JP6829007B2 - シリカ系複合微粒子分散液、その製造方法及びシリカ系複合微粒子分散液を含む研磨用スラリー - Google Patents
シリカ系複合微粒子分散液、その製造方法及びシリカ系複合微粒子分散液を含む研磨用スラリー Download PDFInfo
- Publication number
- JP6829007B2 JP6829007B2 JP2016099926A JP2016099926A JP6829007B2 JP 6829007 B2 JP6829007 B2 JP 6829007B2 JP 2016099926 A JP2016099926 A JP 2016099926A JP 2016099926 A JP2016099926 A JP 2016099926A JP 6829007 B2 JP6829007 B2 JP 6829007B2
- Authority
- JP
- Japan
- Prior art keywords
- silica
- particles
- composite fine
- based composite
- particle dispersion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Silicon Compounds (AREA)
Description
シャロートレンチ素子分離工程では、酸化ケイ素膜の研磨だけではなく、窒化ケイ素膜の研磨も行われる。素子分離を容易にするためには、酸化ケイ素膜の研磨速度が高く、窒化ケイ素膜の研磨速度が低い事が望ましく、この研磨速度比(選択比)も重要である。
このような仕上げ研磨としての2次研磨に用いる研磨剤に関して、従来、例えば次のような方法等が提案されている。
これは、焼成工程を含むセリア粒子の製造方法(焼成によりセリア粒子の結晶化度が高まる)に比べて、特許文献1に記載の酸化セリウム超微粒子の製法は、焼成工程を含まず、液相(硝酸第一セリウムを含む水溶液)から酸化セリウム粒子を結晶化させるだけなので、生成する酸化セリウム粒子の結晶化度が相対的に低く、また、焼成処理を経ないため酸化セリウムが母粒子と固着せず、酸化セリウムが研磨基材の表面に残留することが主要因であると、本発明者は推定している。
本発明は以下の(1)〜(11)である。
(1)非晶質シリカを主成分とする母粒子の表面上に結晶性セリアを主成分とする子粒子を有し、下記[1]から[4]の特徴を備える平均粒子径50〜350nmのシリカ系複合微粒子を含む、シリカ系複合微粒子分散液。
[1]前記シリカ系複合微粒子は、シリカとセリアとの質量比が100:11〜316であること。
[2]前記シリカ系複合微粒子は、X線回折に供すると、セリアの結晶相のみが検出されること。
[3]前記シリカ系複合微粒子に含まれる、一次粒子が直接的または間接的に2個または3個連結した結合粒子の重量割合が60%以上であること。
(2)前記シリカ系複合微粒子に含まれる不純物の含有割合が、次の(a)及び(b)のとおりであることを特徴とする上記(1)に記載のシリカ系複合微粒子分散液。
(a)Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの含有率が、それぞれ100ppm以下。
(b)U、Th、Cl、NO3、SO4及びFの含有率が、それぞれ5ppm以下。
(3)さらに、前記子粒子の表面にシリカ被膜を有していることを特徴とする、上記(1)又は(2)に記載のシリカ系複合微粒子分散液。
(4)pH値が3〜8の範囲である場合の滴定前の流動電位がマイナスの電位であることを特徴とする、上記(1)〜(3)の何れかに記載のシリカ系複合微粒子分散液。
(5)前記シリカ系複合微粒子について、透過型電子顕微鏡を用いて観察できる前記シリカ被膜の部分に電子ビームを選択的に当てたEDS測定によって求める、Ce原子数%に対するSi原子数%の比(Si原子数%/Ce原子数%)が0.9以上であることを特徴とする上記(1)〜(4)の何れかに記載のシリカ系複合微粒子分散液。
(6)カチオンコロイド滴定を行った場合に、下記式(1)で表される流動電位変化量(ΔPCD)と、クニックにおけるカチオンコロイド滴定液の添加量(V)との比(ΔPCD/V)が−110.0〜−15.0となる流動電位曲線が得られる、請求項1〜5のいずれかに記載のシリカ系複合微粒子分散液。
ΔPCD/V=(I−C)/V・・・式(1)
C:前記クニックにおける流動電位(mV)
I:前記流動電位曲線の開始点における流動電位(mV)
V:前記クニックにおける前記カチオンコロイド滴定液の添加量(ml)
(7)上記(1)〜(6)の何れかに記載のシリカ系複合微粒子分散液を含む研磨用スラリー。
(8)シリカ膜が形成された半導体基板の平坦化用研磨スラリーであることを特徴とする上記(7)記載の研磨用スラリー。
(9)下記の工程1〜工程4を含むことを特徴とするシリカ系複合微粒子分散液の製造方法。
工程1:シリカ微粒子が溶媒に分散してなるシリカ微粒子分散液を撹拌し、温度を5〜98℃、pHを範囲7.0〜9.0に維持しながら、ここへセリウムの金属塩を連続的又は断続的に添加し、前駆体粒子を含む前駆体粒子分散液を得る工程。
工程2:前記前駆体粒子分散液を乾燥させ、400〜1,200℃で焼成し、得られた焼成体に、次の(i)又は(ii)の処理をして焼成体解砕分散液を得る工程。
(i)乾式で解砕・粉砕処理し、溶媒を加えて溶媒分散処理する。
(ii)溶媒を加えて、湿式で解砕・粉砕処理する。
工程3:前記焼成体解砕分散液を、相対遠心加速度300G以上にて遠心分離処理を行い、続いて沈降成分を除去することにより上澄液を得る工程。
工程4:前記上澄液を、相対遠心加速度300G以上にて遠心分離処理を行い、続いて沈降成分を回収し、シリカ系複合微粒子分散液を得る工程。
(10)前記シリカ微粒子に含まれる不純物の含有割合が、次の(a)及び(b)のとおりであることを特徴とする上記(9)記載のシリカ系複合微粒子分散液の製造方法。
(a)Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの含有率が、それぞれ100ppm以下。
(b)U、Th、Cl、NO3、SO4及びFの含有率が、それぞれ5ppm以下。
(11)前記工程2の(ii)が、溶媒を加えて、pH9.0〜10.6の範囲にて、湿式で解砕・粉砕処理する処理である、上記(9)又は(10)に記載のシリカ系複合微粒子分散液の製造方法。
本発明のシリカ系複合微粒子分散液は、半導体デバイス表面の平坦化に有効であり、特にはシリカ絶縁膜が形成された基板の研磨に好適である。
本発明は、非晶質シリカを主成分とする母粒子(「母粒子」のことを以下では「シリカ微粒子」ともいう)の表面上に結晶性セリアを主成分とする子粒子を有し、下記[1]から[3]の特徴を備える平均粒子径50〜350nmのシリカ系複合微粒子を含む、シリカ系複合微粒子分散液である。
[1]前記シリカ系複合微粒子は、シリカとセリアとの質量比が100:11〜316であること。
[2]前記シリカ系複合微粒子は、X線回折に供すると、セリアの結晶相のみが検出されること。
[3]前記シリカ系複合微粒子に含まれる、一次粒子が直接的または間接的に2個または3個連結した結合粒子の重量割合が60%以上であること。
このようなシリカ系複合微粒子分散液を、以下では「本発明の分散液」ともいう。
また、本発明の分散液が含むシリカ系複合微粒子を、以下では「本発明の複合微粒子」ともいう。
工程1:シリカ微粒子が溶媒に分散してなるシリカ微粒子分散液を撹拌し、温度を5〜98℃、pHを範囲7.0〜9.0に維持しながら、ここへセリウムの金属塩を連続的又は断続的に添加し、前駆体粒子を含む前駆体粒子分散液を得る工程。
工程2:前記前駆体粒子分散液を乾燥させ、400〜1,200℃で焼成し、得られた焼成体に、次の(i)又は(ii)の処理をして焼成体解砕分散液を得る工程。
(i)乾式で解砕・粉砕処理し、溶媒を加えて溶媒分散処理する。
(ii)溶媒を加えて、湿式で解砕・粉砕処理する。
工程3:前記焼成体解砕分散液を、相対遠心加速度300G以上にて遠心分離処理を行い、続いて沈降成分を除去することによりシリカ系複合微粒子分散液を得る工程。
工程4:前記上澄液を、相対遠心加速度300G以上にて遠心分離処理を行い、続いて沈降成分を回収し、シリカ系複合微粒子分散液を得る工程。
なお、相対遠心加速度とは、地球の重力加速度を1Gとして、その比で表したものである。
このようなシリカ系複合微粒子分散液の製造方法を、以下では「本発明の製造方法」ともいう。
本発明の複合微粒子において、母粒子は非晶質シリカを主成分とする。
以下に示す本発明の説明において「主成分」の文言は、このような意味で用いるものとする。
例えば、前記母粒子(シリカ微粒子)において、Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの各元素(以下、「特定不純物群1」と称する場合がある)の含有率が、それぞれ100ppm以下であることが好ましい。さらに90ppm以下であることが好ましい。また、前記母粒子(シリカ微粒子)におけるU、Th、Cl、NO3、SO4及びFの各元素(以下、「特定不純物群2」と称する場合がある)の含有率は、それぞれ5ppm以下であることが好ましい。
一般に水硝子を原料として調製したシリカ微粒子は、原料水硝子に由来する前記特定不純物群1と前記特定不純物群2を合計で数千ppm程度含有する。
このようなシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液の場合、イオン交換処理を行って前記特定不純物群1と前記特定不純物群2の含有率を下げることは可能であるが、その場合でも前記特定不純物群1と前記特定不純物群2が合計で数ppmから数百ppm残留する。そのため水硝子を原料としたシリカ粒子を用いる場合は、酸処理等で不純物低減させることも行われている。
これに対し、アルコキシシランを原料として合成したシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液の場合、通常、前記特定不純物群1及び前記特定不純物群2における各元素と各陰イオンの含有率は、それぞれ20ppm以下である。
なお、本発明において、母粒子(シリカ微粒子)におけるNa、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn、Zr、U、Th、Cl、NO3、SO4及びFの各々の含有率は、それぞれ次の方法を用いて測定して求めた値とする。
・Na及びK:原子吸光分光分析
・Ag、Al、Ca、Cr、Cu、Fe、Mg、Ni、Ti、Zn、Zr、U及びTh:ICP(誘導結合プラズマ発光分光分析)
・Cl:電位差滴定法
・NO3、SO4及びF:イオンクロマトグラフ
母粒子の平均粒子径が上記のような範囲にあると、本発明の分散液を研磨剤として用いた場合にスクラッチが少なくなる。母粒子の平均粒子径が小さすぎると研磨レートが不足する。平均粒子径が大きすぎると、かえって研磨レートが低下する。また、基板の面精度が悪化する傾向がある。
なお、測定装置は各工程の目的や想定される粒子径や粒度分布に応じて使い分けられる。具体的には約100nm以下で粒度の揃った原料の単分散シリカ微粒子はPAR−IIIを用い、100nm以上とサイズが大きな単分散の原料シリカ微粒子はLA−950で測定し、解砕によりミクロンメーターからナノメーターまで粒子径が幅広く変化する解砕工程では、マイクロトラックUPAやLA−950を用いることが好ましい。
短径/長径比は、後述する本発明の複合微粒子の短径/長径比の測定方法(画像解析法)と同様の方法で測定する。
本発明の複合微粒子は、上記のような母粒子の表面上に子粒子を有する。ここで、母粒子の表面に子粒子が結合していることが好ましい。また、例えば、シリカ被膜が全体を被覆している子粒子が、シリカ被膜を介して母粒子に結合していてもよい。このような態様であっても、母粒子の表面上に子粒子が存在する態様であり、本発明の技術的範囲に含まれる。
ただし、上記のように、本発明の複合微粒子をX線回折に供するとセリアの結晶相のみが検出される。すなわち、セリア以外の結晶相を含んでいたとしても、その含有率は少ないため、X線回折による検出範囲外となる。
なお、「主成分」の定義は前述の通りである。
初めに、本発明の複合微粒子を、乳鉢を用いて粉砕し、例えば従来公知のX線回折装置(例えば、理学電気(株)製、RINT1400)によってX線回折パターンを得る。そして、得られたX線回折パターンにおける2θ=28度近傍の(111)面のピークの半価幅を測定し、下記のScherrerの式により、結晶子径を求めることができる。
D=Kλ/βcosθ
D:結晶子径(オングストローム)
K:Scherrer定数
λ:X線波長(1.7889オングストローム、Cuランプ)
β:半価幅(rad)
θ:反射角
本発明の複合微粒子は、前記母粒子の表面上に前記子粒子を有し、さらにその子粒子の表面にシリカ被膜を有していることが好ましい。ここで、前記母粒子の表面に前記子粒子が結合しており、さらにそれらを覆うシリカ被膜を有していることがより好ましい。すなわち、前記母粒子の表面に前記子粒子が結合してなる複合粒子の一部又は全体をシリカ被膜が覆っていることがより好ましい。よって、本発明の複合微粒子の最表面にはシリカ被膜が存在していることがより好ましい。
また、母粒子(一次粒子)と別の1個または2個の母粒子(一次粒子)とが子粒子およびシリカ被膜を介して間接的に連結して結合粒子を構成していてもよい。
さらに、母粒子(一次粒子)と別の1個または2個の母粒子(一次粒子)とが直接に結合しており(すなわち直接的に連結しており)、それらの全部または一部を覆うように子粒子およびシリカ被膜が付いている結合粒子を構成していてもよい。
また、本発明の複合微粒子が子粒子の表面にシリカ被膜を有している場合、本発明の複合微粒子をEDS分析に供し、元素分布を得ると、粒子の表面側にCe濃度が高い部分が現れるが、さらにその外側にSi濃度が高い部分が現れる。
また、上記のように透過型電子顕微鏡によって特定した前記シリカ被膜の部分に電子ビームを選択的に当てたEDS測定を行って当該部分のSi原子数%及びCe原子数%を求めると、Si原子数%が非常に高いことを確認することができる。具体的には、Ce原子数%に対するSi原子数%の比(Si原子数%/Ce原子数%)が0.9以上となることが好ましい。
このような構造を備えると、本発明の分散液を研磨剤として用いた場合、研磨速度が高く、面精度やスクラッチの悪化が少ないと考えられる。また、結晶化しているため粒子表面の−OH基が少なく、研磨基板表面の−OH基との相互作用が少ないため研磨基板表面への付着が少ないと考えられる。
例えば、被研磨基材がシリカ系材料の場合、被研磨基材表面にもシラノール基(SiOH)が存在するが、研磨粒子(シリカ)の表面にもSiOHが存在すると、両シラノール基が反応して研磨粒子が被研磨基材表面へ残留する場合があると考えられる。また遊離セリアは正の電荷をもつため基板へ付着しやすい。本発明の複合微粒子が子粒子の表面にシリカ被膜を有している場合、セリア粒子表面へのシリカ被覆はセリア粒子に負の電荷を付与するため、基板への付着を低減化する効果もある。
また、セリアはシリカや研磨基板、研磨パッドとは電位が異なり、pHはアルカリ性から中性付近でマイナスのゼータ電位が減少して行き、弱酸性領域では逆のプラスの電位を持つ。そのため電位の大きさの違いや極性の違いなどで研磨基材や研磨パッドに付着し、研磨基材や研磨パッドに残り易い。一方、本発明の複合微粒子が子粒子の表面にシリカ被膜を有している場合、本発明のシリカ系複合微粒子は、子粒子であるセリアがシリカ被膜でその少なくとも一部が覆われているため、pHがアルカリ性から酸性までマイナスの電位を維持するため、研磨基材や研磨パッドへの砥粒残りが起きにくい。
本発明の複合微粒子は、上記のように、母粒子の表面に、上記のような子粒子を有している。
なお、前記質量比を算定する場合の対象となるシリカとは、次の(I)と(II)の両方を含むものである。
(I)母粒子を構成するシリカ成分
(II)母粒子に子粒子(セリア成分)が結合してなる複合微粒子を、覆ってなるシリカ被膜に含まれるシリカ成分
次に、所定量の本発明の複合微粒子に含まれるセリウム(Ce)の含有率(質量%)をICPプラズマ発光分析により求め、CeO2質量%に換算する。そして、本発明の複合微粒子を構成するCeO2以外の成分はSiO2であるとして、SiO2質量%を算出することができる。
なお、本発明の製造方法においては、シリカとセリアの質量比は、本発明の分散液を調製する際に投入したシリカ源物質とセリア源物質との使用量から算定することもできる。これは、セリアやシリカが溶解し除去されるプロセスとなっていない場合に適用でき、そのような場合はセリアやシリカの使用量と分析値が良い一致を示す。
すなわち、母粒子と子粒子との少なくとも一方(好ましくは双方)が、それらの接点において、焼結結合し、強固に結合していることが好ましい。ただし、シリカ被膜の覆われた子粒子が、そのシリカ被膜を介して母粒子と結合している場合もある。
連結型であると基板との接触面積を多くとることができるため、研磨エネルギーを効率良く基板へ伝えることができる。そのため、研磨速度が高い。また、粒子当たりの研磨圧力が単粒子よりも低くなるためスクラッチも少ない。
ここで、本発明の複合微粒子の構成要素である各粒子の主な態様として、以下の(ア)〜(エ)が挙げられる。
(ア)母粒子に子粒子が付いてなる本発明の複合微粒子(1個)。
(イ)母粒子に子粒子が付いており、さらにシリカ被膜を付いている、本発明の複合微粒子(1個)。
(ウ)母粒子に子粒子が付いてなる1個の一次粒子と、別の1個または2個の同様の一次粒子とが直接的に結合し、それらの全部または一部を覆うようにシリカ被膜が付いて構成されている結合粒子。
(エ)母粒子に子粒子が付いてなる1個の一次粒子と、別の1個または2個の同様の一次粒子とが、シリカ被膜を介して間接的に結合している結合粒子。
具体的には、十分に希釈し分散させた複合微粒子分散液を、乾燥させ、本発明の複合微粒子試料を準備し、透過型電子顕微鏡により、倍率25万倍(ないしは50万倍)で写真撮影して写真投影図を得て、視認される任意の独立した粒子50個について、それぞれの粒子個数を測定し、その結果から粒子個数割合を求めた後、重量割合に換算して、前記結合粒子の割合を求めるものとする。なお、重量割合換算値の求め方は、粒子個数毎に以下に記す式にて重量を求め、すべての粒子個数の総重量に対して百分率で求めた。
式:(複合微粒子の平均粒子径÷2)3×複合微粒子の真比重×粒子個数
なお、電子顕微鏡写真では、試料の乾燥処理時に粒子が寄り集まり凝集して見える可能性もあるため、本測定方法の妥当性を確認した。
まず後に記載する合成例の焼成体解砕分散液について粒度分布測定装置(例えばCPS社製Disc Cetrifuge DC18000)で粒度分布を測定した。粒度分布測定装置では複数のピークが確認されたが、粒子径が一番小さいピークのピークトップを1個体の粒子径(D1)であるとし、以降のピークをD2、D3、D4とした。次にこの1個体粒子の2倍の体積に等しい球の粒子径を2個体とし、D2'を算出した。また3倍、4倍に等しい球の体積を同様にD3'、D4'として求めた。その結果、D2とD2'、D3とD3'、D4とD4'は良い一致を示した。このことから、粒度分布測定装置で1〜4個玉の測定は妥当であると考えた。そしてこの粒度分布測定結果をピーク分離して、1〜4個体の重量割合を算出した。
次に電子顕微鏡写真から、1〜4個体の粒子個数を測定し、これを重量割合に換算し、粒度分布測定装置の重量割合と比較した。その結果、両者は良い一致を示したことから、電子顕微鏡の画像解析法は妥当であると判断した。
なお、本願においては、他の粒子と連結していない単独の一次粒子を「1個玉」、一次粒子が直接的または間接的に2個連結した粒子を「2個玉」、一次粒子が直接的または間接的に3個連結した粒子を「3個玉」、一次粒子が直接的または間接的に4個連結した粒子を「4個玉」とも称する。
まず、乾燥させた試料(0.2g)を測定セルに入れ、窒素ガス気流中、250℃で40分間脱ガス処理を行い、その上で試料を窒素30体積%とヘリウム70体積%の混合ガス気流中で液体窒素温度に保ち、窒素を試料に平衡吸着させる。次に、上記混合ガスを流しながら試料の温度を徐々に室温まで上昇させ、その間に脱離した窒素の量を検出し、予め作成した検量線により、試料の比表面積を測定する。
このようなBET比表面積測定法(窒素吸着法)は、例えば従来公知の表面積測定装置を用いて行うことができる。
本発明において比表面積は、特に断りがない限り、このような方法で測定して得た値を意味するものとする。
本発明の複合微粒子の平均粒子径は、動的光散乱法又はレーザー回折散乱法で測定された値を意味する。具体的には、次の方法で測定して得た値を意味するものとする。本発明の複合微粒子を水に分散させ、この複合微粒子分散液を、公知の動的光散乱法による粒子径測定装置(例えば、日機装株式会社製マイクロトラックUPA装置や、大塚電子社製PAR−III)あるいはレーザー回折散乱法による測定装置(例えば、HORIBA社製LA―950)を用いて測定する。
なお、本発明の複合微粒子における前記特定不純物群1と前記特定不純物群2の各々の元素の含有率は、ICP(誘導結合プラズマ発光分光分析装置)を用いて測定して求める値とする。
本発明の分散液について説明する。
本発明の分散液は、上記のような本発明の複合微粒子が分散溶媒に分散しているものである。
ΔPCD/V=(I−C)/V・・・式(1)
C:前記クニックにおける流動電位(mV)
I:前記流動電位曲線の開始点における流動電位(mV)
V:前記クニックにおける前記カチオンコロイド滴定液の添加量(ml)
また、クニックとは、カチオンコロイド滴定によって得られる流動電位曲線において急激に流動電位が変化する点(変曲点)である。そして点Aにおける流動電位をC(mV)とし、点Aにおけるカチオンコロイド滴定液の添加量をV(ml)とする。
流動電位曲線の開始点とは、滴定前の本発明の分散液における流動電位である。具体的には、カチオンコロイド滴定液の添加量が0である点を開始点とする。この点における流動電位をI(mV)とする。
本発明の製造方法について説明する。
本発明の製造方法は以下に説明する工程1〜工程4を備える。
<工程1>
工程1ではシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液を用意する。
本発明の製造方法により、半導体デバイスなどの研磨に適用するシリカ系複合微粒子分散液を調製しようとする場合は、シリカ微粒子分散液として、アルコキシシランの加水分解により製造したシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液を用いることが好ましい。なお、従来公知のシリカ微粒子分散液(水硝子を原料として調製したシリカ微粒子分散液等)を原料とする場合は、シリカ微粒子分散液を酸処理し、更に脱イオン処理して使用することが好ましい。この場合、シリカ微粒子に含まれるNa、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn、Zr、U、Th、Cl、NO3、SO4及びFの含有率が少なくなり、具体的には、100ppm以下となり得るからである。
なお、具体的には、工程1で使用する原料であるシリカ微粒子分散液中のシリカ微粒子として、次の(a)と(b)の条件を満たすものが好適に使用される。
(a)Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの含有率が、それぞれ100ppm以下。
(b)U、Th、Cl、NO3、SO4及びFの含有率が、それぞれ5ppm以下。
セリウムの金属塩は限定されるものではないが、セリウムの塩化物、硝酸塩、硫酸塩、酢酸塩、炭酸塩、金属アルコキシドなどを用いることができる。具体的には、硝酸第一セリウム、炭酸セリウム、硫酸第一セリウム、塩化第一セリウムなどを挙げることができる。なかでも、硝酸第一セリウムや塩化第一セリウムが好ましい。中和と同時に過飽和となった溶液から、結晶性セリウム酸化物が生成し、それらは速やかにシリカ微粒子に凝集沈着機構で付着するので結合性酸化物形成の効率が高く好ましい。しかしこれら金属塩に含まれる硫酸イオン、塩化物イオン、硝酸イオンなどは、腐食性を示す。そのため調合後に後工程で洗浄し5ppm以下に除去する必要がある。一方、炭酸塩は炭酸ガスとして調合中に放出され、またアルコキシドは分解してアルコールとなるため、好ましい。
なお、本発明のシリカ系複合微粒子分散液の製造方法において、セリウムの金属塩は、通常、セリウムの金属塩に水又は水系溶媒を加えてセリウム金属塩水溶液としたものが使用される。セリウム金属塩水溶液のセリア濃度は、格別に制限されるものではないが、作業性等を考慮すると、セリア濃度は1〜40質量%の範囲が好ましい。
逆に、この温度が高すぎるとシリカの溶解度が著しく増し、結晶性のセリア酸化物の生成が抑制される事が考えられる。更に、反応器壁面にスケールなどが生じやすくなり好ましくない。
工程2では、前駆体粒子分散液を乾燥させた後、400〜1,200℃で焼成する。
なお、好適には、さらに乾燥前の前駆体粒子分散液のpHを6.0〜7.0とすることが推奨される。乾燥前の前駆体粒子分散液のpHを6.0〜7.0とした場合、表面活性を抑制できるからである。
乾燥後、焼成する温度は400〜1200℃であるが、800〜1100℃であることが好ましく、1000〜1090℃であることがより好ましい。このような温度範囲において焼成すると、セリアの結晶化が十分に進行し、また、セリア微粒子の表面に存在するシリカ被膜が、適度に厚膜化し、母粒子と子粒子とが強固に結合する。この温度が高すぎると、セリアの結晶が異常成長したり、セリア粒子上のシリカ被膜が厚くなり母粒子との結合が進むが、セリアの子粒子を厚く覆う事も予想され、母粒子を構成する非晶質シリカが結晶化したり、粒子同士の融着が進む可能性もある。
(i)乾式で解砕・粉砕処理し、溶媒を加えて溶媒分散処理する。
(ii)溶媒を加えて、湿式で解砕・粉砕処理する。
乾式の解砕・粉砕装置としては従来公知の装置を使用することができるが、例えば、アトライター、ボールミル、振動ミル、振動ボールミル等を挙げることができる。
湿式の解砕・粉砕装置としても従来公知の装置を使用することができるが、例えば、バスケットミル等のバッチ式ビーズミル、横型・縦型・アニュラー型の連続式のビーズミル、サンドグラインダーミル、ボールミル等、ロータ・ステータ式ホモジナイザー、超音波分散式ホモジナイザー、分散液中の微粒子同士をぶつける衝撃粉砕機等の湿式媒体攪拌式ミル(湿式解砕機)が挙げられる。湿式媒体攪拌ミルに用いるビーズとしては、例えば、ガラス、アルミナ、ジルコニア、スチール、フリント石等を原料としたビーズを挙げることができる。
前記(i)又は前記(ii)の何れの処理においても、溶媒としては、水及び/又は有機溶媒が使用される。例えば、純水、超純水、イオン交換水のような水を用いることが好ましい。また、(i)又は(ii)の処理により得られる焼成体解砕分散液の固形分濃度は、格別に制限されるものではないが、例えば、0.3〜50質量%の範囲にあることが好ましく、10〜30質量%とすることがより好ましい。(i)又は(ii)の処理のうち、実用上は(ii)の湿式による処理がより好適に用いられる。
すなわち、前述の好ましい態様に該当する本発明の分散液が得られる程度に、解砕・粉砕を行うことが好ましい。前述のように、好ましい態様に該当する本発明の分散液を研磨剤に用いた場合、研磨速度がより向上するからである。これについて本発明者は、本発明の複合微粒子表面におけるシリカ被膜が適度に薄くなること、及び/又は複合微粒子表面の一部に子粒子が適度に露出することで、研磨速度がより向上し、且つセリアの子粒子の脱落を制御できると推定している。また、シリカ被膜が薄いか剥げた状態であるため、子粒子が研磨時にある程度脱離しやすくなると推定している。ΔPCD/Vは、−100.0〜−15.0であることがより好ましく、−100.0〜−20.0であることがさらに好ましい。
工程3では、工程2において得られた前記焼成体解砕分散液について、相対遠心加速度300G以上にて遠心分離処理を行い、続いて沈降成分を除去し、上澄液を得る。
なお、工程3(遠心分離処理)は所望により、1回または複数回行って構わない。工程3を複数回行う場合は、上澄液と沈降品を分離し、その都度、上澄液を回収して、その上澄液を工程3に供することにより行う。
工程4では、工程3において得られた上澄液について、相対遠心加速度300G以上にて遠心分離処理を行い、続いて沈降成分を回収し、シリカ系複合微粒子分散液を得る。
なお、工程4(遠心分離処理)は所望により、1回または複数回行って構わない。工程4を複数回行う場合は、上澄液と沈降品を分離し、その都度、沈降品を回収して、その沈降品を工程4に供することにより行う。
本発明では、上記の製造方法によって得られるシリカ系複合微粒子分散液を、更に乾燥させて、シリカ系複合微粒子を得ることができる。乾燥方法は特に限定されず、例えば、従来公知の乾燥機を用いて乾燥させることができる。
また、シリカ微粒子分散液にセリウムの金属塩を添加した際に、調合液の還元電位が正の値をとることが望ましい。酸化還元電位が負となった場合、セリウム合物がシリカ粒子表面に沈着せずに板状・棒状などのセリウム単独粒子が生成するからである。酸化還元電位を正に保つ方法として過酸化水素などの酸化剤を添加したり、エアーを吹き込む方法が挙げられるが、これらに限定されるものではない。
本発明の分散液を含む液体は、研磨スラリー(以下では「本発明の研磨用スラリー」ともいう)として好ましく用いることができる。特にはSiO2絶縁膜が形成された半導体基板の平坦化用の研磨スラリーとして好適に使用することができる。
本発明に係る研磨用スラリーには、被研磨材の種類によっても異なるが、必要に応じて従来公知の研磨促進剤を使用することができる。この様な例としては、過酸化水素、過酢酸、過酸化尿素など及びこれらの混合物を挙げることができる。このような過酸化水素等の研磨促進剤を含む研磨剤組成物を用いると、被研磨材が金属の場合には効果的に研磨速度を向上させることができる。
研磨用スラリーの分散性や安定性を向上させるためにカチオン系、アニオン系、ノニオン系、両性系の界面活性剤又は親水性化合物を添加することができる。界面活性剤と親水性化合物は、いずれも被研磨面への接触角を低下させる作用を有し、均一な研磨を促す作用を有する。界面活性剤及び/又は親水性化合物としては、例えば、以下の群から選ばれるものを使用することができる。
本発明の研磨用スラリーについては、被研磨基材に金属が含まれる場合に、金属に不動態層又は溶解抑制層を形成させて、被研磨基材の侵食を抑制する目的で、複素環化合物を含有させても構わない。ここで、「複素環化合物」とはヘテロ原子を1個以上含んだ複素環を有する化合物である。ヘテロ原子とは、炭素原子、又は水素原子以外の原子を意味する。複素環とはヘテロ原子を少なくとも一つ持つ環状化合物を意味する。ヘテロ原子は複素環の環系の構成部分を形成する原子のみを意味し、環系に対して外部に位置していたり、少なくとも一つの非共役単結合により環系から分離していたり、環系のさらなる置換基の一部分であるような原子は意味しない。ヘテロ原子として好ましくは、窒素原子、硫黄原子、酸素原子、セレン原子、テルル原子、リン原子、ケイ素原子、及びホウ素原子などを挙げることができるがこれらに限定されるものではない。複素環化合物の例として、イミダゾール、ベンゾトリアゾール、ベンゾチアゾール、テトラゾールなどを用いることができる。より具体的には、1,2,3,4−テトラゾール、5−アミノ−1,2,3,4−テトラゾール、5−メチル−1,2,3,4−テトラゾール、1,2,3−トリアゾール、4−アミノ−1,2,3−トリアゾール、4,5−ジアミノ−1,2,3−トリアゾール、1,2,4−トリアゾール、3−アミノ1,2,4−トリアゾール、3,5−ジアミノ−1,2,4−トリアゾールなどを挙げることができるが、これらに限定されるものではない。
上記各添加剤の効果を高めるためなどに必要に応じて酸又は塩基を添加して研磨用組成物のpHを調節することができる。
研磨用スラリーのpH値を一定に保持するために、pH緩衝剤を使用しても構わない。pH緩衝剤としては、例えば、リン酸2水素アンモニウム、リン酸水素2アンモニウム、4ホウ酸アンモ四水和水などのリン酸塩及びホウ酸塩又は有機酸などを使用することができる。
[シリカ微粒子(母粒子)]
後述するシリカ微粒子分散液のSiO2重量について、珪酸ナトリウムを原料としたシリカ微粒子の場合は1000℃灼熱減量を行って秤量により求めた。またアルコキシシランを原料としたシリカ微粒子の場合は、シリカ微粒子分散液を150℃で1時間乾燥させた後に秤量して求めた。
各元素の含有率は、以下の方法によって測定するものとする。
初めに、シリカ系複合微粒子分散液からなる試料約1g(固形分20質量%)を白金皿に採取する。リン酸3ml、硝酸5ml、弗化水素酸10mlを加えて、サンドバス上で加熱する。乾固したら、少量の水と硝酸50mlを加えて溶解させて100mlのメスフラスコにおさめ、水を加えて100mlとする。この溶液でNa、Kは原子吸光分光分析装置(例えば日立製作所社製、Z−2310)で測定する。次に、100mlにおさめた溶液から分液10mlを20mlメスフラスコに採取する操作を5回繰り返し、分液10mlを5個得る。そして、これを用いて、Al、Ag、Ca、Cr、Cu、Fe、Mg、Ni、Ti、Zn、Zr、U及びThについてICPプラズマ発光分析装置(例えばSII製、SPS5520)にて標準添加法で測定を行う。ここで、同様の方法でブランクも測定して、ブランク分を差し引いて調整し、各元素における測定値とする。
以下、特に断りがない限り、本発明におけるNa、Al、Ag、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn、Zr、U及びThの成分の含有率(含有量)は、このような方法で測定して得た値を意味するものとする。
<Cl>
シリカ系複合微粒子分散液からなる試料20g(固形分20質量%)にアセトンを加え100mlに調整し、この溶液に、酢酸5ml、0.001モル塩化ナトリウム溶液4mlを加えて0.002モル硝酸銀溶液で電位差滴定法(京都電子製:電位差滴定装置AT−610)で分析を行う。
別途ブランク測定として、アセトン100mlに酢酸5ml、0.001モル塩化ナトリウム溶液4mlを加えて0.002モル硝酸銀溶液で滴定を行った場合の滴定量を求めておき、試料を用いた場合の滴定量から差し引き、試料の滴定量とした。
シリカ系複合微粒子分散液からなる試料5g(固形分20質量%)を水で希釈して100mlにおさめ、遠心分離機(日立製 HIMAC CT06E)にて4000rpmで20分遠心分離して、沈降成分を除去して得た液をイオンクロマトグラフ(DIONEX製 ICS−1100)にて分析した。
シリカ系複合微粒子におけるシリカとセリアの含有率を求める場合、まずシリカ系複合微粒子の分散液の固形分濃度を、1000℃灼熱減量を行って秤量により求める。次にCeについて、Al〜Th等と同様にICPプラズマ発光分析装置(例えば、SII製、SPS5520)を用いて標準添加法で測定を行い、得られたCe含有率からCeO2質量%を算出する。そして、本発明の複合微粒子を構成するCeO2以外の成分はSiO2であるとして、SiO2質量%を算出する。
なお、シリカ微粒子(母粒子)における各元素又は各陰イオンの含有率は、上記シリカ系複合微粒子の分析方法において、試料をシリカ系複合微粒子分散液に代えて、シリカ微粒子分散液を用いることにより行った。
前述の方法に則り、実施例及び比較例で得られたシリカ系複合微粒子分散液を従来公知の乾燥機を用いて乾燥し、得られた粉体を乳鉢にて10分粉砕し、X線回折装置(理学電気(株)製、RINT1400)によってX線回折パターンを得て、結晶型を特定した。
また、前述のように、得られたX線回折パターンにおける2θ=28度近傍の(111)面(2θ=28度近傍)のピークの半価幅を測定し、Scherrerの式により、結晶子径を求めた。
実施例及び比較例で得られたシリカ微粒子分散液及びシリカ系複合微粒子分散液について、これに含まれる粒子の平均粒子径を前述の方法で測定した。具体的にはシリカ母粒子は大塚電子社製PAR−III及びHORIBA社製LA950を用い、シリカ系複合微粒子については日機装株式会社製マイクロトラックUPA装置を用いた。
<SiO2膜の研磨>
実施例及び比較例の各々において得られたシリカ系複合微粒子分散液を含むスラリー(研磨用スラリー)を調整した。ここで固形分濃度は0.6質量%で硝酸を添加してpHは5.0とした。
次に、被研磨基板として、熱酸化法により作製したSiO2絶縁膜(厚み1μm)基板を準備した。
次に、この被研磨基板を研磨装置(ナノファクター株式会社製、NF300)にセットし、研磨パッド(ニッタハース社製「IC-1000/SUBA400同心円タイプ」)を使用し、基板荷重0.5MPa、テーブル回転速度90rpmで研磨用スラリーを50ml/分の速度で1分間供給して研磨を行った。
そして、研磨前後の被研磨基材の重量変化を求めて研磨速度を計算した。
また、研磨基材の表面の平滑性(表面粗さRa)を原子間力顕微鏡(AFM、株式会社日立ハイテクサイエンス社製)を用いて測定した。
なお研磨傷の観察は、光学顕微鏡を用いて絶縁膜表面を観察することで行った。
実施例及び比較例の各々において得られたシリカ系複合微粒子分散液を含むスラリー(研磨用スラリー)を調整した。ここで固形分濃度は9質量%で硝酸を添加してpHを2.0に調整した。
アルミハードディスク用基板を研磨装置(ナノファクター株式会社製、NF300)にセットし、研磨パッド(ニッタハース社製「ポリテックスφ12」)を使用し、基板負荷0.05MPa、テーブル回転速度30rpmで研磨スラリーを20ml/分の速度で5分間供給して研磨を行い、超微細欠陥・可視化マクロ装置(VISION PSYTEC社製、製品名:Maicro―Max)を使用し、Zoom15にて全面観察し、65.97cm2に相当する研磨処理された基板表面に存在するスクラッチ(線状痕)の個数を数えて合計し、次の基準に従って評価した。
線状痕の個数 評価
50個未満 「非常に少ない」
80個未満、50個以上 「少ない」
80個以上 「多い」
*少なくとも80個以上で総数をカウントできないほど多い 「※」
実施例及び比較例で得られた各シリカ系複合微粒子分散液について、流動電位の測定及びカチオンコロイド滴定を行った。滴定装置として、流動電位滴定ユニット(PCD−500)を搭載した自動滴定装置AT−510(京都電子工業製)を用いた。
まず、固形分濃度を1質量%に調整したシリカ系複合微粒子分散液を0.05%の塩酸水溶液を添加してpH6に調整した。その液の固形分として0.8gに相当する量を流動電位測定装置のセルにとり、流動電位の測定を行った。次にカチオンコロイド滴定液(0.0025Nポリ塩化ジアリルジメチルアンモニウム溶液)を添加して滴定を行った。そして、カチオンコロイド滴定液の添加量(ml)をX軸、シリカ系複合微粒子分散液の流動電位(mV)をY軸にプロットして、流動電位曲線の開始点における流動電位I(mV)、ならびにクニックにおける流動電位C(mV)及びカチオンコロイド滴定液の添加量V(ml)を求め、ΔPCD/V=(I−C)/Vを算出した。結果を第1表に示す。
また、実施例及び比較例で得られた各シリカ系複合微粒子分散液について、流動電位の測定及びカチオンコロイド滴定を行った。滴定装置として、流動電位滴定ユニット(PCD−500)を搭載した自動滴定装置AT−510(京都電子工業製)を用いた。
まず、固形分濃度を1質量%に調整したシリカ系複合微粒子分散液を0.05%の塩酸水溶液を添加してpH6に調整した。その液の固形分として0.8gに相当する量を流動電位測定装置のセルにとり、流動電位の測定を行った。次にカチオンコロイド滴定液(0.0025Nポリ塩化ジアリルジメチルアンモニウム溶液)を添加して滴定を行った。そして、カチオンコロイド滴定液の添加量(ml)をX軸、シリカ系複合微粒子分散液の流動電位(mV)をY軸にプロットして、流動電位曲線の開始点における流動電位I(mV)、ならびにクニックにおける流動電位C(mV)及びカチオンコロイド滴定液の添加量V(ml)を求め、ΔPCD/V=(I−C)/Vを算出した。結果を第1表に示す。
《高純度珪酸液》の調製
SiO2濃度が24.06質量%、Na2O濃度が7.97質量%の珪酸ナトリウム水溶液を用意した。そして、この珪酸ナトリウム水溶液にSiO2濃度が5.0質量%となるように純水を添加した。
得られた5.0質量%の珪酸ナトリウム水溶液18kgを、6Lの強酸性陽イオン交換樹脂(SK1BH、三菱化学社製)に空間速度3.0h-1で通液させ、pHが2.7の酸性珪酸液18kgを得た。
得られた酸性珪酸液のSiO2濃度は4.7質量%であった。
次に、酸性珪酸液を、強酸性陽イオン交換樹脂(SK1BH、三菱化学社製)に空間速度3.0h-1で通液させ、pHが2.7の高純度珪酸液を得た。得られた高純度珪酸液のSiO2濃度は4.4質量%であった。
純水42gに高純度珪酸液を攪拌しながら514.5g添加し、次いで15%のアンモニア水を1,584.6g添加し、その後83℃に昇温して30分保持した。
次に高純度珪酸液13,700gを18時間かけて添加し、添加終了後に83℃を保持したまま熟成を行い、25nmのシリカ微粒子分散液を得た。
得られたシリカ微粒子分散液を40℃まで冷却し、限外ろ過膜(旭化成製SIP1013)にてSiO2濃度を12質量%まで濃縮した。
純水991gに攪拌しながら12質量%の25nmシリカ微粒子分散液を963g加えた。次いで15%アンモニア水1,414gを添加し、その後87℃に昇温して30分保持した。
次に高純度珪酸液12,812gを18時間かけて添加し、添加終了後に87℃を保持したまま熟成を行い、45nmのシリカ微粒子分散液を得た。
得られたシリカ微粒子分散液を40℃まで冷却し、限外ろ過膜(旭化成製SIP1013)にてSiO2濃度を12質量%まで濃縮した。
純水705gに攪拌しながら平均粒子径45nmのシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液(SiO2濃度12質量%)を705g加えた。次いで15%アンモニア水50gを添加し、その後87℃に昇温して30分保持した。
次に高純度珪酸液7,168gを18時間かけて添加し、添加終了後に87℃を保持したまま熟成を行い、平均粒子径70nmのシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液を得た。
得られたシリカ微粒子分散液を40℃まで冷却し、限外ろ過膜(旭化成製SIP1013)にてSiO2濃度を12質量%まで濃縮した。
純水1,081gに攪拌しながら平均粒子径70nmのシリカ微粒子が溶媒に分散してなる分散液(SiO2濃度:12質量%)を1,081g加えた。次いで15%アンモニア水50gを添加し、その後87℃に昇温して30分保持した。
次に高純度珪酸液6,143gを18時間かけて添加し、添加終了後に87℃を保持したまま熟成を行い、動的光散乱法(動的光散乱粒子径測定装置:PAR−III)で測定された平均粒子径96nmのシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液を得た。
得られたシリカ微粒子分散液を40℃まで冷却し、限外ろ過膜(旭化成製SIP1013)にてSiO2濃度を12質量%まで濃縮した。濃縮後のシリカ微粒子分散液に陰イオン交換樹脂 三菱化学社製 SANUP Bを添加して陰イオンを除去した。
得られたシリカ微粒子分散液に超純水を加えて、SiO2固形分濃度3質量%のA液6,000gを得た。(以下、シリカ系複合微粒子分散液の製造工程において、後記B液を投入するシリカ微粒子分散液を「A液」とする。)
そして、B液の添加が終了したら、液温を93℃へ上げて4時間熟成を行った。熟成終了後に室内に放置することで放冷し、室温まで冷却した後に、限外膜にてイオン交換水を補給しながら洗浄を行った。洗浄を終了して得られた前駆体粒子分散液は、固形分濃度が7質量%、pHが9.1(25℃にて)、電導度が67μs/cm(25℃にて)であった。
前記合成例で得られた固形分濃度20質量%の焼成体解砕分散液を、HITACHI社製遠心分離装置CR21G(ローター型式R21A)にて、2000rpm(620G)で3分間遠心分離を行い、上澄液と沈降品を分離し、上澄液を回収した。
次に、回収した上澄液を2500rpm(980G)で3分間遠心分離を行い、上澄液と沈降品を分離し、上澄液を回収した。
続いて、回収した上澄液を2800rpm(1250G)で5分間遠心分離を行い、上澄液と沈降品を分離し、沈降品を回収した。
得られた沈降品としてのシリカ系複合微粒子分散液に含まれるシリカ系複合微粒子の平均粒子径を測定したところ、280nm、ΔPCD/Vは−51、初期流動電位は−550mVであった。
また、電子顕微鏡観察写真の画像解析法にて1〜4個玉の割合を測定した。さらに前記の2種類の研磨試験を行い、研磨速度およびスクラッチの個数を計測した。
結果を第1表に示す。
また、実施例1で得られたシリカ系複合微粒子分散液の透過型電子顕微鏡写真(倍率10万倍)を図1に示す。
前記合成例で得られた固形分濃度20質量%の焼成体解砕分散液を、HITACHI社製遠心分離装置CR21G(ローター型式R21A)にて、2000rpm(620G)で3分間遠心分離を行い、上澄液と沈降品を分離し、上澄液を回収した。
次に、回収した上澄液を2500rpm(980G)で3分間遠心分離を行い、上澄液と沈降品を分離し、上澄液を回収した。
続いて、回収した上澄液を2800rpm(1250G)で5分間遠心分離処理し、上澄液と沈降品を分離し、上澄液を回収した。
続いて、回収した上澄液を3200rpm(1650G)で5分間遠心分離を行い、上澄液と沈降品を分離し、沈降品を回収した。
得られた沈降品としてのシリカ系複合微粒子分散液に含まれるシリカ系複合微粒子の平均粒子径を後述する方法で測定したところ、245nmであり、ΔPCD/Vは−55、初期流動電位は−563mVであった。
また、電子顕微鏡観察写真の画像解析法にて1〜4個玉の割合を測定した。さらに前記の2種類の研磨試験を行い、研磨速度およびスクラッチの個数を計測した。
結果を第1表に示す。
また、実施例2で得られたシリカ系複合微粒子分散液の透過型電子顕微鏡写真(倍率10万倍)を図2に示す。
エネルギー分散型X線分光測定(EDS)の測定条件を以下に示す。
試料作製は、シリカ系複合微粒子を純水中で分散させた後、カーボン支持膜付きCuメッシュに載せて、以下の測定装置にて測定を行った。
測定装置:日本電子社製、UTW型Si(Li)半導体検出器、ビーム径0.2nm
エネルギー分散型X線分光測定(EDS)の測定条件を以下に示す。
シリカ系複合微粒子を純水中で分散させた後、カーボン支持膜付きCuメッシュに載せて、以下の測定装置にて測定を行った。
測定装置:日本電子社製、UTW型Si(Li)半導体検出器
ビーム系:0.2nm
前記合成例で得られた固形分濃度20質量%の焼成体解砕分散液(遠心分離処理無し)について、平均粒子径を測定したところ211nmであり、ΔPCD/Vは−53、初期流動電位は−575mVであった。
また、電子顕微鏡観察写真の画像解析法にて1〜4個玉の割合を測定した。さらに後述する2種類の研磨試験を行い、研磨速度およびスクラッチの個数を計測した。
結果を第1表に示す。
前記合成例で得られた固形分濃度20質量%の焼成体解砕分散液を1100rpm(200G)で40分間遠心分離処理し、上澄液と沈降品を分離した。
回収した上澄液(シリカ系複合微粒子分散液)に含まれるシリカ系複合微粒子の平均粒子径を測定したところ、194nmであり、ΔPCD/Vは−58、初期流動電位は−570mVであった。また、電子顕微鏡観察写真の画像解析法にて1〜4個玉の割合を測定した。さらに前記の2種類の研磨試験を行い、研磨速度およびスクラッチの個数を計測した。
結果を第1表に示す。
前記合成例で得られた固形分濃度20質量%の焼成体解砕分散液を、2000rpm(620G)で3分間行って、上澄液と沈降品を分離した。得られた沈降品の平均粒子径を後述する方法で測定したところ、208nmであり、ΔPCD/Vは−50、初期流動電位は−567mVであった。
また、電子顕微鏡観察写真の画像解析法にて1〜4個玉の割合を測定した。さらに前記の2種類の研磨試験を行い、研磨速度およびスクラッチの個数を計測した。
結果を第1表に示す。
Claims (11)
- 非晶質シリカを主成分とする母粒子の表面上に結晶性セリアを主成分とする子粒子を有し、下記[1]から[3]の特徴を備える平均粒子径50〜350nmのシリカ系複合微粒子を含む、シリカ系複合微粒子分散液。
[1]前記シリカ系複合微粒子は、シリカとセリアとの質量比が100:11〜316であること。
[2]前記シリカ系複合微粒子は、X線回折に供すると、セリアの結晶相のみが検出されること。
[3]前記シリカ系複合微粒子に含まれる、一次粒子が直接的または間接的に2個または3個連結した結合粒子の重量割合が60%以上であること。 - 前記シリカ系複合微粒子に含まれる不純物の含有割合が、次の(a)及び(b)のとおりであることを特徴とする請求項1に記載のシリカ系複合微粒子分散液。
(a)Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの含有率が、それぞれ100ppm以下。
(b)U、Th、Cl、NO3、SO4及びFの含有率が、それぞれ5ppm以下。 - さらに、前記子粒子の表面にシリカ被膜を有していることを特徴とする、請求項1又は2に記載のシリカ系複合微粒子分散液。
- 前記シリカ系複合微粒子について、透過型電子顕微鏡を用いて観察できる前記シリカ被膜の部分に電子ビームを選択的に当てたEDS測定によって求める、Ce原子数%に対するSi原子数%の比(Si原子数%/Ce原子数%)が0.9以上であることを特徴とする請求項3に記載のシリカ系複合微粒子分散液。
- pH値が3〜8の範囲である場合の滴定前の流動電位がマイナスの電位であることを特徴とする、請求項1〜4の何れかに記載のシリカ系複合微粒子分散液。
- カチオンコロイド滴定を行った場合に、下記式(1)で表される流動電位変化量(ΔPCD)と、クニックにおけるカチオンコロイド滴定液の添加量(V)との比(ΔPCD/V)が−110.0〜−15.0となる流動電位曲線が得られる、請求項1〜5のいずれかに記載のシリカ系複合微粒子分散液。
ΔPCD/V=(I−C)/V・・・式(1)
C:前記クニックにおける流動電位(mV)
I:前記流動電位曲線の開始点における流動電位(mV)
V:前記クニックにおける前記カチオンコロイド滴定液の添加量(ml) - 請求項1〜6の何れかに記載のシリカ系複合微粒子分散液を含む研磨用スラリー。
- シリカ膜が形成された半導体基板の平坦化用研磨スラリーであることを特徴とする請求項7記載の研磨用スラリー。
- 下記の工程1〜工程4を含むことを特徴とするシリカ系複合微粒子分散液の製造方法。
工程1:シリカ微粒子が溶媒に分散してなるシリカ微粒子分散液を撹拌し、温度を5〜98℃、pHを範囲7.0〜9.0に維持しながら、ここへセリウムの金属塩を連続的又は断続的に添加し、前駆体粒子を含む前駆体粒子分散液を得る工程。
工程2:前記前駆体粒子分散液を乾燥させ、400〜1,200℃で焼成し、得られた焼成体に、次の(i)又は(ii)の処理をして焼成体解砕分散液を得る工程。
(i)乾式で解砕・粉砕処理し、溶媒を加えて溶媒分散処理する。
(ii)溶媒を加えて、湿式で解砕・粉砕処理する。
工程3:前記焼成体解砕分散液を、相対遠心加速度300G以上にて遠心分離処理を行い、続いて沈降成分を除去することにより上澄液を得る工程。
工程4:前記上澄液を、相対遠心加速度300G以上にて遠心分離処理を行い、続いて沈降成分を回収し、シリカ系複合微粒子分散液を得る工程。 - 前記シリカ微粒子に含まれる不純物の含有割合が、次の(a)及び(b)のとおりであることを特徴とする請求項9記載のシリカ系複合微粒子分散液の製造方法。
(a)Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの含有率が、それぞれ100ppm以下。
(b)U、Th、Cl、NO3、SO4及びFの含有率が、それぞれ5ppm以下。 - 前記工程2の(ii)が、溶媒を加えて、pH9.0〜10.6の範囲にて、湿式で解砕・粉砕処理する処理である、請求項9又は10に記載のシリカ系複合微粒子分散液の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016099926A JP6829007B2 (ja) | 2016-05-18 | 2016-05-18 | シリカ系複合微粒子分散液、その製造方法及びシリカ系複合微粒子分散液を含む研磨用スラリー |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016099926A JP6829007B2 (ja) | 2016-05-18 | 2016-05-18 | シリカ系複合微粒子分散液、その製造方法及びシリカ系複合微粒子分散液を含む研磨用スラリー |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017206411A JP2017206411A (ja) | 2017-11-24 |
JP6829007B2 true JP6829007B2 (ja) | 2021-02-10 |
Family
ID=60415177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016099926A Active JP6829007B2 (ja) | 2016-05-18 | 2016-05-18 | シリカ系複合微粒子分散液、その製造方法及びシリカ系複合微粒子分散液を含む研磨用スラリー |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6829007B2 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190127607A1 (en) | 2017-10-27 | 2019-05-02 | Versum Materials Us, Llc | Composite Particles, Method of Refining and Use Thereof |
JP7038022B2 (ja) * | 2018-08-06 | 2022-03-17 | 日揮触媒化成株式会社 | セリア系微粒子分散液、その製造方法およびセリア系微粒子分散液を含む研磨用砥粒分散液 |
US11549034B2 (en) | 2018-08-09 | 2023-01-10 | Versum Materials Us, Llc | Oxide chemical mechanical planarization (CMP) polishing compositions |
JP7038031B2 (ja) * | 2018-09-28 | 2022-03-17 | 日揮触媒化成株式会社 | セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液 |
JP7117225B2 (ja) * | 2018-11-12 | 2022-08-12 | 日揮触媒化成株式会社 | セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液 |
JP7490628B2 (ja) | 2020-11-16 | 2024-05-27 | 日揮触媒化成株式会社 | 粒子連結型セリア系複合微粒子分散液、その製造方法および粒子連結型セリア系複合微粒子分散液を含む研磨用砥粒分散液 |
CN113526515A (zh) * | 2021-08-29 | 2021-10-22 | 浙江华飞电子基材有限公司 | 一种纳米球形硅微粉分离提取方法 |
WO2024111032A1 (ja) * | 2022-11-21 | 2024-05-30 | 株式会社レゾナック | Cmp用研磨液、cmp用研磨液セット及び研磨方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6645265B1 (en) * | 2002-07-19 | 2003-11-11 | Saint-Gobain Ceramics And Plastics, Inc. | Polishing formulations for SiO2-based substrates |
KR100574225B1 (ko) * | 2003-10-10 | 2006-04-26 | 요업기술원 | 실리카에 세리아/실리카가 코팅된 화학적 기계적 연마용연마재 및 그 제조방법 |
WO2007046420A1 (ja) * | 2005-10-19 | 2007-04-26 | Hitachi Chemical Co., Ltd. | 酸化セリウムスラリー、酸化セリウム研磨液及びこれらを用いた基板の研磨方法 |
JP5256832B2 (ja) * | 2007-04-17 | 2013-08-07 | 日立化成株式会社 | 研磨剤及びその製造方法 |
KR101760529B1 (ko) * | 2009-06-05 | 2017-07-21 | 바스프 에스이 | 화학 기계적 평탄화(CMP)를 위한 CeO2 나노입자 코팅된 라스베리형 금속 산화물 나노구조체 |
JP5881394B2 (ja) * | 2011-12-06 | 2016-03-09 | 日揮触媒化成株式会社 | シリカ系複合粒子およびその製造方法 |
JP6385307B2 (ja) * | 2014-03-31 | 2018-09-05 | 日揮触媒化成株式会社 | 板状粒子、及び該板状粒子を含む研磨用組成物 |
-
2016
- 2016-05-18 JP JP2016099926A patent/JP6829007B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017206411A (ja) | 2017-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6948423B2 (ja) | シリカ系複合微粒子分散液、その製造方法及びシリカ系複合微粒子分散液を含む研磨用スラリー | |
JP6803823B2 (ja) | セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液 | |
JP6829007B2 (ja) | シリカ系複合微粒子分散液、その製造方法及びシリカ系複合微粒子分散液を含む研磨用スラリー | |
TWI656096B (zh) | 氧化矽系複合微粒子分散液、其製造方法及含有氧化矽系複合微粒子的研磨用研磨粒分散液 | |
JP7020865B2 (ja) | セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液 | |
JP7037918B2 (ja) | セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液 | |
JP6920430B2 (ja) | セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液 | |
JP6603142B2 (ja) | シリカ系複合微粒子分散液、その製造方法及びシリカ系複合微粒子分散液を含む研磨用スラリー | |
JP6703437B2 (ja) | シリカ系複合微粒子分散液、その製造方法及びシリカ系複合微粒子分散液を含む研磨用スラリー | |
JP7002350B2 (ja) | セリア系複合中空微粒子分散液、その製造方法及びセリア系複合中空微粒子分散液を含む研磨用砥粒分散液 | |
JP6710100B2 (ja) | シリカ系複合微粒子分散液の製造方法 | |
JP7348098B2 (ja) | セリア系複合微粒子分散液、その製造方法およびセリア系複合微粒子分散液を含む研磨用砥粒分散液 | |
JP6616794B2 (ja) | シリカ系複合微粒子分散液、その製造方法及びシリカ系複合微粒子分散液を含む研磨用砥粒分散液 | |
JP2020079163A (ja) | セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液 | |
JP7038022B2 (ja) | セリア系微粒子分散液、その製造方法およびセリア系微粒子分散液を含む研磨用砥粒分散液 | |
JP6648064B2 (ja) | シリカ系複合微粒子分散液、その製造方法及びシリカ系複合微粒子分散液を含む研磨用砥粒分散液 | |
JP7620504B2 (ja) | セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液 | |
JP7038031B2 (ja) | セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液 | |
JP6588050B2 (ja) | シリカ系複合微粒子を含む研磨用砥粒分散液 | |
JP6616795B2 (ja) | シリカ系複合微粒子を含む研磨用砥粒分散液 | |
JP7015200B2 (ja) | セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液 | |
KR102780970B1 (ko) | 실리카계 복합 미립자 분산액 및 그 제조방법 | |
JP2021014375A (ja) | セリア系微粒子分散液、その製造方法およびセリア系微粒子分散液を含む研磨用砥粒分散液 | |
JP2021027274A (ja) | セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190207 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191210 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200107 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200728 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200821 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210119 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210121 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6829007 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |