JP6809325B2 - Duplex stainless steel shaped steel and its manufacturing method - Google Patents
Duplex stainless steel shaped steel and its manufacturing method Download PDFInfo
- Publication number
- JP6809325B2 JP6809325B2 JP2017057840A JP2017057840A JP6809325B2 JP 6809325 B2 JP6809325 B2 JP 6809325B2 JP 2017057840 A JP2017057840 A JP 2017057840A JP 2017057840 A JP2017057840 A JP 2017057840A JP 6809325 B2 JP6809325 B2 JP 6809325B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel
- stainless steel
- content
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 79
- 239000010959 steel Substances 0.000 title claims description 79
- 229910001039 duplex stainless steel Inorganic materials 0.000 title claims description 31
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 238000005096 rolling process Methods 0.000 claims description 53
- 239000000463 material Substances 0.000 claims description 32
- 238000010438 heat treatment Methods 0.000 claims description 31
- 229910001566 austenite Inorganic materials 0.000 claims description 25
- 229910001220 stainless steel Inorganic materials 0.000 claims description 25
- 239000010935 stainless steel Substances 0.000 claims description 20
- 239000013078 crystal Substances 0.000 claims description 13
- 229910000859 α-Fe Inorganic materials 0.000 claims description 11
- 229910052804 chromium Inorganic materials 0.000 claims description 9
- 238000005098 hot rolling Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 229910052748 manganese Inorganic materials 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 6
- 238000009864 tensile test Methods 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 230000007547 defect Effects 0.000 description 17
- 230000007797 corrosion Effects 0.000 description 16
- 238000005260 corrosion Methods 0.000 description 16
- 230000000694 effects Effects 0.000 description 9
- 229910052761 rare earth metal Inorganic materials 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 201000004384 Alopecia Diseases 0.000 description 5
- 230000003676 hair loss Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 206010039509 Scab Diseases 0.000 description 4
- 239000004566 building material Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 238000007670 refining Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001887 electron backscatter diffraction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Metal Rolling (AREA)
- Heat Treatment Of Steel (AREA)
Description
本発明は、2相ステンレス鋼形鋼およびその製造方法に関する。形鋼とは、アングル、チャンネル、H形鋼、丸型鋼等の形状を有する鋼材を示す。一般的に、形鋼の製造においては、圧延により形鋼形状を作り込む方法と、圧延等により製造した薄板を折り曲げて形鋼形状とする方法とが挙げられるが、本願発明の対象は前者の圧延により形状を作り込む形鋼に関する。 The present invention relates to duplex stainless steel shaped steel and a method for producing the same. The shaped steel refers to a steel material having a shape such as an angle, a channel, an H-shaped steel, or a round steel. Generally, in the production of shaped steel, there are a method of forming a shaped steel shape by rolling and a method of bending a thin plate manufactured by rolling or the like to form a shaped steel shape, but the subject of the present invention is the former. Regarding shaped steel whose shape is created by rolling.
ステンレス鋼は、耐食性に優れることから、建材、自動車、家電等多くの用途に用いられている。ステンレス鋼の中で2相ステンレス鋼は、特に高強度を有することから、建材や構造材料として使用されている。熱間圧延ステンレス鋼板および鋼帯の中で2相ステンレス鋼の鋼種としては、JIS G 4304に記載のSUS329J1やSUS329J4L等が挙げられる。従来の2相ステンレス鋼は、添加元素量が多く比較的高価であるため、添加元素量を抑えたリーン型の2相ステンレス鋼が開発されている。特許文献1には、Ni量が比較的少ない2相ステンレス鋼が開示されている。また、特許文献2には、Ni量が少なく、MnやN等のオーステナイト生成元素を活用した安価な2相ステンレス鋼が開示されている。 Since stainless steel has excellent corrosion resistance, it is used in many applications such as building materials, automobiles, and home appliances. Among stainless steels, duplex stainless steel is used as a building material and a structural material because it has particularly high strength. Among the hot-rolled stainless steel sheets and strips, examples of duplex stainless steels include SUS329J1 and SUS329J4L described in JIS G 4304. Since conventional duplex stainless steels have a large amount of additive elements and are relatively expensive, lean duplex stainless steels having a reduced amount of additive elements have been developed. Patent Document 1 discloses duplex stainless steel having a relatively small amount of Ni. Further, Patent Document 2 discloses an inexpensive two-phase stainless steel having a small amount of Ni and utilizing an austenite-forming element such as Mn or N.
一方、建材や構造材としては、板だけでなく、形鋼の形状を有するステンレス鋼が必要とされる。熱間成形ステンレス鋼形鋼の種類は、JIS G 4317に記載されている。しかし、2相ステンレス鋼としては、前述と同じように、SUS329J1やSUS329J4L等の比較的高価なステンレス鋼のみである。最近では、Ni量の少ない2相ステンレス鋼の製造技術報告されている。非特許文献1には、EN1.4362規格の2相ステンレス鋼(代表成分:23Cr−4Ni−0.3Mo(Mn:≦2.00))形鋼を製造するために、Sを規定する技術が開示されている。2相ステンレス鋼は、一般的にオーステナイト系ステンレス鋼に比べて高強度であり、ニーズが高い。しかしながら、2相ステンレス鋼を製造する場合の大きな課題は、熱間加工性不良に起因する熱間割れとヘゲ疵の発生である。 On the other hand, as building materials and structural materials, not only plates but also stainless steel having the shape of shaped steel is required. The types of hot-formed stainless steel shaped steels are described in JIS G 4317. However, as the duplex stainless steel, as described above, only relatively expensive stainless steels such as SUS329J1 and SUS329J4L are used. Recently, a manufacturing technique for duplex stainless steel with a small amount of Ni has been reported. Non-Patent Document 1 describes a technique for defining S in order to produce an EN1.4362 standard duplex stainless steel (representative component: 23Cr-4Ni-0.3Mo (Mn: ≦ 2.00)) shaped steel. It is disclosed. Duplex stainless steel generally has higher strength than austenitic stainless steel and is in high demand. However, a major problem in producing duplex stainless steel is the generation of hot cracks and dents due to poor hot workability.
熱間割れは、非特許文献1に記載されているように、S等の不純物元素の低減により解消される。しかし、ヘゲ疵については、完全な抑制方法が確立していないのが現状である。特に形鋼製品の場合には、鋼材と比べてヘゲ疵が発生しやすい。これは製造方法によると考えられる。
熱間加工性が劣る材料の場合には、変形時に拘束されていない面、すなわち、圧延端部に割れが生じやすい。鋼板の場合には、圧延により板厚が減少する、すなわち、上下面は圧延ロールに接しており、拘束されていない面は端部に限定される。幅を揃えるための幅圧下圧延が加わることはあるが、基本的に板厚のみ減少する。ところが、形鋼熱間圧延の場合は、圧延被圧延鋼材を、圧延方向を軸として90°回転させる工程を複数回含む圧延を前半に行い、圧延後半では全方向が拘束されたロール間を通ってアングルあるいはチャンネル等の形状に作り込まれる。したがって、圧延前半においては、板厚方向と板幅方向が圧延パス毎に変わることになる。したがって、端部で割れが生じると、それが次パスで圧延面となって延ばされるため、ヘゲ疵として残りやすいのである。中でも、Mn量が多い成分系では、ヘゲ疵の発生が顕著になるため、Mnを含有する2相ステンレス鋼の形鋼製品は存在していない。
Hot cracking is eliminated by reducing impurity elements such as S, as described in Non-Patent Document 1. However, the current situation is that a complete control method has not been established for hesitation defects. Especially in the case of shaped steel products, baldness is more likely to occur than steel materials. This is considered to be due to the manufacturing method.
In the case of a material having poor hot workability, cracks are likely to occur on a surface that is not constrained during deformation, that is, a rolled end portion. In the case of steel sheets, the thickness is reduced by rolling, that is, the upper and lower surfaces are in contact with the rolling rolls, and the unconstrained surfaces are limited to the ends. Width rolling under width to make the width uniform may be added, but basically only the plate thickness is reduced. However, in the case of hot rolling of shaped steel, the rolled steel material is rolled in the first half, which includes a process of rotating the steel material to be rolled by 90 ° about the rolling direction multiple times, and in the latter half of the rolling, it passes between rolls restrained in all directions. It is made into a shape such as an angle or a channel. Therefore, in the first half of rolling, the plate thickness direction and the plate width direction change for each rolling path. Therefore, if a crack occurs at the end, it becomes a rolled surface in the next pass and is stretched, so that it tends to remain as a bald defect. Above all, in a component system having a large amount of Mn, the occurrence of baldness becomes remarkable, so that a duplex stainless steel shaped steel product containing Mn does not exist.
近年、建材や構造材における高強度化、高耐食化の要求特性を満足し且つ合金の含有量が少ない鋼種の開発が望まれている。2相ステンレス鋼は、特性として十分であるため、合金の含有量、特にNi量を減らして製造する技術が確立できれば、現代社会への普及が期待できる。Ni含有量を減らすためには、類似の効果を持つMnを含有する2相ステンレス形鋼を製造する必要がある。ところが、形鋼製造において、Mnを含有する2相ステンレス鋼の形鋼はヘゲ疵が発生しやすいため、従来から製造されてこなかった。 In recent years, it has been desired to develop a steel grade that satisfies the required characteristics of high strength and high corrosion resistance in building materials and structural materials and has a low alloy content. Duplex stainless steel has sufficient characteristics, so if a technology for manufacturing by reducing the alloy content, especially the Ni content, can be established, it can be expected to spread to modern society. In order to reduce the Ni content, it is necessary to produce a duplex stainless steel shaped steel containing Mn having a similar effect. However, in the production of shaped steels, duplex stainless steel shaped steels containing Mn have not been conventionally manufactured because they are prone to blemishes.
本発明は、上記の事情に鑑み、高強度、低コスト(Ni含有量が低い)を満足する2相ステンレス鋼形鋼およびその製造方法を提供することを目的とする。 In view of the above circumstances, it is an object of the present invention to provide a duplex stainless steel shaped steel satisfying high strength and low cost (low Ni content) and a method for producing the same.
本発明者らは、前記した課題を解決するために、Mn含有2相ステンレス鋼の成分組成、熱間圧延前の加熱条件と熱間圧延後の表面ヘゲ疵の関係について鋭意実験と検討を重ね、本発明を完成させた。
以下に本発明で得られた知見について説明する。
In order to solve the above-mentioned problems, the present inventors diligently conducted experiments and studies on the composition of Mn-containing duplex stainless steel, the relationship between the heating conditions before hot rolling and the surface scratches after hot rolling. Overlapping, the present invention was completed.
The findings obtained in the present invention will be described below.
(i)Mnを含有する2相ステンレス鋼ではヘゲ疵が発生しやすい傾向があるが、加熱温度と加熱時間を制御することによりヘゲ疵を抑制できる。
(ii)ヘゲ疵が発生しない適正な加熱条件は、成分の影響を受ける。Mn量だけでなく、Cr量およびSi量にも依存する。
(iii)前述のごとく形鋼熱間圧延の場合は、被圧延鋼材を、圧延方向を軸として90°回転させる工程を複数回含む圧延を前半に行うため、2相ステンレス鋼を製造した場合の金属組織は、圧延方向に対して垂直な断面をミクロ観察したときに、フェライト相とオーステナイト相の混合組織であり、ヘゲ疵が発生しない時には特徴的な金属組織(結晶粒形状)を示し、オーステナイト相のアスペクト比が大きい。
上記(ii)についての詳細な結果を以下に示す。
成分が異なる4種類の素材を用いて、加熱温度を変更して圧延後の疵を調査した。厚み120mm×幅120mmの素材を用いて、形鋼熱間圧延をシミュレートするために、厚み方向と幅方向の圧延を1パス毎に繰り返して、最終的に厚み35mm×幅35mmまで圧延した後に冷却し、表面疵の有無を調査した。表面疵は厚みと幅の4面を調査し、外観で確認できる5mm以上のヘゲ疵が存在する場合に「圧延疵あり」とした。図1に本実験において得られた結果を示す。横軸は成分(Cr、Si、Mn)を考慮した式であり、縦軸は加熱温度である。成分と加熱温度を考慮することで、圧延疵が発生しない範囲が明確となる。
また、ヘゲ疵発生部およびヘゲ疵未発生部の熱処理後の金属組織を図2に示す。金属組織は圧延方向に対して垂直な断面をミクロ観察している。組織の中で白い部分がオーステナイト相、黒みがかった部分がフェライト相を示す。(a)ヘゲ疵未発生部ではオーステナイト相の結晶粒が等軸晶に近いのに対して、(b)ヘゲ疵発生部ではオーステナイト相の結晶粒が扁平している。
(I) Duplex stainless steel containing Mn tends to cause scabs, but scabs can be suppressed by controlling the heating temperature and heating time.
(Ii) Appropriate heating conditions that do not cause blemishes are affected by the components. It depends not only on the amount of Mn but also on the amount of Cr and Si.
(Iii) In the case of hot rolling of shaped steel as described above, in the case of manufacturing a two-phase stainless steel, the steel material to be rolled is rolled in the first half including a step of rotating the steel material by 90 ° about the rolling direction a plurality of times. The metallographic structure is a mixed structure of ferrite phase and austenite phase when microscopically observed in a cross section perpendicular to the rolling direction, and shows a characteristic metallographic structure (crystal grain shape) when no baldness occurs. The aspect ratio of the austenite phase is large.
The detailed results of the above (ii) are shown below.
Using four kinds of materials with different components, the heating temperature was changed and the flaws after rolling were investigated. In order to simulate hot rolling of shaped steel using a material with a thickness of 120 mm and a width of 120 mm, rolling in the thickness direction and the width direction is repeated for each pass, and finally rolled to a thickness of 35 mm and a width of 35 mm. It was cooled and the presence or absence of surface defects was investigated. As for the surface defects, four surfaces of thickness and width were investigated, and when there was a dent defect of 5 mm or more that could be confirmed by appearance, it was judged as "rolling defect". FIG. 1 shows the results obtained in this experiment. The horizontal axis is an equation considering the components (Cr, Si, Mn), and the vertical axis is the heating temperature. By considering the components and heating temperature, the range in which rolling flaws do not occur becomes clear.
In addition, FIG. 2 shows the metallographic structure of the bald defect-generated portion and the non-wedge-defected portion after heat treatment. The metallographic structure is micro-observed in a cross section perpendicular to the rolling direction. In the structure, the white part shows the austenite phase and the blackish part shows the ferrite phase. In the (a) non-heavy flawed portion, the crystal grains of the austenite phase are close to equiaxed crystals, whereas in the (b) hege flawed portion, the crystal grains of the austenite phase are flattened.
本発明は、前記知見に基づいてなされたものであり、以下の構成を要旨とする。 The present invention has been made based on the above findings, and the gist of the present invention is as follows.
(1)質量%で、C:0.001%以上0.060%以下、Mn:2.00%超15.00%以下、Si:0.01%以上1.50%以下、P:0.050%以下、S:0.0050%以下、Cr:19.0%以上23.0%以下、Ni:1.00%以上4.00%以下、N:0.050%以上0.250%以下、Al:0.003%以上0.050%以下を含有し、残部がFeおよび不純物である2相ステンレス鋼形鋼であって、オーステナイト相の面積率が30%〜70%で、残部がフェライト相である金属組織を有し、2相ステンレス鋼形鋼の屈曲部または湾曲部の外側表面から深さ100μmに位置し、圧延長手方向に対して垂直な断面に位置するオーステナイト相結晶粒の平均アスペクト比が0.40〜1.00であり、引張試験の0.2%耐力が350MPa以上であることを特徴とする2相ステンレス鋼形鋼である。
(2)質量%で、Ti:0.010%以上0.050%以下、Nb:0.020%以上0.150%以下、Mo:0.05%以上2.00%以下、Cu:0.05%以上3.00%以下、W:0.05%以上2.00%以下、Mg:0.0002%以上0.0050%以下、Ca:0.0002%以上0.0050%以下、REM:0.005%以上0.300%以下、B:0.0003%以上0.0040%以下のいずれか1種または2種以上を含有することを特徴とする(1)に記載の2相ステンレス鋼形鋼である。
(3)鋼素材を1100℃以上かつ下記(1)式で規定されるT℃以下の温度範囲に1時間以上24時間以内の加熱をした後、圧延方向を軸として被圧延材を90°回転する工程を複数回含む熱間圧延を実施し、形鋼形状に成形することを特徴とする(1)または(2)に記載の2相ステンレス鋼形鋼の製造方法である。
T=800+18[Cr]+73[Si]−0.5[Mn]・・・(1)
ただし、[Cr]、[Si]および[Mn]は、それぞれCr、SiおよびMnの含有量(質量%)を示す。
(1) In terms of mass%, C: 0.001% or more and 0.060% or less, Mn: more than 2.00% and 15.00% or less, Si: 0.01% or more and 1.50% or less, P: 0. 050% or less, S: 0.0050% or less, Cr: 19.0% or more and 23.0% or less, Ni: 1.00% or more and 4.00% or less, N: 0.050% or more and 0.250% or less , Al: 0.003% or more 0.050% or less, the balance being a two-phase stainless steel section steel Ru Fe and impurities der, an area ratio of austenite phase of 30% to 70%, the remainder Austenite phase crystal grains having a metallographic structure that is a ferrite phase, located at a depth of 100 μm from the outer surface of the bent or curved portion of the two-phase stainless steel shaped steel, and located in a cross section perpendicular to the rolling longitudinal direction. It is a two-phase stainless steel shaped steel characterized in that the average aspect ratio of is 0.40 to 1.00 and the 0.2% withstand strength of the tensile test is 350 MPa or more.
(2) In terms of mass%, Ti: 0.010% or more and 0.050% or less, Nb: 0.020% or more and 0.150% or less, Mo: 0.05% or more and 2.00% or less, Cu: 0. 05% or more and 3.00% or less, W: 0.05% or more and 2.00% or less, Mg: 0.0002% or more and 0.0050% or less, Ca: 0.0002% or more and 0.0050% or less, REM: 2. The duplex stainless steel according to (1), which contains any one or more of 0.005% or more and 0.300% or less, and B: 0.0003% or more and 0.0040% or less. It is a shaped steel.
(3) After heating the steel material to a temperature range of 1100 ° C. or higher and T ° C. or lower specified by the following formula (1) for 1 hour or more and 24 hours or less, the material to be rolled is rotated 90 ° around the rolling direction. The method for producing a two-phase stainless steel shaped steel according to (1) or (2), which comprises performing hot rolling including a plurality of steps to form a shaped steel shape.
T = 800 + 18 [Cr] + 73 [Si] -0.5 [Mn] ... (1)
However, [Cr], [Si] and [Mn] indicate the contents (mass%) of Cr, Si and Mn, respectively.
本発明によれば、Mn量の高い2相ステンレス鋼形鋼を製造できる。 According to the present invention, a duplex stainless steel shaped steel having a high Mn amount can be produced.
以下、本発明の各要件について詳しく説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。
本発明の2相ステンレス鋼形鋼は、質量%で、C:0.001%以上0.060%以下、Mn:2.00%超15.00%以下、Si:0.01%以上1.50%以下、P:0.050%以下、S:0.0050%以下、Cr:19.0%以上23.0%以下、Ni:1.00%以上4.00%以下、N:0.050%以上0.250%以下、Al:0.003%以上0.050%以下を含有する2相ステンレス鋼形鋼であって、オーステナイト相の面積率が30%〜70%で、残部がフェライト相である金属組織を有し、2相ステンレス鋼形鋼の屈曲部または湾曲部の外側表面から深さ100μmに位置し、圧延長手方向に対して垂直な断面に位置するオーステナイト相結晶粒の平均アスペクト比が0.40〜1.00であり、引張試験の0.2%耐力が350MPa以上である2相ステンレス鋼形鋼である。
また、本発明の2相ステンレス鋼形鋼は、質量%で、Ti:0.010%以上0.050%以下、Nb:0.020%以上0.150%以下、Mo:0.05%以上2.00%以下、Cu:0.05%以上3.00%以下、W:0.05%以上2.00%以下、Mg:0.0002%以上0.0050%以下、Ca:0.0002%以上0.0050%以下、REM:0.005%以上0.300%以下、B:0.0003%以上0.0040%以下のいずれか1種または2種以上を含有してもよい。
Hereinafter, each requirement of the present invention will be described in detail. The "%" indication of the content of each element means "mass%".
The two-phase stainless steel shaped steel of the present invention has C: 0.001% or more and 0.060% or less, Mn: more than 2.00% and 15.00% or less, Si: 0.01% or more and 1. 50% or less, P: 0.050% or less, S: 0.0050% or less, Cr: 19.0% or more and 23.0% or less, Ni: 1.00% or more and 4.00% or less, N: 0. A two-phase stainless steel shaped steel containing 050% or more and 0.250% or less and Al: 0.003% or more and 0.050% or less, in which the area ratio of the austenite phase is 30% to 70% and the balance is ferrite. Austenite phase crystal grains having a metal structure that is a phase, located at a depth of 100 μm from the outer surface of the bent or curved portion of the two-phase stainless steel shaped steel, and located in a cross section perpendicular to the rolling longitudinal direction. It is a two-phase stainless steel shaped steel having an average aspect ratio of 0.40 to 1.00 and a 0.2% strength of a tensile test of 350 MPa or more.
Further, the duplex stainless steel shaped steel of the present invention has Ti: 0.010% or more and 0.050% or less, Nb: 0.020% or more and 0.150% or less, Mo: 0.05% or more in mass%. 2.00% or less, Cu: 0.05% or more and 3.00% or less, W: 0.05% or more and 2.00% or less, Mg: 0.0002% or more and 0.0050% or less, Ca: 0.0002 % Or more and 0.0050% or less, REM: 0.005% or more and 0.300% or less, B: 0.0003% or more and 0.0040% or less, whichever one or more may be contained.
(I)各成分の限定理由を以下に説明する。 (I) The reasons for limiting each component will be described below.
Mnは、2相ステンレス鋼を構成する重要な元素であり、Niと類似の挙動を取るためMnを添加することでNi含有量を低減できる。Mn含有量が2.00%以下では、コスト低減の効果が小さく、素材の強度が低下するため、Mn含有量を2.00%超とする。Mnは、オーステナイト相を安定化させる元素であり、含有量が多いとオーステナイト相率が増加して2相組織を形成することが困難となったり、強度が低下する。そのため、Mn含有量の上限を15.00%以下とする。安定製造性およびコストを両立するためには、Mn含有量は2.50%以上9.00%以下であることが好ましい。より好ましくは、Mn含有量は3.00%以上6.50%以下である。 Mn is an important element constituting duplex stainless steel, and since it behaves similarly to Ni, the Ni content can be reduced by adding Mn. When the Mn content is 2.00% or less, the effect of cost reduction is small and the strength of the material is lowered. Therefore, the Mn content is set to more than 2.00%. Mn is an element that stabilizes the austenite phase, and if the content is large, the austenite phase ratio increases, making it difficult to form a two-phase structure or reducing the strength. Therefore, the upper limit of the Mn content is set to 15.00% or less. In order to achieve both stable manufacturability and cost, the Mn content is preferably 2.50% or more and 9.00% or less. More preferably, the Mn content is 3.00% or more and 6.50% or less.
Cは、耐食性を劣化させるため少ないほど好ましく、C含有量の上限を0.060%以下とすることが好ましい。但し、過度な低減は精錬コストの上昇に繋がるため、C含有量の下限を0.001%以上とすることが好ましい。製造性の点から、C含有量のより好ましい範囲は0.010%以上0.045%以下である。 The smaller the amount of C, the more preferable it is because it deteriorates the corrosion resistance, and the upper limit of the C content is preferably 0.060% or less. However, since excessive reduction leads to an increase in refining cost, it is preferable to set the lower limit of the C content to 0.001% or more. From the viewpoint of manufacturability, the more preferable range of the C content is 0.010% or more and 0.045% or less.
Siは、耐酸化性を向上させる元素であり、本発明の2相ステンレス鋼形鋼製造時の加熱条件に影響を及ぼす。耐酸化性向上効果を得るためには、Si含有量の下限を0.01%以上とすることが好ましい。一方、過度な添加は、鋼の靭性や加工性を低下させるため、Si含有量の上限を1.50%以下とすることが好ましい。製造性の点から、Si含有量は1.00%以下であることがより好ましい。 Si is an element that improves oxidation resistance and affects the heating conditions during the production of duplex stainless steel shaped steel of the present invention. In order to obtain the effect of improving the oxidation resistance, the lower limit of the Si content is preferably 0.01% or more. On the other hand, excessive addition reduces the toughness and workability of the steel, so the upper limit of the Si content is preferably 1.50% or less. From the viewpoint of manufacturability, the Si content is more preferably 1.00% or less.
Pは、製造性や溶接性を阻害する元素であり、その含有量は少ないほど良い。そのため、P含有量の上限を0.050%以下とすることが好ましい。但し、過度な低減は精錬コストの上昇に繋がるため、P含有量の下限を0.003%以上とすることが好ましい。製造性と溶接性の点から、P含有量のより好ましい範囲は0.005%以上0.040%以下、さらに好ましい範囲は0.010%以上0.030%以下である。 P is an element that inhibits manufacturability and weldability, and the smaller the content, the better. Therefore, the upper limit of the P content is preferably 0.050% or less. However, since excessive reduction leads to an increase in refining cost, it is preferable to set the lower limit of the P content to 0.003% or more. From the viewpoint of manufacturability and weldability, the more preferable range of the P content is 0.005% or more and 0.040% or less, and the more preferable range is 0.010% or more and 0.030% or less.
Sは、鋼中に含まれる不可避的不純物元素であり、熱間加工性を低下させる。したがって、S含有量は低いほど好ましく、S含有量を0.0050%以下とすることが好ましい。熱間加工性の点から、S含有量は低いほど好ましいが、過度な低減は原料や精錬コストの上昇に繋がるため、S含有量の下限を0.0001%以上とすることが好ましい。製造性の点から、S含有量のより好ましい範囲は0.0001%以上0.0020%以下、さらに好ましい範囲は0.0002%以上0.0010%以下である。 S is an unavoidable impurity element contained in steel, which lowers hot workability. Therefore, the lower the S content, the more preferable, and the S content is preferably 0.0050% or less. From the viewpoint of hot workability, the lower the S content is, the more preferable it is. However, since an excessive reduction leads to an increase in raw materials and refining costs, the lower limit of the S content is preferably 0.0001% or more. From the viewpoint of manufacturability, the more preferable range of the S content is 0.0001% or more and 0.0020% or less, and the more preferable range is 0.0002% or more and 0.0010% or less.
Crは、耐酸化性、耐食性を向上する元素である。2相ステンレス鋼として十分な耐食性を確保するために、Cr含有量の下限を19.0%以上とすることが好ましい。しかし、過度なCrの含有は高温雰囲気に曝された際、脆化相であるσ相の生成を助長することに加え、合金コストの上昇を招くため、Cr含有量の上限を23.0%以下とすることが好ましい。製造性の点から、Cr含有量のより好ましい範囲は19.5%以上22.0%以下である。 Cr is an element that improves oxidation resistance and corrosion resistance. In order to ensure sufficient corrosion resistance as duplex stainless steel, the lower limit of Cr content is preferably 19.0% or more. However, excessive Cr content promotes the formation of the embrittled phase σ phase when exposed to a high temperature atmosphere, and also causes an increase in alloy cost. Therefore, the upper limit of Cr content is 23.0%. The following is preferable. From the viewpoint of manufacturability, the more preferable range of Cr content is 19.5% or more and 22.0% or less.
Niは、耐食性を向上させ、2相ステンレス鋼ではオーステナイト相を安定化させる。耐食性向上のために、Ni含有量の下限を1.00%以上とすることが好ましい。Niは合金コストが高価であるため、低い方が好ましく、Ni含有量の上限を4.00%以下とすることが好ましい。製造性の点から、Ni含有量のより好ましい範囲は1.50%以上3.00%以下である。 Ni improves corrosion resistance and stabilizes the austenite phase in duplex stainless steel. In order to improve the corrosion resistance, the lower limit of the Ni content is preferably 1.00% or more. Since the alloy cost of Ni is high, it is preferably low, and the upper limit of the Ni content is preferably 4.00% or less. From the viewpoint of manufacturability, the more preferable range of Ni content is 1.50% or more and 3.00% or less.
Nは、耐食性を向上させる元素であり、またNiと同様にオーステナイトを安定化させるため、Niの代替として用いることが出来る。N含有量が少ない場合には十分な耐食性が得られないため、N含有量の下限を0.050%以上とすることが好ましい。N含有量が多い方が耐食性には効果的であるが、溶製時に窒素ガス化して気泡を生成する場合があるため、N含有量の上限を0.250%以下とすることが好ましい。安定製造性の観点から、N含有量のより好ましい範囲は0.100%以上0.200%以下である。 N is an element that improves corrosion resistance and, like Ni, stabilizes austenite, so it can be used as a substitute for Ni. When the N content is low, sufficient corrosion resistance cannot be obtained. Therefore, the lower limit of the N content is preferably 0.050% or more. A larger N content is more effective for corrosion resistance, but it is preferable that the upper limit of the N content is 0.250% or less because nitrogen gasification may occur during melting to generate bubbles. From the viewpoint of stable manufacturability, the more preferable range of the N content is 0.100% or more and 0.200% or less.
Alは、脱酸元素として用いられる。脱酸元素として0.003%以上含有すれば効果があるため、これをAl含有量の下限とすることが好ましい。一方、過度の含有は硬質化を招くため、Al含有量の上限を0.050%以下とすることが好ましい。製造性の観点から、Al含有量のより好ましい範囲は0.005%以上0.030%以下である。 Al is used as a deoxidizing element. Since it is effective to contain 0.003% or more of the deoxidizing element, it is preferable to set this as the lower limit of the Al content. On the other hand, since excessive content causes hardening, the upper limit of Al content is preferably 0.050% or less. From the viewpoint of manufacturability, the more preferable range of Al content is 0.005% or more and 0.030% or less.
上記の基本組成に加えて、下記の元素の1種または2種以上を選択的に添加しても良い。 In addition to the above basic composition, one or more of the following elements may be selectively added.
Tiは、C、Nと結合し、溶接部耐食性や高強度化に寄与する。Tiは、含有量が0.010%以上で効果が発揮されるため、これをTi含有量の下限とすることが好ましい。一方、過度の含有は耐食性の低下や合金コスト増を招くため、Ti含有量の上限を0.050%以下とすることが好ましい。 Ti combines with C and N and contributes to corrosion resistance and high strength of the welded portion. Since the effect of Ti is exhibited when the content is 0.010% or more, it is preferable to set this as the lower limit of the Ti content. On the other hand, since excessive content causes a decrease in corrosion resistance and an increase in alloy cost, it is preferable to set the upper limit of the Ti content to 0.050% or less.
Nbは、C、Nと結合し、溶接部耐食性や高強度化に寄与する。Nbは、含有量が0.020%以上で効果が発揮されるため、これをNb含有量の下限とすることが好ましい。一方、過度の含有は耐食性の低下や合金コスト増を招くため、Nb含有量の上限を0.150%以下とすることが好ましい。 Nb combines with C and N and contributes to corrosion resistance and high strength of the welded portion. Since the effect of Nb is exhibited when the content is 0.020% or more, it is preferable to set this as the lower limit of the Nb content. On the other hand, excessive content causes a decrease in corrosion resistance and an increase in alloy cost. Therefore, the upper limit of the Nb content is preferably 0.150% or less.
Mo、CuおよびWは、耐食性向上元素として添加しても良い。Mo、CuおよびWはそれぞれ、含有量が0.05%以上で耐食性向上効果が発揮されるため、これをMo含有量、Cu含有量およびW含有量の下限とすることが好ましい。一方、過度の含有はコスト増加ならびに熱間加工性の低下を招く。そのため、Mo含有量の上限を2.00%以下とすることが好ましく、Cu含有量の上限を3.00%以下とすることが好ましく、W含有量の上限を2.00%以下とすることが好ましい。 Mo, Cu and W may be added as corrosion resistance improving elements. Since the corrosion resistance improving effect is exhibited when the contents of Mo, Cu and W are 0.05% or more, it is preferable to set these as the lower limits of the Mo content, the Cu content and the W content. On the other hand, excessive content causes an increase in cost and a decrease in hot workability. Therefore, the upper limit of the Mo content is preferably 2.00% or less, the upper limit of the Cu content is preferably 3.00% or less, and the upper limit of the W content is 2.00% or less. Is preferable.
Mg、Ca、REMおよびBは、熱間加工性や2成形性を向上させる元素であり、必要に応じて含有する。但し、過度の含有は製造性を阻害することに繋がる。そのため、Mg含有量の上限を0.0050%以下とすることが好ましく、Ca含有量の上限を0.0050%以下とすることが好ましく、REM含有量の上限を0.300%以下とすることが好ましく、B含有量の上限を0.0040%以下とすることが好ましい。上記効果を発揮するため、Mg含有量の下限を0.0002%以上とすることが好ましく、Ca含有量の下限を0.0002%以上とすることが好ましく、REM含有量の下限を0.005%以上とすることが好ましく、B含有量の下限を0.0003%以上とすることが好ましい。 Mg, Ca, REM and B are elements that improve hot workability and diformability, and are contained as necessary. However, excessive content leads to inhibition of manufacturability. Therefore, the upper limit of the Mg content is preferably 0.0050% or less, the upper limit of the Ca content is preferably 0.0050% or less, and the upper limit of the REM content is 0.300% or less. The upper limit of the B content is preferably 0.0040% or less. In order to exert the above effects, the lower limit of the Mg content is preferably 0.0002% or more, the lower limit of the Ca content is preferably 0.0002% or more, and the lower limit of the REM content is 0.005. % Or more, and the lower limit of the B content is preferably 0.0003% or more.
なお、REM(希土類元素)は、スカンジウム(Sc)、イットリウム(Y)の2元素と、ランタン(La)からルテチウム(Lu)までの15元素(ランタノイド)の総称を指す。これらの元素を単独で含有させても良く、混合物であっても良い。 REM (rare earth element) is a general term for two elements, scandium (Sc) and yttrium (Y), and 15 elements (lanthanoids) from lanthanum (La) to lutetium (Lu). These elements may be contained alone or may be a mixture.
鋼の化学成分の残部は、Feおよび不純物である。
ここで、不純物とは、鋼を工業的に製造する際に、鉱石やスクラップ等のような原料を始めとして、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。
The rest of the chemical composition of steel is Fe and impurities.
Here, the impurity is a component mixed by various factors in the manufacturing process, including raw materials such as ore and scrap, when steel is industrially manufactured, and does not adversely affect the present invention. Means what is acceptable in the range.
次に、金属組織について述べる。
本発明の2相ステンレス鋼形鋼の金属組織は、オーステナイト相の面積率が常温で30%〜70%で、残部が実質的にフェライト相である金属組織とする。オーステナイト相率が30%未満であると、後述する0.2%耐力が低くなる。一方、オーステナイト相率が70%超であると、成形時の割れが生じやすい。オーステナイト相の面積率は、40%〜60%であることがより好ましい。
Next, the metal structure will be described.
The metal structure of the two-phase stainless steel shaped steel of the present invention is a metal structure in which the area ratio of the austenite phase is 30% to 70% at room temperature and the balance is substantially a ferrite phase. If the austenite phase ratio is less than 30%, the 0.2% proof stress described later becomes low. On the other hand, when the austenite phase ratio exceeds 70%, cracks are likely to occur during molding. The area ratio of the austenite phase is more preferably 40% to 60%.
次に、オーステナイトの相率の測定法について述べる。
オーステナイト相は、フェライト相と結晶構造が異なるため、結晶構造を判別できる解析機器、例えば、後方散乱電子回折(Electron Back Scatter Diffraction、EBSD)等で測定することが好ましい。また、フェライトスコープのように磁力からフェライト相率を測定する機器を用いても良い。
オーステナイト相結晶粒の平均アスペクト比は0.40〜1.00であることとする。アスペクト比が0.40未満である場合は、圧延疵が認められるためこれらを下限とした。アスペクト比の測定位置は、2相ステンレス鋼形鋼の圧延長手方向に対して垂直な断面の屈曲部(屈曲部のない形状の形鋼の場合は曲率の最も小さい湾曲部)の外側表面から深さ100μm付近の位置とする。当該断面を研磨後エッチングし、結晶粒界を出現させる。この時、着色エッチングを行うと、オーステナイト相が判別しやすい。アスペクト比は、前記位置におけるオーステナイト相の結晶粒30個を任意に選び、各結晶粒について最大長さXと、Xの測定方向に直交する方向の最大長さYを測定し、下記(2)式より算出する。
アスペクト比 = Y/X・・・(2)
結晶粒30個に対し(2)式で算出したアスペクト比の算術平均値をもって平均アスペクト比とする。
ヘゲ疵の発生状況と平均アスペクト比が相関する理由は明らかではないが、圧延前加熱時に生成する表層スケールと圧延中の再結晶挙動が相関しているものと推察される。ヘゲ疵部に巻き込まれている酸化スケールは圧延前加熱で生成したものであり、その形態は加熱温度及び成分に依存する。一方、変形時にヘゲ疵として残存するか否かは圧延変形時のひずみの入り方およびパス間再結晶挙動によると考えられる。
Next, a method for measuring the phase ratio of austenite will be described.
Since the austenite phase has a different crystal structure from the ferrite phase, it is preferable to measure it with an analytical instrument capable of discriminating the crystal structure, for example, Electron Backscatter Diffraction (EBSD) or the like. Further, an apparatus such as a ferrite scope that measures the ferrite phase ratio from the magnetic force may be used.
The average aspect ratio of the austenite phase crystal grains is 0.40 to 1.00. When the aspect ratio was less than 0.40, rolling defects were observed, and these were set as the lower limit. The measurement position of the aspect ratio is from the outer surface of the bent portion of the cross section perpendicular to the rolling longitudinal direction of the duplex stainless steel shaped steel (in the case of the shaped steel having no bent portion, the curved portion having the smallest curvature). The position is set to a depth of about 100 μm. The cross section is polished and then etched to allow grain boundaries to appear. At this time, if coloring etching is performed, the austenite phase can be easily discriminated. For the aspect ratio, 30 crystal grains of the austenite phase at the above positions were arbitrarily selected, and the maximum length X and the maximum length Y in the direction orthogonal to the measurement direction of X were measured for each crystal grain, and the following (2) Calculate from the formula.
Aspect ratio = Y / X ... (2)
The arithmetic mean value of the aspect ratio calculated by Eq. (2) for 30 crystal grains is used as the average aspect ratio.
The reason why the occurrence of scabs and the average aspect ratio are not clear is clear, but it is presumed that the surface scale generated during pre-rolling heating and the recrystallization behavior during rolling are correlated. The oxide scale involved in the baffle is generated by pre-rolling heating, and its morphology depends on the heating temperature and components. On the other hand, whether or not it remains as a burr defect during deformation is considered to depend on how strain is applied during rolling deformation and the recrystallization behavior between passes.
引張試験の0.2%耐力は350MPa以上とする。2相ステンレス鋼形鋼を構造材として用いる場合、0.2%耐力を用いて設計を行う場合が多い。これが高いほど、構造材強度の確保もしくは鋼材の薄手化が可能となるため、350MPaを下限とした。0.2%高いほど設計に有利であるため、好ましくは400MPa以上である。一方、耐力が高すぎる場合、変形能が低下して衝撃特性が劣化するため、耐力の上限を800MPa以下とする。 The 0.2% proof stress of the tensile test shall be 350 MPa or more. When duplex stainless steel shaped steel is used as a structural material, it is often designed using 0.2% proof stress. The higher this is, the stronger the structural material can be secured or the thinner the steel material can be, so 350 MPa is set as the lower limit. Since 0.2% higher is more advantageous for design, it is preferably 400 MPa or more. On the other hand, if the proof stress is too high, the deformability is lowered and the impact characteristics are deteriorated. Therefore, the upper limit of the proof stress is set to 800 MPa or less.
次に、製造方法について述べる。
上記化学成分を有する形鋼を製造するに際し、熱間圧延前の加熱温度を1100℃以上とする。1100℃未満の場合、圧延中の温度低下によって材料が硬質化してロールに噛み込まなくなる場合がある。また、変形抵抗の増大によりヘゲ疵が生じる。
加熱温度の上限は、下記(1)式で決められた温度とする。
T=800+18[Cr]+73[Si]−0.5[Mn]・・・(1)
ただし、[Cr]、[Si]および[Mn]は、それぞれCr、SiおよびMnの含有量(質量%)を示す。
Next, the manufacturing method will be described.
When producing a shaped steel having the above chemical composition, the heating temperature before hot rolling is set to 1100 ° C. or higher. If the temperature is lower than 1100 ° C., the material may become hard and not bite into the roll due to the temperature drop during rolling. In addition, the increase in deformation resistance causes baldness.
The upper limit of the heating temperature is the temperature determined by the following formula (1).
T = 800 + 18 [Cr] + 73 [Si] -0.5 [Mn] ... (1)
However, [Cr], [Si] and [Mn] indicate the contents (mass%) of Cr, Si and Mn, respectively.
本条件は、本発明者らの検討によって明らかにした条件であり、Mnが2%以上含まれる2相ステンレス鋼において適用可能な条件である。(1)式の加熱温度Tを超えて加熱すると、圧延時にヘゲ疵が発生するためこれを上限とする。(1)式により加熱温度Tの上限が決められる理由については検討中であるが、現在のところは次のように考えられる。形鋼圧延におけるヘゲ疵は、圧延前の加熱時に形成された表層スケールが圧延時に巻き込まれたものと考えられる。CrおよびSiはスケールを安定化し、スケール成長を抑制するため、これら元素の係数がプラスであり、含有量が多いほど高温の加熱が可能となる。一方、Mnは一般的には耐酸化性を向上させる元素であるが、本発明においてはMn含有量が少ない方が高温での加熱が可能、すなわち(1)式の係数がマイナスである。これまでにMn含有量が多い2相ステンレス鋼の形鋼が製造されていない理由としては、ヘゲ疵に及ぼすMn含有量の影響が明らかにされておらず、加熱条件が適正でなかったためと推察される。 This condition is a condition clarified by the studies of the present inventors, and is a condition applicable to duplex stainless steel containing 2% or more of Mn. If the heating temperature exceeds the heating temperature T of the formula (1), a dent is generated during rolling, so this is set as the upper limit. The reason why the upper limit of the heating temperature T is determined by the equation (1) is under consideration, but at present, it is considered as follows. It is probable that the hesitation defects in the section steel rolling are caused by the surface scale formed during heating before rolling being involved during rolling. Since Cr and Si stabilize the scale and suppress scale growth, the coefficients of these elements are positive, and the higher the content, the higher the temperature of heating. On the other hand, Mn is an element that generally improves oxidation resistance, but in the present invention, the smaller the Mn content, the higher the temperature, that is, the coefficient of Eq. (1) is negative. The reason why duplex stainless steel shaped steel with a high Mn content has not been produced so far is that the effect of the Mn content on baldness has not been clarified and the heating conditions were not appropriate. Inferred.
また、加熱時間が短すぎると素材の温度が均一にならないため、1時間以上の保持を必要とする。一方、加熱時間が長すぎるとスケール厚みが増し、圧延時にスケールが残存しやすくなるため、加熱時間の上限を24時間とする。製造性およびスケール均質化の観点から、加熱時間は3時間〜8時間であることが好ましい。 Further, if the heating time is too short, the temperature of the material will not be uniform, so it is necessary to hold the material for 1 hour or more. On the other hand, if the heating time is too long, the scale thickness increases and the scale tends to remain during rolling. Therefore, the upper limit of the heating time is set to 24 hours. From the viewpoint of manufacturability and scale homogenization, the heating time is preferably 3 to 8 hours.
形鋼の製造は、圧延方向を軸として被圧延材を90°回転する工程を複数回含む圧延を、上記の加熱後に複数回の熱間圧延を実施する。圧延ロールの形状は特に規定するものではなく、所望の形状を得るために適したもので良い。本発明では、圧延方向を軸として被圧延材を90°回転する工程を含む形鋼圧延により鋼を所定の形状とする。これは板圧延のように素材を、圧延方向を軸に回転することなく、圧延加工する工程では見られない疵を対象としているからである。圧延された材料は、軟質化等を目的として熱処理、さらには酸洗処理を施しても良い。熱処理をする場合には、熱処理温度によってγ相率が変化するため、到達温度920℃〜1080℃の範囲で熱処理をする。また、形状矯正や目的の表面性状を得るための表面の処理(研磨等)を行っても良い。 The shape steel is manufactured by rolling the material to be rolled by 90 ° around the rolling direction a plurality of times, and then performing hot rolling a plurality of times after the above heating. The shape of the rolling roll is not particularly specified, and may be suitable for obtaining a desired shape. In the present invention, the steel is formed into a predetermined shape by rolling a shaped steel including a step of rotating the material to be rolled by 90 ° about the rolling direction. This is because, unlike plate rolling, the material is not rotated around the rolling direction, and is intended for defects that are not seen in the rolling process. The rolled material may be heat-treated or pickled for the purpose of softening or the like. In the case of heat treatment, since the γ phase ratio changes depending on the heat treatment temperature, the heat treatment is performed in the range of the ultimate temperature of 920 ° C to 1080 ° C. Further, shape correction and surface treatment (polishing, etc.) for obtaining the desired surface texture may be performed.
形鋼圧延の供する素材の形状は、特に規定しない。ビレット、ブルーム、スラブ等いずれの形状でも本発明の効果を変えるものでは無い。
また、本発明の2相ステンレス鋼形鋼は、H形鋼、I形鋼、山形鋼(アングル材)、平鋼、溝形鋼(チャンネル材)、Z形鋼、丸型鋼等、圧延によって形状を造り込む形鋼に適用できる。
The shape of the material used for section steel rolling is not particularly specified. Any shape such as billet, bloom, slab, etc. does not change the effect of the present invention.
The two-phase stainless steel shaped steel of the present invention is shaped by rolling, such as H-shaped steel, I-shaped steel, angle steel (angle material), flat steel, channel steel (channel material), Z-shaped steel, and round steel. It can be applied to shaped steel to be built.
以下に、本発明の実施例について述べる。 Examples of the present invention will be described below.
表1に示す成分を有する2相ステンレス鋼を溶製し、種々の条件で加熱した後、熱間圧延を実施した。この際、形鋼における圧延を模擬するために初期の断面サイズ100mm×100mmの鋼材を、圧延2パス毎に90°回転して板厚方向と板厚方向を入れ替えて20mm×20mmまで圧延した(減面率96%)。一部については、焼鈍および酸洗処理を行った。
その後、フェライトスコープを用いてフェライト相率F(%)を測定し、オーステナイト相率を100−F(%)として算出した。
Duplex stainless steel having the components shown in Table 1 was melted, heated under various conditions, and then hot-rolled. At this time, in order to simulate rolling in shaped steel, a steel material having an initial cross-sectional size of 100 mm × 100 mm was rotated by 90 ° every two rolling passes, and the plate thickness direction and the plate thickness direction were exchanged and rolled to 20 mm × 20 mm ( Surface reduction rate 96%). Some were annealed and pickled.
Then, the ferrite phase ratio F (%) was measured using a ferrite scope, and the austenite phase ratio was calculated as 100 −F (%).
得られた鋼の圧延方向と平行に引張試験片を採取し、JIS Z 2241に準拠した方法で引張試験に供し、0.2%耐力を測定した。0.2%耐力が350MPa以上である製品に対して製品の表面にヘゲ疵が形成されているか否かを調査した。ヘゲ疵は、表面観察より被さり状の疵が認められるか否かの外観評価と、圧延方向に垂直に切断した任意の断面の光学顕微鏡観察とを、総表面長さが200mmになるように実施した。図2に示すような被さったヘゲ疵が観察される箇所の数を数えた。
なお、本材料を用いて、板厚方向のみ減少させる圧延により100mm厚から4.0mm厚まで圧延した(減面率96%)が、いずれも表面疵は認められなかった。このことからも板圧延では発生せず、形鋼圧延において発生する疵を対象としていることが分かる。
本発明例では、いずれもヘゲ疵が全く認められないのに対し、比較例では、ヘゲ疵が発生もしくは0.2%耐力が低く、基準に未達であった。
Tensile test pieces were collected in parallel with the rolling direction of the obtained steel and subjected to a tensile test by a method conforming to JIS Z 2241, and 0.2% proof stress was measured. It was investigated whether or not a dent was formed on the surface of the product having a 0.2% proof stress of 350 MPa or more. For hege defects, the appearance evaluation of whether or not a covering-like defect is observed from the surface observation and the optical microscope observation of an arbitrary cross section cut perpendicular to the rolling direction are performed so that the total surface length is 200 mm. Carried out. The number of places where covered scabs as shown in FIG. 2 was observed was counted.
Using this material, rolling was performed to reduce the thickness only in the plate thickness direction from 100 mm thickness to 4.0 mm thickness (surface reduction rate 96%), but no surface defects were observed in any of them. From this, it can be seen that defects that do not occur in plate rolling but occur in shaped steel rolling are targeted.
In the examples of the present invention, no hesitation defects were observed at all, whereas in the comparative examples, hesitation defects occurred or the proof stress was low by 0.2%, which did not reach the standard.
Claims (3)
オーステナイト相の面積率が30%〜70%で、残部がフェライト相である金属組織を有し、2相ステンレス鋼形鋼の屈曲部または湾曲部の外側表面から深さ100μmに位置し、圧延長手方向に対して垂直な断面に位置するオーステナイト相結晶粒の平均アスペクト比が0.40〜1.00であり、引張試験の0.2%耐力が350MPa以上であることを特徴とする2相ステンレス鋼形鋼。 By mass%, C: 0.001% or more and 0.060% or less, Mn: more than 2.00% and 15.00% or less, Si: 0.01% or more and 1.50% or less, P: 0.050% or less , S: 0.0050% or less, Cr: 19.0% or more and 23.0% or less, Ni: 1.00% or more and 4.00% or less, N: 0.050% or more and 0.250% or less, Al: containing 0.050% 0.003% or more or less, the balance being a two-phase stainless steel section steel Ru Fe and impurities der,
The austenite phase has an area ratio of 30% to 70%, has a metal structure in which the balance is a ferrite phase, and is located at a depth of 100 μm from the outer surface of the bent or curved portion of the two-phase stainless steel shaped steel, and has a rolling length. Two phases characterized in that the average aspect ratio of austenite phase crystal grains located in a cross section perpendicular to the hand direction is 0.40 to 1.00, and the 0.2% withstand strength of the tensile test is 350 MPa or more. Stainless steel shaped steel.
T=800+18[Cr]+73[Si]−0.5[Mn]・・・(1)
ただし、[Cr]、[Si]および[Mn]は、それぞれCr、SiおよびMnの含有量(質量%)を示す。 After heating the steel material to a temperature range of 1100 ° C or higher and T ° C or lower specified by the following formula (1) for 1 hour or more and 24 hours or less, the process of rotating the material to be rolled by 90 ° around the rolling direction is performed. The method for producing a two-phase stainless steel shaped steel according to claim 1 or 2, wherein hot rolling including a plurality of times is performed and the shape is formed into a shaped steel shape.
T = 800 + 18 [Cr] + 73 [Si] -0.5 [Mn] ... (1)
However, [Cr], [Si] and [Mn] indicate the contents (mass%) of Cr, Si and Mn, respectively.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017057840A JP6809325B2 (en) | 2017-03-23 | 2017-03-23 | Duplex stainless steel shaped steel and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017057840A JP6809325B2 (en) | 2017-03-23 | 2017-03-23 | Duplex stainless steel shaped steel and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018159119A JP2018159119A (en) | 2018-10-11 |
JP6809325B2 true JP6809325B2 (en) | 2021-01-06 |
Family
ID=63795412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017057840A Active JP6809325B2 (en) | 2017-03-23 | 2017-03-23 | Duplex stainless steel shaped steel and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6809325B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230097339A1 (en) * | 2020-02-27 | 2023-03-30 | Jfe Steel Corporation | Stainless steel pipe and method for manufacturing same |
JP7542389B2 (en) | 2020-10-07 | 2024-08-30 | 日鉄ステンレス株式会社 | Ferrite-austenitic duplex stainless steel sheet, bent product, bending method for ferritic-austenitic duplex stainless steel sheet, and bending die |
CN115852268B (en) * | 2022-12-28 | 2024-06-18 | 广东省科学院新材料研究所 | High-strength corrosion-resistant and crack-resistant steel and its preparation method and application |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004098102A (en) * | 2002-09-06 | 2004-04-02 | Sumitomo Metal Ind Ltd | Flat steel manufacturing method and equipment |
JP4760031B2 (en) * | 2004-01-29 | 2011-08-31 | Jfeスチール株式会社 | Austenitic ferritic stainless steel with excellent formability |
JP4900003B2 (en) * | 2007-04-09 | 2012-03-21 | 住友金属工業株式会社 | Hot rolled T-section steel |
JP5388589B2 (en) * | 2008-01-22 | 2014-01-15 | 新日鐵住金ステンレス株式会社 | Ferritic / austenitic stainless steel sheet for structural members with excellent workability and shock absorption characteristics and method for producing the same |
-
2017
- 2017-03-23 JP JP2017057840A patent/JP6809325B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018159119A (en) | 2018-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3124635B1 (en) | Rolled ferritic stainless steel sheet, method for producing the same, and flange part | |
JP6542249B2 (en) | Ferritic stainless steel sheet, steel pipe and method for manufacturing the same | |
KR102504491B1 (en) | Steel and enamel products | |
JP5888476B2 (en) | Material for stainless cold-rolled steel sheet and manufacturing method thereof | |
CN107709592B (en) | Ferrite series stainless steel plate and its manufacturing method | |
JP6115691B1 (en) | Steel plate and enamel products | |
KR20140105849A (en) | Ferrite-austenite 2-phase stainless steel plate having low in-plane anisotropy and method for producing same | |
JP5904310B1 (en) | Ferritic stainless steel and manufacturing method thereof | |
JP7317100B2 (en) | hot rolled steel | |
WO2014087648A1 (en) | Ferritic stainless steel sheet | |
JP2019039037A (en) | Steel sheet and method for manufacturing the same | |
KR101850231B1 (en) | Ferritic stainless steel and method for producing same | |
JP6811112B2 (en) | Ferrite Duplex Stainless Steel Sheet and Its Manufacturing Method | |
JP6140856B1 (en) | Ferritic / austenitic stainless steel sheet with excellent formability and method for producing the same | |
JP6809325B2 (en) | Duplex stainless steel shaped steel and its manufacturing method | |
WO2016092713A1 (en) | Stainless steel and production method therefor | |
JP7013302B2 (en) | Al-containing ferritic stainless steel and processed products with excellent secondary workability and high-temperature oxidation resistance | |
JP6411881B2 (en) | Ferritic stainless steel and manufacturing method thereof | |
JP5453747B2 (en) | Stainless cold-rolled steel sheet excellent in punching processability and manufacturing method thereof | |
JP2022129976A (en) | Ferritic stainless steel and method for producing ferritic stainless steel | |
JP7304715B2 (en) | Ferritic stainless steel plate | |
JP7013301B2 (en) | Al-containing ferritic stainless steel with excellent secondary workability and high-temperature oxidation resistance | |
KR101940427B1 (en) | Ferritic stainless steel sheet | |
JP5921352B2 (en) | Ferritic stainless steel sheet with excellent ridging resistance and method for producing the same | |
JP3455047B2 (en) | Ferritic stainless steel sheet excellent in workability and roping properties and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20181019 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191107 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200825 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200826 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201026 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201110 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201123 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6809325 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |