JP6805415B2 - Adhesive improver for carbon materials and composite materials using it - Google Patents
Adhesive improver for carbon materials and composite materials using it Download PDFInfo
- Publication number
- JP6805415B2 JP6805415B2 JP2016158207A JP2016158207A JP6805415B2 JP 6805415 B2 JP6805415 B2 JP 6805415B2 JP 2016158207 A JP2016158207 A JP 2016158207A JP 2016158207 A JP2016158207 A JP 2016158207A JP 6805415 B2 JP6805415 B2 JP 6805415B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- carbon material
- modified
- copolymer
- dispersion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003575 carbonaceous material Substances 0.000 title claims description 230
- 239000002131 composite material Substances 0.000 title claims description 91
- 239000000853 adhesive Substances 0.000 title claims description 10
- 230000001070 adhesive effect Effects 0.000 title claims description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 150
- 229910052799 carbon Inorganic materials 0.000 claims description 91
- 229920001577 copolymer Polymers 0.000 claims description 87
- 150000001721 carbon Chemical class 0.000 claims description 72
- 239000002041 carbon nanotube Substances 0.000 claims description 47
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 45
- 239000000178 monomer Substances 0.000 claims description 45
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 42
- 239000004917 carbon fiber Substances 0.000 claims description 42
- 229920005992 thermoplastic resin Polymers 0.000 claims description 34
- 239000011343 solid material Substances 0.000 claims description 31
- 239000000463 material Substances 0.000 claims description 29
- 239000007788 liquid Substances 0.000 claims description 28
- 125000003504 2-oxazolinyl group Chemical group O1C(=NCC1)* 0.000 claims description 24
- 238000004519 manufacturing process Methods 0.000 claims description 23
- 238000010438 heat treatment Methods 0.000 claims description 22
- 239000000126 substance Substances 0.000 claims description 22
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 13
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 13
- 125000000524 functional group Chemical group 0.000 claims description 12
- 239000003795 chemical substances by application Substances 0.000 claims description 11
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 10
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 claims description 9
- 230000001737 promoting effect Effects 0.000 claims description 8
- 229920002554 vinyl polymer Polymers 0.000 claims description 8
- 125000003396 thiol group Chemical group [H]S* 0.000 claims description 5
- 125000004018 acid anhydride group Chemical group 0.000 claims description 4
- 125000003368 amide group Chemical group 0.000 claims description 3
- 125000003700 epoxy group Chemical group 0.000 claims description 3
- 150000001412 amines Chemical class 0.000 claims 1
- 239000006185 dispersion Substances 0.000 description 99
- 229920005989 resin Polymers 0.000 description 40
- 239000011347 resin Substances 0.000 description 40
- 238000000034 method Methods 0.000 description 39
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 35
- 230000000052 comparative effect Effects 0.000 description 33
- 239000007787 solid Substances 0.000 description 30
- 239000002270 dispersing agent Substances 0.000 description 25
- 238000004898 kneading Methods 0.000 description 20
- 239000000203 mixture Substances 0.000 description 20
- 230000000694 effects Effects 0.000 description 18
- IMSODMZESSGVBE-UHFFFAOYSA-N 2-Oxazoline Chemical compound C1CN=CO1 IMSODMZESSGVBE-UHFFFAOYSA-N 0.000 description 17
- 239000002904 solvent Substances 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 14
- 235000019441 ethanol Nutrition 0.000 description 14
- 229920000642 polymer Polymers 0.000 description 13
- -1 polyethylene Polymers 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 239000004743 Polypropylene Substances 0.000 description 11
- 239000011324 bead Substances 0.000 description 11
- 239000011259 mixed solution Substances 0.000 description 11
- 229920001155 polypropylene Polymers 0.000 description 11
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 10
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 9
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 8
- 239000003960 organic solvent Substances 0.000 description 8
- 230000009257 reactivity Effects 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- 239000000835 fiber Substances 0.000 description 7
- 239000000945 filler Substances 0.000 description 7
- 229920001519 homopolymer Polymers 0.000 description 7
- 239000000155 melt Substances 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 7
- BQBSIHIZDSHADD-UHFFFAOYSA-N 2-ethenyl-4,5-dihydro-1,3-oxazole Chemical compound C=CC1=NCCO1 BQBSIHIZDSHADD-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- 239000002134 carbon nanofiber Substances 0.000 description 6
- 238000013329 compounding Methods 0.000 description 6
- 238000006116 polymerization reaction Methods 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 239000000470 constituent Substances 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 5
- 239000012778 molding material Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000011342 resin composition Substances 0.000 description 5
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 description 4
- 229920002292 Nylon 6 Polymers 0.000 description 4
- 229920002302 Nylon 6,6 Polymers 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 4
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 4
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 4
- 125000003277 amino group Chemical group 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 238000007334 copolymerization reaction Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 229910021392 nanocarbon Inorganic materials 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 229920002239 polyacrylonitrile Polymers 0.000 description 4
- 229920001707 polybutylene terephthalate Polymers 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 229920000306 polymethylpentene Polymers 0.000 description 4
- 239000011116 polymethylpentene Substances 0.000 description 4
- 229920000098 polyolefin Polymers 0.000 description 4
- 229920005672 polyolefin resin Polymers 0.000 description 4
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 4
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 4
- 238000002411 thermogravimetry Methods 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- JWYVGKFDLWWQJX-UHFFFAOYSA-N 1-ethenylazepan-2-one Chemical compound C=CN1CCCCCC1=O JWYVGKFDLWWQJX-UHFFFAOYSA-N 0.000 description 3
- XLPJNCYCZORXHG-UHFFFAOYSA-N 1-morpholin-4-ylprop-2-en-1-one Chemical compound C=CC(=O)N1CCOCC1 XLPJNCYCZORXHG-UHFFFAOYSA-N 0.000 description 3
- HMEVYZZCEGUONQ-UHFFFAOYSA-N 2-ethenyl-5-methyl-4,5-dihydro-1,3-oxazole Chemical compound CC1CN=C(C=C)O1 HMEVYZZCEGUONQ-UHFFFAOYSA-N 0.000 description 3
- LPIQIQPLUVLISR-UHFFFAOYSA-N 2-prop-1-en-2-yl-4,5-dihydro-1,3-oxazole Chemical compound CC(=C)C1=NCCO1 LPIQIQPLUVLISR-UHFFFAOYSA-N 0.000 description 3
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 3
- AFLLJVZHYVUNNX-STQMWFEESA-N CPC-1 Natural products CO[C@]12CCN(C)[C@H]1N(C)c1ccccc21 AFLLJVZHYVUNNX-STQMWFEESA-N 0.000 description 3
- 101100007537 Cryphonectria parasitica CPC-1 gene Proteins 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 3
- 239000004594 Masterbatch (MB) Substances 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 229910021389 graphene Inorganic materials 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 239000003505 polymerization initiator Substances 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- GNWBLLYJQXKPIP-ZOGIJGBBSA-N (1s,3as,3bs,5ar,9ar,9bs,11as)-n,n-diethyl-6,9a,11a-trimethyl-7-oxo-2,3,3a,3b,4,5,5a,8,9,9b,10,11-dodecahydro-1h-indeno[5,4-f]quinoline-1-carboxamide Chemical compound CN([C@@H]1CC2)C(=O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H](C(=O)N(CC)CC)[C@@]2(C)CC1 GNWBLLYJQXKPIP-ZOGIJGBBSA-N 0.000 description 2
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical compound C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 description 2
- PBGPBHYPCGDFEZ-UHFFFAOYSA-N 1-ethenylpiperidin-2-one Chemical compound C=CN1CCCCC1=O PBGPBHYPCGDFEZ-UHFFFAOYSA-N 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- SDEXZERWEBDHSL-UHFFFAOYSA-N 2-ethenyl-4,4-dimethyl-5h-1,3-oxazole Chemical compound CC1(C)COC(C=C)=N1 SDEXZERWEBDHSL-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 2
- 101000720524 Gordonia sp. (strain TY-5) Acetone monooxygenase (methyl acetate-forming) Proteins 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 2
- 229910003472 fullerene Inorganic materials 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000005022 packaging material Substances 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000010526 radical polymerization reaction Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 125000001989 1,3-phenylene group Chemical group [H]C1=C([H])C([*:1])=C([H])C([*:2])=C1[H] 0.000 description 1
- HXQKJEIGFRLGIH-UHFFFAOYSA-N 1-ethenyl-2h-pyrazine Chemical compound C=CN1CC=NC=C1 HXQKJEIGFRLGIH-UHFFFAOYSA-N 0.000 description 1
- OZFIGURLAJSLIR-UHFFFAOYSA-N 1-ethenyl-2h-pyridine Chemical compound C=CN1CC=CC=C1 OZFIGURLAJSLIR-UHFFFAOYSA-N 0.000 description 1
- LNKDTZRRFHHCCV-UHFFFAOYSA-N 1-ethenyl-2h-pyrimidine Chemical compound C=CN1CN=CC=C1 LNKDTZRRFHHCCV-UHFFFAOYSA-N 0.000 description 1
- DCRYNQTXGUTACA-UHFFFAOYSA-N 1-ethenylpiperazine Chemical compound C=CN1CCNCC1 DCRYNQTXGUTACA-UHFFFAOYSA-N 0.000 description 1
- NWHSSMRWECHZEP-UHFFFAOYSA-N 1-ethenylpyrazole Chemical compound C=CN1C=CC=N1 NWHSSMRWECHZEP-UHFFFAOYSA-N 0.000 description 1
- CTXUTPWZJZHRJC-UHFFFAOYSA-N 1-ethenylpyrrole Chemical compound C=CN1C=CC=C1 CTXUTPWZJZHRJC-UHFFFAOYSA-N 0.000 description 1
- RESPXSHDJQUNTN-UHFFFAOYSA-N 1-piperidin-1-ylprop-2-en-1-one Chemical compound C=CC(=O)N1CCCCC1 RESPXSHDJQUNTN-UHFFFAOYSA-N 0.000 description 1
- BFYSJBXFEVRVII-UHFFFAOYSA-N 1-prop-1-enylpyrrolidin-2-one Chemical compound CC=CN1CCCC1=O BFYSJBXFEVRVII-UHFFFAOYSA-N 0.000 description 1
- DGPVNNMFVYYVDF-UHFFFAOYSA-N 1-prop-2-enoylpyrrolidin-2-one Chemical compound C=CC(=O)N1CCCC1=O DGPVNNMFVYYVDF-UHFFFAOYSA-N 0.000 description 1
- WLPAQAXAZQUXBG-UHFFFAOYSA-N 1-pyrrolidin-1-ylprop-2-en-1-one Chemical compound C=CC(=O)N1CCCC1 WLPAQAXAZQUXBG-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- CQJLZFWJGKQGRU-UHFFFAOYSA-N 2-ethenyl-1h-pyridazine Chemical compound C=CN1NC=CC=C1 CQJLZFWJGKQGRU-UHFFFAOYSA-N 0.000 description 1
- NFHVQKQXNHFCKH-UHFFFAOYSA-N 2-ethenyl-3h-1,2-oxazole Chemical compound C=CN1CC=CO1 NFHVQKQXNHFCKH-UHFFFAOYSA-N 0.000 description 1
- ROYCQGNBELASSK-UHFFFAOYSA-N 2-ethenyl-4,4-diethyl-5H-1,3-oxazole Chemical compound C(=C)C=1OCC(N=1)(CC)CC ROYCQGNBELASSK-UHFFFAOYSA-N 0.000 description 1
- LPGGLNVTVSLHKS-UHFFFAOYSA-N 2-ethenyl-4,5-diethyl-4,5-dihydro-1,3-oxazole Chemical compound C(C)C1N=C(OC1CC)C=C LPGGLNVTVSLHKS-UHFFFAOYSA-N 0.000 description 1
- LYMUNJANKQMSCB-UHFFFAOYSA-N 2-ethenyl-4,5-dimethyl-4,5-dihydro-1,3-oxazole Chemical compound CC1OC(C=C)=NC1C LYMUNJANKQMSCB-UHFFFAOYSA-N 0.000 description 1
- PBYIFPWEHGSUEY-UHFFFAOYSA-N 2-ethenyl-4-methyl-4,5-dihydro-1,3-oxazole Chemical compound CC1COC(C=C)=N1 PBYIFPWEHGSUEY-UHFFFAOYSA-N 0.000 description 1
- HFRTWUSGUFBWTL-UHFFFAOYSA-N 2-ethenyl-5-ethyl-4,5-dihydro-1,3-oxazole Chemical compound CCC1CN=C(C=C)O1 HFRTWUSGUFBWTL-UHFFFAOYSA-N 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- NIAXWFTYAJQENP-UHFFFAOYSA-N 3-ethenyl-2h-1,3-oxazole Chemical compound C=CN1COC=C1 NIAXWFTYAJQENP-UHFFFAOYSA-N 0.000 description 1
- LBVMWHCOFMFPEG-UHFFFAOYSA-N 3-methoxy-n,n-dimethylpropanamide Chemical compound COCCC(=O)N(C)C LBVMWHCOFMFPEG-UHFFFAOYSA-N 0.000 description 1
- UZAAWTQDNCMMEX-UHFFFAOYSA-N 4,4-dimethyl-2-prop-1-en-2-yl-5h-1,3-oxazole Chemical compound CC(=C)C1=NC(C)(C)CO1 UZAAWTQDNCMMEX-UHFFFAOYSA-N 0.000 description 1
- ZINUUSAHHOWUPX-UHFFFAOYSA-N 4,5-diethyl-2-prop-1-en-2-yl-4,5-dihydro-1,3-oxazole Chemical compound C(=C)(C)C=1OC(C(N=1)CC)CC ZINUUSAHHOWUPX-UHFFFAOYSA-N 0.000 description 1
- WEQPBCSPRXFQQS-UHFFFAOYSA-N 4,5-dihydro-1,2-oxazole Chemical compound C1CC=NO1 WEQPBCSPRXFQQS-UHFFFAOYSA-N 0.000 description 1
- WYYZXZICJOSDSB-UHFFFAOYSA-N 4,5-dimethyl-2-prop-1-en-2-yl-4,5-dihydro-1,3-oxazole Chemical compound CC1OC(C(C)=C)=NC1C WYYZXZICJOSDSB-UHFFFAOYSA-N 0.000 description 1
- ZMALNMQOXQXZRO-UHFFFAOYSA-N 4-ethenylmorpholin-3-one Chemical compound C=CN1CCOCC1=O ZMALNMQOXQXZRO-UHFFFAOYSA-N 0.000 description 1
- CFZDMXAOSDDDRT-UHFFFAOYSA-N 4-ethenylmorpholine Chemical compound C=CN1CCOCC1 CFZDMXAOSDDDRT-UHFFFAOYSA-N 0.000 description 1
- HDYTUPZMASQMOH-UHFFFAOYSA-N 4-ethenylmorpholine-3,5-dione Chemical compound C=CN1C(=O)COCC1=O HDYTUPZMASQMOH-UHFFFAOYSA-N 0.000 description 1
- PTTDUFDXZBSJTM-UHFFFAOYSA-N 4-ethyl-2-prop-1-en-2-yl-4,5-dihydro-1,3-oxazole Chemical compound CCC1COC(C(C)=C)=N1 PTTDUFDXZBSJTM-UHFFFAOYSA-N 0.000 description 1
- MBLQIMSKMPEILU-UHFFFAOYSA-N 4-methyl-2-prop-1-en-2-yl-4,5-dihydro-1,3-oxazole Chemical compound CC1COC(C(C)=C)=N1 MBLQIMSKMPEILU-UHFFFAOYSA-N 0.000 description 1
- IRHWINGBSHBXAD-UHFFFAOYSA-N 5-ethyl-2-prop-1-en-2-yl-4,5-dihydro-1,3-oxazole Chemical compound CCC1CN=C(C(C)=C)O1 IRHWINGBSHBXAD-UHFFFAOYSA-N 0.000 description 1
- OEIDKVHIXLGFQK-UHFFFAOYSA-N 5-methyl-2-prop-1-en-2-yl-4,5-dihydro-1,3-oxazole Chemical compound CC1CN=C(C(C)=C)O1 OEIDKVHIXLGFQK-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- FCFWXAZTBBITPF-UHFFFAOYSA-N COCCCCCC(=O)N(C)C Chemical compound COCCCCCC(=O)N(C)C FCFWXAZTBBITPF-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 244000178870 Lavandula angustifolia Species 0.000 description 1
- 235000010663 Lavandula angustifolia Nutrition 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- OHLUUHNLEMFGTQ-UHFFFAOYSA-N N-methylacetamide Chemical compound CNC(C)=O OHLUUHNLEMFGTQ-UHFFFAOYSA-N 0.000 description 1
- 229920002600 TPX™ Polymers 0.000 description 1
- 229920005528 TPX™ MX002 Polymers 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000012986 chain transfer agent Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000001102 lavandula vera Substances 0.000 description 1
- 235000018219 lavender Nutrition 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000012567 medical material Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- OVHHHVAVHBHXAK-UHFFFAOYSA-N n,n-diethylprop-2-enamide Chemical compound CCN(CC)C(=O)C=C OVHHHVAVHBHXAK-UHFFFAOYSA-N 0.000 description 1
- 229940088644 n,n-dimethylacrylamide Drugs 0.000 description 1
- YLGYACDQVQQZSW-UHFFFAOYSA-N n,n-dimethylprop-2-enamide Chemical compound CN(C)C(=O)C=C YLGYACDQVQQZSW-UHFFFAOYSA-N 0.000 description 1
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000000088 plastic resin Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 229940090181 propyl acetate Drugs 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical group O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002453 shampoo Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
Landscapes
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Carbon And Carbon Compounds (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
Description
本発明は、炭素材料用分散促進、接着性向上剤、接着性向上剤に修飾された表面修飾炭素材料、およびこれらを用いた炭素複合材料に関する。 The present invention relates to a dispersion promoting agent for carbon materials, an adhesiveness improver, a surface-modified carbon material modified with an adhesiveness improver, and a carbon composite material using these.
炭素材料は一般に炭素原子から構成される材料をいい、炭素原子の結合様式および集合様式により様々な形態や機能を示し、中でも、黒鉛、フラーレン、カーボンナノチューブ、グラフェン、炭素繊維(カーボンファイバー)、活性炭、ダイヤモンドライクカーボン、カーボンブラックなどが古くから注目され、補強材料(航空機、自動車、スポーツ用品、タイヤ)、触媒担体、電極材(乾電池、燃料電池)、分子篩膜、浄水用吸着材、消臭材、化粧品、シャンプー、フェイスマスク、表面コート、電磁波遮蔽材料、放熱材料、医薬品(吸着剤)として幅広く応用されている。 A carbon material generally refers to a material composed of carbon atoms, and exhibits various forms and functions depending on the bonding mode and assembly mode of carbon atoms. Among them, graphite, fullerene, carbon nanotube, graphene, carbon fiber (carbon fiber), activated carbon , Diamond-like carbon, carbon black, etc. have been attracting attention for a long time, reinforcing materials (aircraft, automobiles, sporting goods, tires), catalyst carriers, electrode materials (dry batteries, fuel cells), molecular sieve membranes, water purification adsorbents, deodorants. , Cosmetics, shampoos, face masks, surface coats, electromagnetic wave shielding materials, heat dissipation materials, pharmaceuticals (adsorbents).
炭素材料は炭素原子の6 員環構造からなり、極性を持たないため、汎用材料に対する濡れ性や分散性が悪く、マトリックス樹脂との接着性が不十分のため、従来から様々な物理的、化学的方法により表面親水化処理などを行ってきた。例えば、炭素繊維において、表面にアミノ基を導入することによりエポキシ樹脂との接着性が向上され(非特許文献1)、また、表面にサイジング剤としてエポキシ樹脂と1,3−フェニレンビス−2−オキサゾリンを付着させることにより毛羽立ちを防止できたことが報告された(特許文献1)。黒鉛粒子において、直接フッ素処理により表面にはイオン的な炭素とフッ素の結合が形成され、水に対する分散安定性が著しく向上された(非特許文献2)。また、ダイヤモンドの粉末、微細粒子を用いて、高温における強酸処理や過酸化水素存在下の紫外線照射などにより、表面に水酸基などの含酸素官能基が導入され、水、アルコールなどの汎用溶媒中に安定に分散できるダイヤモンドの製造方法が開示された(特許文献2、3)。 Carbon materials consist of a 6-membered ring structure of carbon atoms and do not have polarity, so they have poor wettability and dispersibility with general-purpose materials, and have insufficient adhesion to matrix resins, so they have been used in various physical and chemical fields. Surface hydrophilization treatment has been performed by a specific method. For example, in carbon fiber, the adhesiveness with an epoxy resin is improved by introducing an amino group on the surface (Non-Patent Document 1), and the epoxy resin and 1,3-phenylene bis-2- as a sizing agent on the surface. It was reported that fluffing could be prevented by adhering oxazoline (Patent Document 1). In graphite particles, ionic carbon-fluorine bonds were formed on the surface by direct fluorine treatment, and the dispersion stability in water was significantly improved (Non-Patent Document 2). In addition, using diamond powder and fine particles, oxygen-containing functional groups such as hydroxyl groups are introduced on the surface by strong acid treatment at high temperature or irradiation with ultraviolet rays in the presence of hydrogen peroxide, and the oxygen-containing functional groups such as hydroxyl groups are introduced into general-purpose solvents such as water and alcohol. A method for producing diamond that can be stably dispersed has been disclosed (Patent Documents 2 and 3).
また、カーボンナノチューブ(CNT)は、直径数〜数十nm、長さ数〜数百μmの繊維状構造を有し、代表的なナノサイズ炭素材料として近年盛んに研究されている。CNTのアスペクトが非常に大きいため、優れた電気的、熱的、機械的特性を示す反面、非常に絡まりやすく、汎用樹脂系や金属系に対しては勿論のこと、同類の炭素系マトリックスに対しても、濡れ性、界面密着性や接着性などが悪く、CNTの特性を活かした高性能な複合材料は未だに得られていない。 Further, carbon nanotubes (CNTs) have a fibrous structure having a diameter of several to several tens of nm and a length of several to several hundred μm, and have been actively studied in recent years as a typical nano-sized carbon material. Since the aspect of CNT is very large, it shows excellent electrical, thermal, and mechanical properties, but it is very easy to get entangled, and it is not only for general-purpose resin-based and metal-based materials, but also for similar carbon-based matrices. However, the wettability, interfacial adhesion, adhesiveness, etc. are poor, and a high-performance composite material utilizing the characteristics of CNT has not yet been obtained.
高機能性複合材料を開発するため、CNTの表面改質について、幾つかの技術が開示されている。非特許文献3では、真空高温(1400℃)状態でケイ素を昇華、CNT表面に蒸着させ、高温反応でSiC層をCNT表面に形成し、濡れ性の改善によって母材となる合金密着させる方法を提案した。また、非特許文献4では、CNTに対して熱処理(2000℃)してから、過酸化水素水と紫外線を用いて表面処理を行い、その後ポリカーボネートを母材とした樹脂複合材料を作製し、樹脂の機械的強度を向上させる方法を提案した。しかし、これらのCNT表面改質方法は真空や超高温条件下で実施するため、特殊な装置が必要となり、設備の面からもコストの面からも、工業的な製造方法であるとはいえない。 Several techniques have been disclosed for surface modification of CNTs in order to develop highly functional composite materials. Non-Patent Document 3 describes a method in which silicon is sublimated in a vacuum high temperature (1400 ° C.) state, vapor-deposited on the CNT surface, a SiC layer is formed on the CNT surface by a high temperature reaction, and an alloy serving as a base material is adhered by improving wettability. Proposed. Further, in Non-Patent Document 4, after heat-treating CNT (2000 ° C.), surface treatment is performed using hydrogen peroxide solution and ultraviolet rays, and then a resin composite material using polycarbonate as a base material is prepared to prepare a resin. We proposed a method to improve the mechanical strength of the. However, since these CNT surface modification methods are carried out under vacuum or ultra-high temperature conditions, special equipment is required, and it cannot be said that they are industrial manufacturing methods in terms of equipment and cost. ..
一方、CNTを特に処理せず、CNTと複合する樹脂を特別仕様にする技術も提案された。特許文献4では、第1工程において、オキサゾリン基を側鎖に有する重合体(A)、熱可塑性樹脂(B)と変性熱可塑性樹脂(C)とを、二軸押出機により180℃で10分間溶融混練させ、フィラー分散用樹脂組成物(D)を得た。第2工程において、フィラーであるCNT(E)と第一工程で得た(D)とを、再度二軸押出機により180℃で10分間の溶融混練を行い、導電性を示す熱可塑性樹脂の複合体を取得したことが開示された。この方法は特定の熱可塑性樹脂に有効であるが、高融点や熱分解性熱可塑性樹脂やオキサゾリン基を側鎖に有する重合体又は変性熱可塑性樹脂と相溶しない熱可塑性樹脂、熱硬化性樹脂、金属系材料、炭素材料などにおいて、溶融混練ができないので、フィラー分散用樹脂組成物を取得できず、CNTとの複合化は期待されるほどにはいたっていない。 On the other hand, a technique has also been proposed in which the resin composited with CNT is made into a special specification without treating CNT in particular. In Patent Document 4, in the first step, the polymer (A) having an oxazoline group in the side chain, the thermoplastic resin (B) and the modified thermoplastic resin (C) are mixed by a twin-screw extruder at 180 ° C. for 10 minutes. The mixture was melt-kneaded to obtain a filler dispersion resin composition (D). In the second step, the filler CNT (E) and the filler (D) obtained in the first step are melt-kneaded again at 180 ° C. for 10 minutes with a twin-screw extruder to obtain a thermoplastic resin exhibiting conductivity. It was disclosed that the complex was acquired. Although this method is effective for a specific thermoplastic resin, it is a thermoplastic resin or thermosetting resin that is incompatible with a polymer having a high melting point or a thermally decomposable thermoplastic resin or an oxazoline group in a side chain, or a modified thermoplastic resin. , Metal-based materials, carbon materials, etc. cannot be melt-kneaded, so that a resin composition for filler dispersion cannot be obtained, and compounding with CNT is not as expected.
本発明は、特殊な分散や表面処理の技術、設備を要さず、炭素材料本来の特性を損なうことがなく、簡便な方法で各種炭素材料の表面に親水性、接着性を付与できる分散促進剤、接着性向上剤を提供し、また当該接着性向上剤を用いて表面が改質された炭素材料(表面修飾炭素材料)を提供することを課題とする。当該接着性向上剤及び表面修飾炭素材料は、工業的手段により高収率で製造することができ、またこれらを用いて、各種固形材料と反応させることにより特異性能を有する好適な炭素複合材料を供することを課題とする。 The present invention does not require special dispersion or surface treatment technology or equipment, does not impair the original characteristics of the carbon material, and promotes dispersion that can impart hydrophilicity and adhesiveness to the surface of various carbon materials by a simple method. It is an object of the present invention to provide an agent and an adhesiveness improver, and to provide a carbon material (surface modified carbon material) whose surface is modified by using the adhesiveness improver. The adhesiveness improver and the surface-modified carbon material can be produced in high yield by industrial means, and by reacting with various solid materials, a suitable carbon composite material having specific performance can be obtained. The task is to provide.
本発明者らは、これらの課題を解決するために鋭意検討を行った結果、2−オキサゾリン系モノマー(a)と含窒素複素環系モノマー(b)を構成単位として含有する共重合体が炭素材料の他種材料への分散促進や、炭素材料の表面接着性向上に特異な性能を示すことを見出した。また、当該共重合体からなる接着性向上剤を用いて各種炭素材料と反応させることによって、接着性の付与された表面修飾炭素材料を取得することができた。さらに、接着性向上剤と表面修飾炭素材料を用いて汎用の炭素材料や熱可塑性樹脂などと反応させ、機械的特性に優れ、良好な耐熱性、耐摩耗性、放熱性と導電性を有する炭素複合材料を得ることができ、上記課題を解決し、本発明に到った。 As a result of diligent studies to solve these problems, the present inventors have found that a copolymer containing a 2-oxazoline-based monomer (a) and a nitrogen-containing heterocyclic monomer (b) as constituent units is carbon. It has been found that it exhibits peculiar performance in promoting dispersion of materials in other materials and improving surface adhesiveness of carbon materials. Further, by reacting with various carbon materials using the adhesiveness improving agent composed of the copolymer, it was possible to obtain a surface-modified carbon material having imparted adhesiveness. Furthermore, carbon that has excellent mechanical properties, good heat resistance, abrasion resistance, heat dissipation and conductivity by reacting with general-purpose carbon materials and thermoplastic resins using an adhesiveness improver and a surface-modified carbon material. A composite material could be obtained, the above problems were solved, and the present invention was reached.
すなわち、本発明は、
(1)2−オキサゾリン系モノマー(a)1〜90モル%と、含窒素複素環系モノマー(b)10〜99モル%を構成単位として含有する共重合体(A)、
(2)含窒素複素環系モノマー(b)はビニルピロリドンであることを特徴とする前記(1)に記載の共重合体(A)、
(3)前記(1)又は(2)に記載の共重合体(A)を用いる炭素材料用分散促進剤、
(4)炭素材料はカーボンナノチューブである前記(3)に記載の炭素材料用分散促進剤
(5)前記(1)又は(2)に記載の共重合体(A)を用いる炭素材料用接着性向上剤
(6)前記(5)に記載の接着性向上剤により表面修飾されたことを特徴とする表面修飾炭素材料、
(7)表面に接着性向上剤を0.1〜100mg/m2含有することを特徴とする前記(6)に記載の表面修飾炭素材料、
(8)前記(5)に記載の接着性向上剤を液体媒体中で炭素材料の表面に接触させながら加熱することを特徴とする表面修飾炭素材料の製造方法、
(9)前記(5)に記載の接着性向上剤を液体媒体中で炭素材料の表面に接触させた後加熱することを特徴とする表面修飾炭素材料の製造方法、
(10)前記(6)又は(7)に記載の表面修飾炭素材料と固形材料からなる炭素複合材料であって、かつ、固形材料にはカルボキシル基、フェノール性水酸基、酸無水物官能基、エポキシ基、チオール基、アミン基とアミド基からなる群から選べる1種以上の官能基を有し、これらの官能基のオキサゾリン基と反応してなる化学結合を表面修飾炭素材料と固形材料の間に存在することを特徴とする炭素複合材料、
(11)固形材料は炭素材料であることを特徴とする前記(10)に記載の炭素複合材料、
(12)固形材料は熱可塑性樹脂であることを特徴とする前記(10)に記載の炭素複合材料
(13)固形材料は炭素材料及び熱可塑性樹脂であることを特徴とする前記(10)に記載の炭素複合材料
を提供するものである。
That is, the present invention
(1) A copolymer (A) containing 1 to 90 mol% of a 2-oxazoline-based monomer (a) and 10 to 99 mol% of a nitrogen-containing heterocyclic monomer (b) as constituent units.
(2) The copolymer (A) according to (1) above, wherein the nitrogen-containing heterocyclic monomer (b) is vinylpyrrolidone.
(3) A dispersion accelerator for carbon materials using the copolymer (A) according to the above (1) or (2).
(4) The carbon material is a carbon nanotube The dispersion accelerator for a carbon material according to the above (3) (5) Adhesiveness for a carbon material using the copolymer (A) according to the above (1) or (2). Improver (6) A surface-modified carbon material, which is surface-modified with the adhesiveness improver according to (5) above.
(7) The surface-modified carbon material according to (6) above, wherein the surface contains 0.1 to 100 mg / m 2 of an adhesiveness improver.
(8) A method for producing a surface-modified carbon material, which comprises heating the adhesive improver according to the above (5) in a liquid medium while contacting the surface of the carbon material.
(9) A method for producing a surface-modified carbon material, which comprises bringing the adhesiveness improver according to (5) into contact with the surface of the carbon material in a liquid medium and then heating the material.
(10) A carbon composite material composed of the surface-modified carbon material and the solid material according to the above (6) or (7), and the solid material includes a carboxyl group, a phenolic hydroxyl group, an acid anhydride functional group, and an epoxy. It has one or more functional groups that can be selected from the group consisting of a group, a thiol group, an amine group and an amide group, and a chemical bond formed by reacting with the oxazoline group of these functional groups is formed between the surface-modified carbon material and the solid material. Carbon composite material, characterized by being present,
(11) The carbon composite material according to (10) above, wherein the solid material is a carbon material.
(12) The carbon composite material according to (10) above, wherein the solid material is a thermoplastic resin. (13) The solid material is a carbon material and a thermoplastic resin. It provides the described carbon composite material.
本発明の共重合体(A)は、2−オキサゾリン系モノマー(a)1〜90モル%と含窒素複素環系モノマー(b)10〜99モル%を構成単位として含有する。(a)と(b)の含有量はこの範囲内であれば、得られる共重合体(A)は、2−オキサゾリン系モノマーのホモポリマー、含窒素複素環系モノマーのホモポリマー、およびこれらのホモポリマーの混合物(ブレンドポリマー)に比べ、炭素材料の分散促進剤としても接着性向上剤としても、特異的な効果が確認された。ポリマーの組成や構造は、当該特異効果との因果関係について、不明であるが、本発明の(a)と(b)が部分的にブロック状に配列された方がより効果が高いと発明者らが推測している。 The copolymer (A) of the present invention contains 1 to 90 mol% of the 2-oxazoline-based monomer (a) and 10 to 99 mol% of the nitrogen-containing heterocyclic monomer (b) as constituent units. If the contents of (a) and (b) are within this range, the obtained copolymer (A) is a homopolymer of a 2-oxazoline-based monomer, a homopolymer of a nitrogen-containing heterocyclic monomer, and these. Compared with a mixture of homopolymers (blended polymer), a specific effect was confirmed as both a dispersion accelerator for carbon materials and an adhesiveness improver. The composition and structure of the polymer are unclear as to the causal relationship with the specific effect, but the inventor said that it is more effective if (a) and (b) of the present invention are partially arranged in a block shape. Are guessing.
本発明の共重合体(A)は、炭素材料と親和性の高い含窒素複素環及び、炭素材料表面のカルボン酸又はフェノール性水酸基と反応性の高いオキサゾリン基を有し、CNT等アスペクトの大きい炭素材料においても、水や有機溶媒、可塑性樹脂中に容易に分散でき、かつ、再凝集が抑制され、安定的な分散状態を保つ事ができる。 The copolymer (A) of the present invention has a nitrogen-containing heterocycle having a high affinity with a carbon material and an oxazoline group having a high reactivity with a carboxylic acid or a phenolic hydroxyl group on the surface of the carbon material, and has a large aspect such as CNT. Even in a carbon material, it can be easily dispersed in water, an organic solvent, or a plastic resin, reaggregation is suppressed, and a stable dispersed state can be maintained.
本発明の共重合体(A)を接着性向上剤として用いて、各種炭素材料と温和な条件下で反応させることによって、炭素材料の表面に接着性向上剤が均一に覆われ、かつ、脱離しない表面修飾炭素材料を工業的な手法で簡便に製造することができる。また、得られた表面修飾炭素材料において、表面に未反応のオキサゾリン基を有するため、多種の固形材料、例えば、同種又は異種の炭素材料、オキサゾリン基と反応できるカルボキシル基、フェノール性水酸基、酸無水物官能基、エポキシ基、チオール基、アミン基とアミドからなる群から選べる1種以上の官能基を有する固形の熱可塑性樹脂と反応させることにより、炭素材料と樹脂材料の特性を融合した特異性能を有する炭素複合材料を容易に取得することができる。 By using the copolymer (A) of the present invention as an adhesiveness improver and reacting it with various carbon materials under mild conditions, the surface of the carbon material is uniformly covered with the adhesiveness improver and removed. A surface-modified carbon material that does not separate can be easily produced by an industrial method. Further, since the obtained surface-modified carbon material has an unreacted oxazoline group on the surface, various solid materials such as the same or different carbon materials, a carboxyl group capable of reacting with an oxazoline group, a phenolic hydroxyl group, and an acid anhydride are used. Unique performance that combines the characteristics of carbon material and resin material by reacting with a solid thermoplastic resin having one or more functional groups that can be selected from the group consisting of a physical functional group, an epoxy group, a thiol group, an amine group and an amide. A carbon composite material having the above can be easily obtained.
以下、本発明を詳細に説明する。
本発明の共重合体(A)は、2−オキサゾリン系モノマー(a)と含窒素複素環系モノマー(b)を構成単位として含有することが特徴である。含窒素複素環は炭素材料に高い親和性を有するため、炭素材料の有機系や無機系の液体又は固体の他種材料中への分散を促進する効果を示し、また、オキサゾリン基は炭素材料表面のカルボン酸又はフェノール性水酸基と高い反応性を有するため、一旦分散された炭素材料の再凝集を防止できるため、安定的な分散効果を提供できる。共重合体(A)は、(a)と(b)を特定の配合比で含有すること、即ち、(a)は1〜90モル%、(b)は10〜99モル%を含有することが好ましい。(a)の含有量は1モル%未満であれば、CNT等アスペクトが非常に大きい炭素材料において、分散後の再凝集が十分に抑制できない恐れがあり、また、接着性向上剤に用いる場合は、炭素材料の表面を全面的にかつ均一に覆うことが困難であるため、十分な接着性向上効果が得られない恐れがある。一方、(a)の含有量は90モル%を超える場合、(b)の含有量は相対的低減し、分散し切れない部分が残存する可能性があった。(b)の含有量は10モル%以上であれば、各種炭素材料においても良好な分散状態が形成され、また(b)の含有量は99モル%を超えると、反応性オキサゾリン基の含有量が十分に確保できず、分散安定性や接着性向上効果が満足できなくなる問題がある。本発明のコポリマー、及びそれから得られる分散促進剤と接着性向上剤は、(a)のオキサゾリン基の反応性による再凝集抑制効果、接着性向上効果と、(b)の含窒素複素環の炭素材料に対する高親和性及び環状構造による立体障害とのバランスが取れているため、優れた分散性、分散安定性及び接着性向上効果が最大限に発揮できていると考えられる。また、共重合体(A)が、炭素材料の表面に均一に配置するだけではなく、化学反応により形成される化学結合を介して炭素材料と強く接合し、炭素材料の表面に親水性と反応性を同時に付与されているため、炭素材料の表面に容易に付着し、かつ、半永久的に脱離しないことが、本発明の接着性向上剤として提供できる最も特異的な効果である。
Hereinafter, the present invention will be described in detail.
The copolymer (A) of the present invention is characterized by containing a 2-oxazoline-based monomer (a) and a nitrogen-containing heterocyclic monomer (b) as constituent units. Since the nitrogen-containing heterocycle has a high affinity for the carbon material, it has an effect of promoting the dispersion of the carbon material in other kinds of organic or inorganic liquid or solid materials, and the oxazoline group is on the surface of the carbon material. Since it has high reactivity with the carboxylic acid or phenolic hydroxyl group of the above, it is possible to prevent the reaggregation of the carbon material once dispersed, so that a stable dispersion effect can be provided. The copolymer (A) contains (a) and (b) in a specific compounding ratio, that is, (a) contains 1 to 90 mol% and (b) contains 10 to 99 mol%. Is preferable. If the content of (a) is less than 1 mol%, reaggregation after dispersion may not be sufficiently suppressed in a carbon material having a very large aspect such as CNT, and when it is used as an adhesive improver, it may not be sufficiently suppressed. Since it is difficult to cover the surface of the carbon material completely and uniformly, there is a possibility that a sufficient adhesiveness improving effect cannot be obtained. On the other hand, when the content of (a) exceeds 90 mol%, the content of (b) is relatively reduced, and there is a possibility that a portion that cannot be completely dispersed remains. If the content of (b) is 10 mol% or more, a good dispersed state is formed even in various carbon materials, and if the content of (b) exceeds 99 mol%, the content of the reactive oxazoline group is formed. However, there is a problem that the dispersion stability and the effect of improving the adhesiveness cannot be satisfied. The copolymer of the present invention, and the dispersion accelerator and the adhesiveness improver obtained from the copolymer have the effect of suppressing reaggregation and the effect of improving the adhesiveness due to the reactivity of the oxazoline group of (a) and the carbon of the nitrogen-containing heterocycle of (b). It is considered that excellent dispersibility, dispersion stability and adhesiveness improving effect can be maximized because the high affinity for the material and the steric hindrance due to the cyclic structure are well balanced. Further, the copolymer (A) is not only uniformly arranged on the surface of the carbon material, but also strongly bonded to the carbon material via a chemical bond formed by a chemical reaction, and reacts with hydrophilicity on the surface of the carbon material. Since the properties are simultaneously imparted, it is the most specific effect that can be provided as the adhesiveness improver of the present invention that it easily adheres to the surface of the carbon material and does not detach semipermanently.
2−オキサゾリン系モノマー(a)は、2−ビニル−2−オキサゾリン、4−メチル−2−ビニル−2−オキサゾリン、5−メチル−2−ビニル−2−オキサゾリン、4−エチル−2−ビニル−2−オキサゾリン、5−エチル−2−ビニル−2−オキサゾリン、4,4−ジメチル−2−ビニル−2−オキサゾリン、4,4−ジエチル−2−ビニル−2−オキサゾリン、4,5−ジメチル−2−ビニル−2−オキサゾリン、4,5−ジエチル−2−ビニル−2−オキサゾリン、2−イソプロペニル−2−オキサゾリン、4−メチル−2−イソプロペニル−2−オキサゾリン、5−メチル−2−イソプロペニル−2−オキサゾリン、4−エチル−2−イソプロペニル−2−オキサゾリン、5−エチル−2−イソプロペニル−2−オキサゾリン、4,4−ジメチル−2−イソプロペニル−2−オキサゾリン、4,4−ジエチル−2−イソプロペニル−2−オキサゾリン、4,5−ジメチル−2−イソプロペニル−2−オキサゾリン、4,5−ジエチル−2−イソプロペニル−2−オキサゾリンからなる群から選べる1種以上のモノマーである。また、これらの2−オキサゾリン系モノマーの中では、カルボキシル基、フェノール性水酸基、酸無水物基、チオール基などの官能基と高い反応性を有する2−ビニル−2−オキサゾリン、2−イソプロペニル−2−オキサゾリン、5−メチル−2−ビニル−2−オキサゾリン、4,4−ジメチル−2−ビニル−2−オキサゾリンが好ましく、さらに2−ビニル−2−オキサゾリンと2−イソプロペニル−2−オキサゾリンが最も好ましい。 The 2-oxazoline-based monomer (a) is 2-vinyl-2-oxazoline, 4-methyl-2-vinyl-2-oxazoline, 5-methyl-2-vinyl-2-oxazoline, 4-ethyl-2-vinyl-. 2-Oxazoline, 5-ethyl-2-vinyl-2-oxazoline, 4,4-dimethyl-2-vinyl-2-oxazoline, 4,4-diethyl-2-vinyl-2-oxazoline, 4,5-dimethyl- 2-Vinyl-2-oxazoline, 4,5-diethyl-2-vinyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 4-methyl-2-isopropenyl-2-oxazoline, 5-methyl-2- Isopropenyl-2-oxazoline, 4-ethyl-2-isopropenyl-2-oxazoline, 5-ethyl-2-isopropenyl-2-oxazoline, 4,4-dimethyl-2-isopropenyl-2-oxazoline, 4, One or more selectable from the group consisting of 4-diethyl-2-isopropenyl-2-oxazoline, 4,5-dimethyl-2-isopropenyl-2-oxazoline, and 4,5-diethyl-2-isopropenyl-2-oxazoline It is a monomer of. Among these 2-oxazoline-based monomers, 2-vinyl-2-oxazoline and 2-isopropenyl-, which have high reactivity with functional groups such as carboxyl group, phenolic hydroxyl group, acid anhydride group and thiol group. 2-Oxazoline, 5-methyl-2-vinyl-2-oxazoline, 4,4-dimethyl-2-vinyl-2-oxazoline are preferable, and 2-vinyl-2-oxazoline and 2-isopropenyl-2-oxazoline are preferable. Most preferred.
含窒素複素環系モノマー(b)は、N−ビニルピロリドン、N−メチルビニルピロリドン、N−ビニルピリジン、N−ビニルピペリドン、N−ビニルピリミジン、N−ビニルピペラジン、N−ビニルピラジン、N−ビニルピロール、N−ビニルイミダゾール、N−ビニルオキサゾール、N−(メタ)アクリロイルピロリドン、N−(メタ)アクリロイルピペリジン、N−(メタ)アクリロイルピロリジン、N−(メタ)アクリロイルモルホリン、N−ビニルモルホリン、N−ビニルピペリドン、N−ビニル−3−モルホリノン、N−ビニルカプロラクタム、N−ビニル−1,3−オキサジン−2−オン、N−ビニル−3,5−モルホリンジオン、N−ビニルピラゾール、N−ビニルイソオキサゾール、N−ビニルチアゾール、N−ビニルイソチアゾール、N−ビニルピリダジンからなる群から選べる1種以上のモノマーである。また、これらの含窒素複素環系モノマーの中では、炭素材料との親和性及びビニル基の共重合性の観点から、N−ビニルピロリドン、N−ビニルイミダゾール、N−ビニルカプロラクタム、N−アクリロイルモルホリンが好ましい。 The nitrogen-containing heterocyclic monomer (b) is N-vinylpyrrolidone, N-methylvinylpyrrolidone, N-vinylpyridine, N-vinylpiperidone, N-vinylpyrimidine, N-vinylpiperazine, N-vinylpyrazine, N-vinylpyrrole. , N-vinylimidazole, N-vinyloxazole, N- (meth) acryloylpyrrolidone, N- (meth) acryloylpiperidin, N- (meth) acryloylpyrrolidin, N- (meth) acryloylmorpholine, N-vinylmorpholin, N- Vinyl piperidone, N-vinyl-3-morpholinone, N-vinylcaprolactam, N-vinyl-1,3-oxadin-2-one, N-vinyl-3,5-morpholindione, N-vinylpyrazole, N-vinylisoxazole , N-vinylthyazole, N-vinylisothyazole, N-vinylpyridazine, or one or more kinds of monomers that can be selected from the group. Among these nitrogen-containing heterocyclic monomers, N-vinylpyrrolidone, N-vinylimidazole, N-vinylcaprolactam, and N-acryloylmorpholine are used from the viewpoint of affinity with carbon materials and copolymerizability of vinyl groups. Is preferable.
2−オキサゾリン系モノマー(a)と含窒素複素環系モノマー(b)の共重合方法は、特に限定されるものではなく、公知のラジカル重合法により実施可能である。例えば、アルコール、酢酸エチルなどの有機溶媒中や水中の溶液重合、懸濁重合、乳化重合、塊状重合法などが挙げられる。有機溶媒中の溶液重合法を採用する場合、重合溶媒としては、トルエン、キシレン、酢酸エチル、酢酸ブチル、メチルエチルケトン、メチルアルコール、エチルアルコールなどの単独もしくは混合で用いることができる。 The copolymerization method of the 2-oxazoline-based monomer (a) and the nitrogen-containing heterocyclic monomer (b) is not particularly limited, and can be carried out by a known radical polymerization method. Examples thereof include solution polymerization, suspension polymerization, emulsion polymerization, and massive polymerization in organic solvents such as alcohol and ethyl acetate and in water. When the solution polymerization method in an organic solvent is adopted, the polymerization solvent may be toluene, xylene, ethyl acetate, butyl acetate, methyl ethyl ketone, methyl alcohol, ethyl alcohol or the like alone or in combination.
共重合に用いる重合開始剤としては、アゾ系、有機過酸化物系、無機過酸化物系、レドックス系など一般的に知られている重合開始剤が挙げられる。重合開始剤の使用量としては、通常重合性単量体成分総量に対して0.001〜10重量%程度である。また、連鎖移動剤による分子量の調整など通常のラジカル重合技術が適用される。 Examples of the polymerization initiator used for the copolymerization include generally known polymerization initiators such as azo-based, organic peroxide-based, inorganic peroxide-based, and redox-based. The amount of the polymerization initiator used is usually about 0.001 to 10% by weight based on the total amount of the polymerizable monomer components. In addition, ordinary radical polymerization techniques such as adjustment of molecular weight with a chain transfer agent are applied.
また、2−オキサゾリン系モノマー(a)と含窒素複素環系モノマー(b)が構成単位として、他の共重合可能なビニル系単量体との多元共重合することもできる。他の共重合可能なビニル系単量体としては、炭素鎖1〜12のアルキル基を有する(メタ)アクリレート、炭素鎖1〜12のアルキル基を有するN−アルキル(メタ)アクリルアミド、同じ又は異なる二つの炭素鎖1〜12のアルキル基を有するN,N−ジアルキル(メタ)アクリルアミド、芳香族置換基を有する(メタ)アクリレート又は(メタ)アクリルアミド、ヒドロキシアルキル(C1〜12)(メタ)アクリレート又は(メタ)アクリルアミド、(メタ)アクリロニトリル、(メタ)アクリル酸等が挙げられる。これらの共重合可能なビニル系単量体が単独でもよく、2種以上混合使用しても良く、配合される各種他の共重合可能なビニル系単量体のモル分率の合計は、30%以下であることが好ましい。 Further, the 2-oxazoline-based monomer (a) and the nitrogen-containing heterocyclic monomer (b) can be used as a constituent unit for multidimensional copolymerization with other copolymerizable vinyl-based monomers. Other copolymerizable vinyl-based monomers include (meth) acrylates having alkyl groups of carbon chains 1-12, N-alkyl (meth) acrylamides having alkyl groups of carbon chains 1-12, the same or different. N, N-dialkyl (meth) acrylamide with two alkyl groups of carbon chains 1-12, (meth) acrylate or (meth) acrylamide with aromatic substituents, hydroxyalkyl (C1-12) (meth) acrylate or Examples thereof include (meth) acrylamide, (meth) acrylonitrile, and (meth) acrylic acid. These copolymerizable vinyl-based monomers may be used alone or in combination of two or more, and the total mole fraction of various other copolymerizable vinyl-based monomers to be blended is 30. % Or less is preferable.
本発明の共重合体(A)の分子量は重量平均で1,000〜100,000である。また、好ましくは2,000〜50,000、さらに好ましくは4,000〜30,000である。重量平均分子量が1,000未満であると、CNTなど難分散炭素材料の初期分散不良が発生する場合があり、接着性向上剤としても炭素材料表面への不均一付着が起こりやすくなり、好ましくない。一方、重量平均分子量が500,000を越えると、液体分散剤に溶解させてなる共重合体溶液の粘度が著しく上昇し、結果は炭素材料の分散性も表面接着性も低下する傾向があった。 The molecular weight of the copolymer (A) of the present invention is 1,000 to 100,000 on average by weight. Further, it is preferably 2,000 to 50,000, more preferably 4,000 to 30,000. If the weight average molecular weight is less than 1,000, initial dispersion failure of a poorly dispersed carbon material such as CNT may occur, and even as an adhesive improver, non-uniform adhesion to the surface of the carbon material is likely to occur, which is not preferable. .. On the other hand, when the weight average molecular weight exceeds 500,000, the viscosity of the copolymer solution dissolved in the liquid dispersant increases remarkably, and as a result, the dispersibility and surface adhesiveness of the carbon material tend to decrease. ..
本発明に用いられる炭素材料は、主に炭素だけから構成されている材料(カーボン材料)であり、大きく炭素繊維とナノ炭素材料に分けることができる。また、炭素繊維としてポリアクリロニトリル(PAN)系、ピッチ系、レーヨン系と植物由来原料系のものが挙げられ、ナノ炭素材料としてはフラーレン類、カーボンナノチューブ(CNT)類、気相成長炭素繊維(ナノファイバ)類、グラフェン、グラファイト、その他のナノ炭素などが挙げられる。中には、PAN系炭素繊維は単位重量当たりの強度、弾性率に優れ、製造量が多いので、繊維系としてより好ましく、CNTはナノメートルレベルで構造を制御でき、新規機能材料として安価に工業的なレベルで製造できるようになったため、ナノ系炭素材料として好ましい。また、これらの炭素材料を市販品のままで使用しても、酸化等の処理方法で表面に多くのカルボキシル基やフェノール性水酸基を出させるための処理を行ってから使用してもよい。 The carbon material used in the present invention is a material (carbon material) mainly composed of carbon only, and can be roughly divided into carbon fiber and nanocarbon material. Examples of carbon fibers include polyacrylonitrile (PAN) type, pitch type, rayon type and plant-derived raw material type, and nanocarbon materials include fullerenes, carbon nanotubes (CNT), and vapor-grown carbon fibers (nano). Fibers), graphene, graphite, and other nanocarbons. Among them, PAN-based carbon fiber is more preferable as a fiber-based fiber because it has excellent strength and elastic modulus per unit weight and a large amount of production, and CNT can control the structure at the nanometer level and is inexpensively industrialized as a new functional material. It is preferable as a nano-carbon material because it can be manufactured at a suitable level. Further, these carbon materials may be used as they are on the market, or may be used after being treated by a treatment method such as oxidation to generate many carboxyl groups or phenolic hydroxyl groups on the surface.
本発明に用いられる炭素材料はそれぞれの目的に応じて単独で使用してもよいし、2種類以上併用してもよい。また、これらの炭素材料は通常市販品のまま使用可能であるが、溶媒による洗浄、CNT同士の絡まり合いを解くためのビーズミル分散処理や超音波分散処理などの物理的な分散処理を実施してからの使用がより好ましい。 The carbon materials used in the present invention may be used alone or in combination of two or more depending on their respective purposes. In addition, although these carbon materials can usually be used as commercially available products, they are subjected to physical dispersion treatment such as cleaning with a solvent, bead mill dispersion treatment for disentanglement between CNTs, and ultrasonic dispersion treatment. It is more preferable to use from.
本発明に用いられる炭素材料の分散剤として、室温(25℃)において液体である有機溶媒類と水が好ましい。溶媒としては、メタノール、エタノール、イソプロピルアルコール(IPA)、ブタノール等のアルコール類、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン等のケトン類、酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル類、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノーn−ブチルエーテル、エチレングリコールモノメチルエーテル等のエーテル類、テトラヒドロフラン(THF)、トルエン、キシレン、クロロホルム、N−メチルピロリドン(NMP)、N−メチルホルムアミド(NMF)、N,N−ジメチルホルムアミド(DMF)、N−メチルアセトアミド、ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)、シクロヘキサン、多価アルコール、シリコーンオイル、陽イオン性、陰イオン性、両イオン性又は非イオン性の界面活性剤類など幅広く用いることができる。また、これらのいずれか1種または複数の溶媒の組み合わせ、水溶性の有機溶媒と水からなる任意配合比の混合物としてもよい。 As the dispersant for the carbon material used in the present invention, organic solvents and water that are liquid at room temperature (25 ° C.) are preferable. Solvents include alcohols such as methanol, ethanol, isopropyl alcohol (IPA) and butanol, ketones such as acetone, methyl ethyl ketone (MEK) and methyl isobutyl ketone, esters such as ethyl acetate, propyl acetate and butyl acetate, and ethylene glycol. Ethers such as monoethyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol mono-n-butyl ether, ethylene glycol monomethyl ether, tetrahydrofuran (THF), toluene, xylene, chloroform, N-methylpyrrolidone (NMP), N-methylformamide. (NMF), N, N-dimethylformamide (DMF), N-methylacetamide, dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), cyclohexane, polyhydric alcohol, silicone oil, cationic, anionic, amphoteric It can be widely used such as sex or nonionic surfactants. Further, a combination of any one or more of these solvents may be used, or a mixture of a water-soluble organic solvent and water in an arbitrary compounding ratio may be used.
上記溶媒類分散剤において、特にNMP、NMF、DMF、DMSOなどの分子中に窒素原子又は硫黄原子を有する親水性溶媒が、本発明の共重合体(A)との相互作用が強く、それによりCNT等の炭素材料の再凝集を防止する効果を有し、安定的な分散液を形成されやすいので、好ましい。さらに、水を分散剤として用いる場合は、廃棄する有機溶剤を有しないため、環境に優しいメリットがあって、また、分散性不十分のデメリットが本願発明の共重合体(A)を添加することで改善され、環境に優しい炭素材料の分散剤として特に好ましい。 In the above solvent dispersant, a hydrophilic solvent having a nitrogen atom or a sulfur atom in a molecule such as NMP, NMF, DMF, DMSO has a strong interaction with the copolymer (A) of the present invention, thereby. It is preferable because it has an effect of preventing the reaggregation of a carbon material such as CNT and a stable dispersion liquid is easily formed. Further, when water is used as a dispersant, since it does not have an organic solvent to be discarded, it has an environmentally friendly advantage, and the disadvantage of insufficient dispersibility is that the copolymer (A) of the present invention is added. It is particularly preferable as a dispersant for environmentally friendly carbon materials.
本発明の共重合体(A)は、炭素材料用分散促進剤、接着性向上剤としての配合量が炭素材料及び分散剤の種類、形態、サイズ、前処理の有無と方法などによって大きく変動するが、分散剤に対して0.01〜20質量%、かつ、炭素材料に対して0.1〜100mg/m2であることが好ましい。また、特に難分散の大きいアスペクトを有する炭素繊維(CF)やカーボンナノチューブ(CNT)において、分散剤に対して0.01〜10質量%、かつ、炭素材料に対して0.1〜80mg/m2であることがより好ましい。 The blending amount of the copolymer (A) of the present invention as a dispersion accelerator for carbon materials and an adhesiveness improver varies greatly depending on the type, form, size, presence / absence and method of pretreatment of the carbon material and dispersant. However, it is preferably 0.01 to 20% by mass with respect to the dispersant and 0.1 to 100 mg / m 2 with respect to the carbon material. Further, in carbon fibers (CF) and carbon nanotubes (CNTs) having a particularly difficult dispersion aspect, 0.01 to 10% by mass with respect to the dispersant and 0.1 to 80 mg / m with respect to the carbon material. and more preferably 2.
共重合体(A)の配合量は分散剤に対して0.01質量%未満であれば、炭素材料の種類と濃度によって、十分に分散できない問題が発生する恐れがあり、また、均一な分散液が得られても、その後分散液を用いて固形材料に炭素材料を接着させる際に、接着性向上剤としての効果が十分に提供できず、均一かつ高強度の炭素材料接着層を得られない可能性がある。一方、共重合体(A)の配合量は分散剤に対して20質量%を超えると、炭素材料の分散促進効果が高く、均一な分散液の形成には問題がないが、その後炭素材料の固形材料への接着において、炭素材料が高濃度に接着された部分が発生しやすくなり、固形材料と炭層材料を用いて共重合体(A)を介し、接着してなる表面修飾炭素材料や炭素複合材料の特性が不均一となる恐れがあり、好ましくない。 If the blending amount of the copolymer (A) is less than 0.01% by mass with respect to the dispersant, there is a possibility that sufficient dispersion may occur depending on the type and concentration of the carbon material, and uniform dispersion may occur. Even if a liquid is obtained, when the carbon material is subsequently adhered to the solid material using the dispersion liquid, the effect as an adhesiveness improving agent cannot be sufficiently provided, and a uniform and high-strength carbon material adhesive layer can be obtained. It may not be. On the other hand, when the blending amount of the copolymer (A) exceeds 20% by mass with respect to the dispersant, the effect of promoting the dispersion of the carbon material is high, and there is no problem in forming a uniform dispersion liquid. In adhesion to a solid material, a portion where the carbon material is adhered at a high concentration is likely to occur, and the surface-modified carbon material or carbon formed by adhering the solid material and the coal layer material via the copolymer (A) is likely to occur. It is not preferable because the properties of the composite material may be non-uniform.
本発明において、得られた炭素材料の分散液を用いて、固形材料に炭素材料を接着させることができる。その際、接着性向上剤として共重合体(A)の配合量は炭素材料に対して0.1〜100mg/m2である場合、炭素材料が均一かつ高強度で固形物に接着させる事ができ、好ましい。 In the present invention, the obtained dispersion liquid of the carbon material can be used to bond the carbon material to the solid material. At that time, when the blending amount of the copolymer (A) as the adhesiveness improving agent is 0.1 to 100 mg / m 2 with respect to the carbon material, the carbon material can be adhered to the solid material uniformly and with high strength. Can be preferred.
本発明の炭素材料用分散促進剤および炭素材料用接着性向上剤が、ともに共重合体(A)を含有することが特徴である。それらに含有する共重合体(A)は同一組成、構造であってもよく、また異なる組成や構造であってもよく、1種または2種以上を混合して使用することができる。さらに、コストが低い及び工程管理されやすい観点から分散促進剤であると同時に接着性向上剤であることが好ましい。 The dispersion accelerator for carbon materials and the adhesiveness improver for carbon materials of the present invention are both characterized by containing the copolymer (A). The copolymer (A) contained therein may have the same composition and structure, or may have a different composition and structure, and one kind or a mixture of two or more kinds can be used. Further, from the viewpoint of low cost and easy process control, it is preferable that the agent is a dispersion accelerator and at the same time an adhesiveness improver.
本発明の表面修飾炭素材料の製造方法は分散剤並びに接着向上剤(以下分散剤等と略する)の種類および炭素材料と接着性向上剤との反応方式によって大きく二つに分けることができる。一つは、共重合体(A)からなる接着性向上剤を液体媒体中で炭素材料の表面に接触させながら加熱する方法であり、もう一つは接着性向上剤を液体媒体中炭素材料の表面に接触させた後加熱する方法である。具体的には、(1)溶剤や水などの液体系分散剤、共重合体(A)からなる分散促進剤及びCNTなどの炭素材料を混合させ、加熱しながら炭素材料を分散させ、同時に炭素材料の表面に共重合体(A)を接着させ、表面修飾炭素材料を製造する方法;(2)上記(1)で得られた炭素材料分散液から炭素材料に共重合体(A)が付着した複合体を取り出し、加熱により表面修飾炭素材料を製造する方法が挙げられる。 The method for producing a surface-modified carbon material of the present invention can be roughly divided into two depending on the types of dispersant and adhesion improver (hereinafter abbreviated as dispersant and the like) and the reaction method between the carbon material and the adhesion improver. One is a method of heating the adhesiveness improver composed of the copolymer (A) while contacting the surface of the carbon material in the liquid medium, and the other is a method of heating the adhesiveness improver of the carbon material in the liquid medium. This is a method of heating after contacting the surface. Specifically, (1) a liquid dispersant such as solvent or water, a dispersion accelerator composed of the copolymer (A), and a carbon material such as CNT are mixed, and the carbon material is dispersed while heating, and at the same time, carbon. A method for producing a surface-modified carbon material by adhering the copolymer (A) to the surface of the material; (2) The copolymer (A) adheres to the carbon material from the carbon material dispersion liquid obtained in (1) above. Examples thereof include a method of taking out the resulting composite and heating it to produce a surface-modified carbon material.
上記(1)の表面修飾炭素材料の製造方法において、分散剤等として高沸点かつ熱的安定性が高く、オキサゾリン基と反応性を有しない溶媒を用いることができる。炭素材料の分散と表面修飾を同時にさせるため、分散液の温度は、炭素材料の種類と共重合体(A)の組成、構造によって変動するが、40〜200℃であることが好ましく、60〜180℃であることがより好ましい。温度が40℃より低い場合、分散時間が長くなるか接着反応が十分に進行できない可能性があり、一方、温度が200℃より高い場合、炭素材料の塊が生成したり、沈降したりと安定な分散液を取得することが困難であった。また、この方法では炭素材料の分散と、共重合体(A)との接着反応が同時進行のため、混合効果を有する攪拌装置や、超音波洗浄機、ビーズミル分散機などを用いることがより好ましい。分散方法、装置及び温度により所要の処理時間が変わるが、10分〜10時間であることが好ましい。さらに、得られた表面修飾炭素材料は、分散液中に分散したまま次の工程に用いてもよく、分散液から取り出し、ウェート状または乾燥させてから使用することができる。 In the method for producing a surface-modified carbon material according to (1) above, a solvent having a high boiling point, high thermal stability, and no reactivity with an oxazoline group can be used as a dispersant or the like. In order to disperse the carbon material and modify the surface at the same time, the temperature of the dispersion liquid varies depending on the type of carbon material and the composition and structure of the copolymer (A), but is preferably 40 to 200 ° C. and 60 to 60 to 200 ° C. More preferably, it is 180 ° C. If the temperature is lower than 40 ° C, the dispersion time may be longer or the adhesion reaction may not proceed sufficiently, while if the temperature is higher than 200 ° C, lumps of carbon material may be formed or settled. It was difficult to obtain a good dispersion. Further, in this method, since the dispersion of the carbon material and the adhesion reaction with the copolymer (A) proceed simultaneously, it is more preferable to use a stirring device having a mixing effect, an ultrasonic cleaner, a bead mill disperser, or the like. .. The required processing time varies depending on the dispersion method, apparatus and temperature, but is preferably 10 minutes to 10 hours. Further, the obtained surface-modified carbon material may be used in the next step while being dispersed in the dispersion liquid, and can be used after being taken out from the dispersion liquid and waited or dried.
上記(2)の表面修飾炭素材料の製造方法において、分散剤等として低沸点溶媒や水、熱的不安定またオキサゾリン基と反応する溶媒に適用される。分散工程において、温度が−20〜40℃、処理時間が10分〜10時間であることが好ましい。また、上記各種分散促進装置を用いることがより好ましい。得られた分散液から共重合体(A)付着の炭素材料を分散液から取り出し、その後乾燥、加熱させ、炭素材料表面のカルボン酸基やフェノール性水酸基などを共重合体(A)のオキサゾリン基と反応させ、表面修飾炭素材料を取得できる。また、長繊維状やペレット状の炭素繊維、微粒子状のカーボンブラック等の非ナノ系材料において、分散剤による高分散状態に調製され難い場合、分散剤、共重合体(A)及び炭素材料の均一な混合液を調製した後、共重合体(A)付着の炭素材料を混合液から取り出し、乾燥、加熱処理(焼成)することによって表面修飾炭素材料を取得することができる。共重合体(A)付着の炭素材料と分散剤の分離方法はろ過、膜分離、透析、遠心分離など1種または2種以上の方法の組み合わせにより行うことができる。 In the method for producing a surface-modified carbon material of (2) above, it is applied as a dispersant or the like to a low boiling point solvent, water, a thermally unstable solvent, or a solvent that reacts with an oxazoline group. In the dispersion step, the temperature is preferably -20 to 40 ° C. and the treatment time is preferably 10 minutes to 10 hours. Further, it is more preferable to use the above-mentioned various dispersion promoting devices. From the obtained dispersion, the carbon material attached to the copolymer (A) is taken out from the dispersion, then dried and heated, and the carboxylic acid group and phenolic hydroxyl group on the surface of the carbon material are converted into the oxazoline group of the copolymer (A). Can be reacted with to obtain a surface-modified carbon material. In addition, in non-nano materials such as long fibrous or pelletized carbon fibers and fine particle carbon black, when it is difficult to prepare a highly dispersed state by a dispersant, the dispersant, copolymer (A) and carbon material may be used. After preparing a uniform mixed solution, the carbon material adhering to the copolymer (A) is taken out from the mixed solution, dried, and heat-treated (baked) to obtain a surface-modified carbon material. The method for separating the carbon material adhering to the copolymer (A) and the dispersant can be performed by one or a combination of two or more methods such as filtration, membrane separation, dialysis, and centrifugation.
焼成工程の温度は80〜240℃であり、100〜220℃が好ましく、120〜200℃がより好ましい。焼成温度が80℃未満であれば、オキサゾリン基の構造によって反応性の低いものが十分に反応できない可能性があり、また、焼成温度が240℃を超えると、共重合体(A)の熱分解や酸化などが起こりやすい問題があり、好ましくない。この方法で製造される表面修飾炭素材料は固形物であり、固形状のまま使用するか、分散剤に再分散してから使用することができる。 The temperature of the firing step is 80 to 240 ° C., preferably 100 to 220 ° C., more preferably 120 to 200 ° C. If the calcination temperature is less than 80 ° C., a low-reactivity substance may not be sufficiently reacted due to the structure of the oxazoline group, and if the calcination temperature exceeds 240 ° C., the copolymer (A) is thermally decomposed. It is not preferable because there is a problem that oxidation and oxidation are likely to occur. The surface-modified carbon material produced by this method is a solid substance and can be used as it is or after being redispersed in a dispersant.
本発明の炭素複合材料は表面修飾炭素材料と固形材料との反応で得られるものである。ここでいう固形材料は、室温において固体であって、かつ、オキサゾリン基と反応性を有する官能基、例えば、カルボキシル基、フェノール性水酸基、酸無水物官能基、エポキシ基、チオール基、アミン基とアミド基からなる群から選べる1種以上の官能基を有することが特徴である。これらの官能基が表面修飾炭素材料の表面に有するオキサゾリン基と反応し、生成した化学結合は表面修飾炭素材料と固形材料の間に存在し、架橋剤や連結剤の効果が提供される。 The carbon composite material of the present invention is obtained by reacting a surface-modified carbon material with a solid material. The solid material referred to here includes functional groups that are solid at room temperature and that are reactive with an oxazoline group, such as a carboxyl group, a phenolic hydroxyl group, an acid anhydride functional group, an epoxy group, a thiol group, and an amine group. It is characterized by having one or more functional groups that can be selected from the group consisting of amide groups. These functional groups react with the oxazoline groups on the surface of the surface-modified carbon material, and the generated chemical bonds exist between the surface-modified carbon material and the solid material to provide the effects of cross-linking agents and linking agents.
本発明に用いられる固形材料は熱可塑性樹脂、成形可能な低分子量熱硬化性樹脂、炭素材料などが挙げられる。これらの固形材料は単独で使用しても混合して使用してもよい。固形材料の種類、構造、物性と用途によって、表面修飾炭素材料との配合比が変動するが、例えば熱可塑性樹脂や低分子量熱硬化性樹脂の補強、帯電防止性付与、耐熱性向上などの用途であれば、熱可塑性樹脂に対して0.01%〜20%、好ましく0.05%〜10%の表面修飾炭素材料を配合することができる。また、表面修飾炭素材料の高濃度品をマスターバッチとして薄めて使用することでより均一な炭素複合材料が得られやすいため、好ましい。一方、炭素材料の表面コーティング、表面改質、表面修飾などの用途であれば、炭素材料に対して0.001%〜10%、好ましく0.005%〜5%の表面修飾炭素材料を配合することができる。 Examples of the solid material used in the present invention include a thermoplastic resin, a moldable low molecular weight thermosetting resin, and a carbon material. These solid materials may be used alone or in combination. The compounding ratio with the surface-modified carbon material varies depending on the type, structure, physical properties and application of the solid material. For example, applications such as reinforcement of thermoplastic resins and low molecular weight thermosetting resins, addition of antistatic properties, and improvement of heat resistance. If so, 0.01% to 20%, preferably 0.05% to 10% of the surface-modified carbon material can be blended with respect to the thermoplastic resin. Further, it is preferable to dilute a high-concentration product of the surface-modified carbon material as a masterbatch and use it because a more uniform carbon composite material can be easily obtained. On the other hand, for applications such as surface coating, surface modification, and surface modification of carbon materials, 0.001% to 10%, preferably 0.005% to 5% of surface-modified carbon materials are blended with respect to the carbon materials. be able to.
熱可塑性樹脂としてポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン類、ナイロン6(PA6、ナイロン66(PA66)等のポリアミド類、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等のポリエステル類、ポリウレタン類、アクリル樹脂類、ABS(アクリロニトリルブタジエンスチレン)樹脂類、ポリスチレン(PS)、ポリカーボネート類及びこれら汎用樹脂のカルボン酸や無水マレイン酸変性樹脂等の熱可塑性樹脂が挙げられる。これらの樹脂は1種に限らず、複数の種類を組み合わせて使用することができる。 As thermoplastic resins, polyolefins such as polyethylene (PE) and polypropylene (PP), polyamides such as nylon 6 (PA6, nylon 66 (PA66)), polyesters such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT), Examples thereof include polyurethanes, acrylic resins, ABS (acrylonitrile butadiene styrene) resins, polystyrene (PS), polypropylenes, and thermoplastic resins such as carboxylic acids and maleic anhydride-modified resins of these general-purpose resins. These resins include 1. Not limited to species, multiple types can be used in combination.
炭素材料として、炭素繊維(CF)、カーボンナノチューブ(CNT)、カーボンナノファイバー(CNF)、グラフェン、グラファイトなどが挙げられる。中には、CF、CNT、CNFが各分野で幅広く使用されており、市販品を入手しやすいため、好ましい。これらの炭素材料は1種に限らず、複数の種類を組み合わせて使用することができる。また、これらの炭素材料を市販品のままで使用しても、酸化等の処理方法で表面に多くのカルボキシル基やフェノール性水酸基を出させるための処理を行ってから使用してもよい。 Examples of the carbon material include carbon fiber (CF), carbon nanotube (CNT), carbon nanofiber (CNF), graphene, graphite and the like. Among them, CF, CNT, and CNF are widely used in each field, and are preferable because commercially available products are easily available. These carbon materials are not limited to one type, and a plurality of types can be used in combination. Further, these carbon materials may be used as they are on the market, or may be used after being treated by a treatment method such as oxidation to generate many carboxyl groups or phenolic hydroxyl groups on the surface.
また、得られた熱可塑性樹脂を主成分とする熱可塑性樹脂系炭素複合材料と、炭素材料又は炭素材料を主成分とする炭素系炭素複合材料とを反応させることや、炭素材料を主成分とする炭素系炭素複合材料と熱可塑性樹脂とを反応させることにより、強度も靭性も改善された新型の炭素複合材料を製造することができる。新型炭素複合材料の加工性、成形性を十分に確保する観点から、熱可塑性樹脂又は熱可塑性樹脂系炭素複合材料に対して、炭素材料又は炭素系炭素複合材料の配合比は10%以下であることが好ましい。 Further, the obtained thermoplastic resin-based carbon composite material containing the thermoplastic resin as the main component is reacted with the carbon material or the carbon-based carbon composite material containing the carbon material as the main component, or the carbon material is used as the main component. By reacting the carbon-based carbon composite material to be produced with a thermoplastic resin, a new type of carbon composite material having improved strength and toughness can be produced. From the viewpoint of ensuring sufficient processability and moldability of the new carbon composite material, the compounding ratio of the carbon material or the carbon-based carbon composite material is 10% or less with respect to the thermoplastic resin or the thermoplastic resin-based carbon composite material. Is preferable.
炭素複合材の製造方法は、主成分の構造によって大きく溶液浸漬法と溶融混練法に分けられる。浸漬法において、前記の炭素材料の分散剤として用いられる各種の有機溶媒類や水が同様に使用することができる。また、炭素材料と表面修飾炭素材料とを反応させ、炭素複合材の製造方法も前記同様大きく二つに分けることができる。一つは、表面修飾炭素材料を液体媒体中に分散させ、得られた分散液中に炭素材料を一定の滞留時間で浸漬させ、そのまま炭素材料の表面と表面修飾炭素材料の表面を接触させ、摺り合わせながら加熱する方法であり、もう一つは炭素材料の表面と表面修飾炭素材料の表面を接触させた後、分散液から取り出して加熱する方法である。また、炭素材料と表面修飾炭素材料との反応は表面修飾炭素材料の表面に保有するオキサゾリン基と炭素材料表面に有するカルボキシル基やフェノール性水酸基とを反応させることであって、前記同様の装置を用いて、同様な条件(反応温度、反応時間など)で反応を行うことができる。 The method for producing a carbon composite material is roughly divided into a solution dipping method and a melt kneading method depending on the structure of the main component. In the dipping method, various organic solvents and water used as the dispersant for the carbon material can be similarly used. Further, the method for producing a carbon composite material by reacting a carbon material with a surface-modified carbon material can be roughly divided into two as described above. One is to disperse the surface-modified carbon material in a liquid medium, immerse the carbon material in the obtained dispersion for a certain residence time, and bring the surface of the carbon material into contact with the surface of the surface-modified carbon material as it is. The method is to heat while rubbing, and the other is to bring the surface of the carbon material into contact with the surface of the surface-modified carbon material, and then take it out of the dispersion liquid and heat it. Further, the reaction between the carbon material and the surface-modified carbon material is to react the oxazoline group possessed on the surface of the surface-modified carbon material with the carboxyl group or phenolic hydroxyl group possessed on the surface of the carbon material. The reaction can be carried out under the same conditions (reaction temperature, reaction time, etc.).
前記の溶融混練による炭素複合材料を製造する方法において、熱可塑性樹脂、熱可塑性樹脂を主成分とする熱可塑性樹脂系炭素複合材料、表面修飾炭素材料と炭素材料を主成分とする炭素系炭素複合材料が共に室温で固体であり、所定配合比でドライブレンドした後、溶融押出機などを用い、加熱しながら溶融混練により反応を行うことがある。混練押出温度は樹脂の種類によって大きく変わるが、150〜280℃の範囲内であれば、樹脂の熔解、炭素材料との反応が共に十分に進行し、かつ、製造される炭素複合材料の熱分解を防止することができるので、好ましい。また、押し出し基中に滞留時間について、同様に反応性及び分解抑制のバランス取りの観点から、0.1〜30分であることが好ましい。 In the method for producing a carbon composite material by melt-kneading, a thermoplastic resin, a thermoplastic resin-based carbon composite material containing a thermoplastic resin as a main component, a surface-modified carbon material and a carbon-based carbon composite containing a carbon material as a main component. Both materials are solid at room temperature, and after dry blending at a predetermined compounding ratio, the reaction may be carried out by melt kneading while heating using a melt extruder or the like. The kneading extrusion temperature varies greatly depending on the type of resin, but if it is within the range of 150 to 280 ° C., both the melting of the resin and the reaction with the carbon material proceed sufficiently, and the carbon composite material to be produced is thermally decomposed. It is preferable because it can prevent. Further, the residence time in the extrusion group is preferably 0.1 to 30 minutes from the viewpoint of balancing reactivity and decomposition suppression.
また、溶融混練等の熱的処理、加工にも用いられる熱可塑性樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン類、ナイロン6(PA6、ナイロン66(PA66)等のポリアミド類、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等のポリエステル類、ポリウレタン類、アクリル樹脂類、ABS(アクリロニトリルブタジエンスチレン)樹脂類、ポリスチレン(PS)、ポリカーボネート類及びこれら汎用樹脂のカルボン酸や無水マレイン酸変性樹脂等の熱可塑性樹脂が挙げられる。炭素材料の高強度、高柔軟性、耐熱性、導電性等の特性を十分に活用できるように、本発明の表面修飾炭素材料の表面に有するオキサゾリン基と反応可能な変性PPやポリエステル類がより好ましい。これらの樹脂は1種に限らず、複数の種類を組み合わせて使用することができる。 Further, as the thermoplastic resin used for thermal treatment such as melt-kneading and processing, polyolefins such as polyethylene (PE) and polypropylene (PP), polyamides such as nylon 6 (PA6, nylon 66 (PA66)), and the like. Polyesters such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT), polyurethanes, acrylic resins, ABS (acrylonitrile butadiene styrene) resins, polystyrene (PS), polycarbonates and carboxylic acids and maleene anhydride of these general-purpose resins Examples thereof include thermoplastic resins such as acid-modified resins. Oxazoline on the surface of the surface-modified carbon material of the present invention so that the properties such as high strength, high flexibility, heat resistance, and conductivity of the carbon material can be fully utilized. Modified PP and polyesters that can react with the group are more preferable. These resins are not limited to one type, and a plurality of types can be used in combination.
さらに、作業上便益性の観点から、高濃度のマスターバッチを使用することが好ましい。この場合、表面修飾炭素材料のマスターバッチを先に調製、ペレット化成形してから、各種樹脂や熱可塑性樹脂を主成分とする熱可塑性樹脂系炭素複合材料と混練することもよい。 Further, from the viewpoint of cost-benefit, it is preferable to use a high-concentration masterbatch. In this case, a masterbatch of the surface-modified carbon material may be prepared first, pelletized and molded, and then kneaded with a thermoplastic resin-based carbon composite material containing various resins or thermoplastic resins as main components.
溶融混練工程で用いられる溶融混練機としては、公知の溶融混練機が例示され、バンバリーミキサー、プラストミル、ブラベンダープラストグラフ、一軸押出機、二軸押出機等が挙げられる。フィラーを良好に分散させ、ポリオレフィン樹脂組成物の耐熱性や剛性を向上させるという観点から、一軸押出機又は二軸押出機により溶融混練することが好ましく、特に二軸押出機が好ましい。 Examples of the melt kneader used in the melt kneading step include known melt kneaders, such as a Banbury mixer, a plast mill, a lavender plastograph, a uniaxial extruder, and a twin screw extruder. From the viewpoint of satisfactorily dispersing the filler and improving the heat resistance and rigidity of the polyolefin resin composition, it is preferable to melt-knead with a single-screw extruder or a twin-screw extruder, and a twin-screw extruder is particularly preferable.
二軸押出機は通常、原料供給口、ベント口、ジャケットを備えたバレル、バレルの内部に配置され、同方向、異方向に回転する二本のスクリュー、及び押出機先端に取り付けられたダイ、スクリーンメッシュから構成される。さらに、二軸押出機には、スクリュー途中に設置された複数枚のニーディングディスクによって構成される少なくとも一つの溶融混練部(ニーディング部)が含まれる。 A twin-screw extruder is typically a raw material supply port, a vent port, a barrel with a jacket, two screws that rotate inside the barrel and rotate in the same direction and in different directions, and a die attached to the tip of the extruder. It consists of a screen mesh. Further, the twin-screw extruder includes at least one melt-kneading portion (kneading portion) composed of a plurality of kneading discs installed in the middle of the screw.
一つの溶融混練部(ニーディング部)を構成するニーディングディスクの枚数は、フィラーを良好に分散させるという観点や、せん断によって発生する大きな発熱でポリオレフィン樹脂組成物が分解することを防止するという観点から、好ましくは3〜200枚であり、より好ましくは5〜50枚である。また、一つの溶融混練部(ニーディング部)を1ユニットとして、せん断によって発生する大きな発熱でポリオレフィン樹脂が分解することを防止するという観点から、好ましくは1〜20ユニット、更に好ましくは1〜15ユニットである。 The number of kneading discs constituting one melt-kneading portion (kneading portion) is from the viewpoint of satisfactorily dispersing the filler and from the viewpoint of preventing the polyolefin resin composition from being decomposed by the large heat generated by shearing. Therefore, it is preferably 3 to 200 sheets, and more preferably 5 to 50 sheets. Further, from the viewpoint of preventing the polyolefin resin from decomposing due to the large heat generated by shearing, preferably 1 to 20 units, more preferably 1 to 15 units, with one melt-kneading part (kneading part) as one unit. It is a unit.
スクリーンメッシュは、混練効果を大きくしてフィラーを良好に分散させるという観点や、せん断によって発生する大きな発熱でポリオレフィン樹脂組成物が分解することを防止するという観点から、好ましくは10〜500メッシュであり、より好ましくは20〜200メッシュである。 The screen mesh is preferably 10 to 500 meshes from the viewpoint of increasing the kneading effect and satisfactorily dispersing the filler and preventing the polyolefin resin composition from being decomposed by the large heat generated by shearing. , More preferably 20-200 mesh.
溶融押出工程においては、必要に応じて、一般に熱可塑性汎用樹脂に添加される公知の物質、例えば、酸化防止剤、耐熱安定剤、紫外線吸収剤、滑剤、顔料、帯電防止剤、難燃剤、中和剤、発泡剤、可塑剤、気泡防止剤等を適宜添加することもができる。 In the melt extrusion step, if necessary, a known substance generally added to a general-purpose thermoplastic resin, for example, an antioxidant, a heat-resistant stabilizer, an ultraviolet absorber, a lubricant, a pigment, an antistatic agent, a flame retardant, etc. A Japanese agent, a foaming agent, a plasticizer, an anti-bubble agent and the like can be appropriately added.
本発明の炭素複合材料の用途としては、溶融押出法で製造されたものにおいて、射出成形用材料、押出成形用材料、プレス成形用材料、ブロー成形用材料、フィルム成形用材料等が挙げられる。特に、好ましくは剛性や耐衝撃性が必要とされる用途であり、例えば自動車用材料や家電用材料が挙げられる。 Applications of the carbon composite material of the present invention include injection molding materials, extrusion molding materials, press molding materials, blow molding materials, film molding materials, and the like, which are manufactured by the melt extrusion method. In particular, it is preferably an application in which rigidity and impact resistance are required, and examples thereof include materials for automobiles and materials for home appliances.
以下、実施例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。以下において、部及び%はそれぞれ重量部及び重量%を示す。 Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to these Examples. In the following, parts and% indicate parts by weight and% by weight, respectively.
実施例及び比較例に用いた材料は以下の通りである。また、製造元、精製方法などを特に記載していないものは市販品である。
《2−オキサゾリン系モノマー(a)》
VOZO:2−ビニル−2−オキサゾリン
MVOZO:5−メチル−2−ビニル−2−オキサゾリン
IPOZO:2−イソプロペニル−2−オキサゾリン
DMVOZO:4,4'−ジメチル−2−ビニル−2−オキサゾリン
これらの2−オキサゾリン系モノマーは、本発明者等が先に出願した特許文献5(特開2001−058986号公報、特開2002−275166号公報、特開2004−250391号公報、特開2004−238342号公報、特開2004−238343号公報、特開2004−238344号公報)に記載の方法で製造できる。
《含窒素複素環系モノマー(b)》
NVP:N−ビニルピロリドン(東京化成、試薬)
NVC:N−ビニルカプロラクタム(東京化成、試薬)
「ACMO」:N−アクリロイルモルホリン(KJケミカルズ株式会社製、商品名「ACMO」)
《炭素材料》
CNT:カーボンナノチューブ(Nanocyl社製、NC−7000、直径11nm、クロロホルムで洗浄して、乾燥させた。)
B−CNT:ビーズミル処理CNT(ビーズミル処理:N−メチルピロリドン 39.8g、CNT 0.8gとビーズ(ジルコニア製Φ0.5mm)160gを湿式ビーズミル装置(アイメックス社製RMB−08)のベッセル内に加え、1000rpmで1.5時間攪拌することによってビーズミル処理を行った。その後、溶液を1Lのビーカーにビーズごと全て入れ、イオン交換水を加えて軽く振り、上澄みを取り出していくことで上澄み中に浮遊するカーボンナノチューブと底に沈降するジルコニアビーズを分けた。この操作を何度も繰り返し、カーボンナノチューブとジルコニアビーズを完全に分けた後、上澄みをろ過し、80℃で4h真空乾燥させ、黒色粉末としてビーズミル処理カーボンナノチューブ(B−CNT)を得た。)
VGCF:カーボンナノファイバー(昭和電工株式会社製のVGCF−H、直径150nm、クロロホルムで洗浄して、乾燥させた。)
CF:炭素繊維(三菱レイヨン株式会社製、PAN系CF、商品名「パイロフィルTR50S15L」、直径7μm、クロロホルムで洗浄して、乾燥させた。)
《その他》
MMA:メチルメタアクリレート(東京化成、試薬)
DMAA:N,N−ジメチルアクリルアミド(KJケミカルズ株式会社製、商品名「DMAA」)
DEAA:N,N−ジエチルアクリルアミド(KJケミカルズ株式会社製、商品名「DEAA」)
AIBN:アゾビスブチロニトリル(和光純薬、試薬)
PVP:ポリビニルピロリドン(東京化成、試薬、重量平均分子量1万)
NMP:N−メチルピロリドン
EtOH:エチルアルコール
DMF:N,N−ジメチルホルムアミド
KJCMPA:3−メトキシ−N,N−ジメチルプロパンアミド(KJケミカルズ株式会社製、商品名「KJCMPA」)
KJCBPA:6−メトキシ−N,N−ジメチルヘキサンアミド(KJケミカルズ株式会社製、商品名「KJCBPA」)
PP:ポリプロピレン樹脂(日本ポリプロ株式会社製、MA3)
PMP:無水マレイン酸変性ポリプロピレン(三洋化成工業株式会社製、ユーメックス1010)
PA:ポリメチルペンテン樹脂(三井化学株式会社製、TPX MX002)
PMA:酸変性ポリメチルペンテン樹脂(三井化学株式会社製、TPX MM−101B)
The materials used in the examples and comparative examples are as follows. In addition, products that do not specifically describe the manufacturer, purification method, etc. are commercially available products.
<< 2-Oxazoline-based monomer (a) >>
VOZO: 2-Vinyl-2-oxazoline MVOZO: 5-Methyl-2-vinyl-2-oxazoline IPOZO: 2-isopropenyl-2-oxazoline DMVOZO: 4,4'-dimethyl-2-vinyl-2-oxazoline These For the 2-oxazoline-based monomer, Patent Document 5 (Japanese Patent Laid-Open Nos. 2001-058986, 2002-275166, 2004-250391, 2004-238342) which the present inventors have previously applied for. It can be produced by the method described in Japanese Patent Application Laid-Open No. 2004-238343 and Japanese Patent Application Laid-Open No. 2004-238344).
<< Nitrogen-containing heterocyclic monomer (b) >>
NVP: N-vinylpyrrolidone (Tokyo Kasei, reagent)
NVC: N-vinylcaprolactam (Tokyo Kasei, reagent)
"ACMO": N-acryloyl morpholine (manufactured by KJ Chemicals Co., Ltd., trade name "ACMO")
《Carbon material》
CNT: Carbon nanotube (manufactured by Nanocyl, NC-7000, diameter 11 nm, washed with chloroform and dried)
B-CNT: Bead milled CNT (Bead milled: N-methylpyrrolidone 39.8 g, CNT 0.8 g and beads (zirconia Φ0.5 mm) 160 g are added into the vessel of a wet bead mill device (IMEX RMB-08). The beads were milled by stirring at 1000 rpm for 1.5 hours. After that, the solution was put into a 1 L beaker together with the beads, ion-exchanged water was added, and the mixture was shaken lightly to take out the supernatant and float in the supernatant. The carbon nanotubes and the zirconia beads that settle on the bottom were separated. This operation was repeated many times to completely separate the carbon nanotubes and the zirconia beads, and then the supernatant was filtered and vacuum dried at 80 ° C. for 4 hours to obtain a black powder. A bead milled carbon nanotube (B-CNT) was obtained.)
VGCF: Carbon nanofiber (VGCF-H manufactured by Showa Denko KK, diameter 150 nm, washed with chloroform and dried)
CF: Carbon fiber (manufactured by Mitsubishi Rayon Co., Ltd., PAN-based CF, trade name "Pyrofil TR50S15L", diameter 7 μm, washed with chloroform and dried.)
《Others》
MMA: Methyl methacrylate (Tokyo Kasei, reagent)
DMAA: N, N-dimethylacrylamide (manufactured by KJ Chemicals Co., Ltd., trade name "DMAA")
DEAA: N, N-diethylacrylamide (manufactured by KJ Chemicals Co., Ltd., trade name "DEAA")
AIBN: Azobisisobutyronitrile (Wako Pure Chemical Industries, Ltd., reagent)
PVP: Polyvinylpyrrolidone (Tokyo Kasei, reagent, weight average molecular weight 10,000)
NMP: N-methylpyrrolidone EtOH: Ethyl alcohol DMF: N, N-dimethylformamide KJCMPA: 3-Methoxy-N, N-dimethylpropanamide (manufactured by KJ Chemicals, Inc., trade name "KJCMPA")
KJCBPA: 6-methoxy-N, N-dimethylhexaneamide (manufactured by KJ Chemicals Co., Ltd., trade name "KJCBPA")
PP: Polypropylene resin (manufactured by Japan Polypropylene Corporation, MA3)
PMP: Maleic anhydride-modified polypropylene (manufactured by Sanyo Chemical Industries, Ltd., Youmex 1010)
PA: Polymethylpentene resin (manufactured by Mitsui Chemicals, Inc., TPX MX002)
PMA: Acid-modified polymethylpentene resin (manufactured by Mitsui Chemicals, Inc., TPX MM-101B)
実施例及び比較例における各種物性の測定方法と評価方法は以下の通りである。
《分散性》:
作製した炭素材料分散液の分散状態を光学顕微鏡(HiROX社製、デジタル光学顕微鏡パワーハイスコープKH−2700)により観察を行い、黒色率を算出し、分散性を数値として4段階で評価した。なお、観察用サンプルの作製と黒色率の算出方法は下記通りである。
サンプル作製:分散液5μLを取り、ホールスライドガラスに1滴を滴下し、溶液の流動が収まった時点で顕微鏡観察を行い、写真を撮影する。
黒色率算出:任意の点10ヶ所における光学顕微鏡画像(図1)を白黒画像(図2)にし、計算式1に準じて黒色率を算出した(画像の拡大倍率は100倍である)。黒色率が低いほど、分散性が良い。
計算式1
黒色率(%)=黒色ピクセルの数/(黒色ピクセルの数+白色ピクセルの数)×100
◎:黒色率が5%未満
○:黒色率が5%以上、且つ10%未満
△:黒色率が10%以上、且つ15%未満
×:黒色率が15%以上
《分散安定性(貯蔵安定性)》:
作製した炭素材料分散液を用い、25℃で90日間静置し、その後の状態を光学顕微鏡により観察を行い、黒色率を算出し、分散性を数値として前記同様4段階で評価した。
The measurement method and evaluation method of various physical properties in Examples and Comparative Examples are as follows.
<< Dispersion >>:
The dispersed state of the produced carbon material dispersion was observed with an optical microscope (Digital Optical Microscope Power Hiscope KH-2700 manufactured by HiROX), the blackness ratio was calculated, and the dispersibility was evaluated in four stages as numerical values. The method for preparing an observation sample and calculating the blackness ratio is as follows.
Sample preparation: Take 5 μL of the dispersion, drop 1 drop on the hole slide glass, and when the flow of the solution has subsided, observe under a microscope and take a photograph.
Calculation of blackness ratio: An optical microscope image (FIG. 1) at 10 arbitrary points was converted into a black-and-white image (FIG. 2), and the blackness ratio was calculated according to formula 1 (the magnification of the image is 100 times). The lower the blackness ratio, the better the dispersibility.
Calculation formula 1
Black ratio (%) = number of black pixels / (number of black pixels + number of white pixels) x 100
⊚: Black ratio is less than 5% ○: Black ratio is 5% or more and less than 10% Δ: Black ratio is 10% or more and less than 15% ×: Black ratio is 15% or more << Dispersion stability (storage stability) ) >>:
Using the prepared carbon material dispersion, the mixture was allowed to stand at 25 ° C. for 90 days, the state thereafter was observed with an optical microscope, the blackness ratio was calculated, and the dispersibility was evaluated as a numerical value in the same four stages as described above.
《共重合(A)の合成》
合成実施例1
撹拌装置、温度計、冷却器及び乾燥窒素導入管を備えた容量500mLの反応容器にVOZO 25.0g(257.7mmol)、NVP 85.9g(773.0mmol)、アゾビスイソブチロニトリル(AIBN)1.7g(10.3mmol)、トルエン260mLを仕込んで、乾燥窒素気流下、反応液を30℃で60分攪拌した後、90℃で8時間重合反応を行った。反応終了後、室温に戻し、粘性の高い反応液をクロロホルム50mLで希釈し、過剰量のヘキサン(約2L)に注ぎ、白色沈殿物を得た。その後、沈殿物をろ過し、50℃で3時間真空乾燥を行い、白色粉末状固形物101.8gを得た(収率=91.8%)。
該白色粉末状固形物は、赤外線吸収スペクトル(IR)により、オキサゾリン基に特有な吸収(1650cm−1)とピロリドン基に特有な吸収(1700cm−1)が検出され、また、これらのモノマー由来のビニル基の吸収(990cm−1)が検出されず、共重合体(A−1)の生成を確認した。また、共重合体の組成が1H−NMR(CDCl3)分析により、VOZO由来ユニット/NVP由来ユニット=1.0/2.3と確認し、さらに、該共重合体の重量平均分子量(Mw)がGPC法(標準ポリスチレン)により分析し、2650であることを確認した。
<< Synthesis of copolymerization (A) >>
Synthesis Example 1
VOZO 25.0 g (257.7 mmol), NVP 85.9 g (773.0 mmol), azobisisobutyronitrile (AIBN) in a 500 mL reaction vessel equipped with a stirrer, thermometer, cooler and dry nitrogen inlet tube. ) 1.7 g (10.3 mmol) and 260 mL of toluene were charged, and the reaction solution was stirred at 30 ° C. for 60 minutes under a dry nitrogen stream, and then the polymerization reaction was carried out at 90 ° C. for 8 hours. After completion of the reaction, the temperature was returned to room temperature, the highly viscous reaction solution was diluted with 50 mL of chloroform, and poured into an excess amount of hexane (about 2 L) to obtain a white precipitate. Then, the precipitate was filtered and vacuum dried at 50 ° C. for 3 hours to obtain 101.8 g of a white powdery solid (yield = 91.8%).
In the white powdery solid, absorption peculiar to the oxazoline group (1650 cm -1 ) and absorption peculiar to the pyrrolidone group (1700 cm -1 ) were detected by the infrared absorption spectrum (IR), and these monomers were derived. Absorption of vinyl group (990 cm -1 ) was not detected, and the formation of copolymer (A-1) was confirmed. Further, the composition of the copolymer was confirmed by 1 H-NMR (CDCl 3 ) analysis as VOZO-derived unit / NVP-derived unit = 1.0 / 2.3, and further, the weight average molecular weight (Mw) of the copolymer was confirmed. ) Was analyzed by the GPC method (standard polystyrene) and confirmed to be 2650.
合成実施例2〜10と合成比較例1〜3
合成実施例1と同様に、2−オキサゾリン系モノマー(a)と含窒素複素環系モノマー(b)、その他の共重合可能なビニル系単量体(c)及びAIBNを表1に示す所定の量を用い、合成実施例2〜8と比較例1〜3の重合を行い、得られた重合物を合成実施例1と同様に精製し、それぞれのポリマー(A−2〜A−10とP−1〜P−3)を白色粉末として取得した。合成実施例1と同様に、ポリマーA−2〜A−10とポリマーP−1〜P−3の同定(IR)、分子量測定(GPC)、組成比算出(1H−NMR)は行い、収率と共に表1に示した。
Synthesis Examples 2 to 10 and Synthesis Comparative Examples 1 to 3
Similar to Synthesis Example 1, 2-oxazoline-based monomer (a), nitrogen-containing heterocyclic monomer (b), other copolymerizable vinyl-based monomer (c), and AIBN are shown in Table 1. Polymerization of Synthesis Examples 2 to 8 and Comparative Examples 1 to 3 was carried out using an amount, and the obtained polymer was purified in the same manner as in Synthesis Example 1 and the respective polymers (A-2 to A-10 and P) were purified. -1 to P-3) were obtained as a white powder. Synthesis As in Example 1, identification (IR) of polymers A-2 to A-10 and polymers P-1 to P-3, molecular weight measurement (GPC), and composition ratio calculation ( 1 1 H-NMR) are performed, and the yield is obtained. It is shown in Table 1 together with the rate.
表1に示すように、得られた共重合体の組成比は重合反応に仕込んだモノマーのモル比と少々異なっている。即ち、2−オキサゾリン系モノマー(a)が仕込みより多めに共重合体に入っていることが確認できる。これは含窒素複素環系モノマー(b)よりも、モノマー(a)の方が重合の際にラジカルへの反応性が高いためと考えられ、得られた共重合体(A)は、モノマー(a)と(b)のランダム配列中に部分的なブロック構造を有することが示唆され、このような特異な構造を有するため、炭素材料に優れる分散促進効果や接着性向上効果等を提供できると本発明者らが推測している。 As shown in Table 1, the composition ratio of the obtained copolymer is slightly different from the molar ratio of the monomers charged in the polymerization reaction. That is, it can be confirmed that the 2-oxazoline-based monomer (a) is contained in the copolymer in a larger amount than the charge. It is considered that this is because the monomer (a) has higher reactivity to radicals during polymerization than the nitrogen-containing heterocyclic monomer (b), and the obtained copolymer (A) is a monomer (A). It is suggested that the random sequences of a) and (b) have a partial block structure, and since it has such a unique structure, it is possible to provide an excellent dispersion promoting effect, adhesiveness improving effect, etc. to the carbon material. The present inventors speculate.
《炭素材料分散剤の作製》
分散実施例1〜12、分散比較例1〜6
共重合体と分散剤とを表2に示す割合で混合し、バス型超音波装置(ELMA社製、S30)を用いて、25℃で30分処理し、混合溶液を得た。表2に示す所定量の炭素材料を混合溶液に加え、バス型超音波装置を用いて、25℃で120分処理し、炭素材料分散液を作製した。得られた分散液の分散性と分散安定性を前記方法で評価し、結果を表2に示す。また、分散実施例1と2の分散液調製直後の状態、分散実施例2の分散液90日静置後の状態、分散比較例1、分散比較例4と分散比較例5の分散液の光学顕微鏡写真を図3〜図8に示す。
<< Preparation of carbon material dispersant >>
Dispersion Examples 1-12, Dispersion Comparative Examples 1-6
The copolymer and the dispersant were mixed at the ratios shown in Table 2 and treated at 25 ° C. for 30 minutes using a bath-type ultrasonic device (manufactured by ELMA, S30) to obtain a mixed solution. A predetermined amount of carbon material shown in Table 2 was added to the mixed solution and treated at 25 ° C. for 120 minutes using a bath-type ultrasonic device to prepare a carbon material dispersion. The dispersibility and dispersion stability of the obtained dispersion were evaluated by the above method, and the results are shown in Table 2. Further, the state immediately after the preparation of the dispersions of Dispersion Examples 1 and 2, the state after the dispersions of Dispersion Example 2 were allowed to stand for 90 days, the optics of the dispersions of Dispersion Comparative Example 1, Dispersion Comparative Example 4 and Dispersion Comparative Example 5. Micrographs are shown in FIGS. 3-8.
分散実施例と分散比較例の結果から、本発明の共重合体(A)を含有しない場合、炭素材料が均一に分散できなかった。一方、2−オキサゾリン系モノマー(a)のホモポリマー(分散比較例1)、含窒素複素環系モノマー(b)のホモポリマー(分散比較例4)及びそれらの混合物(分散比較例6)を配合した場合でも、炭素材料が均一に分散できないか、再凝集が起こりやすく、安定的な分散液を得られなかった。即ち、本発明で提案したモノマー(a)とモノマー(b)かるなる特定組成の共重合体を分散促進剤として用いた場合は、分散性と分散安定性が満足でき、均一かつ安定的な分散液を取得することができた。 From the results of the dispersion examples and the dispersion comparative examples, the carbon material could not be uniformly dispersed when the copolymer (A) of the present invention was not contained. On the other hand, a homopolymer of a 2-oxazoline-based monomer (a) (dispersion comparative example 1), a homopolymer of a nitrogen-containing heterocyclic monomer (b) (dispersion comparative example 4), and a mixture thereof (dispersion comparative example 6) are blended. Even in this case, the carbon material could not be uniformly dispersed or reaggregation was likely to occur, and a stable dispersion could not be obtained. That is, when the copolymer of the specific composition of the monomer (a) and the monomer (b) proposed in the present invention is used as the dispersion accelerator, the dispersibility and the dispersion stability are satisfied, and the dispersion is uniform and stable. The liquid could be obtained.
《表面修飾炭素材料の作製》
1.同時加熱方式
本発明の共重合体(A)は炭素材料の分散促進剤として用いられる同時に炭素材料の接着性向上剤として用いることができる。この際に、液体媒体中に共重合体(A)からなる分散促進剤兼接着性向上剤が炭素材料の分散を促進させ、その後炭素材料の表面に接触させながら加熱することによって、共重合体(A)のオキサゾリン基が炭素材料表面のカルボキシル基やフェノール性水酸基と反応し、共重合体(A)が化学結合を介して炭素材料の表面に固定され(接着)、表面修飾された炭素材料が製造される。特に、高沸点かつオキサゾリン基と反応性を有しない溶媒を分散剤として使用する場合は、この方法により表面修飾炭素材料を簡便に製造することができる。
<< Preparation of surface-modified carbon material >>
1. 1. Simultaneous heating method The copolymer (A) of the present invention can be used as a dispersion accelerator for carbon materials and at the same time as an adhesive improver for carbon materials. At this time, the dispersion accelerator / adhesiveness improver composed of the copolymer (A) promotes the dispersion of the carbon material in the liquid medium, and then the copolymer is heated while being in contact with the surface of the carbon material. The oxazoline group of (A) reacts with the carboxyl group or phenolic hydroxyl group on the surface of the carbon material, and the copolymer (A) is fixed (adhered) to the surface of the carbon material via a chemical bond to modify the surface of the carbon material. Is manufactured. In particular, when a solvent having a high boiling point and not reactive with an oxazoline group is used as a dispersant, a surface-modified carbon material can be easily produced by this method.
表面修飾炭素材料作製の実施例1(修飾実施例1)
前記の分散実施例1で得られた分散液をフラスコに移して、攪拌しながら120℃で1時間加熱した。その後減圧エバポレーションにより分散剤を除去し、ラボシェイカー(200rpm、15分/1回)を用い、エタノールで2回洗浄を行い、未反応の共重合体(A)を除去した。洗浄後の固形物を真空下で乾燥させ、固体粉末状の表面修飾CNT(AC−1)を取得した。得られたAC−1約5mgを用い、熱重量分析装置(Q−600、TA INSTRUMENT)により計量し、窒素雰囲気下で常温より10℃/分で600℃まで昇温し、熱重量減少からAC−1の表面に接着した共重合体(A)の付着量は3.52%と算出した。さらに、CNTの物性値(密度2g/cm3、直径11nm)に基づき、その表面積当たりの共重合体付着量は0.200mg/m2であることを確認した。
Example 1 of surface-modified carbon material production (Modification Example 1)
Dispersion The dispersion obtained in Example 1 was transferred to a flask and heated at 120 ° C. for 1 hour with stirring. Then, the dispersant was removed by vacuum evaporation, and the unreacted copolymer (A) was removed by washing twice with ethanol using a lab shaker (200 rpm, 15 minutes / once). The washed solid was dried under vacuum to obtain surface-modified CNTs (AC-1) in the form of solid powder. Using about 5 mg of the obtained AC-1, weigh it with a thermogravimetric analyzer (Q-600, TA INSTRUMENT), raise the temperature from room temperature to 600 ° C at 10 ° C / min under a nitrogen atmosphere, and reduce the heat weight to AC. The amount of the copolymer (A) adhered to the surface of -1 was calculated to be 3.52%. Furthermore, based on the physical properties of CNT (density 2 g / cm 3 , diameter 11 nm), it was confirmed that the amount of copolymer adhered per surface area was 0.200 mg / m 2 .
表面修飾炭素材料作製の実施例2〜5及び比較例1〜4(修飾実施例2〜5と修飾比較例1〜4)
修飾実施例1と同様に前記の分散実施例4、7、8、11で得られた分散液を用い、表面修飾炭素材料の作製を行い、固体粉末状の表面修飾CNT(AC−2〜5)を取得した。また、分散比較例1、4〜6で調製した混合液を用いて、修飾実施例1と同様な操作で粉末状固形物として、PC−1〜4を得た。同様に熱重量分析により炭素材料表面に接着した重合体等を定量し、算出結果を表3に示す。
Examples 2 to 5 and Comparative Examples 1 to 4 for producing a surface-modified carbon material (Modified Examples 2 to 5 and Modified Comparative Examples 1 to 4)
A surface-modified carbon material was prepared using the dispersions obtained in the above-mentioned dispersion examples 4, 7, 8 and 11 in the same manner as in the modified example 1, and the surface-modified CNTs (AC-2 to 5) in the form of solid powder were prepared. ) Was acquired. Further, using the mixed solutions prepared in Dispersion Comparative Examples 1 and 4 to 6, PC-1 to 4 were obtained as powdery solids by the same operation as in Modified Example 1. Similarly, the polymer and the like adhered to the surface of the carbon material are quantified by thermogravimetric analysis, and the calculation results are shown in Table 3.
表面修飾炭素材料作製の実施例6〜8及び比較例5〜7(修飾実施例6〜8と修飾比較例5〜7)
共重合体(A)と分散剤(溶媒)を表4に示す割合で混合し、バス型超音波装置(ELMA社製、S30)を用いて、25℃で30分処理し、共重合体の溶液を得た。表4に示す所定量の炭素材料(CF、1mm〜2cmに適宜に切断したもの)を溶液中に加え、表4に示す所定条件(温度と時間)において加熱を行った。その後、得られた固形物をろ過し、ラボシェイカー(200rpm、15分/1回)を用い、エタノールで2回洗浄を行い、洗浄後の固形物を真空下で乾燥させ、固体粉末状の表面修飾CF(AC−6〜8)を取得した。
得られたAC−6〜8各3mgを用い、同様に熱重量分析により表面に接着した共重合体(A)の付着量を算出した。さらに、CFの物性値(密度2g/cm3、直径7μm)に基づき、その表面積当たりの共重合体付着量を算出し、表4に示す。
また、修飾実施例6と同様に、修飾比較例5〜7の作製を表4に示す条件に準じて行い、粉末状固形物としてPC−5〜7を取得した。同様に、熱重量分析によりPC−5〜7の表面積当たりの重合体付着量を算出し、表4に示す。
Examples 6 to 8 and Comparative Examples 5 to 7 for producing a surface-modified carbon material (Modified Examples 6 to 8 and Modified Comparative Examples 5 to 7)
The copolymer (A) and the dispersant (solvent) were mixed at the ratios shown in Table 4 and treated at 25 ° C. for 30 minutes using a bath-type ultrasonic device (ELMA, S30) to obtain the copolymer. A solution was obtained. A predetermined amount of carbon material (CF, appropriately cut into 1 mm to 2 cm) shown in Table 4 was added to the solution, and heating was performed under the predetermined conditions (temperature and time) shown in Table 4. Then, the obtained solid material is filtered, washed twice with ethanol using a lab shaker (200 rpm, 15 minutes / time), and the washed solid material is dried under vacuum to form a solid powder surface. Modified CF (AC-6-8) was obtained.
Using 3 mg each of the obtained AC-6 to 8, the amount of the copolymer (A) adhered to the surface was calculated by thermogravimetric analysis in the same manner. Furthermore, based on the physical property values of CF (density 2 g / cm 3 , diameter 7 μm), the amount of copolymer adhesion per surface area was calculated and shown in Table 4.
Further, in the same manner as in Modified Example 6, Preparation of Modified Comparative Examples 5 to 7 was carried out according to the conditions shown in Table 4, and PC-5 to 7 was obtained as a powdery solid. Similarly, the amount of polymer adhered per surface area of PC-5 to 7 was calculated by thermogravimetric analysis and is shown in Table 4.
表面修飾炭素材料作製の実施例9、10及び比較例8(修飾実施例9、10と修飾比較例8)
2.後加熱方式
本発明の共重合体(A)は炭素材料の接着性向上剤として用いる場合、液体媒体(有機溶剤又は水)中に共重合体(A)を溶解させた後炭素材料を加え、炭素材料の表面に共重合体(A)を付着させ、その後、共重合体(A)付着の炭素材料を溶液から取り出し、加熱することによって、共重合体(A)のオキサゾリン基が炭素材料表面のカルボキシル基やフェノール性水酸基と反応し、共重合体(A)が化学結合を介して炭素材料の表面に固定され(接着)、表面修飾された炭素材料が製造される。特に、低沸点やオキサゾリン基と反応性を有する溶媒を使用する場合や、大きいサイズ炭素材料の分散液を調製困難な場合において、この方法により表面修飾炭素材料を簡便に製造することができる。
Examples 9 and 10 and Comparative Example 8 for producing a surface-modified carbon material (Modified Examples 9 and 10 and Modified Comparative Example 8)
2. 2. Post-heating method When the copolymer (A) of the present invention is used as an adhesive improver for a carbon material, the copolymer (A) is dissolved in a liquid medium (organic solvent or water) and then the carbon material is added. The copolymer (A) is attached to the surface of the carbon material, and then the carbon material to which the copolymer (A) is attached is taken out from the solution and heated, so that the oxazoline group of the copolymer (A) is formed on the surface of the carbon material. The copolymer (A) is fixed (adhered) to the surface of the carbon material via a chemical bond by reacting with the carboxyl group and the phenolic hydroxyl group of the above, and a surface-modified carbon material is produced. In particular, when a solvent having a low boiling point or reactivity with an oxazoline group is used, or when it is difficult to prepare a dispersion liquid of a large-sized carbon material, the surface-modified carbon material can be easily produced by this method.
表4に示す共重合体溶液に所定量の炭素材料(CF、1mm〜2cmに適宜に切断したもの)を加え、バス型超音波装置により25℃で30分を処理した。その後、固形物をろ過して、表4に示す所定条件で加熱処理(焼成)を行い、同様にエタノール洗浄を2回実施し、洗浄後の固形物を乾燥させ、固体粉末状の表面修飾CF(AC−9)を取得した。
また、表4に示す共重合体溶液に長さ3mに裁断した炭素材料(CF 3m)を1mm/秒の速度で幅300mmの共重合体溶液槽を通過させ、表4に示す所定条件で加熱処理(焼成)を行い、その後、同幅のエタノール槽を2回(2mm/秒)通過させ、洗浄後の繊維状固形物を乾燥し、固体繊維状の表面修飾CF(AC−10)を取得した。
さらに、修飾実施例9と同様に、修飾比較例8の調製を表4の条件に準じて行い、粉末状固形物としてPC−8を取得した。同様に、熱重量分析によりPC−8の表面面積当たりの重合体付着量を算出し、表4に示す。
A predetermined amount of carbon material (CF, appropriately cut into 1 mm to 2 cm) was added to the copolymer solution shown in Table 4, and the mixture was treated with a bath-type ultrasonic device at 25 ° C. for 30 minutes. After that, the solid matter is filtered and heat-treated (baked) under the predetermined conditions shown in Table 4, and ethanol washing is carried out twice in the same manner, the washed solid matter is dried, and the surface-modified CF in the form of a solid powder. (AC-9) was acquired.
Further, a carbon material (CF 3 m) cut into a length of 3 m is passed through the copolymer solution shown in Table 4 at a rate of 1 mm / sec through a copolymer solution tank having a width of 300 mm, and heated under the predetermined conditions shown in Table 4. The treatment (baking) is performed, and then the same width ethanol bath is passed twice (2 mm / sec) to dry the washed fibrous solid to obtain a solid fibrous surface-modified CF (AC-10). did.
Further, in the same manner as in Modified Example 9, the modified Comparative Example 8 was prepared according to the conditions in Table 4, and PC-8 was obtained as a powdery solid. Similarly, the amount of polymer adhered to the surface area of PC-8 was calculated by thermogravimetric analysis and is shown in Table 4.
《炭素複合材料の作製と評価》
本発明の表面修飾炭素材料を用いて、表面に接着されている共重合体中の未反応のオキサゾリン基を利用し、固形材料である炭素材料、熱可塑性樹脂或いはこれらの混合物とさらに反応させることにより下記3タイプの炭素複合材料を製造することができる。
(1)炭素材料と表面修飾炭素材料からなる炭素複合材料(炭素/共重合体/炭素)
このタイプの複合材料は表面修飾炭素材料の製造と同様に、液体媒体中で炭素材料と表面修飾炭素材料と接触させながら加熱により反応させるという同時加熱方法、又は、液体媒体中で炭素材料と表面修飾炭素材料と接触させた後加熱により反応させるという後加熱方法が挙げられる。
(2)熱可塑性樹脂と表面修飾炭素材料からなる炭素複合材料(樹脂/共重合体/炭素)
このタイプの複合材料は表面修飾炭素材料と汎用樹脂をドライブレンドし、溶融押出機などにより樹脂が溶融状態で表面修飾炭素材料と接触させながら反応するという溶融混練方法により製造することができる。この方法は得られる炭素複合材料を直接形成できるので、好ましい。
(3)熱可塑性樹脂、炭素材料及び表面修飾炭素材料からなる炭素複合材料(樹脂/炭素/共重合体/炭素)
このタイプの炭素複合材料は、表面修飾炭素材料と炭素材料及び汎用樹脂をドライブレンドしてから溶融混練で反応させて製造することができ、また、上記(1)で得られた「炭素/共重合体/炭素」タイプの炭素複合材料を汎用樹脂と溶融混練させることにより製造することもできる。
<< Fabrication and evaluation of carbon composite materials >>
Using the surface-modified carbon material of the present invention, the unreacted oxazoline group in the copolymer adhered to the surface is utilized to further react with the solid carbon material, the thermoplastic resin or a mixture thereof. The following three types of carbon composite materials can be produced.
(1) Carbon composite material (carbon / copolymer / carbon) consisting of carbon material and surface-modified carbon material
Similar to the production of surface-modified carbon materials, this type of composite material can be reacted by heating while contacting the carbon material with the surface-modified carbon material in a liquid medium, or the carbon material and the surface in a liquid medium. A post-heating method in which the material is brought into contact with the modified carbon material and then reacted by heating can be mentioned.
(2) Carbon composite material (resin / copolymer / carbon) consisting of a thermoplastic resin and a surface-modified carbon material
This type of composite material can be produced by a melt-kneading method in which a surface-modified carbon material and a general-purpose resin are dry-blended and the resin reacts in a molten state while being in contact with the surface-modified carbon material by a melt extruder or the like. This method is preferable because the obtained carbon composite material can be directly formed.
(3) Carbon composite material (resin / carbon / copolymer / carbon) composed of thermoplastic resin, carbon material and surface-modified carbon material
This type of carbon composite material can be produced by dry-blending a surface-modified carbon material with a carbon material and a general-purpose resin and then reacting them by melt-kneading, and the "carbon / copolymer" obtained in (1) above. It can also be produced by melt-kneading a "polymer / carbon" type carbon composite material with a general-purpose resin.
炭素複合材料作製の実施例1、2(複合実施例1、2)
表面修飾炭素材料作製の実施例1で得られた表面修飾炭素材料AC−1、1mm〜2cmに適宜に裁断したCFとNMPを重量比1:10:89で計量し、バス型超音波装置により25℃で30分を処理した。その後混合液を150℃で0.5時間加熱し、得られた黒色固形物をろ過で分離し、ラボシェイカー(200rpm、15分/1回)を用いて、エタノールで2回洗浄を行い、洗浄後の固形物を真空下で乾燥させ、固形状の炭素複合材料(CAC−1)を取得した。
また、超音波処理後の上記混合液を加熱せず、ろ過により固形物を分離し、上記同様に洗浄、乾燥を行い、180℃で0.2時間加熱し、固形状の炭素複合材料(CAC−2)を取得した。なお、未処理裁断品CFの表面状態、加熱処理後のろ過で分離した固形物のエタノール洗浄前、後の表面状態を走査型電子顕微鏡(FE−SEM、JEOLJIS−6700F)により観察を行い、それぞれの写真を図9〜11に示す。
Examples 1 and 2 of carbon composite material production (composite examples 1 and 2)
CF and NMP appropriately cut into the surface-modified carbon material AC-1, 1 mm to 2 cm obtained in Example 1 of producing the surface-modified carbon material were weighed at a weight ratio of 1:10:89 and used by a bath-type ultrasonic device. Treatment was performed at 25 ° C. for 30 minutes. After that, the mixed solution was heated at 150 ° C. for 0.5 hour, the obtained black solid was separated by filtration, and washed twice with ethanol using a lab shaker (200 rpm, 15 minutes / time). The subsequent solid was dried under vacuum to obtain a solid carbon composite material (CAC-1).
Further, the solid matter is separated by filtration without heating the above-mentioned mixed solution after ultrasonic treatment, washed and dried in the same manner as described above, and heated at 180 ° C. for 0.2 hours to obtain a solid carbon composite material (CAC). -2) was acquired. The surface condition of the untreated cut product CF and the surface condition of the solid separated by filtration after the heat treatment before and after the ethanol cleaning were observed with a scanning electron microscope (FE-SEM, JEOLJIS-6700F), respectively. The photographs of are shown in FIGS. 9 to 11.
炭素複合材料作製の実施例3、4(複合実施例3、4)
表面修飾炭素材料AC−1とNMPを重量比2:98で計量し、バス型超音波装置により25℃で30分を処理した。その後混合液を150℃まで加熱し、長さ3mに裁断した炭素材料(CF 3m)を0.5mm/秒の速度で幅300mmの当該混合液を充填した槽を通過させ、同幅のエタノール槽を2回(2mm/秒)通過させ、洗浄後の繊維状固形物を乾燥し、固体繊維状の炭素複合材料(CAC−3)を取得した。
また、上記超音波処理後の混合液を加熱せず、長さ3mに裁断した炭素材料(CF 3m)を1mm/秒の速度で幅300mmの当該混合液を充填した槽を通過させ、200℃で0.1時間を加熱により焼成を行い、同幅のエタノール槽を2回(2mm/秒)通過させ、洗浄後の繊維状固形物を乾燥し、固体繊維状の炭素複合材料(CAC−4)を取得した。
Examples 3 and 4 of carbon composite material production (composite examples 3 and 4)
The surface-modified carbon materials AC-1 and NMP were weighed at a weight ratio of 2:98 and treated with a bath-type ultrasonic device at 25 ° C. for 30 minutes. After that, the mixed solution was heated to 150 ° C., and a carbon material (CF 3 m) cut into a length of 3 m was passed through a tank filled with the mixed solution having a width of 300 mm at a speed of 0.5 mm / sec, and an ethanol tank having the same width was passed. Was passed twice (2 mm / sec), and the washed fibrous solid was dried to obtain a solid fibrous carbon composite material (CAC-3).
Further, the carbon material (CF 3 m) cut into a length of 3 m was passed through a tank filled with the mixed solution having a width of 300 mm at a speed of 1 mm / sec without heating the mixed solution after the sonication treatment, and the temperature was 200 ° C. The fibrous solid material after washing was dried by passing it through an ethanol tank of the same width twice (2 mm / sec) by heating for 0.1 hour in a solid fibrous carbon composite material (CAC-4). ) Was acquired.
炭素複合材料作製の実施例5、6(複合実施例5、6)
表面修飾炭素材料作製の実施例2で得られた表面修飾炭素材料AC−2を用い、表5に示す所定条件に基づき、実施例5、6を行い、固形状の炭素複合材料(CAC−5、6)を取得した。
Examples 5 and 6 of carbon composite material production (composite examples 5 and 6)
Using the surface-modified carbon material AC-2 obtained in Example 2 for producing the surface-modified carbon material, Examples 5 and 6 were carried out based on the predetermined conditions shown in Table 5, and a solid carbon composite material (CAC-5) was performed. , 6) was acquired.
炭素複合材料作製の比較例1〜4(複合比較例1〜4)
炭素複合材料作製の実施例1〜6の手順を準じ、表5に示す条件により比較例1〜4を行い、固形状または繊維状の炭素複合材料(CPC−1〜4)を取得した。なお、CPC−4はCNTとCFが共重合体等一切も介せず、直接付着させたものである。
Comparative Examples 1 to 4 for Fabrication of Carbon Composite Material (Composite Comparative Examples 1 to 4)
Comparative Examples 1 to 4 were carried out according to the conditions shown in Table 5 according to the procedure of Examples 1 to 6 for producing a carbon composite material, and a solid or fibrous carbon composite material (CPC-1 to 4) was obtained. In CPC-4, CNT and CF are directly adhered to each other without any copolymer or the like.
得られたCAC−1〜6及びCPC−1〜4において、表面修飾炭素材料等の接着や付着によるCFの重量増を、炭素複合材料作製前後のCFの重量から算出し、表5に示す。
また、CAC−3、CPC−1、2と4のSEM写真を図12〜15に示す。
In the obtained CAC-1 to 6 and CPC-1 to 4, the weight increase of CF due to adhesion or adhesion of the surface-modified carbon material or the like is calculated from the weight of CF before and after the production of the carbon composite material, and is shown in Table 5.
In addition, SEM photographs of CAC-3, CPC-1, 2 and 4 are shown in FIGS. 12 to 15.
表5及び図9〜15の結果から、本発明の共重合体(A)を介して形成された炭素複合材料が、CFの表面にCNTがしっかり被覆していることが明らかである。また、本発明の炭素複合材料は同時加熱や後加熱など多種多様な方法で製造することが可能であり、共重合体(A)に有するオキサゾリン基は反応性が高く、形成された化学結合が強く、CF(図9)など炭素材料と室温で接触するだけでも十分に付着し、さらに加熱により接着され(図10)、洗浄しても表面に付着された分のみ除去され、化学接合により接着された部分が存在し(図11)、洗浄、乾燥後の炭素複合材料の重量から重量増加率を算出した。また、共重合体(A)を用いた炭素複合材料(図12)に対して、2−ビニル−オキサゾリンのホモポリマー(図13)を用いた場合、CNTがCF表面に均一に分散、接着することができず、PVP(図14)を用いた場合及び分散促進剤や接着性向上剤として何も用いない場合(図15)、CF表面にCNTの付着も接着も確認されず、CFとCNTの複合体を得られないことが分かった。 From the results of Table 5 and FIGS. 9 to 15, it is clear that the carbon composite material formed via the copolymer (A) of the present invention has CNTs firmly coated on the surface of CF. Further, the carbon composite material of the present invention can be produced by various methods such as simultaneous heating and post-heating, and the oxazoline group contained in the copolymer (A) is highly reactive and the formed chemical bonds are formed. It is strong and adheres sufficiently even if it comes into contact with a carbon material such as CF (Fig. 9) at room temperature, and is further adhered by heating (Fig. 10), and even if it is washed, only the amount adhered to the surface is removed and adhered by chemical bonding. The weight gain rate was calculated from the weight of the carbon composite material after washing and drying (FIG. 11). Further, when a homopolymer of 2-vinyl-oxazoline (FIG. 13) is used with respect to the carbon composite material (FIG. 12) using the copolymer (A), CNTs are uniformly dispersed and adhered to the CF surface. When PVP (Fig. 14) is used and when nothing is used as a dispersion promoter or adhesiveness improver (Fig. 15), neither CNT adhesion nor adhesion is confirmed on the CF surface, and CF and CNT are not confirmed. It turned out that the complex of
炭素複合材料作製の実施例7〜12(複合実施例7〜12)および比較例5〜9(複合比較例5〜8)
汎用樹脂としてPP、PMP、PAとPMAを用いて、本発明の表面修飾炭素材料、炭素/共重合体/炭素系の炭素複合材料と表6に示す組成でドライブレンドし、バッチ式二軸混練機(東洋精機株式化社製のラボプラストミルμ)を用いて、表6に示す所定条件により溶融混練を行い、樹脂/共重合体/炭素系及び樹脂/炭素/共重合体/炭素系の炭素複合材料を作製した。得られたこれらの炭素複合材料をホットプレス機によりディスクに成形した後、そのディスクを液体窒素に2分浸漬させることでディスクを完全に凍結させた。凍結ディスクを曲げることで破断させ、破断面をSEMで観察を行った。また、1枚ディスクの破断面SEM写真20枚を撮影し、合計150本の繊維を数え、樹脂の付着している繊維の本数は全繊維150本に対する割合を樹脂付着率として算出し、表6に示す。
また、得られた炭素複合材料をホットプレス機(東洋精機株式会社製のminiTEST PRESS−10)を用いて、厚さ200μmのフィルムを作製し(成形温度235℃、圧力5MPaを2分の加圧した後に1分で急冷させ、プレスフィルムを作製した。)、得られたプレスフィルムを長さ35mm、幅2.5mmのダンベル試験片を打ち抜き、チャック間15mmで引張試験機(東洋精機株式会社製万能試験機)に固定し、10mm/minの速度で引張試験を行った。各実施例、比較例において、5枚の試験片の引張強度の平均値を取り、表6に示す。
複合実施例7、10の凍結ディスク破断面のSEM写真を図16、17に示す。また、複合実施例11の引張試験片の断面SEM写真を図18に示す。
Examples 7 to 12 (Composite Examples 7 to 12) and Comparative Examples 5 to 9 (Composite Comparative Examples 5 to 8) for producing a carbon composite material.
Using PP, PMP, PA and PMA as general-purpose resins, dry-blend the surface-modified carbon material of the present invention and the carbon / copolymer / carbon-based carbon composite material with the composition shown in Table 6 and batch-type biaxial kneading. Using a machine (Laboplast Mill μ manufactured by Toyo Seiki Co., Ltd.), melt-kneading was performed under the predetermined conditions shown in Table 6 to obtain resin / copolymer / carbon-based and resin / carbon / copolymer / carbon-based. A carbon composite material was prepared. The obtained carbon composite materials were formed into a disc by a hot press machine, and then the disc was completely frozen by immersing the disc in liquid nitrogen for 2 minutes. The frozen disk was broken by bending, and the fracture surface was observed by SEM. In addition, 20 SEM photographs of the fracture surface of one disc were taken, a total of 150 fibers were counted, and the number of fibers to which the resin was attached was calculated as the ratio of the total fibers to 150 fibers as the resin adhesion rate, and Table 6 Shown in.
Further, the obtained carbon composite material was used in a hot press machine (miniTEST PRESS-10 manufactured by Toyo Seiki Co., Ltd.) to prepare a film having a thickness of 200 μm (molding temperature 235 ° C., pressure 5 MPa for 2 minutes). After that, it was rapidly cooled in 1 minute to prepare a press film.) The obtained press film was punched out from a dumbbell test piece having a length of 35 mm and a width of 2.5 mm, and a tensile tester (manufactured by Toyo Seiki Co., Ltd.) with a chuck distance of 15 mm. It was fixed to a universal testing machine) and a tensile test was performed at a speed of 10 mm / min. In each Example and Comparative Example, the average value of the tensile strengths of the five test pieces is taken and shown in Table 6.
SEM photographs of the fracture surface of the frozen disk of Composite Examples 7 and 10 are shown in FIGS. 16 and 17. In addition, a cross-sectional SEM photograph of the tensile test piece of Composite Example 11 is shown in FIG.
表6及び図16〜18の結果から、本発明の共重合体(A)を介して形成された炭素/樹脂系の炭素複合材料が、CF又はCNTの表面に共重合体で修飾されたため、ポリオレフィン系汎用樹脂やそれらの酸変性樹脂に対する接着性(樹脂の付着率)が向上され、特にCNT/共重合体/CF系の炭素複合材料を汎用樹脂に添加することにより、得られる樹脂/CNT/共重合体/CF系の複合材料が、CNT/共重合体/CFにより補強効果も付与され、一層強度の増加が確認された(図18)。一方、PVPや2−ビニル−オキサゾリンのホモポリマー、又はそれらの混合物の接着性向上効果は低く、特にCFとCNT間に何も有しない場合には、接着性付与や補強効果が全く示されなかった。 From the results of Table 6 and FIGS. 16 to 18, the carbon / resin-based carbon composite material formed via the copolymer (A) of the present invention was modified with the copolymer on the surface of CF or CNT. Adhesion (adhesion rate of resin) to polyolefin-based general-purpose resins and their acid-modified resins is improved, and in particular, resin / CNT obtained by adding CNT / copolymer / CF-based carbon composite material to general-purpose resin. It was confirmed that the / copolymer / CF-based composite material was further enhanced in strength by imparting a reinforcing effect by CNT / copolymer / CF (FIG. 18). On the other hand, the effect of improving the adhesiveness of PVP, 2-vinyl-oxazoline homopolymers, or a mixture thereof is low, and especially when there is nothing between CF and CNT, no adhesiveness-imparting or reinforcing effect is shown. It was.
本発明の共重合体が炭素材料の他種材料への分散促進や、炭素材料の表面接着性向上には特異な性能を示し、それを含有する炭素材料の分散促進剤、接着性向上剤は、特殊な分散や表面処理の技術、設備を要さず、炭素材料本来の特性を損なうことがなく、簡便な方法で各種炭素材料の表面に親水性、接着性を付与できる。また当該接着性向上剤を用いて表面が改質された炭素材料(表面修飾炭素材料)は、工業的手段により簡便に製造することができ、それを用いて各種固形材料と反応させることにより特異性能を有する好適な炭素複合材料を供することができる。本発明で得られた各種炭素複合材料は、ポリオレフィンなど汎用樹脂の機械的特性を高く維持しながら、熱的特性、耐衝撃性と剛性を顕著に向上させることが期待でき、各産業分野において、各種エンジニアリングプラスチックとして、特にバンパー、インパネ、コンソールボックス、ルーフシート、パネル表装材、電装部品などの自動車・輸送機器関連内外装部品、家電、家具、雑貨などの日用品関連製品、医療材料の成型品、食品容器、食品包装、一般包装などの包装材料、電線やケーブルなどの被覆用材料、建築・土木、文具・事務用品などの産業資材、各種ポリマーアロイの相溶化剤あるいは接着剤用とうして好適である。 The copolymer of the present invention exhibits peculiar performance in promoting the dispersion of carbon materials in other materials and improving the surface adhesiveness of carbon materials, and the dispersion promoters and adhesiveness improvers of carbon materials containing them are It does not require special dispersion or surface treatment technology or equipment, does not impair the original characteristics of the carbon material, and can impart hydrophilicity and adhesiveness to the surface of various carbon materials by a simple method. Further, the carbon material whose surface is modified by using the adhesiveness improver (surface-modified carbon material) can be easily produced by industrial means, and is peculiar by reacting with various solid materials using the carbon material. Suitable carbon composite materials with performance can be provided. The various carbon composite materials obtained in the present invention can be expected to remarkably improve thermal properties, impact resistance and rigidity while maintaining high mechanical properties of general-purpose resins such as polyolefins, and are used in various industrial fields. As various engineering plastics, especially bumpers, instrument panels, console boxes, roof sheets, panel packaging materials, interior and exterior parts related to automobiles and transportation equipment such as electrical components, daily necessities related products such as home appliances, furniture, miscellaneous goods, molded products of medical materials, etc. Suitable for packaging materials such as food containers, food packaging, general packaging, coating materials such as electric wires and cables, industrial materials such as construction / civil engineering, stationery / office supplies, compatibilizers or adhesives for various polymer alloys. Is.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016158207A JP6805415B2 (en) | 2016-08-10 | 2016-08-10 | Adhesive improver for carbon materials and composite materials using it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016158207A JP6805415B2 (en) | 2016-08-10 | 2016-08-10 | Adhesive improver for carbon materials and composite materials using it |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018024788A JP2018024788A (en) | 2018-02-15 |
JP6805415B2 true JP6805415B2 (en) | 2020-12-23 |
Family
ID=61195067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016158207A Active JP6805415B2 (en) | 2016-08-10 | 2016-08-10 | Adhesive improver for carbon materials and composite materials using it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6805415B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018168867A1 (en) * | 2017-03-15 | 2018-09-20 | Kjケミカルズ株式会社 | Oxazoline-based dispersants for carbon materials, and carbon composite materials in which same are used |
JP7428985B2 (en) * | 2018-12-26 | 2024-02-07 | Kjケミカルズ株式会社 | Laminates and composites containing carbon materials |
JP7642201B2 (en) | 2021-05-11 | 2025-03-10 | 株式会社Asm | Polyrotaxane-coated carbon fibers, carbon fiber composites, and prepregs |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4456231B2 (en) * | 2000-05-30 | 2010-04-28 | 株式会社日本触媒 | Modified polyvinyl lactam |
JP2002003731A (en) * | 2000-06-19 | 2002-01-09 | Nippon Shokubai Co Ltd | Thermoplastic resin composition |
JP4182215B2 (en) * | 2003-12-02 | 2008-11-19 | 独立行政法人産業技術総合研究所 | Carbon nanotube-dispersed polar organic solvent and method for producing the same |
JP2014175240A (en) * | 2013-03-12 | 2014-09-22 | Fujifilm Corp | Composition for forming electrically conductive film, and method for producing electrically conductive film using the same |
CN106947280B (en) * | 2013-08-27 | 2020-03-03 | 日产化学工业株式会社 | Conductive carbon material dispersant and conductive carbon material dispersion liquid |
-
2016
- 2016-08-10 JP JP2016158207A patent/JP6805415B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018024788A (en) | 2018-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xia et al. | Polymer-encapsulated carbon nanotubes prepared through ultrasonically initiated in situ emulsion polymerization | |
Karsli et al. | Effect of hybrid carbon nanotube/short glass fiber reinforcement on the properties of polypropylene composites | |
Blond et al. | Enhancement of modulus, strength, and toughness in poly (methyl methacrylate)‐based composites by the incorporation of poly (methyl methacrylate)‐functionalized nanotubes | |
Yang et al. | Enhancement of stiffness, strength, ductility and toughness of poly (ethylene oxide) usingphenoxy-grafted multiwalled carbon nanotubes | |
JP5152716B2 (en) | Chemically modified carbon nanotube and method for producing the same | |
JP6805415B2 (en) | Adhesive improver for carbon materials and composite materials using it | |
JP2010173886A (en) | Carbon nanocomposite, dispersion liquid and resin composition containing the same and production process of the carbon nanocomposite | |
JP6617229B2 (en) | Oxazoline dispersants for carbon materials and carbon composite materials using them | |
Chen et al. | Morphology study of peroxide-induced dynamically vulcanized polypropylene/ethylene-propylene-diene monomer/zinc dimethacrylate blends during tensile deformation | |
Doagou-Rad et al. | Influence of processing conditions on the mechanical behavior of MWCNT reinforced thermoplastic nanocomposites | |
Wu et al. | The surface modification of diatomite, thermal, and mechanical properties of poly (vinyl chloride)/diatomite composites | |
Diop et al. | Ester functionalization of polypropylene via controlled decomposition of benzoyl peroxide during solid-state shear pulverization | |
JP6076484B2 (en) | Thermoplastic polymer bonded with carbon nanomaterial and method for producing the same | |
Mural et al. | PE/PEO blends compatibilized by PE brush immobilized on MWNTs: improved interfacial and structural properties | |
Ivan’kova et al. | Structure–property relationship of polyetherimide fibers filled with carbon nanoparticles | |
Choi et al. | Fabrication of MA-EPDM grafted MWCNTs by reactive extrusion for enhanced interfacial adhesion and mechanical properties of PP/MA-EPDM composite | |
Islam et al. | Thermo‐mechanical properties of glass fiber and functionalized multi‐walled carbon nanotubes filled polyester composites | |
KR20150070106A (en) | Method for manufacturing flaked graphite derivative, and method for manufacturing flaked graphite derivative and resin composite material | |
JP5665471B2 (en) | Oxazoline filler dispersion accelerator for polyolefin resin | |
CN113480752A (en) | Polyether-ether-ketone reinforced master batch and preparation method thereof, and polyether-ether-ketone composite material and preparation method thereof | |
JP7428985B2 (en) | Laminates and composites containing carbon materials | |
JP5740163B2 (en) | Filler-dispersing resin composition, thermoplastic resin composite composition containing filler, and method for producing the same | |
JPH0940865A (en) | Polyarylene sulfide resin composition | |
Park et al. | Surface modification of carbon nanotubes for high-performance polymer composites | |
KR20150026158A (en) | Resin composition comprising carbon-nanomaterial, and plastic molded products |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A80 | Written request to apply exceptions to lack of novelty of invention |
Free format text: JAPANESE INTERMEDIATE CODE: A80 Effective date: 20160829 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161005 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A681 Effective date: 20190111 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190306 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190306 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200318 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200401 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200522 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201006 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201015 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6805415 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |