[go: up one dir, main page]

JP6808418B2 - Semi-conductive polyamide resin composition, molded article using it, and seamless belt for electrophotographic - Google Patents

Semi-conductive polyamide resin composition, molded article using it, and seamless belt for electrophotographic Download PDF

Info

Publication number
JP6808418B2
JP6808418B2 JP2016187095A JP2016187095A JP6808418B2 JP 6808418 B2 JP6808418 B2 JP 6808418B2 JP 2016187095 A JP2016187095 A JP 2016187095A JP 2016187095 A JP2016187095 A JP 2016187095A JP 6808418 B2 JP6808418 B2 JP 6808418B2
Authority
JP
Japan
Prior art keywords
polyamide resin
electrophotographic
semi
seamless belt
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016187095A
Other languages
Japanese (ja)
Other versions
JP2017066388A (en
Inventor
重利 武智
重利 武智
達郎 梅木
達郎 梅木
中村 直樹
直樹 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okura Kogyo KK
Original Assignee
Okura Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okura Kogyo KK filed Critical Okura Kogyo KK
Publication of JP2017066388A publication Critical patent/JP2017066388A/en
Application granted granted Critical
Publication of JP6808418B2 publication Critical patent/JP6808418B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Polyamides (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)
  • Electrophotography Configuration And Component (AREA)

Description

電子写真方式を用いた画像成形装置に用いる電子写真用シームレスベルト等の分野で好適に使用することができるポリアミド樹脂と電子伝導性材料とを含む半導電性ポリアミド樹脂組成物、それを用いた成形体及び電子写真用シームレスベルトに関する。 A semi-conductive polyamide resin composition containing a polyamide resin and an electron conductive material that can be suitably used in the field of seamless belts for electrophotographic used in an image forming apparatus using an electrophotographic method, and molding using the same. Regarding seamless belts for body and electrophotographic.

複写機やレーザービームプリンターなどの電子写真方式を用いた画像形成装置に用いられる転写材搬送部材、中間転写体、電子写真感光体および定着部材などには、ドラム形状やローラー形状のもの以外に、ベルト形状の電子写真用シームレスベルトが用いられることがある。 In addition to drum-shaped and roller-shaped members, transfer material transport members, intermediate transfer members, electrophotographic photosensitive members, fixing members, etc. used in image forming devices using electrophotographic methods such as copiers and laser beam printers are also included. Belt-shaped xerographic seamless belts may be used.

電子写真用シームレスベルトとしては、熱可塑性樹脂を主成分とするシームレスベルトが一般的である。熱可塑性樹脂を主成分とするシームレスベルトは、安価に製造でき、汎用の成形機が使用できるという利点がある。 As the seamless belt for electrophotographic, a seamless belt containing a thermoplastic resin as a main component is generally used. A seamless belt containing a thermoplastic resin as a main component has an advantage that it can be manufactured at low cost and a general-purpose molding machine can be used.

熱可塑性樹脂の中でも、ポリアミド樹脂は、破断伸びが大きく、弾性率が高いという優れた特性を有しているため、ポリアミド樹脂を電子写真用シームレスベルトに用いるという提案は既になされている(特許文献1、特許文献2及び特許文献3参照)。 Among the thermoplastic resins, the polyamide resin has excellent properties such as high breaking elongation and high elastic modulus, and therefore a proposal to use the polyamide resin for a seamless belt for electrophotographic photography has already been made (Patent Documents). 1. See Patent Document 2 and Patent Document 3).

一方、熱可塑性樹脂に半導電性を付与するには、カーボンブラック(CB)や金属酸化物等の電子伝導性材料を熱可塑性樹脂中に配合することが一般的である。これらの電子伝導性材料は、使用環境の変化に対して電気抵抗の変化が小さいという特徴を有するが、電子伝導性材料の接触によって導電性を発現しているため樹脂中への分散が重要である。このため、これらの電子伝導性材料は、僅かな濃度変化や分散状態により電気抵抗が大きくバラつき、ある添加量で急激に導電率が低下する(パーコレーション現象)為、体積抵抗率を10〜1013Ω・cmの半導電性領域に制御することが困難である。 On the other hand, in order to impart semiconductivity to the thermoplastic resin, it is common to mix an electron conductive material such as carbon black (CB) or a metal oxide in the thermoplastic resin. These electron-conducting materials are characterized by a small change in electrical resistance with respect to changes in the usage environment, but since they exhibit conductivity by contact with the electron-conducting materials, dispersion in the resin is important. is there. For this reason, these electronically conductive materials have a large variation in electrical resistance due to a slight change in concentration or a dispersed state, and the conductivity drops sharply with a certain amount of addition (percoration phenomenon). Therefore, the volume resistivity is 10 6 to 10 It is difficult to control to a semi-conductive region of 13 Ω · cm.

近年、電子伝導性材料として、CBに替えてカーボンナノチューブ(CNT)等の微細炭素繊維を用いることが提案されている(特許文献4及び特許文献5参照)。この微細炭素繊維は、アスペクト比(長さ/外径)が大きいことから、CBなどと比べ、比較的少量の配合で樹脂に導電性を付与することができ、かつその添加量と導電率との関係性が直線的に変化することから、導電率の制御が容易になるという特徴を有する。 In recent years, it has been proposed to use fine carbon fibers such as carbon nanotubes (CNT) instead of CB as the electron conductive material (see Patent Documents 4 and 5). Since this fine carbon fiber has a large aspect ratio (length / outer diameter), it is possible to impart conductivity to the resin with a relatively small amount of compounding as compared with CB and the like, and the addition amount and conductivity Since the relationship between the two changes linearly, it has a feature that the conductivity can be easily controlled.

ところで、電子写真用シームレスベルトは、画像形成装置内で通電を繰り返し行うに従い電気抵抗が上昇すること(通電上昇)が知られている。この電子写真用シームレスベルトの通電上昇は、電子写真方式の画像形成において、初期の抵抗値に対しトナー像の転写を行うのに最適な転写電流値を設定していても、抵抗上昇後にトナー像の転写が最適に行われず、画像不良を引き起こす恐れがある。このトナー像の転写不良を抑制するには、一般的に、電子写真用シームレスベルトの通電上昇が1桁以内とする必要があるとされている。このため、電子写真方式の画像形成装置に用いられる電子写真用シームレスベルトには、電気抵抗の均一性(電気抵抗のバラつき、環境変動による電気抵抗の変化が小さいこと)に加え、電気抵抗の通電上昇が小さいこと(通電上昇が1桁以内)が求められる。 By the way, it is known that the electrical resistance of a seamless belt for electrophotographic photography increases (increased energization) as energization is repeatedly performed in an image forming apparatus. The increase in energization of this seamless belt for electrophotographic is that even if the optimum transfer current value for transferring the toner image is set for the initial resistance value in the electrophotographic image formation, the toner image is increased after the resistance is increased. Transfer is not performed optimally, which may cause image defects. In order to suppress the transfer failure of the toner image, it is generally said that the increase in energization of the seamless belt for electrophotographic photography must be within one digit. For this reason, in addition to the uniformity of electrical resistance (variation in electrical resistance and small change in electrical resistance due to environmental changes), the seamless belt for electrophotographic used in electrophotographic image forming devices is energized with electrical resistance. It is required that the rise is small (the rise in energization is within one digit).

特開2000−347513JP 2000-347513 特開2001−142315JP 2001-142315 特開2001−350347JP 2001-350347 特開2004−339316JP-A-2004-339316 特開2012−168529JP 2012-168529

しかしながら、ナイロン6、ナイロン12等のポリアミド樹脂に微細炭素繊維を配合した樹脂組成物を用いた成形体は、半導電性領域の電気抵抗の均一性には優れるが、一方で、電気抵抗の通電上昇が大きいという問題がある。 However, a molded product using a resin composition in which fine carbon fibers are mixed with a polyamide resin such as nylon 6 or nylon 12 is excellent in the uniformity of electric resistance in the semi-conductive region, but on the other hand, the electric resistance is energized. There is a problem that the rise is large.

本発明はこのような問題に鑑みなされたもので、半導電性領域の電気抵抗の均一性に優れるとともに、電気抵抗の通電上昇が小さい半導電性ポリアミド樹脂組成物を提供することを目的とする。 The present invention has been made in view of such a problem, and an object of the present invention is to provide a semi-conductive polyamide resin composition having excellent uniformity of electrical resistance in a semi-conductive region and a small increase in electrical resistance. ..

本発明者らは、上記課題を解決するために鋭意検討した結果、キシリレンジアミンに由来するジアミン構成単位とジカルボン酸構成単位からなるポリアミド樹脂と微細炭素繊維とを含む半導電性ポリアミド樹脂組成物とすることにより、電気抵抗の通電上昇が小さい成形体を得ることができることを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors have made a semi-conductive polyamide resin composition containing a polyamide resin composed of a diamine constituent unit derived from xylylenediamine and a dicarboxylic acid constituent unit and fine carbon fibers. By doing so, it was found that a molded product having a small increase in electrical resistance energization can be obtained, and the present invention has been completed.

本発明によれば、
(1)キシリレンジアミンに由来する構成単位を主成分とするジアミン構成単位とジカルボン酸構成単位とからなるポリアミド樹脂(A)を80〜99重量%と、微細炭素繊維(B)を20〜1重量%と、から成る半導電性ポリアミド樹脂組成物層を含み、かつ体積抵抗率が1.0×10 〜1.0×10 12 Ω・cmであることを特徴とする電子写真用シームレスベルトが提供され、
(2)前記キシリレンジアミンは、メタキシリレンジアミン、パラキシリレンジアミン、メタキシリレンジアミンとパラキシリレンジアミンとの混合物から選ばれる1種であることを特徴とする請求項1記載の電子写真用シームレスベルトが提供され、
(3)前記ジカルボン酸は、炭素数4〜20の脂肪族ジカルボン酸に由来する構成単位を主成分とすることを特徴とする請求項1又は2のいずれか記載の電子写真用シームレスベルトが提供され、
(4)前記脂肪族ジカルボン酸は、セバシン酸もしくはアジピン酸であることを特徴とする請求項3記載の電子写真用シームレスベルトが提供され、
(5)前記微細炭素繊維は、単層カーボンナノチューブ、多層カーボンナノチューブから選ばれる少なくとも1種であることを特徴とする請求項1乃至4のいずれか記載の電子写真用シームレスベルトが提供される。
According to the present invention
(1) 80 to 99% by weight of the polyamide resin (A) composed of a diamine constituent unit containing a constituent unit derived from xylylene diamine as a main component and a dicarboxylic acid constituent unit, and 20 to 1 of fine carbon fibers (B) . Seamless belt for electrophotographic which contains a semi-conductive polyamide resin composition layer composed of % by weight and has a volume resistivity of 1.0 × 10 7 to 1.0 × 10 12 Ω · cm. Is provided,
(2) The electrophotograph according to claim 1, wherein the xylylenediamine is one selected from a mixture of metaxylylenediamine, paraxylylenediamine, and metaxylylenediamine and paraxylylenediamine. For seamless belts are provided,
(3) The seamless belt for electrophotographic according to any one of claims 1 or 2, wherein the dicarboxylic acid contains a structural unit derived from an aliphatic dicarboxylic acid having 4 to 20 carbon atoms as a main component. Being done
(4) The seamless belt for electrophotographic according to claim 3, wherein the aliphatic dicarboxylic acid is sebacic acid or adipic acid.
(5) The seamless belt for electrophotographic according to any one of claims 1 to 4, wherein the fine carbon fiber is at least one selected from single-walled carbon nanotubes and multi-walled carbon nanotubes.

本発明の半導電性ポリアミド樹脂組成物は、電気抵抗の均一性が高く、電気抵抗の通電上昇が小さい為、電子写真用シームレスベルトとして好適に使用することができる。 Since the semi-conductive polyamide resin composition of the present invention has high uniformity of electric resistance and a small increase in energization of electric resistance, it can be suitably used as a seamless belt for electrophotographic.

以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

[半導電性ポリアミド樹脂組成物]
本発明の半導電性ポリアミド樹脂組成物は、キシリレンジアミンに由来する構成単位を主成分とするジアミン構成単位とジカルボン酸構成単位とからなるポリアミド樹脂(A)と、微細炭素繊維(B)と、を含有する。このような本発明の半導電性ポリアミド樹脂組成物を用いることにより、電気抵抗の均一性が高く、電気抵抗の通電上昇が小さい成形体を得ることができる。
[Semi-conductive polyamide resin composition]
The semi-conductive polyamide resin composition of the present invention comprises a polyamide resin (A) composed of a diamine constituent unit and a dicarboxylic acid constituent unit containing a constituent unit derived from xylylenediamine as a main component, and fine carbon fibers (B). , Contain. By using such a semi-conductive polyamide resin composition of the present invention, it is possible to obtain a molded product having high uniformity of electric resistance and a small increase in energization of electric resistance.

半導電性ポリアミド樹脂組成物におけるポリアミド樹脂(A)と微細炭素繊維(B)との配合割合は、特に制限されるものではないが、ポリアミド樹脂(A)80〜99重量%に対して、微細炭素繊維(B)を20〜1重量%含むことが好ましく、ポリアミド樹脂(A)90〜99重量%に対して、微細炭素繊維(B)を10〜1重量%含むことがより好ましい。微細炭素繊維(B)の配合量が20重量%を超えると半導電性ポリアミド樹脂組成物は押出適正に劣る為、得られる成形体の表面が平滑でなくなる恐れがある。また、微細炭素繊維(B)の配合量が1重量%未満では、半導電性領域の体積抵抗率(10〜1013Ω・cm)の性能を付与することが困難となる。 The blending ratio of the polyamide resin (A) and the fine carbon fibers (B) in the semi-conductive polyamide resin composition is not particularly limited, but is fine with respect to 80 to 99% by weight of the polyamide resin (A). The carbon fiber (B) is preferably contained in an amount of 20 to 1% by weight, and the fine carbon fiber (B) is more preferably contained in an amount of 10 to 1% by weight based on 90 to 99% by weight of the polyamide resin (A). If the blending amount of the fine carbon fibers (B) exceeds 20% by weight, the semi-conductive polyamide resin composition is inferior in extrusion suitability, so that the surface of the obtained molded product may not be smooth. Further, the amount of the fine carbon fiber (B) is less than 1 wt%, it becomes difficult to impart the performance of the volume resistivity of the semiconductive region (10 6 ~10 13 Ω · cm ).

[ポリアミド樹脂(A)]
ポリアミド樹脂(A)は、キシリレンジアミンに由来する構成単位を主成分とするジアミン構成単位とジカルボン酸構成単位とからなる。ここで、主成分とは、ジアミン構成単位またはジカルボン酸構成単位中、50モル%以上を占める成分を指し、以下同じとする。
[Polyamide resin (A)]
The polyamide resin (A) is composed of a diamine structural unit and a dicarboxylic acid structural unit whose main component is a structural unit derived from xylylenediamine. Here, the main component refers to a component that accounts for 50 mol% or more of the diamine constituent unit or the dicarboxylic acid constituent unit, and the same applies hereinafter.

[ジアミン構成単位]
本発明に用いられるポリアミド樹脂(A)は、該ポリアミド樹脂(A)を構成するジアミン構成単位がキシリレンジアミンに由来する構成単位を主成分として含む。キシリレンジアミンに由来する構成単位の含有量は、全ジアミン構成単位に対し、好ましくは70モル%以上、より好ましくは80モル%以上、特に好ましくは90モル%以上である。
[Diamine constituent unit]
The polyamide resin (A) used in the present invention contains, as a main component, a structural unit in which the diamine structural unit constituting the polyamide resin (A) is derived from xylylenediamine. The content of the structural unit derived from xylylenediamine is preferably 70 mol% or more, more preferably 80 mol% or more, and particularly preferably 90 mol% or more, based on the total diamine constituent units.

上記キシリレンジアミンは、メタキシリレンジアミン、パラキシリレンジアミン又はこれらの混合物であることが好ましく、優れた靭性を得る観点からはメタキシリレンジアミン又はメタキシリレンジアミンとパラキシリレンジアミンとの混合物であることがより好ましく、メタキシリレンジアミンとパラキシリレンジアミンとの混合物であることが特に好ましい。キシリレンジアミンがメタキシリレンジアミンとパラキシリレンジアミンとの混合物である場合には、優れた靭性を得る観点から、メタキシリレンジアミンとパラキシリレンジアミンとの混合物中のメタキシリレンジアミンの含有量は10〜99モル%であることが好ましく、40〜95モル%であることがより好ましく、60〜90モル%であることが特に好ましい。 The above-mentioned xylylenediamine is preferably metaxylylenediamine, paraxylylenediamine or a mixture thereof, and from the viewpoint of obtaining excellent toughness, metaxylylenediamine or a mixture of metaxylylenediamine and paraxylylenediamine. Is more preferable, and a mixture of m-xylylenediamine and paraxylylenediamine is particularly preferable. When xylylenediamine is a mixture of metaxylylenediamine and paraxylylenediamine, the content of metaxylylenediamine in the mixture of metaxylylenediamine and paraxylylenediamine from the viewpoint of obtaining excellent toughness. The amount is preferably 10 to 99 mol%, more preferably 40 to 95 mol%, and particularly preferably 60 to 90 mol%.

ジアミン構成単位は、キシリレンジアミン以外のジアミンに由来する構成単位を含んでもよい。キシリレンジアミン以外のジアミンとしては、テトラメチレンジアミン、ペンタメチレンジアミン、2−メチルペンタンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ドデカメチレンジアミン、2,2,4−トリメチル−ヘキサメチレンジアミン、2,4,4−トリメチルヘキサメチレンジアミン等の脂肪族ジアミン;1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、1,3−ジアミノシクロヘキサン、1,4−ジアミノシクロヘキサン、ビス(4−アミノシクロヘキシル)メタン、2,2−ビス(4−アミノシクロヘキシル)プロパン、ビス(アミノメチル)デカリン、ビス(アミノメチル)トリシクロデカン等の脂環族ジアミン;ビス(4−アミノフェニル)エーテル、パラフェニレンジアミン、ビス(アミノメチル)ナフタレン等の芳香環を有するジアミン類;等を例示することができるが、これらに限定されるものではない。ポリアミド樹脂(A)は、これらのジアミンに由来する構成単位を1種又は2種以上含有することができる。 The diamine structural unit may include a structural unit derived from a diamine other than xylylenediamine. Diamines other than xylylenediamine include tetramethylenediamine, pentamethylenediamine, 2-methylpentanediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, dodecamethylenediamine, 2,2. , 4-trimethyl-hexamethylenediamine, 2,4,4-trimethylhexamethylenediamine and other aliphatic diamines; 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 1,3 -Diaminocyclohexane, 1,4-diaminocyclohexane, bis (4-aminocyclohexyl) methane, 2,2-bis (4-aminocyclohexyl) propane, bis (aminomethyl) decalin, bis (aminomethyl) tricyclodecane, etc. Alicyclic diamines; diamines having an aromatic ring such as bis (4-aminophenyl) ether, paraphenylenediamine, bis (aminomethyl) naphthalene; and the like can be exemplified, but are not limited thereto. .. The polyamide resin (A) can contain one or more structural units derived from these diamines.

[ジカルボン酸構成単位]
本発明に用いられるポリアミド樹脂(A)を構成するジカルボン酸構成単位は、特に制限されないが、炭素数1〜20の脂肪族ジカルボン酸、テレフタル酸、イソフタル酸から選ばれる少なくとも1種に由来する構成単位であることが好ましく、炭素数4〜20の脂肪族ジカルボン酸に由来する構成単位であることがより好ましく、炭素数4〜12の脂肪族ジカルボン酸に由来する構成単位であることが特に好ましい。
[Dicarboxylic acid constituent unit]
The dicarboxylic acid constituent unit constituting the polyamide resin (A) used in the present invention is not particularly limited, but is derived from at least one selected from aliphatic dicarboxylic acids having 1 to 20 carbon atoms, terephthalic acid, and isophthalic acid. It is preferably a unit, more preferably a structural unit derived from an aliphatic dicarboxylic acid having 4 to 20 carbon atoms, and particularly preferably a structural unit derived from an aliphatic dicarboxylic acid having 4 to 12 carbon atoms. ..

炭素数4〜20の脂肪族ジカルボン酸としては、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、1,10−デカンジカルボン酸、1,11−ウンデカンジカルボン酸、1,12−ドデカンジカルボン酸、1,14−テトラデカンジカルボン酸、1,16−ヘキサデカンジカルボン酸、1,18−オクタデカンジカルボン酸等を例示できる。 Examples of the aliphatic dicarboxylic acid having 4 to 20 carbon atoms include succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, 1,10-decandicarboxylic acid, and 1,11-undecandicarboxylic acid. Examples thereof include 1,12-dodecanedicarboxylic acid, 1,14-tetradecanedicarboxylic acid, 1,16-hexadecanedicarboxylic acid, and 1,18-octadecanedicarboxylic acid.

上記の中でも、アジピン酸及びセバシン酸から選ばれる少なくとも1種に由来する構成単位が好ましく、セバシン酸に由来する構成単位がより好ましい。ポリアミド樹脂(A)は、これらのカルボン酸構成単位を1種又は2種以上含有することができる。 Among the above, a structural unit derived from at least one selected from adipic acid and sebacic acid is preferable, and a structural unit derived from sebacic acid is more preferable. The polyamide resin (A) can contain one or more of these carboxylic acid constituent units.

ジカルボン酸構成単位は、炭素数4〜20の脂肪族ジカルボン酸に由来する構成単位を主成分とすることが好ましい。ジカルボン酸構成単位中の炭素数4〜20の脂肪族ジカルボン酸に由来する構成単位の含有量は、より好ましくは70〜100モル%、特に好ましくは、85〜100モル%である。 The dicarboxylic acid structural unit preferably contains a structural unit derived from an aliphatic dicarboxylic acid having 4 to 20 carbon atoms as a main component. The content of the constituent unit derived from the aliphatic dicarboxylic acid having 4 to 20 carbon atoms in the dicarboxylic acid constituent unit is more preferably 70 to 100 mol%, particularly preferably 85 to 100 mol%.

[微細炭素繊維(B)]
本発明に用いる微細炭素繊維とは、繊維の芯部に中空空間を有するものであり、繊維径が小さく、アスペクト比の高い繊維状のものが好ましく、カーボンナノチューブと通称されるものも含まれる。具体的には、平均繊維径が1nm〜200nm、平均繊維長が0.1μm〜100μm、アスペクト比が10〜10000の範囲内であることが好ましい。
[Fine carbon fiber (B)]
The fine carbon fibers used in the present invention are those having a hollow space in the core of the fibers, preferably in the form of fibers having a small fiber diameter and a high aspect ratio, and also include those commonly called carbon nanotubes. Specifically, it is preferable that the average fiber diameter is 1 nm to 200 nm, the average fiber length is 0.1 μm to 100 μm, and the aspect ratio is in the range of 10 to 10,000.

微細炭素繊維としては、単層カーボンナノチューブ、多層カーボンナノチューブ(特公平3−64606、特公平3−77288、特開2004−299986)、カップ積層型カーボンナノチューブ(特開2003−73928、特開2004−360099)、プレートレット型カーボンナノファイバー(特開2004−300631)、釣鐘状構造連結集合型カーボンナノチューブ(特開2012−46864、特開2011−47081、特開2011−46852)などが挙げられる。これらの中でも、釣鐘状構造単位集合体は、ファンデルワールス力の弱い力で結合している釣鐘状構造単位の集合体の連結部が、混練や押出しにおける剪断力によりその接合部で容易に分離し、微炭素繊維同士が絡まり合った凝集物となりにくく、分散性に優れることから好ましい。 Examples of the fine carbon fibers include single-walled carbon nanotubes, multi-walled carbon nanotubes (Japanese Patent Laid-Open No. 3-64606, JP-A-3-77288, JP-A-2004-299986), and cup-laminated carbon nanotubes (Japanese Patent Laid-Open No. 2003-73928, JP-A-2004-). 360099), platelet-type carbon nanofibers (Japanese Patent Laid-Open No. 2004-360391), bell-shaped structure-connected aggregate carbon nanotubes (Japanese Patent Laid-Open No. 2012-46864, JP-A-2011-47081, JP-A-2011-46852) and the like. Among these, in the bell-shaped structural unit assembly, the connecting portion of the bell-shaped structural unit aggregate that is connected by a weak van der Waals force is easily separated at the joint by the shearing force in kneading or extrusion. However, it is preferable because it does not easily form an agglomerate in which microcarbon fibers are entangled with each other and has excellent dispersibility.

本発明の半導電性ポリアミド樹脂組成物には、必要に応じてその特性を損なわない範囲で添加剤を配合してもよい。添加剤としては、イオン伝導性材料、カーボンブラックや金属酸化物等の電子伝導性材料、酸化防止剤、熱安定剤、有機フィラーや無機フィラー、可塑剤、滑剤、相溶化剤、加工助剤、顔料等が挙げられる。これらの添加剤は、それぞれの目的に応じて適量を使用することができる。 If necessary, the semi-conductive polyamide resin composition of the present invention may contain additives as long as its properties are not impaired. Additives include ionic conductive materials, electron conductive materials such as carbon black and metal oxides, antioxidants, heat stabilizers, organic fillers and inorganic fillers, plasticizers, lubricants, compatibilizers, processing aids, etc. Examples include pigments. Appropriate amounts of these additives can be used according to their respective purposes.

[半導電性ポリアミド樹脂組成物の製造方法]
本発明の半導電性ポリアミド樹脂組成物の製造方法には特に制限はないが、例えば、ポリアミド樹脂(A)、微細炭素繊維(B)、及び必要に応じて用いられる添加剤を配合してドライブレンドする方法、ポリアミド樹脂(A)を予め溶融混練し、ここに所定量の微細炭素繊維(B)、及び必要に応じて用いられる添加剤を配合する方法、ポリアミド樹脂(A)に所定量の微細炭素繊維(B)、及び必要に応じて用いられる各種添加剤を配合した後に溶融混練する方法、ポリアミド樹脂(A)に所定量の微細炭素繊維(B)を配合し、次いで、溶融混練してマスターバッチを作製し、押出成形時にマスターバッチとポリアミド樹脂(A)とを溶融混練する方法等が挙げられる。ポリアミド樹脂(A)と微細炭素繊維(B)とを均一に混合する観点から、ポリアミド樹脂に所定量の微細炭素繊維を配合して溶融混練する工程を有することが好ましい。
[Manufacturing method of semi-conductive polyamide resin composition]
The method for producing the semi-conductive polyamide resin composition of the present invention is not particularly limited, but for example, a polyamide resin (A), fine carbon fibers (B), and an additive used as necessary are blended and dried. A method of blending, a method in which a polyamide resin (A) is melt-kneaded in advance and a predetermined amount of fine carbon fibers (B) and an additive used as necessary are blended therein, and a predetermined amount of the polyamide resin (A) is blended. A method of blending fine carbon fibers (B) and various additives used as necessary and then melt-kneading. A predetermined amount of fine carbon fibers (B) is blended with a polyamide resin (A), and then melt-kneaded. A method of producing a master batch and melt-kneading the master batch and the polyamide resin (A) at the time of extrusion molding can be mentioned. From the viewpoint of uniformly mixing the polyamide resin (A) and the fine carbon fibers (B), it is preferable to have a step of blending a predetermined amount of the fine carbon fibers with the polyamide resin and melt-kneading.

溶融混練するための装置としては、バッチ式混練機、ニーダー、コニーダー、バンバリーミキサー、ロールミル、単軸もしくは二軸押出機等、公知の種々の押出機が挙げられる。これらの中でも、混練能力や生産性に優れる点から単軸押出機や二軸押出機が好ましく用いられる。 Examples of the apparatus for melt-kneading include various known extruders such as a batch type kneader, a kneader, a conider, a Banbury mixer, a roll mill, and a single-screw or twin-screw extruder. Among these, a single-screw extruder or a twin-screw extruder is preferably used because of its excellent kneading ability and productivity.

溶融混練時の温度は、使用するポリアミド樹脂(A)の種類や溶融粘度等により適宜選択できるが、通常、185℃〜300℃の範囲であり、ポリアミド樹脂(A)の劣化防止、及び成形性の観点から、好ましくは190〜280℃である。 The temperature at the time of melt-kneading can be appropriately selected depending on the type of the polyamide resin (A) used, the melt viscosity, etc., but is usually in the range of 185 ° C. to 300 ° C. to prevent deterioration of the polyamide resin (A) and moldability. From the viewpoint of the above, the temperature is preferably 190 to 280 ° C.

半導電性ポリアミド樹脂組成物の溶融粘度は、成形性の観点から、1000〜50000poiseであることが好ましく、1500〜40000poiseであることがより好ましく、2000〜30000poiseであることがさらに好ましい。溶融粘度が1000poise未満であると、当該組成物を溶融押出しする際、溶融粘度が低いことによるドローダウンが起き、成形不良となるシワが発生する恐れがある。また、溶融粘度が50000poiseを超えると、溶融押出しの際、押出圧力(圧縮応力とせん断応力)が高くなることで当該組成物が発熱し、ゲルが発生する恐れがある。溶融粘度の測定は、従来公知の測定機を用いることができ、例えば、長さ10mm×直径1mmのダイを取り付けた島津製作所製高化式フローテスターを用いて測定することができる。 From the viewpoint of moldability, the melt viscosity of the semi-conductive polyamide resin composition is preferably 1,000 to 50,000 poise, more preferably 1,500 to 40,000 poise, and even more preferably 2,000 to 30,000 poise. If the melt viscosity is less than 1000 poise, when the composition is melt-extruded, drawdown may occur due to the low melt viscosity, and wrinkles resulting in molding defects may occur. On the other hand, if the melt viscosity exceeds 50,000 poise, the extrusion pressure (compressive stress and shear stress) increases during melt extrusion, so that the composition may generate heat and gel may be generated. The melt viscosity can be measured by using a conventionally known measuring machine, for example, using an heightened flow tester manufactured by Shimadzu Corporation equipped with a die having a length of 10 mm and a diameter of 1 mm.

[成形体]
本発明の成形体は、上記本発明の半導電性ポリアミド樹脂組成物を含むものである。また、本発明の半導電性ポリアミド樹脂組成物は、当該成形体の少なくとも一部に用いられていればよい。成形体の形態としては、フィルム状、シート状、チューブ状、ベルト状等が挙げられる。
[Molded product]
The molded product of the present invention contains the above-mentioned semi-conductive polyamide resin composition of the present invention. Further, the semi-conductive polyamide resin composition of the present invention may be used for at least a part of the molded product. Examples of the form of the molded body include a film shape, a sheet shape, a tube shape, a belt shape, and the like.

本発明の成形体は、例えば、上述した半導電性ポリアミド樹脂組成物を従来公知の成形方法により各種形態に成形し、製造することができる。当該製造方法としては、例えば、射出成形、押出成形、圧縮成形、真空成形、プレス成形等の成形法を例示することができる。 The molded product of the present invention can be produced, for example, by molding the above-mentioned semi-conductive polyamide resin composition into various forms by a conventionally known molding method. Examples of the manufacturing method include molding methods such as injection molding, extrusion molding, compression molding, vacuum forming, and press molding.

フィルム又はシート状の成形体を製造する場合、フラットダイを備えた押出成形法が好ましい。フラットダイを備えた押出成形法としては、例えば、押出機と、押出機の下方に押出機に連通してフラットダイが配設され、該フラットダイの下方には、該フラットダイから押し出される溶融樹脂を冷却するための冷却ロールとタッチロールとが配設された押出成形装置を用い、半導電性ポリアミド樹脂組成物を押出機に供給して、溶融・加圧された半導電性樹脂組成物をフラットダイの先端からフィルム状に押出し、冷却ロールにて冷却固化することでフィルム又はシート状の成形体とする方法が挙げられる。 When producing a film or sheet-shaped molded product, an extrusion molding method provided with a flat die is preferable. As an extrusion molding method including a flat die, for example, an extruder and a flat die are arranged below the extruder so as to communicate with the extruder, and below the flat die, melting extruded from the flat die is performed. A semi-conductive resin composition in which a semi-conductive polyamide resin composition is supplied to an extruder using an extrusion molding apparatus in which a cooling roll and a touch roll for cooling the resin are arranged, and melted and pressurized. Is extruded into a film from the tip of a flat die and cooled and solidified with a cooling roll to form a film or sheet-like molded product.

一方、チューブ状又はベルト状の成形体を製造する場合、インフレーション押出成形法が好ましい。インフレーション押出成形法としては、例えば、押出機と、押出機の下方に押出機に連通して環状ダイスが配置され、該環状ダイスの下方には、該環状ダイスから下向きに押し出される溶融樹脂をその外周に担持させて冷却固化するマンドレルが配設された押出成形装置を用い、半導電性ポリアミド樹脂組成物を押出機に供給して、溶融・加圧された半導電性ポリアミド樹脂組成物を環状ダイスからチューブ状に押出し、マンドレルの外周に担持させて冷却固化することによりチューブ状の成形体とする方法が挙げられる。また、その際、チューブ状の成形体を所望の幅に切断することでベルト状の成形体とすることができる。 On the other hand, when producing a tubular or belt-shaped molded product, an inflation extrusion molding method is preferable. As an inflation extrusion molding method, for example, an extruder and an annular die are arranged below the extruder so as to communicate with the extruder, and a molten resin extruded downward from the annular die is placed below the annular die. Using an extrusion molding device provided with a mandrel that is supported on the outer circumference and cooled and solidified, the semi-conductive polyamide resin composition is supplied to the extruder, and the melted and pressurized semi-conductive polyamide resin composition is cyclic. Examples thereof include a method of extruding a tube from a die, supporting it on the outer periphery of a mandrel, and cooling and solidifying it to form a tubular molded body. At that time, the tube-shaped molded body can be cut into a desired width to obtain a belt-shaped molded body.

上記の押出形成法を用いる場合、押出成形時の成形温度は、使用するポリアミド樹脂(A)の種類や溶融粘度等により適宜選択することができるが、通常、185℃〜300℃の範囲であり、ポリアミド樹脂(A)の劣化防止、及び成形性の観点から、好ましくは190〜280℃である。 When the above extrusion molding method is used, the molding temperature at the time of extrusion molding can be appropriately selected depending on the type of the polyamide resin (A) used, the melt viscosity and the like, but is usually in the range of 185 ° C. to 300 ° C. From the viewpoint of preventing deterioration of the polyamide resin (A) and moldability, the temperature is preferably 190 to 280 ° C.

なお、上記説明は単層に関するものであったが、2層の場合は更に別の押出機を配設し、2層用のフラットダイ或いは環状ダイスにそれぞれの押出機から溶融状態の組成物を供給し、フラットダイ或いは環状ダイスから2層同時に押し出すことで得ることができる。また、3層以上の時は、層数に応じ相応に押出機を準備すれば良い。 Although the above description relates to a single layer, in the case of two layers, another extruder is arranged, and the composition in a molten state from each extruder is placed on a flat die or an annular die for two layers. It can be obtained by feeding and extruding two layers simultaneously from a flat die or an annular die. When there are three or more layers, an extruder may be prepared according to the number of layers.

本発明の半導電性ポリアミド樹脂組成物を含む成形体は、自動車関連部品、OA機器部品、電子・電機部品、機械部品等の成形品、包装用フィルム、中空容器、パイプ、チューブ、ホース等の各種成形品、繊維等として好適に用いることができる。 The molded product containing the semi-conductive polyamide resin composition of the present invention includes molded products such as automobile-related parts, OA equipment parts, electronic / electrical parts, mechanical parts, packaging films, hollow containers, pipes, tubes, hoses, etc. It can be suitably used as various molded products, fibers and the like.

[電子写真用シームレスベルト]
上記の中でも、本発明の成形体は、電気抵抗の均一性(電気抵抗のバラつき、環境変動による電気抵抗の変化が小さいこと)に加え、電気抵抗の通電上昇が小さい為、特に電子写真用シームレスベルトとして好適に使用することができる。また、ここでいう電子写真用シームレスベルトとは、電子写真方式の画像形成装置に用いる転写搬送用ベルトまたは中間転写ベルトである。
[Seamless belt for electrophotographic]
Among the above, the molded product of the present invention has a uniform electrical resistance (variations in electrical resistance and a small change in electrical resistance due to environmental changes) and a small increase in electrical resistance due to energization, so that it is seamless especially for electrophotographic. It can be suitably used as a belt. The electrophotographic seamless belt referred to here is a transfer transfer belt or an intermediate transfer belt used in an electrophotographic image forming apparatus.

また、本発明の電子写真用ベルトは、転写搬送用ベルトまたは中間転写ベルトとして所定の電気特性や機械特性を有することが好ましく、例えば、ベルト状成形体の体積抵抗率が1.0×10〜1.0×1013Ω・cm、且つ引張弾性率が1000〜5000MPaであることが好ましい。体積抵抗率は、5.0×10〜5.0×1012Ω・cmであることがより好ましく、1.0×10〜1.0×1012Ω・cmであることがさらに好ましい。引張弾性率は、1500〜4500MPaであることがより好ましく、1800〜4000MPaであることがより好ましい。 Further, the electrophotographic belt of the present invention preferably has a predetermined electrical characteristics and mechanical properties as a transfer conveyor belt or an intermediate transfer belt, for example, the volume resistivity of the belt-shaped molded product is 1.0 × 10 6 It is preferably ~ 1.0 × 10 13 Ω · cm and the tensile modulus is 1000 to 5000 MPa. The volume resistivity is more preferably 5.0 × 10 6 to 5.0 × 10 12 Ω · cm, and further preferably 1.0 × 10 7 to 1.0 × 10 12 Ω · cm. .. The tensile elastic modulus is more preferably 1500 to 4500 MPa, more preferably 1800 to 4000 MPa.

以下、本発明について、実施例によりさらに詳しく説明する。尚、実施例において行った物性の測定方法は次の通りである。
(1)溶融粘度
長さ10mm×直径1mmのダイを取り付けた島津製作所製高化式フローテスターを用いて溶融粘度を測定した。なお、その単位を(poise)として表した。
(2)電気抵抗(体積抵抗率)及び電気抵抗のバラつき
URSプローブを取り付けたハイレスタUP(MCP−HT450、ダイヤインスツルメンツ社製)を用い、100mm×1000mmのサンプルをTD方向に3点、MD方向に20点の合計60点で体積抵抗率を測定した。上記60点の体積抵抗率の測定値の平均値を求め、それをサンプルの体積抵抗率とした。(測定条件:温度23℃、相対湿度50%RH、荷重2kg、印加電圧500V、10秒)また、体積抵抗率の測定値のバラつきを求め、以下の評価基準に基づき評価した。
○:体積抵抗率のバラつきが1.0桁以内
×:体積抵抗率のバラつきが1.0桁を超える
(3)電気抵抗(体積抵抗率)の通電上昇
下記装置を用い、サンプルに500Vの電圧を5時間連続で印加し、所定時間毎に電流値を読み取り、下記式を用いて所定時間毎の体積抵抗率を算出した。次いで、得られた体積抵抗率を常用対数表記に換算し、電圧印加後の常用対数表記の体積抵抗率から電圧印加前の常用対数表記の体積抵抗率を引くことにより算出した。
・電源:MODEL 610C(Trek製)、印可電圧:500V
・電極:P−618(主電極外径50mm、ガード電極内径70mm(両側導電ゴム付)、川口電機製作所製)
・電流計:DIGITAL MULTIMETER(IWATSU製)
ρv=(V[V]/I[A])×(W[cm]×L[cm])/t[cm]
[ここで、V=印加電圧[V]、I=測定電流値[A]、W×L=主電極の面積[cm]=19.625cm、t=厚さ[cm]]
(4)引張弾性率
得られた成形体のMD方向に幅10mm×長さ200mmのサンプルを切出し、島津製作所製オートグラフ(AGS−100)を用いて、歪み−応力曲線から引張弾性率の値を求めた。(試験条件:チャック間距離100mm、速度50mm/min)また、TD方向についても同様に測定し、MD方向及びTD方向の平均値をサンプルの引張弾性率(MPa)とした。
Hereinafter, the present invention will be described in more detail with reference to Examples. The method for measuring the physical properties performed in the examples is as follows.
(1) Melt Viscosity The melt viscosity was measured using a high-grade flow tester manufactured by Shimadzu Corporation equipped with a die having a length of 10 mm and a diameter of 1 mm. In addition, the unit was expressed as (poise).
(2) Variations in electrical resistivity (volume resistivity) and electrical resistance Using a high-rester UP (MCP-HT450, manufactured by Dia Instruments) with a URS probe attached, 3 points of 100 mm x 1000 mm samples in the TD direction and in the MD direction. The volume resistivity was measured at a total of 60 points at 20 points. The average value of the measured values of the volume resistivity at the above 60 points was obtained, and this was used as the volume resistivity of the sample. (Measurement conditions: temperature 23 ° C., relative humidity 50% RH, load 2 kg, applied voltage 500 V, 10 seconds) In addition, variations in the measured values of volume resistance were obtained and evaluated based on the following evaluation criteria.
◯: Volume resistivity variation is within 1.0 digit ×: Volume resistivity variation exceeds 1.0 digit (3) Increased energization of electrical resistivity (volume resistivity) Using the following device, a voltage of 500 V is applied to the sample. Was applied continuously for 5 hours, the current value was read at predetermined time intervals, and the volume resistivity at each predetermined time was calculated using the following formula. Next, the obtained volume resistivity was converted into the common logarithm notation, and calculated by subtracting the volume resistivity in the common logarithm notation before the voltage application from the volume resistivity in the common logarithm notation after the voltage was applied.
-Power supply: MODEL 610C (manufactured by Trek), applicable voltage: 500V
-Electrode: P-618 (main electrode outer diameter 50 mm, guard electrode inner diameter 70 mm (with conductive rubber on both sides), manufactured by Kawaguchi Electric Works)
・ Ammeter: DIGITAL MULTIMETER (manufactured by IWATSU)
ρv = (V [V] / I [A]) x (W [cm] x L [cm]) / t [cm]
[Here, V = applied voltage [V], I = measured current value [A], W × L = area of main electrode [cm 2 ] = 19.625 cm 2 , t = thickness [cm]]
(4) Tension elastic modulus A sample having a width of 10 mm and a length of 200 mm was cut out in the MD direction of the obtained molded body, and a value of the tensile elastic modulus was obtained from a strain-stress curve using an autograph (AGS-100) manufactured by Shimadzu Corporation. Asked. (Test conditions: Chuck distance 100 mm, speed 50 mm / min) Further, the TD direction was also measured in the same manner, and the average value in the MD direction and the TD direction was taken as the tensile elastic modulus (MPa) of the sample.

原料としては、下記のものを用いた。
<ポリアミド樹脂(A)>
・ポリアミド樹脂(A−1)[融点:190℃、比重:1.13、三菱ガス化学社製、品名:LEXTER8000(キシリレンジアミンとセバシン酸)]
・ポリアミド樹脂(A−2)[融点:240℃、比重:1.21、三菱ガス化学社製、品名:ナイロンMXD6 S6001(キシリレンジアミンとアジピン酸)]
・ポリアミド樹脂(A−3)[ナイロン12、Tm:178℃、比重:1.02、溶融粘度:1700poise(測定温度200℃、荷重100kg)]
・ポリアミド樹脂(A−4)[ナイロン12、Tm:178℃、比重:1.02、溶融粘度:5400poise(測定温度200℃、荷重100kg)]
<微炭素繊維(B)>
・微細炭素繊維(B)[釣鐘状構造単位集合体、平均繊維径:11nm、DBP吸油量:330ml/100g、比表面積:230m/g]
The following raw materials were used.
<Polyamide resin (A)>
Polyamide resin (A-1) [melting point: 190 ° C., specific gravity: 1.13, manufactured by Mitsubishi Gas Chemical Company, product name: LEXTER8000 (xylylenediamine and sebacic acid)]
Polyamide resin (A-2) [melting point: 240 ° C., specific gravity: 1.21, manufactured by Mitsubishi Gas Chemical Company, product name: nylon MXD6 S6001 (xylylenediamine and adipic acid)]
Polyamide resin (A-3) [Nylon 12, Tm: 178 ° C., specific gravity: 1.02, melt viscosity: 1700 poise (measurement temperature 200 ° C., load 100 kg)]
Polyamide resin (A-4) [Nylon 12, Tm: 178 ° C., specific gravity: 1.02, melt viscosity: 5400 poise (measurement temperature 200 ° C., load 100 kg)]
<Fine carbon fiber (B)>
-Fine carbon fiber (B) [bell-shaped structural unit aggregate, average fiber diameter: 11 nm, DBP oil absorption: 330 ml / 100 g, specific surface area: 230 m 2 / g]

[マスターバッチの調製]
ポリアミド樹脂(A−1)90重量%と微細炭素繊維(B)10重量%とをスクリュー径38φmm二軸混練機押出機を用いて溶融混練し、微細炭素繊維10重量%のマスターバッチを調製した。
[Preparation of masterbatch]
90% by weight of the polyamide resin (A-1) and 10% by weight of the fine carbon fibers (B) were melt-kneaded using a twin-screw kneader extruder having a screw diameter of 38φ mm to prepare a masterbatch of 10% by weight of the fine carbon fibers. ..

[実施例1]
表1に示した配合比となるよう、上記マスターバッチとポリアミド樹脂(A−1)とを
ドライブレンドし、得られた混合物をフラットダイ(設定温度:218℃、リップ幅150mm)を備えた単軸押出機に供給し、溶融状態でフィルム状に押出した(押出速度:1.2m/min)。そして、このフィルム状の溶融樹脂を表面が鏡面仕上げされているチルロール(表面設定温度:30℃、エアーギャップ:100mm)上に吐出し、タッチロールで押しつけながら冷却し、厚さ170μmのフィルム状の半導電性ポリアミド樹脂成形体を得た。得られたフィルム状成形体の体積抵抗率、電気抵抗の均一性、電気抵抗の通電上昇の測定結果を表1に示す。
[Example 1]
The masterbatch and the polyamide resin (A-1) were dry-blended so as to have the blending ratios shown in Table 1, and the obtained mixture was simply provided with a flat die (set temperature: 218 ° C., lip width 150 mm). It was supplied to a shaft extruder and extruded into a film in a molten state (extrusion speed: 1.2 m / min). Then, this film-shaped molten resin is discharged onto a chill roll (surface set temperature: 30 ° C., air gap: 100 mm) whose surface is mirror-finished, cooled while being pressed by a touch roll, and is in the form of a film having a thickness of 170 μm. A semi-conductive polyamide resin molded product was obtained. Table 1 shows the measurement results of the volume resistivity, the uniformity of the electric resistance, and the increase in the energization of the electric resistance of the obtained film-shaped molded body.

[実施例2乃至4、比較例1乃至3]
実施例1と同様にして、表1示した配合比及び加工条件で各フィルム状成形体を得た。得られた各フィルム状成形体の体積抵抗率、電気抵抗の均一性、電気抵抗の通電上昇の測定結果を表1に示す。
[Examples 2 to 4, Comparative Examples 1 to 3]
In the same manner as in Example 1, each film-shaped molded product was obtained under the compounding ratio and processing conditions shown in Table 1. Table 1 shows the measurement results of the volume resistivity, the uniformity of the electric resistance, and the increase in the energization of the electric resistance of each of the obtained film-shaped molded bodies.

Figure 0006808418
Figure 0006808418

表1に示すように、キシリレンジアミンに由来する構成単位を主成分とするジアミン構成単位とジカルボン酸構成単位とからなるポリアミド樹脂(A)と微細炭素繊維(B)とを含む半導電性ポリアミド樹脂組成物からなる実施例1乃至4の成形体は、半導電性領域の電気抵抗の均一性が高く、電気抵抗の通電上昇が小さい結果を示した。一方、表1に示すように、ナイロン12に微細炭素繊維を含む比較例1乃至3の成形体は、電気抵抗の均一性が高い結果を示すものの、電気抵抗の通電上昇が1桁を超える結果を示した。 As shown in Table 1, a semi-conductive polyamide containing a polyamide resin (A) and fine carbon fibers (B) composed of a diamine constituent unit containing a constituent unit derived from xylylenediamine as a main component and a dicarboxylic acid constituent unit. The molded products of Examples 1 to 4 made of the resin composition showed a high uniformity of electric resistance in the semi-conductive region and a small increase in energization of the electric resistance. On the other hand, as shown in Table 1, the molded products of Comparative Examples 1 to 3 containing fine carbon fibers in nylon 12 show a high uniformity of electric resistance, but the result that the energization increase of the electric resistance exceeds an order of magnitude. showed that.

以上の如く、本発明によれば、キシリレンジアミンに由来する構成単位を主成分とするジアミン構成単位とジカルボン酸構成単位とからなるポリアミド樹脂(A)と微細炭素繊維(B)とを含む半導電性ポリアミド樹脂組成物は、電気抵抗の均一性が高く、電気抵抗の通電上昇が小さい為、電子写真用シームレスベルトとして好適に使用できる成形体を得ることができる。
As described above, according to the present invention, a half containing a polyamide resin (A) and fine carbon fibers (B) composed of a diamine constituent unit containing a constituent unit derived from xylylenediamine as a main component and a dicarboxylic acid constituent unit. Since the conductive polyamide resin composition has high uniformity of electric resistance and a small increase in energization of electric resistance, a molded body that can be suitably used as a seamless belt for electrophotographic can be obtained.

Claims (5)

キシリレンジアミンに由来する構成単位を主成分とするジアミン構成単位とジカルボン酸構成単位とからなるポリアミド樹脂(A)を80〜99重量%と、微細炭素繊維(B)を20〜1重量%と、から成る半導電性ポリアミド樹脂組成物層を含み、かつ体積抵抗率が1.0×10 〜1.0×10 12 Ω・cmであることを特徴とする電子写真用シームレスベルトThe polyamide resin (A) composed of a diamine constituent unit containing a constituent unit derived from xylylene diamine as a main component and a dicarboxylic acid constituent unit is 80 to 99% by weight, and the fine carbon fiber (B) is 20 to 1% by weight. A seamless belt for electrophotographic photography , which comprises a semi-conductive polyamide resin composition layer composed of , and has a volume resistivity of 1.0 × 10 7 to 1.0 × 10 12 Ω · cm . 前記キシリレンジアミンは、メタキシリレンジアミン、パラキシリレンジアミン、メタキシリレンジアミンとパラキシリレンジアミンとの混合物から選ばれる1種であることを特徴とする請求項1記載の電子写真用シームレスベルトThe seamless belt for electrophotographic according to claim 1, wherein the xylylenediamine is one selected from m-xylylenediamine, paraxylylenediamine, and a mixture of m-xylylenediamine and paraxylylenediamine. .. 前記ジカルボン酸は、炭素数4〜20の脂肪族ジカルボン酸に由来する構成単位を主成分とすることを特徴とする請求項1又は2のいずれか記載の電子写真用シームレスベルトThe seamless belt for electrophotographic according to any one of claims 1 or 2, wherein the dicarboxylic acid contains a structural unit derived from an aliphatic dicarboxylic acid having 4 to 20 carbon atoms as a main component. 前記脂肪族ジカルボン酸は、セバシン酸もしくはアジピン酸であることを特徴とする請求項3記載の電子写真用シームレスベルトThe seamless belt for electrophotographic according to claim 3, wherein the aliphatic dicarboxylic acid is sebacic acid or adipic acid. 前記微細炭素繊維は、単層カーボンナノチューブ、多層カーボンナノチューブから選ばれる少なくとも1種であることを特徴とする請求項1乃至4のいずれか記載の電子写真用シームレスベルト
The seamless belt for electrophotographic according to any one of claims 1 to 4, wherein the fine carbon fibers are at least one selected from single-walled carbon nanotubes and multi-walled carbon nanotubes.
JP2016187095A 2015-10-01 2016-09-26 Semi-conductive polyamide resin composition, molded article using it, and seamless belt for electrophotographic Active JP6808418B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015195562 2015-10-01
JP2015195562 2015-10-01

Publications (2)

Publication Number Publication Date
JP2017066388A JP2017066388A (en) 2017-04-06
JP6808418B2 true JP6808418B2 (en) 2021-01-06

Family

ID=58491733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016187095A Active JP6808418B2 (en) 2015-10-01 2016-09-26 Semi-conductive polyamide resin composition, molded article using it, and seamless belt for electrophotographic

Country Status (1)

Country Link
JP (1) JP6808418B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240424772A1 (en) * 2021-08-23 2024-12-26 Mitsubishi Gas Chemical Company, Inc. Stretched film, multilayer film, and packaging material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000347513A (en) * 1999-06-01 2000-12-15 Canon Inc Intermediate transfer belt, manufacture thereof and image forming device
JP2007154100A (en) * 2005-12-07 2007-06-21 Canon Inc Electroconductive agent for resin, electroconductive resin composition and its roduction method
KR101779222B1 (en) * 2009-09-07 2017-09-18 우베 고산 가부시키가이샤 Multilayer tube for delivery
JP5720933B2 (en) * 2010-02-10 2015-05-20 株式会社豊田中央研究所 Resin composition and method for producing the same
JP6202254B2 (en) * 2013-06-11 2017-09-27 宇部興産株式会社 Conductive laminated tube
FR3007034B1 (en) * 2013-06-14 2016-06-10 Arkema France COMPOSITION BASED ON POLYAMIDE MXD.10

Also Published As

Publication number Publication date
JP2017066388A (en) 2017-04-06

Similar Documents

Publication Publication Date Title
US8241527B2 (en) Conductive elastomer material, and conductive sheet and conductive seamless belt each made of the material
JP5834455B2 (en) Conductive composition, electrophotographic belt, intermediate transfer belt, image forming apparatus, and method for producing conductive composition
JP2003156902A (en) Image forming apparatus belt, sleeve or tube
JP6930643B6 (en) Sheet-shaped member for image forming device
JP6808418B2 (en) Semi-conductive polyamide resin composition, molded article using it, and seamless belt for electrophotographic
JP2005350621A (en) Semiconductive polyvinylidene fluoride resin composition, semiconductive resin molded product and process for production of the molded product
JP4740566B2 (en) Semiconductive film, method for producing the same, and charge control member
JP6632352B2 (en) Method for producing semiconductive polyamide resin molded article
JP5214171B2 (en) Semiconductive polyvinylidene fluoride resin composition, semiconductive resin molded product, and charge control member
US7740778B2 (en) Conductive belt, method of producing same, and image-forming apparatus having same
JP2023027848A (en) Semi-conductive polyamide-based resin composition, semi-conductive belt using the same, image formation device, and method for manufacturing conductive belt
JP6590708B2 (en) Method for producing semiconductive resin composition
JP2006137939A (en) Electroconductive thermoplastic resin composition for fuel tube, and fuel tube
JP5724950B2 (en) Method for producing conductive resin molding
JP2011095480A (en) Conductive seamless belt
KR100926967B1 (en) Semiconductive resin composition for transfer belt and transfer belt for image forming apparatus using same
JP6800023B2 (en) Method for manufacturing transfer belt for image forming apparatus and transfer belt for image forming apparatus
JP5052146B2 (en) Polyarylene thioether semiconductive film, charge control member formed from the film, endless belt, and transfer belt for image forming apparatus using the endless belt
JP2006276426A (en) Method for producing semiconductive seamless belt
JP6918597B2 (en) Semi-conductive resin composition and seamless belt for electrophotographic using it
JP7167563B2 (en) CONDUCTIVE SEAMLESS BELT AND IMAGE FORMING APPARATUS
JP2012058471A (en) Semi-conductive polyimide seamless belt
JP6752137B2 (en) Method for manufacturing transfer belt for image forming apparatus and transfer belt for image forming apparatus
JP6598669B2 (en) Semiconductive resin composition and electrophotographic seamless belt using the same
JP2006276424A (en) Semiconductive seamless belt and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201209

R150 Certificate of patent or registration of utility model

Ref document number: 6808418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250