[go: up one dir, main page]

JP6829340B1 - Gold vapor deposition material - Google Patents

Gold vapor deposition material Download PDF

Info

Publication number
JP6829340B1
JP6829340B1 JP2020166952A JP2020166952A JP6829340B1 JP 6829340 B1 JP6829340 B1 JP 6829340B1 JP 2020166952 A JP2020166952 A JP 2020166952A JP 2020166952 A JP2020166952 A JP 2020166952A JP 6829340 B1 JP6829340 B1 JP 6829340B1
Authority
JP
Japan
Prior art keywords
vapor deposition
gold
deposition material
wtppm
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020166952A
Other languages
Japanese (ja)
Other versions
JP2022059296A (en
Inventor
英士 高田
英士 高田
孝博 小林
孝博 小林
幸健 仲野
幸健 仲野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuda Sangyo Co Ltd
Original Assignee
Matsuda Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuda Sangyo Co Ltd filed Critical Matsuda Sangyo Co Ltd
Priority to JP2020166952A priority Critical patent/JP6829340B1/en
Priority to PCT/JP2020/039032 priority patent/WO2022070433A1/en
Priority to JP2020210944A priority patent/JP7021448B1/en
Application granted granted Critical
Publication of JP6829340B1 publication Critical patent/JP6829340B1/en
Priority to TW110108851A priority patent/TWI823069B/en
Priority to TW112125324A priority patent/TWI846534B/en
Publication of JP2022059296A publication Critical patent/JP2022059296A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

真空蒸着法で用いられる粒状の金の蒸着材料であって、金の蒸着材料の平均結晶粒径が0.1mm以上であり、酸素含有量が10wtppm以下、水素含有量が5wtppm以下であることを特徴とする金の蒸着材料。本発明は、真空蒸着法で用いる粒状(ショット)の金の蒸着材料であって、真空蒸着時に突沸現象を抑制することができる金の蒸着材料を提供することを課題とする。【選択図】なしGranular gold vapor deposition material used in the vacuum vapor deposition method, the average crystal grain size of the gold vapor deposition material is 0.1 mm or more, the oxygen content is 10 wtppm or less, and the hydrogen content is 5 wtppm or less. A characteristic gold vapor deposition material. An object of the present invention is to provide a granular (shot) gold vapor deposition material used in a vacuum vapor deposition method, which can suppress a bumping phenomenon during vacuum vapor deposition. [Selection diagram] None

Description

本発明は、真空蒸着法で用いられる金の蒸着材料に関する。 The present invention relates to a gold vapor deposition material used in a vacuum vapor deposition method.

真空蒸着法とは、成膜技術の一つであり、真空中で蒸発材料を加熱して、気体分子となった蒸着材料が基板に付着することによって薄膜を形成する技術である。ガラス、プラスチック、フィルム、金属等に蒸着(成膜)が可能であり、真空蒸着法は、電子部品、半導体デバイス、光学薄膜、磁気デバイス、LED、有機EL、LCD等における素子の形成に広く利用されている。蒸着材料としては、金、銀、白金、パラジウム等の貴金属や、銅、アルミニウム、クロム、スズ等の非鉄金属を用いることができ、さらには、金属だけでなく、酸化物等の非金属の成膜も可能である。 The vacuum vapor deposition method is one of the film forming techniques, and is a technique of heating an evaporative material in a vacuum and forming a thin film by adhering the vaporized material which has become gas molecules to a substrate. It is possible to deposit (deposit) on glass, plastic, film, metal, etc., and the vacuum vapor deposition method is widely used for forming elements in electronic parts, semiconductor devices, optical thin films, magnetic devices, LEDs, organic EL, LCD, etc. Has been done. As the vapor deposition material, precious metals such as gold, silver, platinum and palladium, and non-ferrous metals such as copper, aluminum, chromium and tin can be used, and further, not only metals but also non-metals such as oxides are formed. Membranes are also possible.

従来、蒸着材料を坩堝に充填し、電子ビーム等を用いて溶解する際、蒸着材料に含まれる不純物等が揮発して、突沸現象(スプラッシュとも呼ばれる)が発生し、基板上にパーティクルが付着するという問題が生じていた。この突沸現象の問題に関して、特許文献1には、不純物元素を低減することにより突沸を防ぐことが記載されている。また特許文献2には、添加金属を添加する方法が記載されている。さらに特許文献3では、最表面の酸素量を制御する方法が提案されている。 Conventionally, when a vapor-deposited material is filled in a crucible and melted using an electron beam or the like, impurities contained in the vapor-deposited material volatilize, causing a bumping phenomenon (also called a splash), and particles adhere to the substrate. There was a problem. Regarding the problem of this bumping phenomenon, Patent Document 1 describes that bumping is prevented by reducing impurity elements. Further, Patent Document 2 describes a method of adding an additive metal. Further, Patent Document 3 proposes a method of controlling the amount of oxygen on the outermost surface.

特開平1−180961号公報Japanese Unexamined Patent Publication No. 1-180961 国際公開第2017/199873号International Publication No. 2017/199873 特開2000−212728号公報Japanese Unexamined Patent Publication No. 2000-21728

本発明は、真空蒸着法で用いる粒状(ショット)の金の蒸着材料であって、真空蒸着時に突沸現象を抑制することができる金の蒸着材料を提供することを課題とする。 An object of the present invention is to provide a granular (shot) gold vapor deposition material used in a vacuum vapor deposition method, which can suppress a bumping phenomenon during vacuum vapor deposition.

上記の課題を解決することができる本発明の一態様は、真空蒸着法で用いられる粒状の金の蒸着材料であって、金の蒸着材料の平均結晶粒径が0.1mm以上であり、酸素含有量が10wtppm以下、水素含有量が5wtppm以下であることを特徴とする。また、上記の課題を解決することができる別の態様は、真空蒸着法で用いられる粒状の金の蒸着材料であって、金の蒸着材料1g中に含まれる1μm以上の異物の数が5000個以下であることを特徴する。 One aspect of the present invention that can solve the above problems is a granular gold vapor deposition material used in a vacuum vapor deposition method, in which the average crystal grain size of the gold vapor deposition material is 0.1 mm or more, and oxygen. It is characterized in that the content is 10 wtppm or less and the hydrogen content is 5 wtppm or less. Further, another aspect in which the above-mentioned problems can be solved is a granular gold vapor deposition material used in the vacuum vapor deposition method, wherein the number of foreign substances of 1 μm or more contained in 1 g of the gold vapor deposition material is 5000. It is characterized by the following.

本発明によれば、金の蒸着材料の溶解の際に突沸現象を効果的に抑制することができ、これにより基板上に付着するパーティクルを低減することができる。したがって、製品の歩留まり改善に寄与することができる。 According to the present invention, the bumping phenomenon can be effectively suppressed when the gold-deposited material is melted, and thereby the particles adhering to the substrate can be reduced. Therefore, it can contribute to the improvement of the yield of the product.

本発明の一形態に係る金の蒸着材料(ショット)の写真である。It is a photograph of a gold vapor deposition material (shot) according to one embodiment of the present invention.

真空蒸着法で用いられる金の蒸着材料は、通常、原料として純度99.9wt%以上の金を使用し、この金原料をアルミナ等のセラミック坩堝やカーボン坩堝で大気中にて溶解する。その後、坩堝底部に連結されているノズルから、金の溶湯を水中や有機溶媒に落下させ、急冷して、粒状の金の蒸着材料(金粒あるいは金ショットとも呼ぶ。)を製造する。これにより、比較的不純物の少ない金の蒸着材料を作製することができる。 As the gold vapor deposition material used in the vacuum vapor deposition method, gold having a purity of 99.9 wt% or more is usually used as a raw material, and this gold raw material is dissolved in the atmosphere with a ceramic crucible such as alumina or a carbon crucible. After that, the molten gold is dropped into water or an organic solvent from a nozzle connected to the bottom of the crucible and rapidly cooled to produce a granular gold vapor deposition material (also referred to as gold grain or gold shot). As a result, a gold vapor deposition material having relatively few impurities can be produced.

ところが、このように比較的不純物の少ない金の蒸着材料を用いた場合であっても、蒸着初期に突沸現象が発生して、予備蒸着の時間が長くなったり、蒸着装置の条件設定を変更しなくてはならなくなったりと、生産効率が低下するという問題が生じていた。特に金は、材料として高価であることから、予備蒸着の時間が長くなると、その分だけ費用が嵩むという問題があった。また、突沸現象によって、装置や坩堝内を汚染して、装置洗浄の頻度が増加するという問題も発生した。 However, even when a gold vapor deposition material with relatively few impurities is used as described above, a bumping phenomenon occurs at the initial stage of vapor deposition, the time for preliminary vapor deposition becomes longer, and the condition setting of the vapor deposition apparatus is changed. There was a problem that production efficiency was reduced when it became necessary. In particular, since gold is expensive as a material, there is a problem that the longer the pre-evaporation time, the higher the cost. In addition, the sudden boiling phenomenon contaminates the equipment and the inside of the crucible, resulting in an increase in the frequency of cleaning the equipment.

このような問題に対して、本発明者は鋭意研究したところ、真空蒸着法で用いられる粒状の金の蒸着材料の平均結晶粒径と、酸素及び水素含有量には相関関係があり、平均結晶粒径を大きくすることで酸素及び水素含有量を低減することができ、そして、酸素及び水素含有量を低減することで、突沸現象を抑制できるとの知見が得られた。
また、本発明者は、上記問題に対して別の観点から鋭意研究したところ、粒状の金の蒸着材料を電子ビーム溶解等により蒸発させている最中に、異物が溶湯表面に浮いて、溶湯表面を覆い、これが突沸の原因になっていること、そして、この異物を低減することにより、突沸現象を抑制できるとの知見が得られた。
本発明は、これらの知見に基づき、以下の実施形態を提供するものである。
As a result of diligent research on such problems, the present inventor has found that there is a correlation between the average crystal grain size of the granular gold vapor deposition material used in the vacuum vapor deposition method and the oxygen and hydrogen contents, and the average crystal. It was found that the oxygen and hydrogen contents can be reduced by increasing the particle size, and the pouring phenomenon can be suppressed by reducing the oxygen and hydrogen contents.
Further, as a result of diligent research on the above problem from another viewpoint, the present inventor found that foreign matter floats on the surface of the molten metal while the granular gold vapor deposition material is being evaporated by electron beam melting or the like, and the molten metal is melted. It was found that the surface is covered, which causes the bumping, and that the bumping phenomenon can be suppressed by reducing the foreign matter.
The present invention provides the following embodiments based on these findings.

本発明の実施形態は、真空蒸着法で用いられる粒状の金の蒸着材料であって、平均結晶粒径が0.1mm以上であることが好ましい。より好ましくは0.5mm以上である。平均結晶粒径が小さ過ぎると、結晶粒界が多くなり、その粒界に沿って、後述の酸素や水素などのガス成分が吸蔵されやすくなる。吸蔵されたガス成分は、蒸着材料として使用する際に突沸現象の原因となり得る。結晶粒界が少ないと、粒内のガスの拡散速度は非常に遅いため、粒内に固溶され難くなると推測される。したがって、平均結晶粒径が大きいほどよく、0.1mm以上とするのが好ましい。より好ましくは0.5mm以上である。なお、理想的な状態は単結晶である。 The embodiment of the present invention is a granular gold vapor deposition material used in a vacuum vapor deposition method, preferably having an average crystal grain size of 0.1 mm or more. More preferably, it is 0.5 mm or more. If the average crystal grain size is too small, the grain boundaries will increase, and gas components such as oxygen and hydrogen, which will be described later, will be easily occluded along the grain boundaries. The occluded gas component can cause a bumping phenomenon when used as a vapor deposition material. If the grain boundaries are small, the diffusion rate of the gas in the grains is very slow, and it is presumed that it is difficult for the gas to dissolve in the grains. Therefore, the larger the average crystal grain size, the better, preferably 0.1 mm or more. More preferably, it is 0.5 mm or more. The ideal state is a single crystal.

本発明の実施形態に係る粒状の金の蒸着材料は、金の蒸着材料中の酸素含有量が10wtppm以下であることが好ましい。粒界に沿って酸素が蒸着材料中に侵入して、内部に吸蔵されることがあり、また、金の溶湯を水中を落下させて急冷する際に、溶湯の金と水とが反応して、Au+H2O→AuO+H2となり、金の表面を薄い酸化物の膜で覆ってしまうことがある。したがって、酸素含有量を低減することが望ましく、好ましくは、5wtppm以下とする。 The granular gold-deposited material according to the embodiment of the present invention preferably has an oxygen content of 10 wtppm or less in the gold-deposited material. Oxygen may enter the vapor deposition material along the grain boundaries and be occluded inside, and when the molten gold is dropped into water and rapidly cooled, the gold and water in the molten metal react with each other. , Au + H 2 O → Au O + H 2 , and the surface of gold may be covered with a thin oxide film. Therefore, it is desirable to reduce the oxygen content, preferably 5 wtppm or less.

本発明の実施形態に係る粒状の金の蒸着材料は、金の蒸着材料中の水素含有量が5wtppm以下であることが好ましい。上記の通り、金の溶湯と水とが反応して、水素が発生して、発生した水素が金の粒界に沿って侵入し、過飽和に吸蔵されることがある。この水素は、蒸着材料として使用する際に突沸現象の原因となるため、低減することが望ましく、好ましくは、3wtppm以下とする。 The granular gold-deposited material according to the embodiment of the present invention preferably has a hydrogen content of 5 wtppm or less in the gold-deposited material. As described above, the molten gold and water react to generate hydrogen, and the generated hydrogen may invade along the grain boundaries of gold and be occluded in supersaturation. Since this hydrogen causes a bumping phenomenon when used as a vapor deposition material, it is desirable to reduce it, preferably 3 wtppm or less.

また、本実施形態に係る金の蒸着材料は、金の蒸着材料1g中に含まれる1μm以上の異物が5000個以下であることを特徴とする。蒸着材料は、金原料を坩堝内で大気溶解し、その溶湯を急冷して作製するが、大気中の埃として、SiO2、MgO、Al23などの酸化物が混入することがあり、また、坩堝からC(カーボン)などが混入することがある。これらは、金溶湯中に異物として残留し、蒸着材料として使用する際に突沸現象の原因となる。金の蒸着材料1g中に含まれる1μm以上の異物が5000個以下であれば、突沸現象を一定程度、抑制することが可能といえる。好ましくは、1μm以上の異物の数が1200個以下である。 Further, the gold-deposited material according to the present embodiment is characterized in that the amount of foreign matter of 1 μm or more contained in 1 g of the gold-deposited material is 5000 or less. The vapor deposition material is produced by dissolving the gold raw material in the crucible in the atmosphere and quenching the molten metal. However, oxides such as SiO 2 , MgO, and Al 2 O 3 may be mixed as dust in the atmosphere. In addition, C (carbon) or the like may be mixed from the crucible. These remain as foreign substances in the molten gold and cause a bumping phenomenon when used as a vapor deposition material. It can be said that the bumping phenomenon can be suppressed to a certain extent when the number of foreign substances of 1 μm or more contained in 1 g of the gold vapor deposition material is 5000 or less. Preferably, the number of foreign substances of 1 μm or more is 1200 or less.

本実施形態に係る蒸着材料は、たとえば、以下のようにして作製することができる。純度4N(99.99wt%)以上の金原料をカーボン製の坩堝に充填し、溶解する。その後、坩堝内で溶解した金の溶湯を坩堝の底部から水中に落下させて、粒化した金を蒸着材料(ショット)として使用する。
このとき重要なことは、金溶湯に硼砂などの凝集剤をその量を調整しながら添加して、異物を吸着させることである。これにより、溶湯中の異物は凝集剤を起点に濃縮される。添加した硼砂は湯面に留まるので、粒化時にはノズル内に少量の金を残留させる。残留させる量は、溶解させる量にもよるが、0.1g〜100gとするのが好ましい。このように凝集剤を含む金の一部を残留させるので、金粒が凝集剤や異物によって汚染されることはない。
The thin-film deposition material according to this embodiment can be produced, for example, as follows. A gold raw material having a purity of 4N (99.99 wt%) or higher is filled in a carbon crucible and dissolved. After that, the molten gold melted in the crucible is dropped from the bottom of the crucible into water, and the granulated gold is used as a vapor deposition material (shot).
At this time, what is important is to add a coagulant such as borax to the molten gold while adjusting the amount to adsorb foreign substances. As a result, the foreign matter in the molten metal is concentrated starting from the flocculant. Since the added borax stays on the surface of the water, a small amount of gold remains in the nozzle during granulation. The amount to be retained depends on the amount to be dissolved, but is preferably 0.1 g to 100 g. Since a part of the gold containing the flocculant is left in this way, the gold particles are not contaminated by the flocculant or foreign matter.

金の溶湯を坩堝の底部から水中に落下させて、急冷して、粒化した金を作製するが、このとき、坩堝の底部から水面までの落下距離や溶湯温度によって、結晶粒径や酸素、水素の含有量を制御することができる。例えば、落下距離が長いほど、落下途中で徐冷して多結晶化し、粒界が増えることになる。そして、粒界が多いと、金の溶湯と水とが反応して発生する水素が粒界に沿って侵入して、過飽和に吸蔵されやすくなる。また、溶湯温度が融解温度より100℃以上であると、酸素や水素の含有量が多くなり、溶湯温度が高くなればなるほど、これらのガス成分が多くなる。 The molten gold is dropped from the bottom of the crucible into water and rapidly cooled to produce granulated gold. The hydrogen content can be controlled. For example, the longer the fall distance, the more the grain boundaries will increase due to slow cooling and polycrystallization during the fall. If there are many grain boundaries, hydrogen generated by the reaction between the molten gold and water invades along the grain boundaries and is easily occluded by supersaturation. Further, when the molten metal temperature is 100 ° C. or higher than the melting temperature, the content of oxygen and hydrogen increases, and the higher the molten metal temperature, the more these gas components.

(平均結晶粒径の測定方法)
粒状の金の蒸着材料(ショット)の断面(最大面積となる位置)を切断し、ショット断面を切断及び又は研磨して、粒界を出す。次に、研磨等し断面を光学顕微鏡にて観察する。光学顕微鏡の倍率は、粒界が観察しやすいように10倍あるいは50倍とする。次に、光学顕微鏡による拡大写真の中心を通過するように、縦と横に直線を引き、それぞれの直線で切断された結晶粒の数をカウントする。なお、線分の端の結晶粒は0.5個とカウントする。そして、縦横それぞれの直線の長さを結晶粒の数で割り、縦横の平均結晶粒径を求める。また、ショットの一粒当たりの大きさや重量が異なるため、ショットを任意に10個選び、10個のショットの平均値を平均結晶粒径とする。
(Measuring method of average crystal grain size)
A cross section (position having a maximum area) of a granular gold vapor deposition material (shot) is cut, and the shot cross section is cut and / or polished to obtain grain boundaries. Next, the cross section is observed with an optical microscope by polishing or the like. The magnification of the optical microscope is 10 times or 50 times so that the grain boundaries can be easily observed. Next, straight lines are drawn vertically and horizontally so as to pass through the center of the magnified photograph taken by the optical microscope, and the number of crystal grains cut by each straight line is counted. The number of crystal grains at the end of the line segment is counted as 0.5. Then, the length of each of the vertical and horizontal straight lines is divided by the number of crystal grains to obtain the average crystal grain size in the vertical and horizontal directions. Further, since the size and weight of each shot are different, 10 shots are arbitrarily selected, and the average value of the 10 shots is used as the average crystal grain size.

(酸素及び水素含有量の測定方法)
分析装置:堀場製作所 EMGA−600W
分析方法:不活性ガス中インパルス炉加熱融解 赤外線吸収法
(Measuring method of oxygen and hydrogen content)
Analyzer: HORIBA, Ltd. EMGA-600W
Analytical method: Impulse furnace heating and melting in an inert gas Infrared absorption method

(異物の測定方法)
粒状の金の蒸着材料(ショット)を王水に溶解し、溶解残渣を蒸発乾固した後、純水に入れ、光散乱法によるパーティクルカウンターを用いて、1μm以上の異物の数を測定した。なお、異物を分析したところ、Si、Al、Mgなどの酸化物であったり、C(カーボン)であったりした。また、ショット一粒当たりの粒径や重量は異なるため、ショットを任意に10個選び、10個のショットを溶解して、異物の合計数を測定し、ショット10個の総重量から、1g当たりの異物の数を求める。
(Measuring method of foreign matter)
A granular gold vapor deposition material (shot) was dissolved in aqua regia, the dissolution residue was evaporated to dryness, and then placed in pure water, and the number of foreign substances of 1 μm or more was measured using a particle counter by a light scattering method. When the foreign matter was analyzed, it was found to be an oxide such as Si, Al, or Mg, or C (carbon). In addition, since the particle size and weight per shot are different, 10 shots are arbitrarily selected, 10 shots are melted, the total number of foreign substances is measured, and the total weight of 10 shots is calculated per 1 g. Find the number of foreign substances in.

(突沸現象の評価)
蒸着材料の電子ビーム溶解の際に突沸現象が発生すると、蒸着装置内部に蒸着材料が付着して蒸着材料の重量が減少する。このため、溶解後の蒸着材料の重量減少量を測定することで、突沸現象を評価することができる。蒸着材約40gを銅坩堝に投入して、真空度:1×10-1Pa 、電子ビーム照射パワー:6kW、電子ビーム照射時間:2分の条件で、電子ビーム溶解し、溶解後の重量減少量を測定する。なお、この溶解条件では、蒸発によるロスはほとんど起こらない。そして、重量減少率が0.01wt%未満を◎(非常に良好)、重量減少率が0.01〜1wt%を〇(良好)、重量減少率が1wt%以上を×(非常に悪い)、と判定した。
(Evaluation of bumping phenomenon)
If a bumping phenomenon occurs during electron beam melting of the vapor-deposited material, the vapor-deposited material adheres to the inside of the vapor deposition apparatus and the weight of the vapor-deposited material is reduced. Therefore, the bumping phenomenon can be evaluated by measuring the weight loss of the vapor-deposited material after melting. Approximately 40 g of the vapor-deposited material was put into a copper crucible, and the electron beam was melted under the conditions of vacuum degree: 1 × 10 -1 Pa, electron beam irradiation power: 6 kW, and electron beam irradiation time: 2 minutes, and the weight was reduced after melting. Measure the amount. Under these dissolution conditions, almost no loss due to evaporation occurs. A weight loss rate of less than 0.01 wt% is ◎ (very good), a weight loss rate of 0.01 to 1 wt% is 〇 (good), and a weight loss rate of 1 wt% or more is × (very bad). Was judged.

次に、本発明の実施例等について説明する。なお、以下の実施例は、あくまで代表的な例を示しているもので、本発明はこれらの実施例に制限される必要はなく、特許請求の範囲に記載される技術思想の範囲で解釈されるべきものである。 Next, examples and the like of the present invention will be described. It should be noted that the following examples are merely representative examples, and the present invention does not have to be limited to these examples, and is interpreted within the scope of the technical idea described in the claims. It should be.

(サンプルNo.1〜9)
純度4N(99.99wt%)以上の金原料1000gをカーボン製の坩堝に充填し、坩堝の外周に設置した高周波誘導コイルを用いて、金原料を溶解した。このとき、各サンプルの溶湯温度を表1に通りに調整した。また、金の溶湯に凝集剤として硼砂を添加した。それぞれのサンプルにおける添加量を表1に示す。次に、坩堝内で溶解した金の溶湯を坩堝の底部から水中に落下させて粒状の金を作製し、これを蒸着材料として使用した。このとき、各サンプルにおいて、坩堝の底部から水面への落下距離および凝集剤を含む金溶湯の残留量を調整した。以上をまとめたものを表1に示す。
(Sample Nos. 1-9)
1000 g of a gold raw material having a purity of 4 N (99.99 wt%) or higher was filled in a carbon crucible, and the gold raw material was dissolved using a high-frequency induction coil installed on the outer periphery of the crucible. At this time, the molten metal temperature of each sample was adjusted as shown in Table 1. In addition, borax was added as a coagulant to the molten gold. Table 1 shows the amount of addition in each sample. Next, the molten gold melted in the crucible was dropped from the bottom of the crucible into water to prepare granular gold, which was used as a vapor deposition material. At this time, in each sample, the drop distance from the bottom of the crucible to the water surface and the residual amount of the molten gold containing the flocculant were adjusted. Table 1 shows a summary of the above.

得られた各サンプルの金蒸着材料について、上記の測定方法を用いて、1μm以上の異物の数、平均結晶粒径、酸素含有量、及び、水素含有量を測定した。その結果を表1に示す。また、測定後の各サンプルの金蒸着材料を銅坩堝に投入して、上記の条件にて電子ビームを照射して溶解し、溶解後の重量減少率を測定した。その結果、表1の通り1μm以上の異物の数が5000個を超えると、突沸現象による重量減少が比較的多く生じていることが分かった。 For each of the obtained gold-deposited materials of the sample, the number of foreign substances of 1 μm or more, the average crystal grain size, the oxygen content, and the hydrogen content were measured by using the above measuring method. The results are shown in Table 1. Further, the gold-deposited material of each sample after the measurement was put into a copper crucible, irradiated with an electron beam under the above conditions and dissolved, and the weight loss rate after the dissolution was measured. As a result, as shown in Table 1, when the number of foreign substances having a size of 1 μm or more exceeds 5,000, it was found that a relatively large amount of weight loss occurs due to the bumping phenomenon.

本発明によれば、蒸着材料の溶解の際に突沸現象を抑制することができ、これにより基板上に付着するパーティクルを低減することができる。本実施形態に係る蒸着材料は真空蒸着法を用いた、電子部品、半導体デバイス、光学薄膜、磁気デバイス、LED、有機EL、LCD等における素子の形成に広く利用することができる。
According to the present invention, it is possible to suppress the bumping phenomenon when the vapor-deposited material is melted, thereby reducing the number of particles adhering to the substrate. The thin-film deposition material according to this embodiment can be widely used for forming elements in electronic components, semiconductor devices, optical thin films, magnetic devices, LEDs, organic ELs, LCDs, etc. using a vacuum vapor deposition method.

Claims (3)

真空蒸着法で用いられる粒状の金の蒸着材料であって、金の蒸着材料の平均結晶粒径が0.1mm以上であり、酸素含有量が10wtppm以下、水素含有量が5wtppm以下であることを特徴とする金の蒸着材料。 Granular gold vapor deposition material used in the vacuum vapor deposition method, the average crystal grain size of the gold vapor deposition material is 0.1 mm or more, the oxygen content is 10 wtppm or less, and the hydrogen content is 5 wtppm or less. A characteristic gold vapor deposition material. 前記酸素含有量が5wtppm以下であることを特徴とする請求項1に記載の金の蒸着材料。 The gold-deposited material according to claim 1, wherein the oxygen content is 5 wtppm or less. 前記水素含有量が3wtppm以下であることを特徴とする請求項1又は2に記載の金の蒸着材料。

The gold-deposited material according to claim 1 or 2, wherein the hydrogen content is 3 wtppm or less.

JP2020166952A 2020-10-01 2020-10-01 Gold vapor deposition material Active JP6829340B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020166952A JP6829340B1 (en) 2020-10-01 2020-10-01 Gold vapor deposition material
PCT/JP2020/039032 WO2022070433A1 (en) 2020-10-01 2020-10-16 Gold vapor deposition material
JP2020210944A JP7021448B1 (en) 2020-10-01 2020-12-21 Gold vapor deposition material
TW110108851A TWI823069B (en) 2020-10-01 2021-03-12 Gold evaporation materials
TW112125324A TWI846534B (en) 2020-10-01 2021-03-12 Gold Evaporation Materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020166952A JP6829340B1 (en) 2020-10-01 2020-10-01 Gold vapor deposition material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020210944A Division JP7021448B1 (en) 2020-10-01 2020-12-21 Gold vapor deposition material

Publications (2)

Publication Number Publication Date
JP6829340B1 true JP6829340B1 (en) 2021-02-10
JP2022059296A JP2022059296A (en) 2022-04-13

Family

ID=74529675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020166952A Active JP6829340B1 (en) 2020-10-01 2020-10-01 Gold vapor deposition material

Country Status (3)

Country Link
JP (1) JP6829340B1 (en)
TW (2) TWI846534B (en)
WO (1) WO2022070433A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7499370B1 (en) * 2023-03-13 2024-06-13 松田産業株式会社 Precious metal deposition materials

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364453A (en) * 1989-07-31 1991-03-19 Hitachi Cable Ltd Copper material for vapor deposition
JPH07258830A (en) * 1994-03-18 1995-10-09 Tanaka Kikinzoku Kogyo Kk Vapor deposition Ag material and method for manufacturing the same
JPH1129355A (en) * 1997-07-11 1999-02-02 Mitsubishi Materials Corp Polycrystalline magnesium oxide vacuum-deposition material and its production
JP2006274424A (en) * 2005-03-30 2006-10-12 Neomax Co Ltd Method of forming a deposition film of Al or its alloy on the surface of a workpiece
JP2011122199A (en) * 2009-12-10 2011-06-23 Seiko Epson Corp Apparatus for vapor deposition
JP2012107276A (en) * 2010-11-16 2012-06-07 Nichia Corp Titanium oxide based vapor deposition material and manufacturing method of the same
WO2017199873A1 (en) * 2016-05-18 2017-11-23 株式会社アルバック Metal evaporation material
JP2018123389A (en) * 2017-02-02 2018-08-09 株式会社アルバック Gold material for vapor deposition, and production method of gold material for vapor deposition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364453A (en) * 1989-07-31 1991-03-19 Hitachi Cable Ltd Copper material for vapor deposition
JPH07258830A (en) * 1994-03-18 1995-10-09 Tanaka Kikinzoku Kogyo Kk Vapor deposition Ag material and method for manufacturing the same
JPH1129355A (en) * 1997-07-11 1999-02-02 Mitsubishi Materials Corp Polycrystalline magnesium oxide vacuum-deposition material and its production
JP2006274424A (en) * 2005-03-30 2006-10-12 Neomax Co Ltd Method of forming a deposition film of Al or its alloy on the surface of a workpiece
JP2011122199A (en) * 2009-12-10 2011-06-23 Seiko Epson Corp Apparatus for vapor deposition
JP2012107276A (en) * 2010-11-16 2012-06-07 Nichia Corp Titanium oxide based vapor deposition material and manufacturing method of the same
WO2017199873A1 (en) * 2016-05-18 2017-11-23 株式会社アルバック Metal evaporation material
JP2018123389A (en) * 2017-02-02 2018-08-09 株式会社アルバック Gold material for vapor deposition, and production method of gold material for vapor deposition

Also Published As

Publication number Publication date
JP2022059296A (en) 2022-04-13
TWI823069B (en) 2023-11-21
TW202214884A (en) 2022-04-16
WO2022070433A1 (en) 2022-04-07
TW202342773A (en) 2023-11-01
TWI846534B (en) 2024-06-21

Similar Documents

Publication Publication Date Title
KR100966287B1 (en) Manufacturing method of copper alloy and copper alloy plate with high strength and excellent bending workability
CN107109633B (en) Copper alloy sputtering target and manufacturing method thereof
JP2020073734A (en) Method of manufacturing sputtering target, sputtering target, and method of manufacturing component
KR20210029744A (en) Copper alloy sputtering target and manufacturing method of copper alloy sputtering target
JP6829340B1 (en) Gold vapor deposition material
TWI714491B (en) Evaporation material
JP6697073B2 (en) Metal evaporation material
JP2021091922A (en) Vapor deposition material and method for manufacturing the same
JP7021448B1 (en) Gold vapor deposition material
WO2018163861A1 (en) Cu-Ni ALLOY SPUTTERING TARGET AND PRODUCTION METHOD THEREFOR
JP6896966B1 (en) Gold vapor deposition material
WO2022158231A1 (en) Ag alloy film, and ag alloy sputtering target
WO2012124840A1 (en) Method for manufacturing titanium powder for manufacturing oxide-dispersion strengthening-type titanium material
CN110199051A (en) Cu-Ni alloy sputtering targets and its manufacturing method
KR102197979B1 (en) Copper alloy sputtering target
WO2021020223A1 (en) Vapor deposition material and method for manufacturing same
JP2017190508A (en) Sputtering target and manufacturing method thereof
JP2022113107A (en) Ag ALLOY FILM, AND Ag ALLOY SPUTTERING TARGET

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201016

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201016

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210121

R150 Certificate of patent or registration of utility model

Ref document number: 6829340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250