JP6811090B2 - Abrasive liquid composition for silicon oxide film - Google Patents
Abrasive liquid composition for silicon oxide film Download PDFInfo
- Publication number
- JP6811090B2 JP6811090B2 JP2016253702A JP2016253702A JP6811090B2 JP 6811090 B2 JP6811090 B2 JP 6811090B2 JP 2016253702 A JP2016253702 A JP 2016253702A JP 2016253702 A JP2016253702 A JP 2016253702A JP 6811090 B2 JP6811090 B2 JP 6811090B2
- Authority
- JP
- Japan
- Prior art keywords
- polishing
- liquid composition
- water
- particles
- polishing liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Mechanical Treatment Of Semiconductor (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Description
本発明は、酸化セリウム粒子を含有する酸化珪素膜用研磨液組成物、これを用いた半導体基板の製造方法及び研磨方法、並びに凹部保護液及び研磨液キットに関する。 The present invention relates to a polishing liquid composition for a silicon oxide film containing cerium oxide particles, a method for manufacturing and polishing a semiconductor substrate using the same, and a recess protective liquid and a polishing liquid kit.
ケミカルメカニカルポリッシング(CMP)技術とは、加工しようとする被研磨基板の表面と研磨パッドとを接触させた状態で研磨液をこれらの接触部位に供給しつつ被研磨基板及び研磨パッドを相対的に移動させることにより、被研磨基板の表面凹凸部分を化学的に反応させると共に機械的に除去して平坦化させる技術である。 Chemical mechanical polishing (CMP) technology is a method in which the surface of the substrate to be polished and the polishing pad are in contact with each other, and the polishing liquid is supplied to these contact points while the substrate to be polished and the polishing pad are relatively. This is a technique for chemically reacting the surface uneven portion of the substrate to be polished and mechanically removing it to flatten it by moving it.
現在では、半導体素子の製造工程における、層間絶縁膜の平坦化、シャロートレンチ素子分離構造(以下「素子分離構造」ともいう)の形成、プラグ及び埋め込み金属配線の形成等を行う際には、このCMP技術が必須の技術となっている。近年、半導体素子の多層化、高精細化が飛躍的に進み、より平坦性が良好でありながら、高速で研磨できることが望まれるようになってきている。 At present, in the manufacturing process of semiconductor devices, when flattening the interlayer insulating film, forming a shallow trench element separation structure (hereinafter, also referred to as "element separation structure"), forming a plug and an embedded metal wiring, etc. CMP technology has become an indispensable technology. In recent years, the number of layers and high definition of semiconductor elements has dramatically increased, and it has become desired to be able to polish at high speed while having better flatness.
特許文献1には、優れた平坦性能を有することを目的として、重量平均分子量が異なる2種のポリアクリル酸を含み、重量平均分子量が相対的に大きいポリアクリル酸を含む、二酸化珪素絶縁膜を研磨するための水性スラリー組成物が開示されている。特許文献1に開示の水性スラリー組成物に含まれるポリアクリル酸は架橋型のポリアクリル酸である。特許文献2には、高度な平坦化を目的として、垂直応力効果を示す高分子電解質として、例えば、重量平均分子量が2000のポリアクリル酸を含む、Al−Cu合金を研磨するための、研磨用スラリーが開示されている。特許文献3には、シャロー・トレンチ分離に適用可能な研磨剤として、分子量が15,000のポリアクリル酸アンモニウム塩を含む研磨剤が開示されている。特許文献4には、低摩擦で金属膜を研磨することを目的として、砥粒としてコロイダルシリカを含み、重量平均分子量は20万を超えるポリビニルピロリドンを含む、CMP用水系分散体が開示されている。特許文献5には、被覆研磨対象が金属膜であり、表面欠陥の発生を抑制する目的として、砥粒としてコロイダルシリカを含み、ポリ(メタ)アクリル酸及びそれ以外のカルボニル基を2個以上有する有機酸を含む、CMP用水系分散体が開示されている。 Patent Document 1 describes a silicon dioxide insulating film containing two types of polyacrylic acids having different weight average molecular weights and having a relatively large weight average molecular weight for the purpose of having excellent flatness performance. Aqueous slurry compositions for polishing are disclosed. The polyacrylic acid contained in the aqueous slurry composition disclosed in Patent Document 1 is a crosslinked polyacrylic acid. In Patent Document 2, for the purpose of high flattening, for polishing an Al—Cu alloy containing, for example, polyacrylic acid having a weight average molecular weight of 2000 as a polymer electrolyte exhibiting a normal stress effect. The slurry is disclosed. Patent Document 3 discloses an abrasive containing an ammonium polyacrylate salt having a molecular weight of 15,000 as an abrasive applicable to shallow trench separation. Patent Document 4 discloses an aqueous dispersion for CMP containing colloidal silica as abrasive grains and polyvinylpyrrolidone having a weight average molecular weight of more than 200,000 for the purpose of polishing a metal film with low friction. .. In Patent Document 5, the object of coating polishing is a metal film, and for the purpose of suppressing the occurrence of surface defects, colloidal silica is contained as abrasive grains, and poly (meth) acrylic acid and two or more other carbonyl groups are contained. An aqueous dispersion for CMP containing an organic acid is disclosed.
酸化珪素膜の研磨に用いられる砥粒としては、一般に、酸化セリウム(以下、「セリア」ともいう)粒子が用いられ、例えば、炭酸セリウムや硝酸セリウムなどのセリウム化合物を焼成、粉砕して得られる焼成粉砕セリアのような、形状や大きさが様々なセリア粒子(以下、「不定形セリア」ともいう)が広く使用されている。しかし、このセリア粒子と水溶性高分子とを含む研磨液組成物を、凹凸段差表面を有し、凸部の幅が比較的広い酸化珪素膜の平坦化のために用いた場合、凹部の研磨は抑制できるものの、凸部の研磨速度が顕著に低下することが課題であった。 Cerium oxide (hereinafter, also referred to as “ceria”) particles are generally used as the abrasive grains used for polishing the silicon oxide film, and are obtained by firing and pulverizing a cerium compound such as cerium carbonate or cerium nitrate, for example. Cerium particles of various shapes and sizes (hereinafter, also referred to as "atypical ceria") such as calcined crushed ceria are widely used. However, when the polishing liquid composition containing the ceria particles and the water-soluble polymer is used for flattening a silicon oxide film having an uneven stepped surface and a relatively wide convex portion, the concave portion is polished. Although it can be suppressed, the problem is that the polishing speed of the convex portion is significantly reduced.
本発明は、凹部の研磨を抑制しつつ凸部の研磨速度の向上が可能な酸化珪素膜用研磨液組成物、これを用いた半導体基板の製造方法及び研磨方法、並びに凹部保護液及び研磨液キットを提供する。 The present invention provides a polishing liquid composition for a silicon oxide film capable of improving the polishing speed of convex portions while suppressing polishing of concave portions, a method for manufacturing and polishing a semiconductor substrate using the same, and a concave protective liquid and a polishing liquid. Provide a kit.
本発明の酸化珪素膜用研磨液組成物は、表面の少なくとも一部がセリアからなる粒子Aと、水溶性高分子Bと、水と、を含有する酸化珪素膜用研磨液組成物であって、
前記水溶性高分子Bが、線状高分子であり、アクリル酸に由来の構成単位、アクリル酸塩に由来の構成単位及びビニルピロリドンに由来の構成単位から選ばれる1種以上の構成単位を含み、重量平均分子量が250万以上である。
The polishing liquid composition for a silicon oxide film of the present invention is a polishing liquid composition for a silicon oxide film containing particles A having at least a part of the surface made of ceria, a water-soluble polymer B, and water. ,
The water-soluble polymer B is a linear polymer and contains one or more structural units selected from a structural unit derived from acrylic acid, a structural unit derived from acrylate, and a structural unit derived from vinylpyrrolidone. , The weight average molecular weight is 2.5 million or more.
本発明の酸化珪素膜用研磨液組成物を製造するための研磨液キットは、表面の少なくとも一部がセリアからなる粒子Aの水分散液が容器に収納された第1液と、水溶性高分子Bの水溶液が前記1液が収納された容器とは別の容器に収納された第2液とを含み、前記水溶性高分子Bが、線状高分子であり、アクリル酸に由来の構成単位、アクリル酸塩に由来の構成単位及びビニルピロリドンに由来の構成単位から選ばれる1種以上の構成単位を含み、重量平均分子量が250万以上である。 The polishing liquid kit for producing the polishing liquid composition for a silicon oxide film of the present invention is highly water-soluble with the first liquid in which an aqueous dispersion of particles A having at least a part of the surface made of ceria is stored in a container. The aqueous solution of the molecule B contains a second liquid stored in a container different from the container in which the first liquid is stored, and the water-soluble polymer B is a linear polymer and is derived from acrylic acid. It contains one or more structural units selected from units, structural units derived from acrylate and structural units derived from vinylpyrrolidone, and has a weight average molecular weight of 2.5 million or more.
本発明の凹部保護液は、表面の少なくとも一部がセリアからなる粒子Aの水分散液とともに使用される、凹部保護液であって、水と、前記水に溶解された水溶性高分子Bとを含み、前記水溶性高分子Bが、線状高分子であり、アクリル酸に由来の構成単位、アクリル酸塩に由来の構成単位及びビニルピロリドンに由来の構成単位から選ばれる1種以上の構成単位を含み、重量平均分子量が250万以上である。 The recess protective solution of the present invention is a recess protective solution used together with an aqueous dispersion of particles A having at least a part of the surface made of ceria, and is composed of water and a water-soluble polymer B dissolved in the water. The water-soluble polymer B is a linear polymer, and is one or more constituents selected from a structural unit derived from acrylic acid, a structural unit derived from acrylate, and a structural unit derived from vinylpyrrolidone. Including units, the weight average molecular weight is 2.5 million or more.
本発明の半導体装置の製造方法は、本発明の酸化珪素膜用研磨液組成物を用いて、酸化珪素膜の凹凸段差面を研磨する工程を含む。 The method for manufacturing a semiconductor device of the present invention includes a step of polishing an uneven stepped surface of a silicon oxide film by using the polishing liquid composition for a silicon oxide film of the present invention.
本発明の凹凸段差面の研磨方法は、本発明の酸化珪素膜用研磨液組成物を用いて、酸化珪素膜の凹凸段差面を研磨する工程を含み、前記酸化珪素膜は、半導体装置の製造過程で形成される絶縁膜である。 The method for polishing the uneven stepped surface of the present invention includes a step of polishing the uneven stepped surface of the silicon oxide film using the polishing liquid composition for a silicon oxide film of the present invention, and the silicon oxide film is used for manufacturing a semiconductor device. It is an insulating film formed in the process.
本発明によれば、凹部の研磨を抑制しつつ凸部の研磨速度の向上が可能な酸化珪素膜用研磨液組成物、これを用いた半導体基板の製造方法及び研磨方法、並びに凹部保護液及び研磨液キットを提供する。 According to the present invention, a polishing liquid composition for a silicon oxide film capable of improving the polishing speed of convex portions while suppressing polishing of concave portions, a method for manufacturing and polishing a semiconductor substrate using the same, and a concave protective liquid and a concave protective liquid. A polishing liquid kit is provided.
本発明者らが鋭意検討した結果、表面の少なくとも一部がセリアからなる粒子を砥粒として含有する研磨液組成物において、線状高分子であり、アクリル酸に由来の構成単位、アクリル酸塩に由来の構成単位及びビニルピロリドンに由来の構成単位から選ばれる1種以上の構成単位を含み、重量平均分子量が250万以上の、水溶性高分子が含まれていると、酸化珪素膜の研磨に用いた場合、凹部の研磨を抑制しつつ凸部の研磨速度の向上が可能となるという知見に基づく。 As a result of diligent studies by the present inventors, in an abrasive liquid composition containing particles in which at least a part of the surface is composed of ceria as abrasive grains, it is a linear polymer and is a structural unit derived from acrylic acid, acrylate. Polishing of silicon oxide film when a water-soluble polymer containing one or more structural units selected from the structural units derived from and vinylpyrrolidone and having a weight average molecular weight of 2.5 million or more is contained. It is based on the finding that it is possible to improve the polishing speed of the convex portion while suppressing the polishing of the concave portion when used in.
本発明の研磨液組成物を用いて酸化珪素膜の凹凸段差面を研磨した場合に、凹部の研磨を抑制しつつ凸部の研磨速度の向上が可能となる、という効果を奏する理由については、明らかではないが、下記の通りと推定している。 The reason why when the uneven stepped surface of the silicon oxide film is polished using the polishing liquid composition of the present invention, the effect that the polishing speed of the convex portion can be improved while suppressing the polishing of the concave portion can be obtained. It is not clear, but it is estimated as follows.
従来、凸部幅が狭い酸化珪素膜用の凹部研磨抑制剤として、重量平均分子量が数万程度のポリアクリル酸が用いられてきたが、このポリアクリル酸は、ポリマーの添加量を増やすことで、凹部研磨抑制効果の向上を実現してきた。しかし、凹部研磨抑制効果の向上のために、ポリマーの添加量を増やすと凸部の研磨速度が低下してしまい、特に、凸部の幅が比較的広い場合は、凸部の研磨速度が顕著に低下することが課題であった。これに対して、本発明の研磨液組成物では、凹部研磨抑制剤として、線状高分子であり、アクリル酸に由来の構成単位、アクリル酸塩に由来の構成単位及びビニルピロリドンに由来の構成単位から選ばれる1種以上の構成単位を含み、重量平均分子量が250万以上の水溶性高分子を用いることで、凹部研磨抑制剤が、酸化珪素膜の凹凸段差面に対して、薄く均質な保護層を形成することが可能となり、凸部の高研磨速度と凹部の研磨抑制の両立が可能になったものと推察される。 Conventionally, polyacrylic acid having a weight average molecular weight of about tens of thousands has been used as a concave polishing inhibitor for a silicon oxide film having a narrow convex width. However, this polyacrylic acid can be obtained by increasing the amount of polymer added. , The effect of suppressing concave polishing has been improved. However, if the amount of the polymer added is increased in order to improve the effect of suppressing the polishing of the concave portion, the polishing speed of the convex portion is lowered, and the polishing speed of the convex portion is remarkable particularly when the width of the convex portion is relatively wide. The problem was to reduce the rate. On the other hand, in the polishing liquid composition of the present invention, as a concave polishing inhibitor, it is a linear polymer, a structural unit derived from acrylic acid, a structural unit derived from acrylate, and a configuration derived from vinylpyrrolidone. By using a water-soluble polymer containing one or more constituent units selected from the units and having a weight average molecular weight of 2.5 million or more, the concave polishing inhibitor is thin and uniform with respect to the uneven stepped surface of the silicon oxide film. It is presumed that the protective layer can be formed, and both the high polishing speed of the convex portion and the polishing suppression of the concave portion can be achieved at the same time.
[表面の少なくとも一部がセリアからなる粒子A]
本発明の研磨液組成物は、研磨砥粒として表面の少なくとも一部がセリアからなる粒子A(以下「粒子A」と略称する場合がある。)を含有する。粒子Aとしては、好ましくは、粉砕セリア粒子Aa(以下「粒子Aa」と略称する場合がある。)、コロイダルセリア粒子Ab(以下「粒子Ab」と略称する場合がある。)、及びセリア以外の粒子上にセリアが被覆された粒子Ac(以下「粒子Ac」と略称する場合がある。)から選ばれる1種以上である。
[Particle A whose surface is at least partly made of ceria]
The polishing liquid composition of the present invention contains particles A (hereinafter, may be abbreviated as "particles A") in which at least a part of the surface is composed of ceria as polishing abrasive grains. The particles A are preferably other than crushed ceria particles Aa (hereinafter sometimes abbreviated as "particles Aa"), colloidal ceria particles Ab (hereinafter sometimes abbreviated as "particles Ab"), and ceria. One or more selected from particle Ac (hereinafter, may be abbreviated as "particle Ac") in which ceria is coated on the particles.
粒子Aaは、例えば、炭酸セリウムや硝酸セリウムなどのセリウム化合物を焼成、粉砕して得られうる。粒子Abは、例えば、特表2010−505735号公報の実施例1〜4に記載の方法で、ビルドアッププロセスにより得られうる。粒子Acとしては、例えば、シリカ粒子表面の少なくとも一部が粒状セリアで被覆された構造を有する複合粒子(セリアコートシリカ粒子)が挙げられ、該複合粒子は、例えば、シリカ粒子にセリアを沈着させることで得られうる。セリアコートシリカ粒子は、例えば、特開2015−63451号公報の実施例1〜14又は特開2013−119131号公報の実施例1〜4に記載の方法で得られうる。粒子Aとしては、研磨速度向上の観点から、コロイダルセリアが好ましく、研磨後の残留物低減の観点から、セリアコートシリカ粒子が好ましい。 Particles Aa can be obtained by firing and pulverizing a cerium compound such as cerium carbonate or cerium nitrate. Particle Ab can be obtained by a build-up process, for example, by the method described in Examples 1 to 4 of JP-A-2010-505735. Examples of the particle Ac include composite particles (ceria-coated silica particles) having a structure in which at least a part of the surface of the silica particles is coated with granular ceria, and the composite particles deposit ceria on the silica particles, for example. Can be obtained by The ceria-coated silica particles can be obtained, for example, by the method described in Examples 1 to 14 of JP2015-63451 or Examples 1 to 4 of JP2013-119131. As the particles A, colloidal ceria is preferable from the viewpoint of improving the polishing rate, and ceria-coated silica particles are preferable from the viewpoint of reducing residues after polishing.
粒子Aの平均一次粒子径は、研磨速度向上の観点から、5nm以上が好ましく、10nm以上がより好ましく、20nm以上が更に好ましく、そして、研磨傷発生の抑制の観点から、300nm以下が好ましく、200nm以下がより好ましく、150nm以下が更に好ましい。本開示において粒子Aの平均一次粒子径は、BET(窒素吸着)法によって算出されるBET比表面積S(m2/g)を用いて算出される。BET比表面積は、実施例に記載の方法により測定できる。 The average primary particle diameter of the particles A is preferably 5 nm or more, more preferably 10 nm or more, further preferably 20 nm or more, and preferably 300 nm or less, preferably 200 nm, from the viewpoint of suppressing the occurrence of polishing scratches. The following is more preferable, and 150 nm or less is further preferable. In the present disclosure, the average primary particle diameter of the particles A is calculated using the BET specific surface area S (m 2 / g) calculated by the BET (nitrogen adsorption) method. The BET specific surface area can be measured by the method described in Examples.
粒子Aの形状としては、例えば、略球状、多面体状、ラズベリー状が挙げられる。 Examples of the shape of the particles A include a substantially spherical shape, a polyhedral shape, and a raspberry shape.
本発明の研磨液組成物中の粒子Aの含有量は、コストと研磨速度の確保の両立の観点から、好ましくは0.1質量%以上、より好ましくは0.2質量%以上、更に好ましくは0.5質量%以上であり、そして、好ましくは10質量%以下、より好ましくは6質量%以下、更に好ましくは1質量%以下である。 The content of the particles A in the polishing liquid composition of the present invention is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, still more preferably 0.2% by mass or more, from the viewpoint of achieving both cost and ensuring the polishing speed. It is 0.5% by mass or more, and preferably 10% by mass or less, more preferably 6% by mass or less, and further preferably 1% by mass or less.
[水溶性高分子B]
本開示に係る研磨液組成物は、凹部の研磨抑制と凸部の研磨速度向上の観点から、研磨助剤として、線状高分子であり、アクリル酸に由来の構成単位、アクリル酸塩に由来の構成単位及びビニルピロリドンに由来の構成単位から選ばれる1種以上の構成単位を含み、重量平均分子量が250万以上の、水溶性高分子B(以下「高分子B」と略称する場合がある。)を含む。線状高分子とは、構成単位(モノマー)が線状に連結した構造のもので、鎖状高分子あるいは1次元高分子とも表現される。
[Water-soluble polymer B]
The polishing liquid composition according to the present disclosure is a linear polymer as a polishing aid from the viewpoint of suppressing polishing of concave portions and improving the polishing speed of convex portions, and is derived from acrylate, which is a structural unit derived from acrylic acid. A water-soluble polymer B (hereinafter, may be abbreviated as “polymer B”) having a weight average molecular weight of 2.5 million or more and containing one or more structural units selected from the structural units of the above and the structural units derived from vinylpyrrolidone. .)including. A linear polymer has a structure in which structural units (monomers) are linearly connected, and is also expressed as a chain polymer or a one-dimensional polymer.
高分子Bとしては、カルボン酸基等のアニオン性基は中和された塩の形態を取ってもよい。アニオン性基が塩の形態を取る場合の対イオンとしては、金属イオン、アンモニウムイオン、アルキルアンモニウムイオン等が挙げられ、半導体基板の品質向上の観点から、アンモニウムイオンが好ましい。アンモニウム塩の形態の高分子Bは、例えば、Na塩等の金属塩の形態の高分子Bと陽イオン交換樹脂と水とを混合し、所定時間攪拌後、陽イオン交換樹脂を濾過することで、金属イオンと水素イオンとがイオン交換され、その後アンモニア中和することにより得られる。 As the polymer B, anionic groups such as a carboxylic acid group may take the form of a neutralized salt. Examples of the counterion when the anionic group takes the form of a salt include metal ion, ammonium ion, alkylammonium ion and the like, and ammonium ion is preferable from the viewpoint of improving the quality of the semiconductor substrate. The polymer B in the form of an ammonium salt is prepared by, for example, mixing the polymer B in the form of a metal salt such as Na salt, a cation exchange resin, and water, stirring for a predetermined time, and then filtering the cation exchange resin. It is obtained by ion exchange between metal ions and hydrogen ions and then neutralizing with ammonia.
高分子Bとしては、例えば、ポリアクリル酸、ポリビニルピロリドン、アクリル酸とモノメトキシポリエチレングリコールモノ(メタ)アクリレートとの共重合体、これらのアルカリ金属塩、及びこれらのアンモニウム塩から選ばれる少なくとも1種が挙げられ、半導体基板の品質向上の観点から、ポリアクリル酸、又はポリビニルピロリドンが好ましく、ポリアクリル酸が好ましい。 The polymer B is, for example, polyacrylic acid, polyvinylpyrrolidone, a copolymer of acrylic acid and monomethoxypolyethylene glycol mono (meth) acrylate, alkali metal salts thereof, and at least one selected from ammonium salts thereof. From the viewpoint of improving the quality of the semiconductor substrate, polyacrylic acid or polyvinylpyrrolidone is preferable, and polyacrylic acid is preferable.
高分子Bの重量平均分子量は、凹部の研磨抑制と凸部の研磨速度向上の観点から、250万以上であり、好ましくは300万以上、より好ましくは400万以上、そして、同様の観点から、好ましくは1000万以下、より好ましくは800万以下、更に好ましくは600万以下である。 The weight average molecular weight of the polymer B is 2.5 million or more, preferably 3 million or more, more preferably 4 million or more, and from the same viewpoint, from the viewpoint of suppressing the polishing of the concave portion and improving the polishing speed of the convex portion. It is preferably 10 million or less, more preferably 8 million or less, still more preferably 6 million or less.
高分子Bの重量平均分子量は、液体クロマトグラフィー(株式会社日立製作所製、L−6000型高速液体クロマトグラフィー)を使用し、ゲル・パーミエーション・クロマトグラフィー(GPC)によって下記条件で測定できる。
検出器:ショーデックスRI SE−61示差屈折率検出器
カラム:東ソー株式会社製のG4000PWXLとG2500PWXLを直列につないだものを使用した。
溶離液:0.2Mリン酸緩衝液/アセトニトリル=90/10(容量比)で0.5g/100mLの濃度に調整し、20μLを用いた。
カラム温度:40℃
流速:1.0mL/min
標準ポリマー:分子量が既知の単分散ポリアクリルアミド
The weight average molecular weight of the polymer B can be measured by gel permeation chromatography (GPC) using liquid chromatography (manufactured by Hitachi, Ltd., L-6000 type high performance liquid chromatography) under the following conditions.
Detector: Shodex RI SE-61 Differential Refractometer Detector Column: G4000PWXL and G2500PWXL manufactured by Tosoh Corporation were connected in series.
Eluent: 0.2 M phosphate buffer / acetonitrile = 90/10 (volume ratio) adjusted to a concentration of 0.5 g / 100 mL, and 20 μL was used.
Column temperature: 40 ° C
Flow velocity: 1.0 mL / min
Standard polymer: monodisperse polyacrylamide with known molecular weight
高分子Bは、凹部の研磨抑制と凸部の研磨速度向上の観点から、高分子BのpH6.0の0.1質量%水溶液(水溶液25℃)に加わるせん断速度を横軸とし、せん断速度を前記水溶液に加えたときに前記水溶液の液面に働く法線応力を縦軸としたグラフにおいて、せん断速度上昇により、正の法線応力と負の法線応力を、この順で発現することが好ましい。前記法線応力は、同様の観点から、せん断速度X(1/s)のときに正の値であり、せん断速度Y(1/s)のときに負の値となることが好ましい。ただし、せん断速度Y(1/s)は、せん断速度X(1/s)よりも大きい値である。せん断速度X(1/s)は、好ましくは0〜3000(1/s)、より好ましくは10〜2500(1/s)の範囲内の値であり、更に好ましくは534(1/s)である。せん断速度Y(1/s)は、好ましくは3000〜10000(1/s)、より好ましくは5000〜10000(1/s)の範囲内の値であり、更に好ましくは8500(1/s)である。 From the viewpoint of suppressing the polishing of the concave portion and improving the polishing speed of the convex portion, the polymer B has a shear rate with the shear rate applied to a 0.1 mass% aqueous solution (aqueous solution 25 ° C.) of the pH 6.0 of the polymer B as the horizontal axis. In a graph whose vertical axis is the normal stress acting on the liquid surface of the aqueous solution when is added to the aqueous solution, a positive normal stress and a negative normal stress are expressed in this order by increasing the shear rate. Is preferable. From the same viewpoint, the normal stress is preferably a positive value when the shear rate X (1 / s) and a negative value when the shear rate Y (1 / s). However, the shear rate Y (1 / s) is a value larger than the shear rate X (1 / s). The shear rate X (1 / s) is preferably a value in the range of 0 to 3000 (1 / s), more preferably 10 to 2500 (1 / s), and further preferably 534 (1 / s). is there. The shear rate Y (1 / s) is preferably a value in the range of 3000 to 10000 (1 / s), more preferably 5000 to 10000 (1 / s), and further preferably 8500 (1 / s). is there.
本発明の研磨液組成物中の高分子Bの含有量は、凹部の研磨抑制と凸部の研磨速度向上の観点から、好ましくは0.005質量%以上、より好ましくは0.01質量%以上、更に好ましくは0.03質量%以上であり、そして、好ましくは0.15質量%以下、より好ましくは0.10質量%以下、更に好ましくは0.06質量%以下である。 The content of the polymer B in the polishing liquid composition of the present invention is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, from the viewpoint of suppressing the polishing of the concave portion and improving the polishing speed of the convex portion. It is more preferably 0.03% by mass or more, and preferably 0.15% by mass or less, more preferably 0.10% by mass or less, still more preferably 0.06% by mass or less.
本発明の研磨液組成物中の粒子Aと高分子Bとの質量比(B/A)は、凹部の研磨抑制と凸部の研磨速度向上の観点から、好ましくは0.005以上、より好ましくは0.01以上、更に好ましくは0.05以上であり、そして、好ましくは0.5以下、より好ましくは0.2以下、更に好ましくは0.1以下である。 The mass ratio (B / A) of the particles A and the polymer B in the polishing liquid composition of the present invention is preferably 0.005 or more, more preferably 0.005 or more, from the viewpoint of suppressing the polishing of the concave portion and improving the polishing speed of the convex portion. Is 0.01 or more, more preferably 0.05 or more, and preferably 0.5 or less, more preferably 0.2 or less, still more preferably 0.1 or less.
[水]
本発明の研磨液組成物は、媒体として水を含有する。該水は、半導体基板の品質向上の観点から、イオン交換水、蒸留水、超純水等の水からなるとより好ましい。本発明の研磨液組成物における水の含有量は、粒子A、高分子B、水、及び下記任意成分の質量の合計を100質量%とすると、粒子A、高分子B及び任意成分を除いた残余とすることができる。
[water]
The polishing liquid composition of the present invention contains water as a medium. From the viewpoint of improving the quality of the semiconductor substrate, the water is more preferably composed of water such as ion-exchanged water, distilled water, and ultrapure water. The water content in the polishing liquid composition of the present invention excludes the particles A, the polymer B, and the optional components, assuming that the total mass of the particles A, the polymer B, water, and the following optional components is 100% by mass. It can be a residue.
[その他の成分]
本発明の研磨液組成物は、凹部の研磨抑制と凸部の研磨速度向上の効果を損なわない範囲で、その他の成分を含有することができる。その他の成分としては、pH調整剤、化合物B以外の研磨助剤等が挙げられる。さらに、その他の成分としては、増粘剤、分散剤、防錆剤、塩基性物質、研磨速度向上剤、界面活性剤、高分子B以外の高分子化合物等が挙げられる。これらの任意成分の含有量は、研磨速度確保の観点から、0.001質量%以上が好ましく、0.0025質量%以上がより好ましく、0.01質量%以上が更に好ましく、凹部の研磨抑制と凸部の研磨速度向上の観点から、1質量%以下が好ましく、0.5質量%以下がより好ましく、0.1質量%以下が更に好ましい。
[Other ingredients]
The polishing liquid composition of the present invention may contain other components as long as the effects of suppressing the polishing of the concave portion and improving the polishing speed of the convex portion are not impaired. Examples of other components include pH adjusters, polishing aids other than compound B, and the like. Further, examples of other components include thickeners, dispersants, rust preventives, basic substances, polishing rate improvers, surfactants, polymer compounds other than polymer B, and the like. The content of these optional components is preferably 0.001% by mass or more, more preferably 0.0025% by mass or more, further preferably 0.01% by mass or more, and suppresses polishing of recesses, from the viewpoint of ensuring the polishing rate. From the viewpoint of improving the polishing speed of the convex portion, 1% by mass or less is preferable, 0.5% by mass or less is more preferable, and 0.1% by mass or less is further preferable.
前記pH調整剤としては、例えば、酸性化合物、アルカリ化合物及びこれらの塩等が挙げられる。前記酸性化合物の塩としては、好ましくは、アルカリ金属塩、アンモニウム塩、及びアミン塩から選ばれる少なくとも1種であり、より好ましくは、アンモニウム塩である。塩基性化合物が塩の形態を取る場合の対イオンとしては、好ましくは水酸化物イオン、塩化物イオン及びヨウ化物イオンから選ばれる少なくとも1種であり、より好ましくは水酸化物イオン及び塩化物イオンから選ばれる少なくとも1種である。 Examples of the pH adjuster include acidic compounds, alkaline compounds and salts thereof. The salt of the acidic compound is preferably at least one selected from an alkali metal salt, an ammonium salt, and an amine salt, and more preferably an ammonium salt. When the basic compound takes the form of a salt, the counterion is preferably at least one selected from hydroxide ion, chloride ion and iodide ion, and more preferably hydroxide ion and chloride ion. At least one selected from.
酸性化合物としては、例えば、塩酸、硝酸、硫酸等の無機酸;酢酸、シュウ酸、クエン酸、及びリンゴ酸等の有機酸;等が挙げられる。なかでも、汎用性の観点から、塩酸、硝酸及び酢酸から選ばれる少なくとも1種が好ましく、塩酸及び酢酸から選ばれる少なくとも1種がより好ましい。 Examples of the acidic compound include inorganic acids such as hydrochloric acid, nitric acid and sulfuric acid; and organic acids such as acetic acid, oxalic acid, citric acid and malic acid; Among them, from the viewpoint of versatility, at least one selected from hydrochloric acid, nitric acid and acetic acid is preferable, and at least one selected from hydrochloric acid and acetic acid is more preferable.
アルカリ化合物としては、例えば、アンモニア、及び水酸化カリウム等の無機アルカリ化合物;アルキルアミン、及びアルカノールアミン等の有機アルカリ化合物;等が挙げられる。なかでも、半導体基板の品質向上の観点から、アンモニア及びアルキルアミンから選ばれる少なくとも1種が好ましく、アンモニアがより好ましい。 Examples of the alkaline compound include inorganic alkaline compounds such as ammonia and potassium hydroxide; and organic alkaline compounds such as alkylamine and alkanolamine; Among them, at least one selected from ammonia and alkylamine is preferable, and ammonia is more preferable, from the viewpoint of improving the quality of the semiconductor substrate.
前記高分子B以外の研磨助剤としては、アニオン性界面活性剤及びノニオン性界面活性剤等が挙げられる。アニオン性界面活性剤としては、例えば、アルキルエーテル酢酸塩、アルキルエーテルリン酸塩、及びアルキルエーテル硫酸塩等が挙げられる。ノニオン性界面活性剤としては、例えば、ポリアクリルアミド等のノニオン性ポリマー、及びポリオキシアルキレンアルキルエーテル等が挙げられる。当該研磨助剤は、分岐高分子、又は架橋高分子であってもよいが、本発明の研磨液組成物には、凹部の研磨抑制と凸部の研磨速度向上の観点から、分岐高分子及び架橋高分子を含まないことが好ましい。 Examples of the polishing aid other than the polymer B include anionic surfactants and nonionic surfactants. Examples of the anionic surfactant include alkyl ether acetate, alkyl ether phosphate, and alkyl ether sulfate. Examples of the nonionic surfactant include nonionic polymers such as polyacrylamide and polyoxyalkylene alkyl ethers. The polishing aid may be a branched polymer or a crosslinked polymer, but the polishing liquid composition of the present invention contains the branched polymer and the polishing aid from the viewpoint of suppressing the polishing of the concave portion and improving the polishing speed of the convex portion. It is preferable that it does not contain a crosslinked polymer.
[研磨液組成物]
本発明の研磨液組成物は、粒子A及び水を含むスラリーと、高分子Bと、必要に応じてその他の任意成分を公知の方法で配合する工程を含む製造方法によって製造できる。例えば、本発明に係る研磨液組成物は、粒子A及び水を含むスラリーと、高分子Bと水とを含む高分子水溶液と、必要に応じてその他の任意成分を配合してなるものである。本発明において「配合する」とは、粒子A、高分子B及び水、並びに必要に応じてその他の任意成分を同時に又は順に混合することを含む。混合する順序は特に限定されない。前記配合は、例えば、ホモミキサー、ホモジナイザー、超音波分散機及び湿式ボールミル等の混合器を用いて行うことができる。本発明の研磨液組成物の製造方法における各成分の配合量は、上述した本発明の研磨液組成物中の各成分の含有量と同じとすることができる。
[Abrasive liquid composition]
The polishing liquid composition of the present invention can be produced by a production method including a step of blending a slurry containing particles A and water, a polymer B, and if necessary, other optional components by a known method. For example, the polishing liquid composition according to the present invention is formed by blending a slurry containing particles A and water, a polymer aqueous solution containing polymer B and water, and other optional components as necessary. .. In the present invention, "blending" includes mixing particles A, polymer B and water, and, if necessary, other optional components simultaneously or in sequence. The order of mixing is not particularly limited. The formulation can be carried out using, for example, a mixer such as a homomixer, a homogenizer, an ultrasonic disperser, and a wet ball mill. The blending amount of each component in the method for producing the polishing liquid composition of the present invention can be the same as the content of each component in the polishing liquid composition of the present invention described above.
本発明の研磨液組成物の実施形態は、全ての成分が予め混合された状態で市場に供給される、いわゆる1液型であってもよいし、使用時に混合される、いわゆる2液型であってもよい。2液型の研磨液組成物では、第1液と第2液とに分かれており、研磨液組成物は、例えば、粒子Aが水に混合された第1液と、高分子Bが水に溶解された第2液とから構成され、第1液と第2液とが混合されるものであってもよい。第1液と第2液との混合は、研磨対象の表面への供給前に行われてもよいし、これらは別々に供給されて被研磨基板の表面上で混合されてもよい。 The embodiment of the polishing liquid composition of the present invention may be a so-called one-component type in which all the components are premixed and supplied to the market, or a so-called two-component type in which all the components are mixed at the time of use. There may be. The two-component polishing liquid composition is divided into a first liquid and a second liquid. In the polishing liquid composition, for example, the first liquid in which the particles A are mixed with water and the polymer B in water. It may be composed of a dissolved second liquid, and the first liquid and the second liquid may be mixed. The first liquid and the second liquid may be mixed before being supplied to the surface to be polished, or they may be supplied separately and mixed on the surface of the substrate to be polished.
本発明の研磨液組成物のpHは、凹部の研磨抑制と凸部の研磨速度向上の観点から、好ましくは2.5以上、より好ましくは3.0以上、更に好ましくは3.5以上、更により好ましくは4.0以上、更により好ましくは5.5以上であり、そして、好ましくは9.5以下、より好ましくは8.0以下、更に好ましくは7.5以下である。本発明において、研磨液組成物のpHは、25℃における値であって、pHメータを用いて測定した値である。本発明の研磨液組成物のpHは、具体的には、実施例に記載の方法で測定できる。 The pH of the polishing liquid composition of the present invention is preferably 2.5 or more, more preferably 3.0 or more, still more preferably 3.5 or more, from the viewpoint of suppressing polishing of the concave portion and improving the polishing speed of the convex portion. More preferably 4.0 or more, even more preferably 5.5 or more, and preferably 9.5 or less, more preferably 8.0 or less, still more preferably 7.5 or less. In the present invention, the pH of the polishing liquid composition is a value at 25 ° C., which is a value measured using a pH meter. Specifically, the pH of the polishing liquid composition of the present invention can be measured by the method described in Examples.
本発明の「研磨液組成物中の各成分の含有量」とは、研磨液組成物を研磨に使用する時点での前記各成分の含有量をいう。本発明の研磨液組成物は、その安定性が損なわれない範囲で濃縮された状態で保存および供給されてもよい。この場合、製造・輸送コストを低くできる点で好ましい。そしてこの濃縮液は、必要に応じて前述の水系媒体で適宜希釈して研磨工程で使用することができる。希釈割合としては5〜100倍が好ましい。 The "content of each component in the polishing liquid composition" of the present invention means the content of each component at the time when the polishing liquid composition is used for polishing. The polishing liquid composition of the present invention may be stored and supplied in a concentrated state as long as its stability is not impaired. In this case, it is preferable in that the manufacturing / transportation cost can be reduced. Then, this concentrated solution can be appropriately diluted with the above-mentioned aqueous medium and used in the polishing step, if necessary. The dilution ratio is preferably 5 to 100 times.
[被研磨膜]
本発明の研磨液組成物が研磨の対象とする被研磨膜としては、例えば、酸化珪素膜が挙げられる。本発明の研磨液組成物は、3次元的に記録素子が配置された、3次元NAND型フラッシュメモリ等の3次元半導体装置の製造に好適に使用できる。
[Film to be polished]
Examples of the film to be polished to which the polishing liquid composition of the present invention is polished include a silicon oxide film. The polishing liquid composition of the present invention can be suitably used for manufacturing a three-dimensional semiconductor device such as a three-dimensional NAND flash memory in which recording elements are arranged three-dimensionally.
[研磨液キット]
本発明は、研磨液組成物を製造するための研磨液キットであって、当該研磨液キットは、容器に収納された粒子Aの水分散液(第1液)と、前記容器入り粒子A水分散液とは別の容器に収納された前記高分子Bの水溶液(第2液)とを含み、相互に混合されていない状態で保存されており、これらが使用時に混合される研磨液キット(2液型研磨液組成物)に関する。本発明によれば、凹部の研磨抑制と凸部の研磨速度向上が可能な研磨液組成物が得られうる研磨液キットを提供できる。前記第1液及び第2液には、各々、必要に応じて任意成分として、上記した[その他の成分]が含まれていても良い。
[Abrasive liquid kit]
The present invention is a polishing liquid kit for producing a polishing liquid composition, and the polishing liquid kit includes an aqueous dispersion liquid (first liquid) of particles A stored in a container and the particle A water in the container. A polishing liquid kit (second liquid) containing the aqueous solution of the polymer B (second liquid) stored in a container separate from the dispersion liquid and stored in a state where they are not mixed with each other, and these are mixed at the time of use. Two-component polishing liquid composition). According to the present invention, it is possible to provide a polishing liquid kit capable of obtaining a polishing liquid composition capable of suppressing polishing of concave portions and improving the polishing speed of convex portions. The first liquid and the second liquid may each contain the above-mentioned [other components] as optional components, if necessary.
第1液及び第2液における各成分の含有量は、第1液と第2液とを混合した際に、研磨液組成物を研磨に使用する時点での研磨液組成物における好ましい含有量となるように設定してもよいし、第1液と第2液と水とを混合した際に、研磨液組成物を研磨に使用する時点での研磨液組成物における好ましい含有量となるように設定してもよい。 The content of each component in the first liquid and the second liquid is the preferable content in the polishing liquid composition at the time when the polishing liquid composition is used for polishing when the first liquid and the second liquid are mixed. When the first liquid, the second liquid, and water are mixed, the content in the polishing liquid composition at the time when the polishing liquid composition is used for polishing is set to be preferable. It may be set.
[凹部保護液]
本発明は、前記研磨液キットの粒子Aの水分散液と共に使用され、水と、水に溶解された高分子Bとを含む凹部保護液に関する。凹部保護液には、必要に応じて任意成分として、上記した[その他の成分]が含まれていても良い。凹部保護液は、凹部保護液とは別に供給される粒子Aの水分散液と、使用時に混合され、必要に応じて水や任意成分が混合されることにより、凹部の研磨抑制と凸部の研磨速度向上が可能な研磨液組成物が得られる。
[Recess protective liquid]
The present invention relates to a recess protective solution that is used together with an aqueous dispersion of particles A of the polishing solution kit and contains water and a polymer B dissolved in water. The recess protective liquid may contain the above-mentioned [other components] as an optional component, if necessary. The concave protective liquid is mixed with the aqueous dispersion of particles A, which is supplied separately from the concave protective liquid, at the time of use, and water or an arbitrary component is mixed as necessary to suppress polishing of the concave portion and to suppress the polishing of the convex portion. A polishing liquid composition capable of improving the polishing speed can be obtained.
凹部保護液における、高分子Bの含有量は、凹部保護液の濃縮化の観点から、好ましくは0.005質量%以上、より好ましくは0.01質量%以上、更に好ましくは0.03質量%以上であり、そして、研磨液混合時の取り扱い容易性の観点から、好ましくは30質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下である。 The content of the polymer B in the recess protective liquid is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, still more preferably 0.03% by mass, from the viewpoint of concentrating the concave protection liquid. From the viewpoint of ease of handling when the polishing liquid is mixed, the content is preferably 30% by mass or less, more preferably 10% by mass or less, and further preferably 5% by mass or less.
[半導体装置の製造方法]
本発明は、本発明の研磨液組成物を用いて、被研磨膜の凹凸段差面を研磨する工程(以下、「本発明の研磨液組成物を用いた研磨工程」ともいう)を含む、半導体装置の製造方法(以下、「本発明の半導体基板の製造方法」ともいう。)に関する。本発明の半導体装置の製造方法によれば、凹部の研磨抑制と凸部の研磨速度向上が可能であるため、品質が向上した半導体装置を効率よく製造できるという効果が奏されうる。
[Manufacturing method of semiconductor devices]
The present invention is a semiconductor including a step of polishing an uneven stepped surface of a film to be polished using the polishing liquid composition of the present invention (hereinafter, also referred to as a “polishing step using the polishing liquid composition of the present invention”). The present invention relates to a method for manufacturing an apparatus (hereinafter, also referred to as “a method for manufacturing a semiconductor substrate of the present invention”). According to the method for manufacturing a semiconductor device of the present invention, it is possible to suppress polishing of concave portions and improve the polishing speed of convex portions, so that it is possible to efficiently manufacture a semiconductor device with improved quality.
被研磨膜の凹凸段差面は、例えば、被研磨膜を化学気相成長法等の方法で形成した際に被研磨膜の下層の凹凸段差に対応して自然に形成されものであってもよいし、リソグラフィー法等を用いて凹凸パターンを形成することにより得られたものであってもよい。 The uneven stepped surface of the film to be polished may be naturally formed corresponding to the uneven step surface of the lower layer of the film to be polished, for example, when the film to be polished is formed by a method such as chemical vapor deposition. However, it may be obtained by forming a concavo-convex pattern using a lithography method or the like.
被研磨膜の材料としては、珪素を含んでいると好ましく、より好ましくは、酸化珪素、窒化珪素及びポリシリコンからなる群から選ばれる少なくとも1種を含んでいると好ましく、酸化珪素を含んでいるとより好ましい。 The material of the film to be polished preferably contains silicon, more preferably at least one selected from the group consisting of silicon oxide, silicon nitride and polysilicon, and preferably contains silicon oxide. And more preferable.
本発明の半導体装置の製造方法の具体例としては、例えば、記録素子が3次元的に配置された半導体記録装置の製造方法である。当該製造方法により製造される半導体記録装置は、互いに離れて面方向に配置された複数の第1記録素子と、前記第1記録素子の上方に配置され互いに離れて前記面方向と同方向に配置された複数の第2記録素子と、前記第1記録素子と前記第2記録素子の間に配置された絶縁膜とを含む。当該半導体装置の製造方法において、絶縁膜は、例えば、酸化珪素膜であり、例えば、シランガスと酸素ガスを用いたCVD法により形成される。複数の第1記録素子は相互に離れて形成されていることから、酸化珪素膜の形成により、隣合う第1記録素子の間は、酸化珪素膜の酸化珪素で満たされ、酸化珪素膜の第1記録素子側の面の反対面は、下層の凹凸に対応して形成された凹凸段差を有する。本発明の半導体記録装置の製造方法では、「本発明の研磨液組成物を用いた研磨工程」として、CMP法により、前記酸化珪素膜を、第1記録素子側の面の反対面が平坦になるまで研磨する。本発明の研磨液組成物は、このCMP法による研磨を行う工程に好適に用いることができる。酸化珪素膜の前記下層の凹凸に対応して形成された凸部の幅は、例えば、0.5μm以上5000μm以下であり、好ましくは10μm以上3500μm以下であり、凹部の幅は、例えば、0.5μm以上10000μm以下であり、好ましくは10μm以上6000μm以下である。 A specific example of the method for manufacturing a semiconductor device of the present invention is, for example, a method for manufacturing a semiconductor recording device in which recording elements are three-dimensionally arranged. The semiconductor recording device manufactured by the manufacturing method includes a plurality of first recording elements arranged apart from each other in the plane direction, and arranged above the first recording element and separated from each other in the same direction as the plane direction. The plurality of second recording elements are provided, and an insulating film arranged between the first recording element and the second recording element is included. In the method for manufacturing the semiconductor device, the insulating film is, for example, a silicon oxide film, and is formed by, for example, a CVD method using silane gas and oxygen gas. Since the plurality of first recording elements are formed apart from each other, due to the formation of the silicon oxide film, the space between the adjacent first recording elements is filled with the silicon oxide of the silicon oxide film, and the silicon oxide film is the first. 1 The opposite surface of the surface on the recording element side has an uneven step formed corresponding to the unevenness of the lower layer. In the method for manufacturing a semiconductor recording apparatus of the present invention, as a "polishing step using the polishing liquid composition of the present invention", the silicon oxide film is flattened on the opposite surface of the surface on the first recording element side by the CMP method. Polish until it becomes. The polishing liquid composition of the present invention can be suitably used in the step of performing polishing by this CMP method. The width of the convex portion formed corresponding to the unevenness of the lower layer of the silicon oxide film is, for example, 0.5 μm or more and 5000 μm or less, preferably 10 μm or more and 3500 μm or less, and the width of the concave portion is, for example, 0. It is 5 μm or more and 10000 μm or less, preferably 10 μm or more and 6000 μm or less.
本発明の研磨液組成物を用いた研磨工程において、研磨パッドの回転数は、例えば、30〜200r/分、被研磨基板の回転数は、例えば、130〜200r/分、研磨パッドを備えた研磨装置に設定される研磨荷重は、例えば、20〜500g重/cm2、研磨液組成物の供給速度は、例えば、10〜500mL/分以下に設定できる。 In the polishing step using the polishing liquid composition of the present invention, the polishing pad was provided with a polishing pad having a rotation speed of, for example, 30 to 200 r / min, and a substrate to be polished having a rotation speed of, for example, 130 to 200 r / min. The polishing load set in the polishing apparatus can be set to, for example, 20 to 500 g weight / cm 2 , and the supply speed of the polishing liquid composition can be set to, for example, 10 to 500 mL / min or less.
本発明の研磨液組成物を用いた研磨工程において、研磨時間は、平坦性確保の観点から、好ましくは10秒以上、より好ましくは20秒以上であり、そして、生産性向上の観点から、好ましくは5分以下、より好ましくは3分以下、更に好ましくは2分以下である。 In the polishing step using the polishing liquid composition of the present invention, the polishing time is preferably 10 seconds or more, more preferably 20 seconds or more from the viewpoint of ensuring flatness, and preferably from the viewpoint of improving productivity. Is 5 minutes or less, more preferably 3 minutes or less, still more preferably 2 minutes or less.
本発明の研磨液組成物を用いた研磨工程において、用いられる研磨パッドの材質等については、従来公知のものが使用できる。研磨パッドの材質としては、例えば、硬質発泡ポリウレタン等の有機高分子発泡体や無発泡体等があげられるいが、なかでも、硬質発泡ポリウレタンが好ましい。 As the material of the polishing pad used in the polishing step using the polishing liquid composition of the present invention, conventionally known materials can be used. Examples of the material of the polishing pad include an organic polymer foam such as hard foamed polyurethane and a non-foamed material, and among them, hard foamed polyurethane is preferable.
研磨液組成物の供給速度は、研磨速度の向上の観点から、凹凸表面1cm2あたり0.01g/分以上が好ましく、より好ましくは0.1g/分以上であり、そして、低コスト化及び廃液処理の容易化の観点から、凹凸表面1cm2あたり10g/分以下が好ましく、より好ましくは5g/分以下である。 From the viewpoint of improving the polishing rate, the supply rate of the polishing liquid composition is preferably 0.01 g / min or more, more preferably 0.1 g / min or more per 1 cm 2 of the uneven surface, and reduces the cost and waste liquid. From the viewpoint of facilitating the treatment, it is preferably 10 g / min or less, and more preferably 5 g / min or less per 1 cm 2 of the uneven surface.
[凹凸段差面の研磨方法]
本発明は、本発明の研磨液組成物を用いた研磨工程を含む、凹凸段差面の研磨方法(以下、本発明の研磨方法ともいう)に関する。
[Method of polishing uneven stepped surface]
The present invention relates to a method for polishing an uneven stepped surface (hereinafter, also referred to as the polishing method of the present invention), which includes a polishing step using the polishing liquid composition of the present invention.
本発明の研磨方法を使用することにより、凹部の研磨を抑制しつつ、凸部の研磨速度を向上できるため、品質が向上した半導体装置の生産性を向上できるという効果が奏されうる。具体的な研磨の方法及び条件は、上述した本発明の半導体装置の製造方法と同じようにすることができる。 By using the polishing method of the present invention, it is possible to improve the polishing speed of the convex portion while suppressing the polishing of the concave portion, so that the effect of improving the productivity of the semiconductor device with improved quality can be achieved. The specific polishing method and conditions can be the same as the above-described method for manufacturing the semiconductor device of the present invention.
1.研磨液組成物の調製
水と砥粒と水溶性高分子とを下記表1の含有量となるように混合して実施例1〜14及び比較例1〜9の研磨液組成物を得た。研磨液組成物のpHは、1N塩酸水溶液又は1Nアンモニウム水溶液を用いて調整した。実施例1〜14及び比較例1〜9の研磨液組成物の25℃におけるpHは表1に示した通りである。
1. 1. Preparation of Polishing Solution Composition Water, abrasive grains, and a water-soluble polymer were mixed so as to have the contents shown in Table 1 below to obtain polishing solution compositions of Examples 1 to 14 and Comparative Examples 1 to 9. The pH of the polishing liquid composition was adjusted using a 1N hydrochloric acid aqueous solution or a 1N ammonium aqueous solution. The pH of the polishing liquid compositions of Examples 1 to 14 and Comparative Examples 1 to 9 at 25 ° C. is as shown in Table 1.
砥粒としては、以下の粒子を使用した。
・粒子A1:平均一次粒径81.7nm、BET比表面積10.2m2/g
・粒子A2:平均一次粒径68.3nm、BET比表面積12.2m2/g
・粒子A3:平均一次粒径24.4nm、BET比表面積34.2m2/g
・粒子A4:平均一次粒径89.4nm、BET比表面積30.5m2/g
The following particles were used as the abrasive particles.
-Particle A1: Average primary particle size 81.7 nm, BET specific surface area 10.2 m 2 / g
-Particle A2: Average primary particle size 68.3 nm, BET specific surface area 12.2 m 2 / g
-Particle A3: Average primary particle size 24.4 nm, BET specific surface area 34.2 m 2 / g
-Particle A4: Average primary particle size 89.4 nm, BET specific surface area 30.5 m 2 / g
水溶性高分子としては、以下の化合物を使用した。
・高分子B1:線状ポリアクリル酸ナトリウム(東亞合成製アロンビスSX重量平均分子量500万)
・高分子B2:線状ポリアクリル酸ナトリウム(東亜合成製アロンビスMX 重量平均分子量250万)
・高分子B3:線状ポリアクリル酸(ポリサイエンス社製 重量平均分子量400万)
・高分子B4:ポリビニルピロリドン(第一工業製薬社製ピッツコールK−120L 重量平均分子量280万)
・高分子B5:線状ポリアクリル酸ナトリウム(花王社製TK−75 重量平均分子量2万)
・高分子B6:線状ポリアクリル酸ナトリウム(和光純薬工業社製 重量平均分子量100万)
・高分子B7:ポリアクリルアミド(ポリサイエンス社製、重量平均分子量60万〜100万)
・高分子B8:ポリ(2−アクリルアミド−2−メチルプロパンスルホン酸)(アルドリッチ社製 重量平均分子量200万)
・高分子B9:ポリエチレングリコール(和光純薬工業社製 重量平均分子量200万)
・高分子B10:架橋型ポリアクリル酸(東亞合成製260H 重量平均分子量500万)
The following compounds were used as the water-soluble polymer.
Polymer B1: Linear sodium polyacrylate (Alonbis SX weight average molecular weight 5 million manufactured by Toagosei)
-Polymer B2: Linear sodium polyacrylate (Toagosei Aronbis MX weight average molecular weight 2.5 million)
-Polymer B3: Linear polyacrylic acid (manufactured by Polyscience, Inc., weight average molecular weight: 4 million)
Polymer B4: Polyvinylpyrrolidone (Pitzcol K-120L manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., weight average molecular weight 2.8 million)
Polymer B5: Linear sodium polyacrylate (TK-75 manufactured by Kao Corporation, weight average molecular weight 20,000)
Polymer B6: Linear sodium polyacrylate (Wako Pure Chemical Industries, Ltd., weight average molecular weight 1 million)
Polymer B7: Polyacrylamide (manufactured by Polyscience, weight average molecular weight 600,000 to 1,000,000)
Polymer B8: Poly (2-acrylamide-2-methylpropanesulfonic acid) (Aldrich, weight average molecular weight 2 million)
-Polymer B9: Polyethylene glycol (manufactured by Wako Pure Chemical Industries, Ltd., weight average molecular weight 2 million)
Polymer B10: Crosslinked polyacrylic acid (260H weight average molecular weight 5 million manufactured by Toagosei)
砥粒の平均一次粒径及びBET比表面積は以下の方法により測定した。 The average primary particle size and BET specific surface area of the abrasive grains were measured by the following methods.
(a)研磨液組成物のpH測定
研磨液組成物の25℃におけるpH値は、pHメータ(東亜電波工業株式会社、HM−30G)を用いて測定した値であり、電極の研磨液組成物への浸漬後1分後の数値である。
(A) pH measurement of the polishing liquid composition The pH value of the polishing liquid composition at 25 ° C. is a value measured using a pH meter (Toa Denpa Kogyo Co., Ltd., HM-30G), and the polishing liquid composition of the electrode. It is a numerical value 1 minute after immersion in.
(b)砥粒の平均一次粒径
砥粒の平均一次粒径(nm)は、下記BET(窒素吸着)法によって得られる比表面積S(m2/g)を用い、セリア粒子の真密度を7.2g/cm3、シリカ粒子の真密度を2.2g/cm3として算出した。
(B) Average primary particle size of abrasive grains For the average primary particle size (nm) of abrasive grains, the specific surface area S (m 2 / g) obtained by the following BET (nitrogen adsorption) method is used to determine the true density of ceria particles. It was calculated as 7.2 g / cm 3 and the true density of the silica particles was 2.2 g / cm 3 .
(c)砥粒のBET比表面積の測定方法
比表面積は、砥粒の水分散液を120℃で3時間熱風乾燥した後、メノウ乳鉢で細かく粉砕しサンプルを得た。測定直前に120℃の雰囲気下で15分間乾燥した後、比表面積測定装置(マイクロメリティック自動比表面積測定装置 フローソーブIII2305、島津製作所製)を用いて窒素吸着法(BET法)により測定した。
(C) Method for Measuring BET Specific Surface Area of Abrasive Grains For the specific surface area, an aqueous dispersion of abrasive grains was dried with hot air at 120 ° C. for 3 hours, and then finely pulverized in an agate mortar to obtain a sample. Immediately before the measurement, the sample was dried in an atmosphere of 120 ° C. for 15 minutes, and then measured by the nitrogen adsorption method (BET method) using a specific surface area measuring device (Micromeritic automatic specific surface area measuring device Flowsorb III2305, manufactured by Shimadzu Corporation).
2.研磨液組成物(実施例1〜14、比較例1〜9)の評価
[評価用サンプル]
評価用サンプルとして市販のCMP特性評価用ウエハ(直径300mm)を用意し、これを研磨評価用に40mm×40mmに基板を切断した。この評価用サンプルは、シリコン基板上に膜厚4300nmの酸化珪素膜が凸部として配置されており、凹部も同様に膜厚4300nmの酸化珪素膜が配置され、凸部と凹部の段差が3400nmになるよう、エッチングにより、線状凹凸パターンが形成されている。酸化珪素膜はHDP−CVD(高密度プラズマ化学気相成長法)により形成されており、凸部幅は3000μm、凹部幅は5000μmである。
2. 2. Evaluation of Abrasive Liquid Compositions (Examples 1 to 14, Comparative Examples 1 to 9) [Evaluation Sample]
A commercially available wafer for CMP characteristic evaluation (diameter 300 mm) was prepared as an evaluation sample, and the substrate was cut into a size of 40 mm × 40 mm for polishing evaluation. In this evaluation sample, a silicon oxide film having a film thickness of 4300 nm is arranged as a convex portion on a silicon substrate, and a silicon oxide film having a film thickness of 4300 nm is also arranged in a concave portion, and a step between the convex portion and the concave portion is 3400 nm. As such, a linear uneven pattern is formed by etching. The silicon oxide film is formed by HDP-CVD (high-density plasma chemical vapor deposition), and has a convex portion width of 3000 μm and a concave portion width of 5000 μm.
[研磨条件]
研磨試験機 :片面研磨機(テクノライズ製TR15M−TRK1、定盤径38cm)
研磨パッド :品番IC−1000/Suba400(ニッタ・ハース(株)製)
定盤回転数 :100rpm
ヘッド回転数:110rpm(回転方向は定盤と同じ)
研磨荷重 :300g重/cm2
研磨液供給量:50mL/min(3.125g/(cm2・min))
研磨時間 :1分おきに後述の方法により凸部の残存膜厚を測定し、前記残存膜厚が900nm(凸部の研磨量3400nmに相当)±5nm以下になるまで研磨を実施した。
[Polishing conditions]
Polishing tester: Single-sided polishing machine (Texhnolyze TR15M-TRK1, surface plate diameter 38 cm)
Polishing pad: Part number IC-1000 / Suba400 (manufactured by Nitta Haas Co., Ltd.)
Surface plate rotation speed: 100 rpm
Head rotation speed: 110 rpm (rotation direction is the same as the surface plate)
Polishing load: 300 g weight / cm 2
Abrasive liquid supply amount: 50 mL / min (3.125 g / (cm 2. min))
Polishing time: The residual film thickness of the convex portion was measured every 1 minute by the method described later, and polishing was performed until the residual film thickness was 900 nm (corresponding to the polishing amount of the convex portion of 3400 nm) ± 5 nm or less.
[酸化珪素膜の凸部の研磨速度の測定]
表1に示した研磨液組成物を用いて、上記研磨条件で評価用サンプルを研磨した。研磨後、超純水を用いて洗浄し、乾燥して、酸化膜試験片を後述の光干渉式膜厚測定装置による測定対象とした。研磨後の評価用サンプルについて、凸部の残存膜厚を光干渉式膜厚計(商品名:VM−1230、(株)SCREENセミコンダクターソリューションズ製)を用いて測定した。
[Measurement of polishing speed of convex parts of silicon oxide film]
Using the polishing liquid composition shown in Table 1, the evaluation sample was polished under the above polishing conditions. After polishing, it was washed with ultrapure water and dried, and the oxide film test piece was used as a measurement target by an optical interference type film thickness measuring device described later. For the evaluation sample after polishing, the residual film thickness of the convex portion was measured using an optical interference type film thickness meter (trade name: VM-1230, manufactured by SCREEN Semiconductor Solutions Co., Ltd.).
研磨前及び研磨後において、光干渉式膜厚測定装置(商品名:VM−1200、(株)SCREENセミコンダクターソリューションズ製)を用いて、酸化膜の膜厚を測定した。酸化膜の研磨速度は下記式により算出し、比較例1の研磨液組成物を用いた場合の研磨速度を100として、下記表1に示した。
酸化膜の研磨速度(nm/分)
=[研磨前の酸化膜厚さ(nm)−研磨後の酸化膜厚さ(nm)]/研磨時間(分)
Before and after polishing, the film thickness of the oxide film was measured using a light interference type film thickness measuring device (trade name: VM-1200, manufactured by SCREEN Semiconductor Solutions Co., Ltd.). The polishing rate of the oxide film was calculated by the following formula, and is shown in Table 1 below, assuming that the polishing rate when the polishing solution composition of Comparative Example 1 was used was 100.
Oxide film polishing rate (nm / min)
= [Oxidation film thickness before polishing (nm) -Oxidation film thickness after polishing (nm)] / Polishing time (minutes)
[酸化珪素膜の凹部の過剰研磨量の測定]
上記研磨条件で研磨した研磨後の評価用サンプルについて、凹部の残存膜厚を光干渉式膜厚計(商品名:VM−1230、(株)SCREENセミコンダクターソリューションズ製)を用いて測定し、凹部の研磨前の膜厚(4300nm)と、研磨後の凹部の膜厚との差(nm)を過剰研磨量として算出し、比較例1の研磨液組成物を用いた場合を100として、下記表1に示した。過剰研磨量は下記の基準で良否を判断した。A、B判定であれば、過剰研磨量は十分に少ない。
A:過剰研磨量が500nm以下
B:過剰研磨量が500nmを超え550nm以下
C:過剰研磨量が550nmを超え600nm以下
D:過剰研磨量が600nmを超える
[Measurement of excess polishing amount of recesses of silicon oxide film]
For the evaluation sample after polishing under the above polishing conditions, the residual film thickness of the recess was measured using an optical interference film thickness meter (trade name: VM-1230, manufactured by SCREEN Semiconductor Solutions Co., Ltd.), and the recess was measured. The difference (nm) between the film thickness before polishing (4300 nm) and the film thickness of the concave portion after polishing is calculated as the excess polishing amount, and the case where the polishing liquid composition of Comparative Example 1 is used is taken as 100, and Table 1 below It was shown to. The amount of excess polishing was judged as good or bad based on the following criteria. If it is judged as A or B, the amount of excessive polishing is sufficiently small.
A: Excessive polishing amount is 500 nm or less B: Excessive polishing amount is more than 500 nm and 550 nm or less C: Overpolishing amount is more than 550 nm and 600 nm or less D: Overpolishing amount is more than 600 nm
[法線応力とせん断応力の関係]
実施例2、6、及び比較例1、6の研磨液組成物の調製に使用した水溶性高分子の0.1質量%水溶液を塩酸又はアンモニアでpH6.0に調整したもの(水溶液温度25℃)を用意し、粘弾性測定装置(AntonPaar社製、PhysicaMCR301)を用いて25℃50%RHの環境にて測定した。パラレルプレート(PP75、φ75mm)を使用してギャップ100μmでせん断速度を1から10000(1/s)まで上昇させた後、次に10000から1(1/s)まで下降させていき、せん断速度に対する法線応力を測定し、せん断速度上昇時の結果を、図1〜4に示した。なお、表2には、せん断速度上昇時における、せん断速度が534(1/s)、8500(1/s)のときの法線応力を示している。
[Relationship between normal stress and shear stress]
A 0.1% by mass aqueous solution of the water-soluble polymer used for preparing the polishing solution compositions of Examples 2 and 6 and Comparative Examples 1 and 6 was adjusted to pH 6.0 with hydrochloric acid or ammonia (aqueous solution temperature 25 ° C.). ) Was prepared and measured in an environment of 25 ° C. and 50% RH using a viscoelasticity measuring device (PhysicaMCR301 manufactured by AntonioPaar). Using a parallel plate (PP75, φ75 mm), the shear rate is increased from 1 to 10000 (1 / s) with a gap of 100 μm, and then decreased from 10000 to 1 (1 / s) with respect to the shear rate. The normal stress was measured, and the results when the shear rate increased were shown in FIGS. 1 to 4. Table 2 shows the normal stresses when the shear rates are 534 (1 / s) and 8500 (1 / s) when the shear rate is increased.
表1に示されるように、実施例1〜14の研磨液組成物は、比較例1〜9の研磨液組成物に比べて、凸部の研磨速度が速い上に、凹部の研磨が抑制されており、平坦性も良好であった。 As shown in Table 1, in the polishing liquid compositions of Examples 1 to 14, the polishing speed of the convex portion is faster than that of the polishing liquid compositions of Comparative Examples 1 to 9, and the polishing of the concave portion is suppressed. The flatness was also good.
表2、図1〜図2に示されるように、実施例2、6の研磨液組成物の調製に用いた水溶性高分子B1、B3の水溶液は、せん断速度が高くなるに伴い、正の法線応力と負の法線応力を、この順で発現した。一方、表2、図3〜図4に示されるように、比較例1、6の研磨液組成物の調製に用いた水溶性高分子B5、B10の水溶液は、せん断速度534(1/s)、8500(1/s)のいずれにおいても、法線応力は負であった。 As shown in Table 2, FIGS. 1 and 2, the aqueous solutions of the water-soluble polymers B1 and B3 used for preparing the polishing liquid compositions of Examples 2 and 6 became positive as the shear rate increased. Normal stress and negative normal stress were expressed in this order. On the other hand, as shown in Table 2, FIGS. 3 to 4, the aqueous solutions of the water-soluble polymers B5 and B10 used for preparing the polishing liquid compositions of Comparative Examples 1 and 6 had a shear rate of 534 (1 / s). , 8500 (1 / s), the normal stress was negative.
以上説明したとおり、本開示に係る研磨液組成物は、高密度化又は高集積化用の半導体装置の製造方法において有用である。 As described above, the polishing liquid composition according to the present disclosure is useful in a method for manufacturing a semiconductor device for high density or high integration.
Claims (10)
前記水溶性高分子Bが、線状高分子であり、アクリル酸に由来の構成単位、アクリル酸塩に由来の構成単位及びビニルピロリドンに由来の構成単位から選ばれる1種以上の構成単位を含み、重量平均分子量が250万以上である、酸化珪素膜用研磨液組成物。 A polishing solution composition for a silicon oxide film containing particles A having at least a part of the surface made of ceria, a water-soluble polymer B, and water.
The water-soluble polymer B is a linear polymer and contains one or more structural units selected from a structural unit derived from acrylic acid, a structural unit derived from acrylate, and a structural unit derived from vinylpyrrolidone. , A polishing liquid composition for a silicon oxide film having a weight average molecular weight of 2.5 million or more.
表面の少なくとも一部がセリアからなる粒子Aの水分散液が容器に収納された第1液と、
水溶性高分子Bの水溶液が前記1液が収納された容器とは別の容器に収納された第2液とを含み、
前記水溶性高分子Bが、線状高分子であり、アクリル酸に由来の構成単位、アクリル酸塩に由来の構成単位及びビニルピロリドンに由来の構成単位から選ばれる1種以上の構成単位を含み、重量平均分子量が250万以上である、研磨液キット。 A polishing liquid kit for producing a polishing liquid composition.
The first liquid in which the aqueous dispersion of particles A whose surface is at least partly composed of ceria is stored in a container, and
The aqueous solution of the water-soluble polymer B contains a second liquid stored in a container different from the container in which the first liquid is stored.
The water-soluble polymer B is a linear polymer and contains one or more structural units selected from a structural unit derived from acrylic acid, a structural unit derived from acrylate, and a structural unit derived from vinylpyrrolidone. , A polishing liquid kit having a weight average molecular weight of 2.5 million or more.
水と、前記水に溶解された水溶性高分子Bとを含み、
前記水溶性高分子Bが、線状高分子であり、アクリル酸に由来の構成単位、アクリル酸塩に由来の構成単位及びビニルピロリドンに由来の構成単位から選ばれる1種以上の構成単位を含み、重量平均分子量が250万以上である、凹部保護液。 A recess protective solution that is used with an aqueous dispersion of particles A whose surface is at least partly composed of ceria.
It contains water and the water-soluble polymer B dissolved in the water.
The water-soluble polymer B is a linear polymer and contains one or more structural units selected from a structural unit derived from acrylic acid, a structural unit derived from acrylate, and a structural unit derived from vinylpyrrolidone. A recess protective solution having a weight average molecular weight of 2.5 million or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016253702A JP6811090B2 (en) | 2016-12-27 | 2016-12-27 | Abrasive liquid composition for silicon oxide film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016253702A JP6811090B2 (en) | 2016-12-27 | 2016-12-27 | Abrasive liquid composition for silicon oxide film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018107329A JP2018107329A (en) | 2018-07-05 |
JP6811090B2 true JP6811090B2 (en) | 2021-01-13 |
Family
ID=62784667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016253702A Active JP6811090B2 (en) | 2016-12-27 | 2016-12-27 | Abrasive liquid composition for silicon oxide film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6811090B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7041714B2 (en) * | 2019-06-26 | 2022-03-24 | 花王株式会社 | Abrasive liquid composition for silicon oxide film |
JP7425660B2 (en) | 2020-04-07 | 2024-01-31 | 花王株式会社 | Polishing liquid composition for silicon oxide film |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003347246A (en) * | 2002-05-28 | 2003-12-05 | Hitachi Chem Co Ltd | Cmp polishing agent for semiconductor insulating film and method of polishing substrate |
JP2003347247A (en) * | 2002-05-28 | 2003-12-05 | Hitachi Chem Co Ltd | Cmp polishing agent for semiconductor insulating film and method of polishing substrate |
JPWO2007116770A1 (en) * | 2006-04-03 | 2009-08-20 | Jsr株式会社 | Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method, and kit for preparing chemical mechanical polishing aqueous dispersion |
JP2009272601A (en) * | 2008-04-09 | 2009-11-19 | Hitachi Chem Co Ltd | Abrasive, substrate polishing method using same, and solution and slurry for use in this method |
JP6338946B2 (en) * | 2014-06-30 | 2018-06-06 | 東芝メモリ株式会社 | Polishing apparatus and polishing method |
-
2016
- 2016-12-27 JP JP2016253702A patent/JP6811090B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018107329A (en) | 2018-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6422325B2 (en) | Polishing liquid composition for semiconductor substrate | |
JP6352060B2 (en) | Polishing liquid composition for polishing silicon oxide film | |
JP6434501B2 (en) | CMP composition having high removal rate and low defects selective to oxides and nitrides | |
TWI544065B (en) | Wet-process ceria compositions for selectively polishing substrates, and methods related thereto | |
JP2008235481A (en) | Semiconductor wafer polishing composition, method for producing the same, and polishing method | |
KR102147073B1 (en) | Chemical mechanical polishing composition comprising non-ionic surfactant and aromatic compound comprising at least one acid group | |
WO2018124017A1 (en) | Cerium oxide abrasive grains | |
CN101050348B (en) | Etchant composition, composition for polishing, method for producing polishing composition and polishing method | |
US9263296B2 (en) | Chemical mechanical polishing (CMP) composition comprising two types of corrosion inhibitors | |
JPWO2018062403A1 (en) | Polishing liquid composition | |
JP2025105657A (en) | Silica-based slurry for selective polishing of carbon-based films | |
JP7041135B2 (en) | Oxide and nitride selective CMP compositions with improved dishing and pattern selectivity | |
JP6811090B2 (en) | Abrasive liquid composition for silicon oxide film | |
TWI625372B (en) | Method for grinding low dielectric substrate | |
JP6618355B2 (en) | Polishing liquid composition | |
TWI796575B (en) | Polishing liquid composition for silicon oxide film | |
JP7475184B2 (en) | Polishing composition for silicon oxide film | |
JPH10310766A (en) | Grinding composition | |
TW202108733A (en) | Polishing liquid and chemical mechanical polishing method | |
TW201702348A (en) | CMP composition and method for polishing rigid disks | |
JP4042906B2 (en) | Polishing composition, method for adjusting polishing composition, and polishing method | |
WO2018124013A1 (en) | Cerium oxide abrasive grain | |
JP6797665B2 (en) | Abrasive liquid composition | |
JP2006316167A (en) | Polishing composition for chemical mechanical polishing | |
WO2022113775A1 (en) | Polishing liquid composition for silicon oxide film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190906 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200611 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200623 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201118 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201208 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201214 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6811090 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |