described above and the characteristics of the phosphor are also as described above, the description thereof will be omitted.
なお、本発明の波長変換部材は、上記組成を有するガラスの溶融中に、蛍光体を直接投入し、均一に分散後、成形したものであってもよい。ここで、蛍光体を投入する温度は、ガラスの液相温度より高く、蛍光体が失活する温度未満にすることが好ましい。また、基材上に上記ガラス粉末と蛍光体の混合物を塗布して加熱することにより、ガラス粉末と蛍光体の混合物を焼結して蛍光体層を形成してもよい。基材としては、ガラス板等の透明基板、アルミナ等のセラミック基板、Al、Pt、Au等の金属基板等が挙げられる。なお、基材表面に蛍光体を分散させ、さらにその上に上記組成を有するガラス板を載置した後、加熱することによりガラス板を軟化させて蛍光体をシールしてもよい。あるいは、上記組成を有するガラス板表面に蛍光体を分散させ、さらにその上に上記組成を有する別のガラス板を載置した後、加熱することにより各ガラス板を軟化させて蛍光体をシールしてもよい。上記組成を有する2枚のガラス板の間に蛍光体を分散させた状態で挟持した後、加熱することによりガラス板を軟化させて蛍光体をシールしてもよい。 The wavelength conversion member of the present invention may be formed by directly charging a phosphor during melting of glass having the above composition, uniformly dispersing it, and then molding it. Here, the temperature at which the phosphor is charged is preferably higher than the liquidus temperature of the glass and lower than the temperature at which the phosphor is deactivated. Further, the mixture of the glass powder and the phosphor may be sintered and the phosphor layer may be formed by applying the mixture of the glass powder and the phosphor on the base material and heating the mixture. Examples of the base material include a transparent substrate such as a glass plate, a ceramic substrate such as alumina, and a metal substrate such as Al, Pt, and Au. The phosphor may be dispersed on the surface of the base material, a glass plate having the above composition may be placed on the glass plate, and then heated to soften the glass plate to seal the phosphor. Alternatively, the phosphor is dispersed on the surface of a glass plate having the above composition, another glass plate having the above composition is placed on the surface, and then each glass plate is softened by heating to seal the phosphor. You may. After sandwiching the phosphor in a state of being dispersed between two glass plates having the above composition, the glass plate may be softened by heating to seal the phosphor.
波長変換部材用原料粉末の焼成温度は、ガラス粉末の軟化点±100℃以内、±80℃以内、さらには±50℃以内の範囲とすることが好ましい。焼成温度が低すぎると、ガラス粉末が十分に流動せず、緻密な焼結体が得られにくい。一方、焼成温度が高すぎると、蛍光体がガラス粉末中に溶出する、蛍光体に含まれる成分がガラス粉末中に拡散してガラス粉末が着色する、等が原因となって発光強度が低下するおそれがある。 The firing temperature of the raw material powder for the wavelength conversion member is preferably in the range of the softening point of the glass powder within ± 100 ° C., within ± 80 ° C., and further within ± 50 ° C. If the firing temperature is too low, the glass powder does not flow sufficiently and it is difficult to obtain a dense sintered body. On the other hand, if the firing temperature is too high, the emission intensity is lowered due to the elution of the phosphor in the glass powder, the diffusion of the components contained in the phosphor into the glass powder, and the coloring of the glass powder. There is a risk.
焼成時の雰囲気は、大気雰囲気あるいは真空、窒素雰囲気、アルゴン雰囲気などの不活性雰囲気が好ましい。特に、不活性雰囲気では、焼成時におけるガラス粉末の失透を抑制することができる。また、耐熱性の比較的低い蛍光体(量子ドット蛍光体等)の発光特性の劣化を抑制することができる。結果として、波長変換部材の発光強度を向上させることが可能となる。 The atmosphere at the time of firing is preferably an atmospheric atmosphere or an inert atmosphere such as a vacuum, nitrogen atmosphere, or argon atmosphere. In particular, in an inert atmosphere, devitrification of the glass powder during firing can be suppressed. In addition, it is possible to suppress deterioration of the light emission characteristics of a fluorescent substance (quantum dot fluorescent substance, etc.) having relatively low heat resistance. As a result, it is possible to improve the emission intensity of the wavelength conversion member.
本発明の波長変換部材の形状は特に制限されず、例えば、板状、柱状、球状、半球状、半球ドーム状等、それ自身が特定の形状を有する部材だけでなく、ガラス基板やセラミック基板等の基材表面に形成された被膜状のものであってもよい。 The shape of the wavelength conversion member of the present invention is not particularly limited, and for example, not only a member having a specific shape itself such as a plate shape, a columnar shape, a spherical shape, a hemispherical shape, a hemispherical shape, etc., but also a glass substrate, a ceramic substrate, etc. It may be in the form of a film formed on the surface of the base material of.
本発明の発光装置は、既述の波長変換部材と、波長変換部材に対して、蛍光体の励起光を照射する光源と、を備えることを特徴とする。図1は、本発明の発光装置の一実施形態を示す模式的側面図である。図1に示すように、発光装置1は波長変換部材2及び光源3を備えてなる。光源3は、波長変換部材2に対して蛍光体の励起光Linを照射する。波長変換部材2に入射した励起光Linは、別の波長の光に変換され、光源3とは反対側からLoutとして出射する。この際、波長変換後の光と、波長変換されずに透過した励起光との合成光を出射させるようにしてもよく、波長変換後の光のみを出射させるようにしてもよい。 The light emitting device of the present invention is characterized by including the above-mentioned wavelength conversion member and a light source that irradiates the wavelength conversion member with excitation light of a phosphor. FIG. 1 is a schematic side view showing an embodiment of the light emitting device of the present invention. As shown in FIG. 1, the light emitting device 1 includes a wavelength conversion member 2 and a light source 3. Light source 3 irradiates the excitation light L in the phosphor with respect to the wavelength conversion member 2. Excitation light L in incident to the wavelength conversion member 2 is converted into light of another wavelength, the light source 3 emits as L out from the opposite side. At this time, the combined light of the light after the wavelength conversion and the excitation light transmitted without the wavelength conversion may be emitted, or only the light after the wavelength conversion may be emitted.
以下、本発明を実施例に基づいて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to these examples.
(1)ガラス粉末の作製
表1及び2はそれぞれ本発明の実施例(a〜j)及び比較例(k)に係るガラス粉末を示している。
(1) Preparation of Glass Powder Tables 1 and 2 show the glass powder according to Examples (a to j) and Comparative Example (k) of the present invention, respectively.
まず、表に示す各ガラス組成になるように原料を調合し、金ルツボを用いて700〜1000℃で1時間溶融した。得られた溶融ガラスをフィルム成形し、ボールミルで粉砕後、平均粒径10μmのガラス粉末を得た。また、同時に溶融ガラスの一部をカーボン型枠に鋳込むことにより、50mm×50mm×15mmの大きさに成形し、測定用試料を作製した。 First, the raw materials were prepared so as to have each glass composition shown in the table, and melted at 700 to 1000 ° C. for 1 hour using a gold crucible. The obtained molten glass was film-molded and pulverized with a ball mill to obtain a glass powder having an average particle size of 10 μm. At the same time, a part of the molten glass was cast into a carbon mold to form a size of 50 mm × 50 mm × 15 mm, and a sample for measurement was prepared.
得られた試料について、屈折率(nd)、熱膨張係数、屈伏点、軟化温度、結晶化温度、着色度、耐酸性及び耐水性を測定した。結果を表1及び2に示す。 The refractive index (nd), coefficient of thermal expansion, yield point, softening temperature, crystallization temperature, degree of coloring, acid resistance and water resistance of the obtained sample were measured. The results are shown in Tables 1 and 2.
屈折率は、ヘリウムランプのd線(587.6nm)に対する測定値で示した。 The refractive index is shown as a measured value of the helium lamp with respect to the d line (587.6 nm).
熱膨張係数及び屈伏点は、熱膨張測定装置(dilato meter)を用いて測定した。なお、熱膨張係数は20〜100℃の温度範囲で測定した。 The coefficient of thermal expansion and the yield point were measured using a thermal expansion measuring device (dirato meter). The coefficient of thermal expansion was measured in the temperature range of 20 to 100 ° C.
軟化温度(TF)と結晶化温度(Tc)は示差熱測定計により測定した。 The softening temperature (TF) and the crystallization temperature (Tc) were measured by a differential thermal analyzer.
着色度は次のようにして測定した。厚さ10mm±0.1mmの光学研磨された試料について、分光光度計を用いて200〜800nmの波長域での光透過率を0.5nm間隔で測定し、光透過率曲線を作製した。光透過率曲線において、光透過率70%を示す最短波長を着色度λ70とした。 The degree of coloration was measured as follows. For an optically polished sample having a thickness of 10 mm ± 0.1 mm, the light transmittance in the wavelength range of 200 to 800 nm was measured at intervals of 0.5 nm using a spectrophotometer to prepare a light transmittance curve. In the light transmittance curve, the shortest wavelength showing a light transmittance of 70% was defined as the degree of coloring λ 70 .
耐酸性及び耐水性は、JOGISに定められる粉末法により測定を行なった。 Acid resistance and water resistance were measured by the powder method specified in JOGIS.
(2)波長変換部材の作製
表3〜5は実施例(No.1〜10、12〜21、23〜32)及び比較例(No.11、22、33)に係る波長変換部材を示している。
(2) Preparation of Wavelength Conversion Member Tables 3 to 5 show the wavelength conversion member according to Examples (No. 1 to 10, 12 to 21, 23 to 32) and Comparative Example (No. 11, 22, 33). There is.
表1及び2に記載の各ガラス粉末試料に、蛍光体としてCaAlSiN3またはα−SiAlONを表3及び4に示す所定の質量比で混合して混合粉末を得た。混合粉末を金型で加圧成型して直径1cmの円柱状予備成型体を作製した。また、表1及び2に記載の各ガラス粉末を金型で加圧成型して直径1cmの円柱状圧粉体を作製し、蛍光体として量子ドット蛍光体PbSを分散させた溶媒を、この圧粉体に滴下して含浸させて円柱状予備成型体を得た。ガラス粉末とPbSの混合比は表5に示す通りとした。得られた各予備成型体をガラス粉末の軟化温度+30℃の温度で焼成した後、得られた焼結体に加工を施すことにより、直径8mm、厚さ0.2mmの円盤状の波長変換部材を得た。得られたそれぞれの波長変換部材について、発光スペクトルを測定し、発光効率を算出した。結果を表3〜5に示す。 Each glass powder sample described in Table 1 and 2, the CaAlSiN 3 or alpha-SiAlON to obtain mixed powder was mixed at a predetermined weight ratio shown in Table 3 and 4 as a phosphor. The mixed powder was pressure-molded with a mold to prepare a columnar premolded body having a diameter of 1 cm. Further, each of the glass powders shown in Tables 1 and 2 was pressure-molded with a mold to prepare a columnar green compact having a diameter of 1 cm, and a solvent in which the quantum dot phosphor PbS was dispersed as a phosphor was used at this pressure. The powder was dropped and impregnated to obtain a columnar premolded product. The mixing ratio of the glass powder and PbS was as shown in Table 5. Each of the obtained premolded bodies is fired at a temperature of softening temperature of glass powder + 30 ° C., and then the obtained sintered body is processed to form a disk-shaped wavelength conversion member having a diameter of 8 mm and a thickness of 0.2 mm. Got The emission spectrum of each of the obtained wavelength conversion members was measured, and the luminous efficiency was calculated. The results are shown in Tables 3-5.
発光効率は次のようにして求めた。まず、励起波長460nmの光源上に波長変換部材を設置し、積分球内で、試料上面から発せられる光のエネルギー分布スペクトルを測定した。次に、得られたスペクトルに標準比視感度を掛け合わせて全光束を計算し、全光束を光源の電力で除して発光効率を算出した。 Luminous efficiency was determined as follows. First, a wavelength conversion member was placed on a light source having an excitation wavelength of 460 nm, and the energy distribution spectrum of light emitted from the upper surface of the sample was measured in the integrating sphere. Next, the total luminous flux was calculated by multiplying the obtained spectrum by the standard luminosity function, and the total luminous flux was divided by the power of the light source to calculate the luminous efficiency.
表3〜5から明らかなように、蛍光体としてCaAlSiN3を使用した場合、実施例であるNo.1〜10の試料は、発光効率が6.4lm/W以上であったのに対し、比較例であるNo.11の試料は発光効率が5.0lm/Wと低かった。 As is clear from Tables 3 to 5, when CaAlSiN 3 was used as the phosphor, No. 1 of Examples. The samples 1 to 10 had a luminous efficiency of 6.4 lm / W or more, whereas No. 1 was a comparative example. The luminous efficiency of 11 samples was as low as 5.0 lm / W.
蛍光体としてα−SiAlONを使用した場合、実施例であるNo.12〜21の試料は、発光効率が7.9lm/W以上であったのに対し、比較例であるNo.22の試料は発光効率が6.5m/Wと低かった。 When α-SiAlON was used as the phosphor, No. The samples of Nos. 12 to 21 had a luminous efficiency of 7.9 lm / W or more, whereas No. 12 to 21 was a comparative example. The luminous efficiency of 22 samples was as low as 6.5 m / W.
蛍光体として量子ドット蛍光体PbSを使用した場合、実施例であるNo.23〜32の試料は、発光効率が4.9lm/W以上であったのに対し、比較例であるNo.33の試料は量子ドット蛍光体が劣化して発光しなかった。 When the quantum dot phosphor PbS was used as the phosphor, No. The samples of 23 to 32 had a luminous efficiency of 4.9 lm / W or more, whereas No. 23 was a comparative example. The quantum dot phosphor of 33 samples deteriorated and did not emit light.
また、No.1〜10、12〜21、23〜32の波長変換部材は、耐酸性及び耐水性に優れたガラス粉末試料を用いて作製したものであるため、長期間にわたって使用しても表面が変質しにくく、発光効率が大幅に低下するといった自体が生じにくいと考えられる。 In addition, No. Since the wavelength conversion members 1 to 10, 12 to 21, and 23 to 32 are made by using a glass powder sample having excellent acid resistance and water resistance, the surface is less likely to deteriorate even after long-term use. , It is considered unlikely that the luminous efficiency will be significantly reduced.
本発明の波長変換部材用原料粉末は、単色あるいは白色LED等の一般照明、特殊照明(例えば、プロジェクター光源、車載用ヘッドランプ光源)等に使用される波長変換部材の作製に好適である。 The raw material powder for a wavelength conversion member of the present invention is suitable for producing a wavelength conversion member used for general lighting such as a single color or white LED, special lighting (for example, a projector light source, an in-vehicle headlamp light source), and the like.
1 発光デバイス
2 波長変換部材
3 光源
1 Light emitting device 2 Wavelength conversion member 3 Light source
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014206144A JP6830751B2 (en) | 2014-10-07 | 2014-10-07 | Wavelength conversion member and light emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014206144A JP6830751B2 (en) | 2014-10-07 | 2014-10-07 | Wavelength conversion member and light emitting device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019105329A Division JP2019163208A (en) | 2019-06-05 | 2019-06-05 | Raw material powder for wavelength conversion member |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016074822A JP2016074822A (en) | 2016-05-12 |
JP6830751B2 true JP6830751B2 (en) | 2021-02-17 |
Family
ID=55950909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014206144A Active JP6830751B2 (en) | 2014-10-07 | 2014-10-07 | Wavelength conversion member and light emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6830751B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019163208A (en) * | 2019-06-05 | 2019-09-26 | 日本電気硝子株式会社 | Raw material powder for wavelength conversion member |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2742703B2 (en) * | 1989-04-24 | 1998-04-22 | 日本電信電話株式会社 | Low melting glass composition |
JP4410877B2 (en) * | 1999-07-29 | 2010-02-03 | 株式会社住田光学ガラス | Low melting glass |
JP2001048575A (en) * | 1999-07-30 | 2001-02-20 | Kansai Research Institute | Low melting point glass |
US7829147B2 (en) * | 2005-08-18 | 2010-11-09 | Corning Incorporated | Hermetically sealing a device without a heat treating step and the resulting hermetically sealed device |
US7722929B2 (en) * | 2005-08-18 | 2010-05-25 | Corning Incorporated | Sealing technique for decreasing the time it takes to hermetically seal a device and the resulting hermetically sealed device |
JP4978886B2 (en) * | 2006-06-14 | 2012-07-18 | 日本電気硝子株式会社 | Phosphor composite material and phosphor composite member |
US8115326B2 (en) * | 2006-11-30 | 2012-02-14 | Corning Incorporated | Flexible substrates having a thin-film barrier |
JP2009270091A (en) * | 2008-05-06 | 2009-11-19 | Mitsubishi Chemicals Corp | Fluorescent glass, method of manufacturing fluorescent glass, semiconductor light-emitting device, and method of manufacturing semiconductor light-emitting device |
JP5939463B2 (en) * | 2012-03-23 | 2016-06-22 | 日本電気硝子株式会社 | Glass and wavelength conversion member using the glass |
JP6376337B2 (en) * | 2014-08-18 | 2018-08-22 | 日本電気硝子株式会社 | Optical glass |
-
2014
- 2014-10-07 JP JP2014206144A patent/JP6830751B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016074822A (en) | 2016-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109301057B (en) | Wavelength converting member and light-emitting device using the same | |
KR102422069B1 (en) | Wavelength conversion member and light emitting device using same | |
JP6273799B2 (en) | Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device | |
KR102422065B1 (en) | Wavelength conversion member and light emitting device using same | |
JP6311715B2 (en) | Phosphor-dispersed glass and method for producing the same | |
JP6365828B2 (en) | Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device | |
CN105637659B (en) | Wavelength conversion member and light emitting device | |
JP2013055269A (en) | Wavelength conversion member and light-emitting device | |
JP6168284B2 (en) | Wavelength conversion material, wavelength conversion member, and light emitting device | |
KR102654998B1 (en) | Glass used in wavelength conversion materials, wavelength conversion materials, wavelength conversion members, and light emitting devices | |
JP7121329B2 (en) | Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device | |
JP6830751B2 (en) | Wavelength conversion member and light emitting device | |
JP6830750B2 (en) | Wavelength conversion member and light emitting device | |
JP2019163208A (en) | Raw material powder for wavelength conversion member | |
JP5807780B2 (en) | Wavelength converting member and light emitting device using the same | |
WO2017183453A1 (en) | Wavelength conversion member | |
JP7339609B2 (en) | Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device | |
JP7004235B2 (en) | Glass used as wavelength conversion material, wavelength conversion material, wavelength conversion member and light emitting device | |
JP6861952B2 (en) | Wavelength conversion member and light emitting device using it | |
JPWO2019208057A1 (en) | Wavelength conversion member and light emitting device using it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170905 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181031 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181109 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190123 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190322 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20190402 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20190605 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20200416 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20200604 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200716 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20200722 |
|
C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20201216 |
|
C03 | Trial/appeal decision taken |
Free format text: JAPANESE INTERMEDIATE CODE: C03 Effective date: 20210125 |
|
C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20210125 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210127 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6830751 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |