JP6801181B2 - Color-developing structure and its manufacturing method - Google Patents
Color-developing structure and its manufacturing method Download PDFInfo
- Publication number
- JP6801181B2 JP6801181B2 JP2015244471A JP2015244471A JP6801181B2 JP 6801181 B2 JP6801181 B2 JP 6801181B2 JP 2015244471 A JP2015244471 A JP 2015244471A JP 2015244471 A JP2015244471 A JP 2015244471A JP 6801181 B2 JP6801181 B2 JP 6801181B2
- Authority
- JP
- Japan
- Prior art keywords
- convex
- base material
- light
- wavelength band
- color
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 239000000463 material Substances 0.000 claims description 103
- 238000000034 method Methods 0.000 claims description 37
- 230000003287 optical effect Effects 0.000 claims description 27
- 238000009826 distribution Methods 0.000 claims description 20
- 229920005989 resin Polymers 0.000 claims description 16
- 239000011347 resin Substances 0.000 claims description 16
- 230000001788 irregular Effects 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 229920005992 thermoplastic resin Polymers 0.000 claims description 6
- 229920001187 thermosetting polymer Polymers 0.000 claims description 6
- 238000010030 laminating Methods 0.000 claims description 4
- 238000004040 coloring Methods 0.000 claims 1
- 239000010408 film Substances 0.000 description 37
- 230000000694 effects Effects 0.000 description 18
- 239000011651 chromium Substances 0.000 description 17
- 229910004298 SiO 2 Inorganic materials 0.000 description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 235000012239 silicon dioxide Nutrition 0.000 description 14
- 239000010453 quartz Substances 0.000 description 13
- 239000010419 fine particle Substances 0.000 description 8
- 238000004544 sputter deposition Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 238000001312 dry etching Methods 0.000 description 5
- 238000010894 electron beam technology Methods 0.000 description 5
- 239000002861 polymer material Substances 0.000 description 5
- 229910010413 TiO 2 Inorganic materials 0.000 description 4
- 238000003892 spreading Methods 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 3
- 238000001459 lithography Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000001338 self-assembly Methods 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical class CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- -1 etc. Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 241000907681 Morpho Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000000609 electron-beam lithography Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- BQJCRHHNABKAKU-KBQPJGBKSA-N morphine Chemical compound O([C@H]1[C@H](C=C[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O BQJCRHHNABKAKU-KBQPJGBKSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000007736 thin film deposition technique Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/26—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
- B32B3/30—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/118—Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Laminated Bodies (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Surface Treatment Of Optical Elements (AREA)
Description
本発明は、表面に形成された構造体により発色する発色構造体およびその製造方法に関する。 The present invention relates to a color-developing structure that develops color by a structure formed on the surface and a method for producing the same.
色素のような光吸収による電子遷移を伴う発色現象とは異なり、物質自体には光吸収性はないが、光の波長と同程度、もしくは波長よりも小さい周期構造体による回折や干渉、散乱を利用して、特定波長の光のみを反射、又は透過することにより発色する発色現象が存在する。以下、本明細書においては、この発色現象を構造発色と称する。 Unlike the color-developing phenomenon that involves electron transition due to light absorption such as dyes, the substance itself does not have light absorption, but it causes diffraction, interference, and scattering by periodic structures that are about the same as or smaller than the wavelength of light. Utilizing this, there is a color development phenomenon in which color is developed by reflecting or transmitting only light of a specific wavelength. Hereinafter, in the present specification, this color development phenomenon will be referred to as structural color development.
構造発色は、例えば紫外線により劣化しない無機誘電体材料で構成される場合、構造が保たれる限り紫外線が照射される環境下に放置しても、色褪せすることがない。 For example, when the structure is composed of an inorganic dielectric material that is not deteriorated by ultraviolet rays, it does not fade even if it is left in an environment irradiated with ultraviolet rays as long as the structure is maintained.
また、回折、干渉を利用する構造発色は、観察角度により認識される光の波長が変化する特徴があるため、意匠性の高い表現が可能となる。 Further, structural color development using diffraction and interference has a characteristic that the wavelength of light recognized changes depending on the observation angle, so that it is possible to express with high design.
このような構造発色による発色体として、屈折率が異なる高分子材料を多層構造とした多層膜干渉を利用した発色構造体が提案されている(特許文献1)。 As a color-developing body by such structural color development, a color-developing structure utilizing multilayer film interference in which polymer materials having different refractive indexes have a multilayer structure has been proposed (Patent Document 1).
但し、特許文献1で提案された発色構造体は、高分子材料の多層構造であるため、隣接する各層を構成する材料の屈折率差が小さく、強い反射を得るためには幾重にも積層する必要があり、製造コストが高くなる。さらに、多層膜干渉の影響が支配的となり、観察角度による色変化が急峻となり、特定の色を広い観察角度で表現することが困難となる。 However, since the color-developing structure proposed in Patent Document 1 has a multi-layer structure of a polymer material, the difference in refractive index between the materials constituting the adjacent layers is small, and the colored structures are laminated in multiple layers in order to obtain strong reflection. It is necessary and the manufacturing cost is high. Further, the influence of the multilayer film interference becomes dominant, the color change depending on the observation angle becomes steep, and it becomes difficult to express a specific color in a wide observation angle.
そこで、自然界に生息するモルフォチョウのように、強い反射を有し、且つ観察する角度による色変化が緩やかである発色特性を有する発色構造体を供えた表示装置が提案されている(特許文献2)。 Therefore, a display device provided with a color-developing structure having a strong reflection and a color-developing characteristic in which the color change is gradual depending on the observation angle, such as the morpho butterfly inhabiting the natural world, has been proposed (Patent Document 2). ).
また、基材上に二酸化珪素(SiO2)微粒子を配列させたSiO2微粒子層を形成し、SiO2微粒子層上に光吸収のためにクロム(Cr)層を成膜し、Cr層上に二酸化チタン(TiO2)層とSiO2層を交互に積層した光反射板も報告されている(非特許文献1)。 Further, a SiO 2 fine particle layer in which silicon dioxide (SiO 2 ) fine particles are arranged is formed on a base material, a chromium (Cr) layer is formed on the SiO 2 fine particle layer for light absorption, and a chromium (Cr) layer is formed on the Cr layer. A light reflecting plate in which titanium dioxide (TiO 2 ) layers and SiO 2 layers are alternately laminated has also been reported (Non-Patent Document 1).
特許文献2で提案された発色構造体は、基材に不均一な凹凸構造を形成し、この凹凸構造上に積層膜を形成することで、積層膜による干渉に凹凸構造の不規則性からなる光の広がり効果を付与し、観察角度による緩やかな色変化を実現している。 The color-developing structure proposed in Patent Document 2 has a non-uniform uneven structure formed on a base material, and a laminated film is formed on the uneven structure, so that the uneven structure is irregular due to interference by the laminated film. It gives the effect of spreading light and realizes a gradual color change depending on the observation angle.
但し、基材および凹凸構造が、可視領域の波長帯の光が透過する材料で構成された場合、積層膜を透過した光はそのまま発色体裏面から抜けてしまう。したがって、発色構造体の表面側だけではなく、裏面側からも光が照射される環境下で表面側から観察した場合、裏面側から透過した光も観察されるため、色コントラストが低下してしまう。 However, when the base material and the uneven structure are made of a material that transmits light in the wavelength band in the visible region, the light transmitted through the laminated film escapes from the back surface of the color former as it is. Therefore, when observing from the front side in an environment where light is irradiated not only from the front side of the color-developing structure but also from the back side, the light transmitted from the back side is also observed, and the color contrast is lowered. ..
色コントラストの低下を防止するため、発色体の裏面側に可視領域の波長帯の光を吸収する材料を成膜しても、基材との界面での反射が生じてしまう。また、基材あるいは凹凸構造を例えばカーボンのような可視領域の波長帯の光を吸収する材料に変更すると、凹凸構造形成において、紫外線照射による樹脂効果を利用する光ナノインプリント法を適用する際に、基材側から紫外線を照射できなくなるため、発色構造体の製造に生産性の高い光ナノインプリント法を適用することが困難となる。 In order to prevent a decrease in color contrast, even if a material that absorbs light in the wavelength band in the visible region is formed on the back surface side of the color former, reflection occurs at the interface with the base material. Further, when the base material or the uneven structure is changed to a material that absorbs light in the wavelength band in the visible region such as carbon, when applying the optical nanoimprint method utilizing the resin effect by ultraviolet irradiation in forming the uneven structure, Since it becomes impossible to irradiate ultraviolet rays from the base material side, it becomes difficult to apply a highly productive optical nanoimprint method to the production of a colored structure.
一方で、非特許文献1で報告されている光反射板は、SiO2微粒子の粒径を200〜400nmと幅を持たせることにより、凹凸構造の幅と高さに不規則性を付与し、さらに微粒子上に形成されたCr層により、Cr層上に形成したTiO2層とSiO2層からなる積層膜を透過した光が吸収されるため、色コントラストの高い反射板が得られる。 On the other hand, the light reflector reported in Non-Patent Document 1 imparts irregularity to the width and height of the concavo-convex structure by allowing the particle size of the SiO 2 fine particles to have a width of 200 to 400 nm. Further, the Cr layer formed on the fine particles absorbs the light transmitted through the laminated film composed of the TiO 2 layer and the SiO 2 layer formed on the Cr layer, so that a reflector having high color contrast can be obtained.
但し、SiO2微粒子上にCrを成膜するため、Cr層表面の表面粗さはSiO2微粒子の表面粗さよりも小さくなる。入射した光の反射を防止する構造として、蛾の眼を模した突起構造の集合体が一般的に知られている。このような突起構造の集合体により反射防止効果を得る場合は、突起構造の構造高さが高いほど、反射防止効果が高いとされている。しかしながら、非特許文献1で報告されている反射板は、Cr層表面の表面粗さがSiO2微粒子の粒子径により規定されてしまうため、Cr層による反射防止効果の制御は困難である。 However, for forming a Cr on a SiO 2 fine particles, the surface roughness of the Cr layer surface is smaller than the surface roughness of the SiO 2 particles. As a structure for preventing the reflection of incident light, an aggregate of protrusion structures imitating the eyes of a moth is generally known. When the antireflection effect is obtained by the aggregate of such protrusion structures, it is said that the higher the structure height of the protrusion structure, the higher the antireflection effect. However, in the reflector reported in Non-Patent Document 1, since the surface roughness of the Cr layer surface is defined by the particle size of the SiO 2 fine particles, it is difficult to control the antireflection effect by the Cr layer.
さらに、SiO2微粒子は自己組織的に配列されるため、光反射板の製造において、光学特性などにばらつきが生じ、収率が低下する恐れがある。 Further, since the SiO 2 fine particles are self-organized, the optical characteristics and the like may vary in the production of the light reflector, and the yield may decrease.
それ故に、本発明は、色コントラストの高い発色構造体およびその製造方法を提供することを目的とする。 Therefore, it is an object of the present invention to provide a color-developing structure having high color contrast and a method for producing the same.
本発明に係る発色構造体は、基材と、基材表面もしくは基材上に形成された、複数の凸部の集合体からなる凹凸構造と、凹凸構造上に同じ波長帯の光を透過し、且つ、波長帯の
光に対して異なる屈折率を持つ材料で構成された2層以上の層からなる積層体とを有し、凹凸構造は波長帯の光を反射あるいは吸収する材料で構成され、凹凸構造は蛾の眼を模した突起構造の集合体からなり、凹凸構造において、凸部の構造高さの偏差が、凸部の構造高さの平均値の1/3以下で、かつ、凸部の構造高さは不規則な分布を有するものである。
The color-developing structure according to the present invention transmits a base material, a concavo-convex structure composed of a base material surface or an aggregate of a plurality of convex portions formed on the base material, and light of the same wavelength band on the concavo-convex structure. In addition, it has a laminated body composed of two or more layers made of materials having different refractive indexes with respect to light in the wavelength band, and the uneven structure is made of a material that reflects or absorbs light in the wavelength band. The concave-convex structure is composed of an aggregate of protrusion structures that imitate the eyes of a moth. In the concave-convex structure, the deviation of the structural height of the convex portion is 1/3 or less of the average value of the structural height of the convex portion , and overall height of the protrusions is shall to have a irregular distribution.
あるいは、本発明に係る発色構造体は、基材と、基材表面もしくは基材上に形成された、複数の凸部の集合体からなる凹凸構造と、凹凸構造上に同じ波長帯の光を透過し、且つ、波長帯の光に対して異なる屈折率を持つ材料で構成された2層以上の層からなる積層体とを有し、凹凸構造は、隣接した凸部の間に平坦部が存在する凹凸構造であり、凹凸構造と積層体との間に、波長帯の光を反射あるいは吸収する材料で構成される層を有し、凹凸構造において、凸部の構造高さの偏差が、凸部の構造高さの平均値の1/3以下で、かつ、凸部の構造高さは不規則な分布を有するものである。 Alternatively, the color-developing structure according to the present invention has a concavo-convex structure composed of a base material and an aggregate of a plurality of convex portions formed on the surface of the base material or the base material, and light having the same wavelength band on the concavo-convex structure. It has a laminated body composed of two or more layers made of materials that are transmitted and have different refractive indexes with respect to light in the wavelength band, and the concave-convex structure has a flat portion between adjacent convex portions. It is a concavo-convex structure that exists, and has a layer made of a material that reflects or absorbs light in the wavelength band between the concavo-convex structure and the laminate, and in the concavo-convex structure, the deviation of the structural height of the convex portion is 1/3 or less of the average value of the structural height of the convex portion, and the structure height of the convex portion is shall to have a irregular distribution.
また、本発明は、基材と、基材表面もしくは基材上に形成された、複数の凸部の集合体からなる凹凸構造と、凹凸構造上に2層以上の層からなる積層体とを有し、照射された所定の波長帯の光のうちの一部の波長の光を選択的に反射する発色構造体の製造方法に関するものであり、凹凸構造において、凸部の構造高さの偏差が、凸部の構造高さの平均値の1/3以下で、かつ、凸部の構造高さは不規則な分布を有し、基板上に、複数の凹部を格子状に配列してなり、凹凸構造を反転した格子状構造を有する光ナノインプリント用モールドであって、隣接した凹部の間に平坦部が存在し、凹部の中心が格子状構造の格子構造により決定される中心位置からずれて分布しており、凹部の中心と格子状構造の構造周期により決定される中心位置との距離が格子状構造のピッチよりも小さい光ナノインプリント用モールドを用意する工程と、基材に光硬化性樹脂を塗布する工程と、光ナノインプリント法により、光硬化性樹脂層にモールドに形成された構造を転写して凹凸構造を形成する工程と、凹凸構造が形成された基材上に、波長帯の光を反射する金属層を形成する工程と、金属層上に、波長帯の光を透過し、且つ、波長帯の光に対して異なる屈折率を持つ材料を交互に積層して積層体を成膜する工程とを具備するものである。 Further, the present invention comprises a base material, a concavo-convex structure formed on the surface of the base material or an aggregate of a plurality of convex portions formed on the base material, and a laminated body composed of two or more layers on the concavo-convex structure. The present invention relates to a method for manufacturing a color-developing structure that selectively reflects light of a part of the wavelengths of the irradiated light of a predetermined wavelength band, and in the concave-convex structure, the deviation of the structural height of the convex portion. However, it is less than 1/3 of the average value of the structural height of the convex portion, and the structural height of the convex portion has an irregular distribution, and a plurality of concave portions are arranged in a grid pattern on the substrate. , A mold for optical nanoimprint having a lattice-like structure in which the uneven structure is inverted, in which a flat portion exists between adjacent recesses, and the center of the recess is deviated from the center position determined by the lattice structure of the lattice structure. The process of preparing a mold for optical nanoimprint, which is distributed and the distance between the center of the recess and the center position determined by the structural cycle of the lattice structure is smaller than the pitch of the lattice structure, and the photocurable resin as the base material. And the step of transferring the structure formed in the mold to the photocurable resin layer by the optical nanoimprint method to form the uneven structure, and the process of forming the uneven structure on the base material on which the uneven structure is formed A process of forming a metal layer that reflects light and materials that transmit light in the wavelength band and have different refractive indexes with respect to the light in the wavelength band are alternately laminated on the metal layer to form a laminated body. It is provided with a step of performing.
本発明は、基材と、基材表面もしくは基材上に形成された、複数の凸部の集合体からなる凹凸構造と、凹凸構造上に2層以上の層からなる積層体とを有し、照射された所定の波長帯の光のうちの一部の波長の光を選択的に反射する発色構造体の製造方法であって、凹凸構造において、凸部の構造高さの偏差が、凸部の構造高さの平均値の1/3以下で、かつ、凸部の構造高さは不規則な分布を有し、基板上に、複数の凹部を格子状に配列してなり、凹凸構造を反転した格子状構造を有する熱ナノインプリント用モールドであって、隣接した凹部の間に平坦部が存在し、凹部の中心が格子状構造の格子構造により決定される中心位置からずれて分布しており、凹部の中心と格子状構造の構造周期により決定される中心位置との距離が格子状構造のピッチよりも小さい熱ナノインプリント用モールドを用意する工程と、基材に熱可塑性樹脂もしくは熱硬化性樹脂を塗布する工程と、熱ナノインプリント法により、熱可塑性樹脂層もしくは熱硬化性樹脂層にモールドに形成された構造を転写して凹凸構造を形成する工程と、凹凸構造が形成された基材上に、波長帯の光を反射する金属層を形成する工程と、金属層上に、波長帯の光を透過し、且つ、波長帯の光に対して異なる屈折率を持つ材料を交互に積層して積層体を成膜する工程とを具備するものである。 The present invention has a base material, a concavo-convex structure composed of an aggregate of a plurality of convex portions formed on the surface of the base material or the base material, and a laminated body composed of two or more layers on the concavo-convex structure. , A method of manufacturing a color-developing structure that selectively reflects light of a part of the irradiated light of a predetermined wavelength band, and in a concave-convex structure, the deviation of the structural height of the convex portion is convex. It is less than 1/3 of the average value of the structural height of the part, and the structural height of the convex part has an irregular distribution, and a plurality of concave parts are arranged in a grid pattern on the substrate, resulting in an uneven structure. It is a mold for thermal nanoimprint having a lattice structure in which the above is inverted, and a flat portion exists between adjacent recesses, and the center of the recess is distributed deviated from the center position determined by the lattice structure of the lattice structure. A process of preparing a mold for thermal nanoimprint in which the distance between the center of the recess and the center position determined by the structural cycle of the lattice structure is smaller than the pitch of the lattice structure, and a thermoplastic resin or thermosetting as the base material. A step of applying a resin, a step of transferring a structure formed in a mold to a thermoplastic resin layer or a thermosetting resin layer by a thermal nanoimprint method to form a concavo-convex structure, and a step of forming a concavo-convex structure on a substrate on which the concavo-convex structure is formed. In addition, a step of forming a metal layer that reflects light in the wavelength band and a material that transmits light in the wavelength band and has a different refractive index to the light in the wavelength band are alternately laminated on the metal layer. It is provided with a step of forming a laminated body.
本発明によれば、凹凸構造によって発色構造体の積層体を透過した光の反射が抑制されるため、色コントラストの高い発色構造体を実現できる。 According to the present invention, since the uneven structure suppresses the reflection of light transmitted through the laminated body of the color-developing structure, it is possible to realize a color-developing structure having high color contrast.
本発明において、発色構造体が作用する波長帯は、凹凸構造を構成する凸部(凹部)の線幅及び配列ピッチと、凹凸構造上に形成する積層体の屈折率及び膜厚とにより決定される。本発明においては、発色構造体が対象とする波長帯は限定されるものではないが、以下の実施形態では、特に可視領域の光を対象とした発色構造体について図面を用いて説明する。尚、本実施形態において、可視領域は360nm〜830nmの波長帯の光を指すものとする。 In the present invention, the wavelength band on which the color-developing structure acts is determined by the line width and arrangement pitch of the convex portions (concave portions) constituting the concave-convex structure and the refractive index and film thickness of the laminated body formed on the concave-convex structure. To. In the present invention, the wavelength band targeted by the color-developing structure is not limited, but in the following embodiments, the color-developing structure particularly targeted for light in the visible region will be described with reference to the drawings. In the present embodiment, the visible region refers to light in the wavelength band of 360 nm to 830 nm.
(第1の実施形態)
図1は、第1の実施形態に係る構造発色体の断面概略図である。可視領域の波長帯の光を反射する材料、例えばシリコン(Si)やアルミ(Al)、タンタル(Ta)、Crなど、或いは可視領域の波長帯の光を吸収する材料、例えば炭素(C)などで構成された基材11上に、図1(a)で示すような、蛾の眼を模した突起構造(モスアイ構造)21を、リソグラフィやドライエッチングなどの公知の技術を適用して形成する。突起構造21により、基材11を構成する材料と、突起構造21の上に隣接する材料との界面での屈折率変化が緩やかとなり、突起構造表面における界面での可視領域の反射を抑制できる。
(First Embodiment)
FIG. 1 is a schematic cross-sectional view of the structural color former according to the first embodiment. Materials that reflect light in the wavelength band of the visible region, such as silicon (Si), aluminum (Al), tantalum (Ta), Cr, etc., or materials that absorb light in the wavelength band of the visible region, such as carbon (C), etc. A protrusion structure (moss eye structure) 21 imitating a moth's eye as shown in FIG. 1A is formed on a base material 11 composed of the above by applying known techniques such as lithography and dry etching. .. Due to the protrusion structure 21, the change in the refractive index at the interface between the material constituting the base material 11 and the material adjacent on the protrusion structure 21 becomes gentle, and the reflection of the visible region at the interface on the surface of the protrusion structure can be suppressed.
突起構造21を構成する複数の凸部は格子状に配列されることが好ましい。格子状に配列される場合は、六方最密格子状がより好ましいが、正方格子状でも良い。格子構造の周期性により可視領域の光が一次回折されないように、格子構造のピッチ(隣接する凸部の配列ピッチ)は可視領域の波長帯よりも小さい、すなわち360nm以下であることが好ましい。さらに、突起構造21を構成する凸部の中心が格子構造の周期構造上の中心位置(設計位置)からずれて不規則に分布していることが好ましく、分布の偏差は格子構造のピッチよりも小さい値が好ましく、さらに格子構造のピッチの1/5以下の値であることがより好ましい。 It is preferable that the plurality of convex portions constituting the protrusion structure 21 are arranged in a grid pattern. When arranged in a grid pattern, a hexagonal close-packed grid pattern is more preferable, but a square grid pattern may also be used. The pitch of the lattice structure (arrangement pitch of adjacent convex portions) is preferably smaller than the wavelength band of the visible region, that is, 360 nm or less so that the light in the visible region is not first diffracted due to the periodicity of the lattice structure. Further, it is preferable that the center of the convex portion constituting the protrusion structure 21 is irregularly distributed deviating from the center position (design position) on the periodic structure of the lattice structure, and the deviation of the distribution is larger than the pitch of the lattice structure. A small value is preferable, and a value of 1/5 or less of the pitch of the lattice structure is more preferable.
突起構造21を構成する複数の凸部の構造高さの値は、反射抑制効果と、構造発色体表面の反射光学特性により適宜設計される。凸部の構造高さは一定であっても良いが、散乱効果を付与するために不規則な分布を有していることが好ましい。但し、散乱効果が促進されると、構造発色体表面から反射される光の単色性が損なわれる恐れがあるため、構造高さの偏差は、構造高さの平均値の1/3以下であることがより好ましい。尚、構造高さが分布を有する突起構造21は、例えばエッチングマスク線幅が分布を有する設計とし、完全にマスクが消失するまでドライエッチングを実施することで一括に形成することが可能である。その場合、マスク線幅の分布の偏差は、マスク線幅の平均値の1/3以下が好ましい。また、突起構造21には底面に平坦部が無いことがより好ましいが、平坦部が存在しても良い。凸部の底面積の偏差は、設計値の1/3以下であることがより好ましい。理由は構造高さの場合と同様である。凸部が格子状に配列されている場合、格子構造の周期性から設計値は計算が出来る。なお、ここでいう底面積とは、凸部の側面が隣接する他の凸部の側面あるいは底面で区画される仮想線で囲まれた領域を構造発色体の上方から垂直に見た面積のことである。上方とは、図1では構造発色体の下部に垂直な方向に当たる。凸部が構造発色体の底面に対して傾いていたとしても、底面積は、この底面に垂直な方向から見た値で計算することとする。 The value of the structural height of the plurality of convex portions constituting the protrusion structure 21 is appropriately designed according to the reflection suppression effect and the reflection optical characteristics of the surface of the structural color former. The structural height of the convex portion may be constant, but it is preferable that the convex portion has an irregular distribution in order to impart a scattering effect. However, if the scattering effect is promoted, the monochromaticity of the light reflected from the surface of the structural color former may be impaired, so that the deviation of the structural height is 1/3 or less of the average value of the structural height. Is more preferable. The protrusion structure 21 having a distribution in the structural height can be formed collectively by, for example, designing the etching mask line width to have a distribution and performing dry etching until the mask completely disappears. In that case, the deviation of the distribution of the mask line width is preferably 1/3 or less of the average value of the mask line width. Further, it is more preferable that the protrusion structure 21 does not have a flat portion on the bottom surface, but a flat portion may be present. The deviation of the bottom area of the convex portion is more preferably 1/3 or less of the design value. The reason is the same as for the structural height. When the convex parts are arranged in a lattice pattern, the design value can be calculated from the periodicity of the lattice structure. The bottom area referred to here is the area of the area surrounded by the virtual line partitioned by the side surface or the bottom surface of the other convex portion adjacent to the side surface of the convex portion, as viewed vertically from above the structural color former. Is. The upper direction corresponds to the direction perpendicular to the lower part of the structural color-developing body in FIG. Even if the convex portion is tilted with respect to the bottom surface of the structural color-developing body, the bottom area is calculated by the value viewed from the direction perpendicular to the bottom surface.
次に、図1(b)に示すように、突起構造21の表面に、可視領域の波長帯の光に対して屈折率の異なる材料を、スパッタリング法や蒸着法、或いは自己組織化等の公知の技術を適用して積層し、積層膜31を形成する。図1(b)では、突起構造21の表面に、高屈折率層41と低屈折率層51の2種類の層を順次3対形成しているが、これらの層数や材料種とその数、膜厚、積層する順序は必要とする光学特性により適宜設計されるものである。積層膜を構成する材料としては、例えば、高屈折率材料として二酸化チタン(TiO2)、低屈折率材料としてSiO2などの屈折率差が大きい材料を適用することにより、少ない積層数でも高い反射率が得られるが、屈折率がわずかに違う場合でも界面における反射は発生するため、積層数を適宜設計することにより例えば高分子材料を適用することも可能である。 Next, as shown in FIG. 1 (b), a known material having a refractive index different from that of light in the wavelength band in the visible region is applied to the surface of the protrusion structure 21 by a sputtering method, a vapor deposition method, self-assembly, or the like. The technique of the above is applied and laminated to form a laminated film 31. In FIG. 1B, three pairs of two types of layers, a high refractive index layer 41 and a low refractive index layer 51, are sequentially formed on the surface of the protrusion structure 21, and the number of these layers, the material type, and the number thereof are formed. , Film thickness, and stacking order are appropriately designed according to the required optical characteristics. As a material constituting the laminated film, for example, by applying a material having a large refractive index difference such as titanium dioxide (TiO 2 ) as a high refractive index material and SiO 2 as a low refractive index material, high reflection is achieved even with a small number of layers. Although the rate can be obtained, reflection occurs at the interface even if the refractive index is slightly different. Therefore, for example, a polymer material can be applied by appropriately designing the number of layers.
以上により得られた構造発色体に対して、基材11の表面側から白色光を照射すると、積層体31により干渉された光は、構造発色体表面から反射光として取り出される。一方、それ以外の波長帯の光は積層体31を透過するが、突起構造21により界面での反射は抑制されるため、構造発色体表面からは殆ど取り出されない。その結果、積層体31により干渉された光のみが高いコントラストで観察される。さらに、積層体31は突起構造21の表面に形成されている。各層の形成過程では、隣接する下層の表面形状を追従しながら成膜させる。よって積層体31は高さ方向に不規則性を有することになり、さらに、突起構造21を格子状に配列することにより、回折効果も付与することができる。したがって、当該構造発色体は、積層体31による干渉に、光の広がり効果が付与されるため、観察角度による緩やかな色変化を実現することができる。 When the structural color-developing body obtained as described above is irradiated with white light from the surface side of the base material 11, the light interfered by the laminated body 31 is extracted as reflected light from the surface of the structural color-developing body. On the other hand, light in other wavelength bands is transmitted through the laminated body 31, but is hardly extracted from the surface of the structural color-developing body because the projection structure 21 suppresses the reflection at the interface. As a result, only the light interfered by the laminated body 31 is observed with high contrast. Further, the laminated body 31 is formed on the surface of the protrusion structure 21. In the process of forming each layer, a film is formed while following the surface shape of the adjacent lower layer. Therefore, the laminated body 31 has irregularities in the height direction, and further, by arranging the protrusion structures 21 in a grid pattern, a diffraction effect can be imparted. Therefore, in the structural color-developing body, since the light spreading effect is given to the interference by the laminated body 31, it is possible to realize a gradual color change depending on the observation angle.
(第2の実施形態)
図2は、第2の実施形態に係る構造発色体の断面概略図である。まず、図2(a)で示すように、基材12表面に隣接した凸部の間に平坦部が存在する凹凸構造61を形成する。基材12を構成する材料については、例えばSi、SiO2、Cr、Taと言ったリソグラフィやドライエッチングなどの公知の技術を適用することにより加工することができる材料が好ましい。
(Second Embodiment)
FIG. 2 is a schematic cross-sectional view of the structural color former according to the second embodiment. First, as shown in FIG. 2A, a concavo-convex structure 61 in which a flat portion exists between convex portions adjacent to the surface of the base material 12 is formed. As the material constituting the base material 12, a material that can be processed by applying a known technique such as lithography or dry etching such as Si, SiO 2 , Cr, and Ta is preferable.
凹凸構造61の凸部の形状は、より好ましくは上面に平坦部が無い針形状であるが、図2(a)に示したように、上面に平坦部がある形状でも良く、また側壁角度は垂直でも良い。凹凸構造61は格子状に配列されることが好ましい。格子状に配列される場合は、六方最密格子状がより好ましいが、正方格子状でも良い。格子構造の周期性により可視領域の光が一次回折されないように、格子構造のピッチは可視領域の波長帯よりも小さい、すなわち360nm以下であることが好ましい。さらに、凸部の中心が格子構造の中心に対して不規則な分布を有していることが好ましく、分布の偏差は格子構造のピッチよりも小さい値が好ましく、さらに格子構造のピッチの1/5以下の値であることがより好ましい。 The shape of the convex portion of the concave-convex structure 61 is more preferably a needle shape having no flat portion on the upper surface, but as shown in FIG. 2A, a shape having a flat portion on the upper surface may be used, and the side wall angle may be set. It may be vertical. The concave-convex structure 61 is preferably arranged in a grid pattern. When arranged in a grid pattern, a hexagonal close-packed grid pattern is more preferable, but a square grid pattern may also be used. The pitch of the lattice structure is preferably smaller than the wavelength band of the visible region, that is, 360 nm or less so that the light in the visible region is not first diffracted due to the periodicity of the lattice structure. Further, it is preferable that the center of the convex portion has an irregular distribution with respect to the center of the lattice structure, the deviation of the distribution is preferably a value smaller than the pitch of the lattice structure, and 1/1 of the pitch of the lattice structure. A value of 5 or less is more preferable.
凹凸構造61の凸部の構造高さは一定であっても良いが、散乱効果を付与するために不規則な分布を有していても良い。但し、散乱効果が促進されると、構造発色体表面から反射される光の単色性が損なわれる恐れがあるため、構造高さの偏差は構造高さの平均値の1/3以下であることが好ましい。尚、構造高さが分布を有する突起構造21は、例えばエッチングマスク線幅が分布を有する設計とし、完全にマスクが消失するまでドライエッチングを実施することで一括に形成するが可能である。その場合、マスク線幅の分布の偏差は、マスク線幅の平均値の1/3以下が好ましい。 The structural height of the convex portion of the concave-convex structure 61 may be constant, but may have an irregular distribution in order to impart a scattering effect. However, if the scattering effect is promoted, the monochromaticity of the light reflected from the surface of the structural color former may be impaired, so the deviation of the structural height should be 1/3 or less of the average value of the structural height. Is preferable. The protrusion structure 21 having a distribution in the structural height can be formed collectively by, for example, designing the etching mask line width to have a distribution and performing dry etching until the mask completely disappears. In that case, the deviation of the distribution of the mask line width is preferably 1/3 or less of the average value of the mask line width.
次に、図2(b)に示すように、凹凸構造61が表面に形成された基材12上に、可視領域の波長帯の光を反射する材料、或いは可視領域の波長帯の光を吸収する材料を、スパッタリング法や蒸着法など公知の技術を適用して成膜し、湾曲層71を形成し、蛾の眼を模した突起構造22を得る。湾曲層71の膜厚は、平坦な表面上に成膜した場合に、可視領域の波長帯の光の透過率が20%以下となることが好ましい。湾曲層71は、凸部間の平坦部が無くなる程度の膜厚で形成されることがより好ましいが、凸部間の平坦部が存在しても反射抑制効果は得られるため、凸部間の平坦部が無くなる程度の膜厚より薄く形成されても良い。 Next, as shown in FIG. 2B, a material that reflects light in the wavelength band in the visible region or light in the wavelength band in the visible region is absorbed on the base material 12 on which the concave-film structure 61 is formed on the surface. A material to be formed is formed into a film by applying a known technique such as a sputtering method or a thin film deposition method to form a curved layer 71, and a protrusion structure 22 imitating a moth's eye is obtained. The film thickness of the curved layer 71 is preferably such that the light transmittance in the wavelength band in the visible region is 20% or less when the film is formed on a flat surface. The curved layer 71 is more preferably formed with a film thickness such that the flat portion between the convex portions disappears, but since the reflection suppressing effect can be obtained even if the flat portion between the convex portions is present, the flat portion between the convex portions is formed. It may be formed thinner than the film thickness to the extent that the flat portion disappears.
次に、図2(c)に示すように表面に突起構造22の表面に、可視領域の波長帯の光に対して屈折率の異なる材料を、スパッタリング法や蒸着法、或いは自己組織化等の公知の技術を適用して積層し、積層膜32を形成する。図2(c)では、突起構造22表面に、高屈折率層42と低屈折率層52の2種類の層を順次3対形成しているが、これらの層数や材料種とその数、膜厚、積層する順序は必要とする光学特性により適宜設計されるものである。積層膜を構成する材料としては、例えば、高屈折率材料としてTiO2、低屈折率材料としてSiO2などの屈折率差が大きい材料を適用することにより、少ない積層数でも高い反射率が得られるが、屈折率がわずかに違う場合でも界面における反射は発生するため、積層数を適宜設計することにより例えば高分子材料を適用することも可能である。 Next, as shown in FIG. 2C, a material having a refractive index different from that of light in the wavelength band in the visible region is applied to the surface of the protrusion structure 22 on the surface by a sputtering method, a vapor deposition method, self-assembly, or the like. A laminated film 32 is formed by laminating by applying a known technique. In FIG. 2C, three pairs of two types of layers, a high refractive index layer 42 and a low refractive index layer 52, are sequentially formed on the surface of the protrusion structure 22, and the number of these layers, the material type, and the number thereof are shown. The film thickness and the stacking order are appropriately designed according to the required optical characteristics. As the material constituting the laminated film, for example, by applying a material having a large refractive index difference such as TiO 2 as a high refractive index material and SiO 2 as a low refractive index material, high reflectance can be obtained even with a small number of layers. However, since reflection occurs at the interface even if the refractive index is slightly different, it is possible to apply, for example, a polymer material by appropriately designing the number of layers.
以上により得られた構造発色体に対して、基材12の表面側から白色光を照射すると、積層体32により干渉された光は、構造発色体表面から反射光として取り出される。一方、それ以外の波長帯の光は積層体32を透過するが、突起構造22により界面での反射は抑制されるため、構造発色体表面からは殆ど取り出されない。その結果、積層体32により干渉された光のみが高いコントラストで観察される。さらに、積層体32は突起構造22の表面に形成されている。各層の形成過程では隣接する下層の表面形状を追従しながら成膜される。よって積層体32は高さ方向に不規則性を有することになり、さらに、突起構造22を格子状に配列することにより、回折効果も付与することができる。したがって、当該構造発色体は、積層体32による干渉に、光の広がり効果が付与されるため、観察角度による緩やかな色変化を実現することができる。 When the structural color-developing body obtained as described above is irradiated with white light from the surface side of the base material 12, the light interfered by the laminated body 32 is taken out as reflected light from the surface of the structural color-developing body. On the other hand, light in other wavelength bands is transmitted through the laminated body 32, but is hardly extracted from the surface of the structural color-developing body because the projection structure 22 suppresses the reflection at the interface. As a result, only the light interfered by the laminated body 32 is observed with high contrast. Further, the laminated body 32 is formed on the surface of the protrusion structure 22. In the process of forming each layer, a film is formed while following the surface shape of the adjacent lower layer. Therefore, the laminated body 32 has irregularities in the height direction, and further, by arranging the protrusion structures 22 in a grid pattern, a diffraction effect can be imparted. Therefore, in the structural color-developing body, since the light spreading effect is given to the interference by the laminated body 32, a gradual color change depending on the observation angle can be realized.
(第3の実施形態)
図3は、第3の実施形態に係る構造発色体の断面概略図である。第3の実施形態では、基材と凹凸構造、もしくは凹凸構造を形成する一部は異なる材料で構成される。まず、図3(a)で示すように、基材13の表面に、隣接した凸部の間に平坦部が存在する凹凸構造62が形成された構造層81を形成する。図3(a)では、凹凸構造62の凸部間の平坦面は基材13の表面より上部に存在するが、凹凸構造62の凸部間の平坦面が基材13の表面と同一面、或いは、基材13の表面よりも下部に存在しても良い。尚、凹凸構造62は第2の実施形態に記載した凹凸構造61に準ずるものである。
(Third Embodiment)
FIG. 3 is a schematic cross-sectional view of the structural color former according to the third embodiment. In the third embodiment, the base material and the uneven structure, or a part forming the uneven structure, are made of different materials. First, as shown in FIG. 3A, a structural layer 81 is formed on the surface of the base material 13 in which a concave-convex structure 62 having a flat portion between adjacent convex portions is formed. In FIG. 3A, the flat surface between the convex portions of the concave-convex structure 62 exists above the surface of the base material 13, but the flat surface between the convex portions of the concave-convex structure 62 is the same surface as the surface of the base material 13. Alternatively, it may be present below the surface of the base material 13. The uneven structure 62 conforms to the uneven structure 61 described in the second embodiment.
構造層81に凹凸構造62を形成する手法としては、特に光ナノインプリント法、或いは熱ナノインプリント法の適用が好適である。この場合、構造層81を構成する材料としては、光ナノインプリント法を適用する場合は光硬化性樹脂、熱ナノインプリント法を適用する場合は熱可塑性樹脂、もしくは熱硬化性樹脂となる。また、基材13を構成する材料としては、光硬化性樹脂、或いは熱可塑性樹脂、もしくは熱硬化性樹脂との密着性が高い材料であれば良く、例えば易接着処理を実施したポリエチレンテレフタラートフィルムなどが適用可能である。 As a method for forming the concave-convex structure 62 on the structural layer 81, the application of the optical nanoimprint method or the thermal nanoimprint method is particularly preferable. In this case, the material constituting the structural layer 81 is a photocurable resin when the optical nanoimprint method is applied, a thermoplastic resin or a thermosetting resin when the thermal nanoimprint method is applied. The material constituting the base material 13 may be a photocurable resin, a thermoplastic resin, or a material having high adhesion to the thermosetting resin. For example, a polyethylene terephthalate film subjected to an easy-adhesion treatment. Etc. are applicable.
光ナノインプリント用モールド、或いは熱ナノインプリント用モールドは、例えばSiO2やSi基板にリソグラフィやドライエッチングなどの公知の技術を用いて凹凸構造62の凹凸反転構造を加工したマスターモールドを適用する、もしくはマスターモールドには凹凸構造62と同じ構造を加工してレプリカモールドを作製して適用することが可能である。また、マスターモールドの作製には、陽極酸化を適用しても良い。 For the optical nanoimprint mold or the thermal nanoimprint mold, for example, a master mold obtained by processing a concave-convex reversal structure of the concave-convex structure 62 by using a known technique such as lithography or dry etching on a SiO 2 or Si substrate is applied, or a master mold is applied. It is possible to manufacture and apply a replica mold by processing the same structure as the concave-convex structure 62. Further, anodization may be applied to the production of the master mold.
光ナノインプリント法、或いは熱ナノインプリント法を適用し、得られた凹凸構造に対して、例えば構造高さや線幅などの、形状のトリミングが必要な場合は、光ナノインプリント、或いは熱ナノインプリント実施後にプラズマ処理を行なっても良い。 If it is necessary to trim the shape of the obtained uneven structure by applying the optical nanoimprint method or the thermal nanoimprint method, for example, the structure height and line width, plasma treatment is performed after the optical nanoimprint or the thermal nanoimprint. You may do it.
次に、図2(b)に示すように、構造層81上に、可視領域の波長帯の光を反射する材料、或いは視領域の波長帯の光を吸収する材料を、スパッタリング法や蒸着法など公知の技術を適用して成膜し、湾曲層72を形成し、蛾の眼を模した突起構造23を得る。湾曲層71の膜厚は、平坦な表面上に成膜した場合に、可視領域の波長帯の光の透過率が20%以下となることが好ましい。湾曲層72は、凸部間の平坦部が無くなる程度の膜厚で形成されることがより好ましいが、凸部間の平坦部が存在しても反射抑制効果は得られるため、凸部間の平坦部が無くなる程度の膜厚より薄く形成されても良い。 Next, as shown in FIG. 2B, a material that reflects light in the wavelength band of the visible region or a material that absorbs light in the wavelength band of the visual region is subjected to a sputtering method or a vapor deposition method on the structural layer 81. A film is formed by applying a known technique such as, to form a curved layer 72, and a protrusion structure 23 imitating a moth's eye is obtained. The film thickness of the curved layer 71 is preferably such that the light transmittance in the wavelength band in the visible region is 20% or less when the film is formed on a flat surface. The curved layer 72 is more preferably formed with a film thickness such that the flat portions between the convex portions disappear, but since the reflection suppressing effect can be obtained even if the flat portions between the convex portions are present, the reflection suppressing effect can be obtained. It may be formed thinner than the film thickness to the extent that the flat portion disappears.
次に、図2(c)に示すように表面に突起構造23の表面に、可視領域の波長帯の光に対して屈折率の異なる材料を、スパッタリング法や蒸着法、或いは自己組織化等の公知の技術を適用して積層し、積層膜33を形成する。図2(c)では、突起構造23の表面に、高屈折率層43と低屈折率層53の2種類の層を順次3対形成しているが、これらの層数や材料種とその数、膜厚、積層する順序は必要とする光学特性により適宜設計されるものである。積層膜を構成する材料としては、例えば、高屈折率材料としてTiO2、低屈折率材料としてSiO2などの屈折率差が大きい材料を適用することにより、少ない積層数でも高い反射率が得られるが、屈折率がわずかに違う場合でも界面における反射は発生するため、積層数を適宜設計することにより例えば高分子材料を適用することも可能である。 Next, as shown in FIG. 2C, a material having a refractive index different from that of light in the wavelength band in the visible region is applied to the surface of the protrusion structure 23 on the surface by a sputtering method, a vapor deposition method, self-assembly, or the like. A laminated film 33 is formed by laminating by applying a known technique. In FIG. 2C, two types of layers, a high refractive index layer 43 and a low refractive index layer 53, are sequentially formed on the surface of the protrusion structure 23, and the number of these layers, the material type, and the number thereof are formed. , Film thickness, and stacking order are appropriately designed according to the required optical characteristics. As the material constituting the laminated film, for example, by applying a material having a large refractive index difference such as TiO 2 as a high refractive index material and SiO 2 as a low refractive index material, high reflectance can be obtained even with a small number of layers. However, since reflection occurs at the interface even if the refractive index is slightly different, it is possible to apply, for example, a polymer material by appropriately designing the number of layers.
以上により得られた構造発色体に対して、基材13の表面側から白色光を照射すると、積層体33により干渉された光は、構造発色体表面から反射光として取り出される。一方、それ以外の波長帯の光は積層体33を透過するが、突起構造23により界面での反射は抑制されるため、構造発色体表面からは殆ど取り出されない。その結果、積層体33により干渉された光のみが高いコントラストで観察される。さらに、積層体33は突起構造23の表面に形成されている。各層の形成過程では隣接する下層の表面形状を追従しながら成膜される。よって積層体33は高さ方向に不規則性を有することになり、さらに、突起構造23を格子状に配列することにより、回折効果も付与することができる。したがって、当該構造発色体は、積層体33による干渉に、光の広がり効果が付与されるため、観察角度による緩やかな色変化を実現することができる。 When the structural color-developing body obtained as described above is irradiated with white light from the surface side of the base material 13, the light interfered by the laminated body 33 is extracted as reflected light from the surface of the structural color-developing body. On the other hand, light in other wavelength bands passes through the laminated body 33, but is hardly extracted from the surface of the structural color-developing body because the projection structure 23 suppresses the reflection at the interface. As a result, only the light interfered by the laminated body 33 is observed with high contrast. Further, the laminated body 33 is formed on the surface of the protrusion structure 23. In the process of forming each layer, a film is formed while following the surface shape of the adjacent lower layer. Therefore, the laminated body 33 has irregularities in the height direction, and further, by arranging the protrusion structures 23 in a grid pattern, a diffraction effect can be imparted. Therefore, in the structural color-developing body, since the light spreading effect is given to the interference by the laminated body 33, a gradual color change depending on the observation angle can be realized.
尚、上記の第1〜第3の実施形態のように、凸部の中心位置、構造高さ、底面積の少なくとも1つに不規則性を与えた設計としておくことで、発色構造体の製造時におけるバッチ間でばらつき(製造誤差)が生じた場合でも、光学特性のばらつきを抑制することができ、歩留まりを向上させることができる。 It should be noted that, as in the first to third embodiments described above, the color-developing structure is manufactured by designing the convex portion so that at least one of the center position, the structural height, and the bottom area is irregular. Even when variations (manufacturing errors) occur between batches at the time, variations in optical characteristics can be suppressed and yield can be improved.
まず、光ナノインプリント用のモールドを用意した。具体的には、光ナノインプリントにおいて照射する光の波長は、365nmであったため、この波長の光を透過する合成石英をモールドの材料とした。合成石英基板表面に、Crをスパッタリングにより成膜し、Cr膜上に塗布した電子線レジストに電子線リソグラフィにより電子線レジストパターンを形成した。使用した電子線レジストはポジ型であり、膜厚は150nmとした。電子線により描画したパターンは、XY座標系において、一辺3cmの正方形領域内に、一辺150nmの正方形を、X座標、Y座標共に周期300nmの正方格子配列の中心座標を中心値とし、標準偏差15nmの正規分布から選ばれる座標に配置したパターンであり、電子線を描画した領域は正方形の内側領域である。塩素と酸素との混合ガスに高周波を印加して発生したプラズマにより、表面が露出した領域のCrをエッチング除去した。続いて六弗化エタンガスに高周波を印加して発生したプラズマにより表面が露出した領域の石英をエッチングした。該工程によりエッチングした石英深さは150nmであった。残存したレジスト及びCr膜を除去し、離型剤としてオプツールHD−1100(ダイキン工業製)を塗布して光ナノインプリント用モールドを得た。 First, a mold for optical nanoimprint was prepared. Specifically, since the wavelength of the light irradiated in the optical nanoimprint was 365 nm, synthetic quartz that transmits light of this wavelength was used as the molding material. Cr was formed on the surface of the synthetic quartz substrate by sputtering, and an electron beam resist pattern was formed on the electron beam resist coated on the Cr film by electron beam lithography. The electron beam resist used was a positive type, and the film thickness was 150 nm. In the XY coordinate system, the pattern drawn by the electron beam has a square with a side of 150 nm in a square area with a side of 3 cm, and the center coordinate of a square lattice array with a period of 300 nm for both the X and Y coordinates as the center value, and the standard deviation is 15 nm. It is a pattern arranged at the coordinates selected from the normal distribution of, and the area where the electron beam is drawn is the inner area of the square. Cr in the exposed surface region was etched and removed by plasma generated by applying a high frequency to a mixed gas of chlorine and oxygen. Subsequently, the quartz in the region where the surface was exposed was etched by the plasma generated by applying a high frequency to the hexafluorinated ethane gas. The quartz depth etched by this step was 150 nm. The remaining resist and Cr film were removed, and Optool HD-1100 (manufactured by Daikin Industries, Ltd.) was applied as a release agent to obtain a mold for optical nanoimprint.
次に、合成石英ウェハ上に光硬化性樹脂を100nm塗布し、真空中にて該合成石英ウェハに光ナノンプリント用モールドを50kNの圧力で押しつけながら、365nmの光を10J/m2照射した。続いて、光ナノンプリント用モールドを該合成石英ウェハから離型し、光硬化性樹脂パターンが形成された合成石英基板を得た。 Next, a photocurable resin of 100 nm was applied onto the synthetic quartz wafer, and the synthetic quartz wafer was irradiated with 10 J / m 2 of light at 365 nm while pressing the optical nanon print mold against the synthetic quartz wafer at a pressure of 50 kN. Subsequently, the mold for optical nanon printing was released from the synthetic quartz wafer to obtain a synthetic quartz substrate on which a photocurable resin pattern was formed.
次に、該光硬化性樹脂パターンが形成された合成石英基板を、酸素ガスに高周波を印加して発生したプラズマに暴露し、光ナノインプリント工程にて発生した残膜を除去した。続いて六弗化エタンガスに高周波を印加して発生したプラズマにより表面が露出した領域の石英をエッチングした。該工程によりエッチングした石英深さは120nmであった。残存したレジストを除去した合成石英基板表面に、膜厚300nmのAlを蒸着法にて成膜し、続いて膜厚55nmのTiO2と膜厚76nmのSiO2を交互に5対蒸着法にて成膜し、構造発色体を得た。 Next, the synthetic quartz substrate on which the photocurable resin pattern was formed was exposed to plasma generated by applying a high frequency to oxygen gas, and the residual film generated in the optical nanoimprinting step was removed. Subsequently, the quartz in the region where the surface was exposed was etched by the plasma generated by applying a high frequency to the hexafluorinated ethane gas. The quartz depth etched by this step was 120 nm. The removal of the remaining resist synthetic quartz substrate surface, an Al film having a thickness of 300nm by evaporation, at followed by SiO 2 having a thickness of 55nm of TiO 2 and a thickness of 76nm alternately 5 to evaporation A film was formed to obtain a structural color developer.
得られた構造発色体に対して、垂直方向から反射分光測定を実施したところ、構造体形成した領域では約460nmに最大60%程度のピーク強度を持つ分光スペクトルが得られたのに対して、構造体未形成領域では約500nmに鋭いウェルがあるものの、その他の波長領域においては80%以上の反射率を示す分光スペクトルが得られた。尚、白色光照射下において、得られた構造発色体を±50°領域での傾斜観察では、構造形成領域の色はほぼ変化しない。 When the reflected spectroscopic measurement was performed on the obtained structural color-developing body from the vertical direction, a spectroscopic spectrum having a peak intensity of about 60% at the maximum at about 460 nm was obtained in the region where the structure was formed. Although there are sharp wells at about 500 nm in the structure-unformed region, a spectroscopic spectrum showing a reflectance of 80% or more was obtained in other wavelength regions. It should be noted that, under white light irradiation, the color of the structure-forming region hardly changes when the obtained structural color-developing body is observed at an angle in the ± 50 ° region.
本発明の発色構造体は、意匠性の高い表示物に利用可能である。特に、表面加飾の分野に好適に利用が期待される。 The color-developing structure of the present invention can be used for a display object having a high degree of design. In particular, it is expected to be suitably used in the field of surface decoration.
11、12、13…基材
21、22、23…突起構造
31、32、33…積層体
41、42、43…高屈折率層
51、52、53…低屈折率層
61、62…凹凸構造
71、72…湾曲層
81…構造層
11, 12, 13 ... Base materials 21, 22, 23 ... Projection structures 31, 32, 33 ... Laminates 41, 42, 43 ... High refractive index layers 51, 52, 53 ... Low refractive index layers 61, 62 ... Concavo-convex structure 71, 72 ... Curved layer 81 ... Structural layer
Claims (8)
前記凹凸構造は前記波長帯の光を反射あるいは吸収する材料で構成され、
前記凹凸構造は蛾の眼を模した突起構造の集合体からなり、
前記凹凸構造において、前記凸部の構造高さの偏差が、前記凸部の構造高さの平均値の1/3以下で、かつ、前記凸部の構造高さは不規則な分布を有することを特徴とする、発色構造体。 A base material, a concavo-convex structure composed of an aggregate of a plurality of convex portions formed on the surface of the base material or the base material, and a light of the same wavelength band transmitted on the concavo-convex structure, and the wavelength band In a color-developing structure having a laminated body composed of two or more layers made of materials having different refractive indexes with respect to the light of
The uneven structure is composed of a material that reflects or absorbs light in the wavelength band.
The uneven structure is composed of an aggregate of protrusion structures that imitate the eyes of a moth.
In the uneven structure, the deviation of the structural height of the convex portion is 1/3 or less of the average value of the structural height of the convex portion, and the structural height of the convex portion has an irregular distribution. A color-developing structure characterized by.
前記凹凸構造は、隣接した前記凸部の間に平坦部が存在する凹凸構造であり、
前記凹凸構造と前記積層体との間に、前記波長帯の光を反射あるいは吸収する材料で構成される層を有し、
前記凹凸構造において、前記凸部の構造高さの偏差が、前記凸部の構造高さの平均値の1/3以下で、かつ、前記凸部の構造高さは不規則な分布を有することを特徴とする、発色構造体。 A base material, a concavo-convex structure composed of an aggregate of a plurality of convex portions formed on the surface of the base material or the base material, and a light of the same wavelength band transmitted on the concavo-convex structure, and the wavelength band In a color-developing structure having a laminated body composed of two or more layers made of materials having different refractive indexes with respect to the light of
The uneven structure is a concave-convex structure in which a flat portion exists between the adjacent convex portions.
A layer made of a material that reflects or absorbs light in the wavelength band is provided between the uneven structure and the laminated body.
In the uneven structure, the deviation of the structural height of the convex portion is 1/3 or less of the average value of the structural height of the convex portion, and the structural height of the convex portion has an irregular distribution. A color-developing structure characterized by.
前記凹凸構造において、前記凸部の構造高さの偏差が、前記凸部の構造高さの平均値の1/3以下で、かつ、前記凸部の構造高さは不規則な分布を有し、
基板上に、複数の凹部を格子状に配列してなり、前記凹凸構造を反転した格子状構造を有する光ナノインプリント用モールドであって、隣接した前記凹部の間に平坦部が存在し、前記凹部の中心が前記格子状構造の構造周期により決定される中心位置からずれて分布しており、前記凹部の中心と前記格子状構造の構造周期により決定される中心位置との距離が前記格子状構造のピッチよりも小さい光ナノインプリント用モールドを用意する工程と、
前記基材に光硬化性樹脂を塗布する工程と、
光ナノインプリント法により、前記光硬化性樹脂層にモールドに形成された構造を転写して前記凹凸構造を形成する工程と、
前記凹凸構造が形成された基材上に、前記波長帯の光を反射する金属層を形成する工程と、
前記金属層上に、前記波長帯の光を透過し、且つ、前記波長帯の光に対して異なる屈折率を持つ材料を交互に積層して前記積層体を成膜する工程とを具備することを特徴とする、発色構造体の製造方法。 It has a base material, a concavo-convex structure formed on the surface of the base material or an aggregate of a plurality of convex portions formed on the base material, and a laminated body composed of two or more layers on the concavo-convex structure. A method for producing a color-developing structure that selectively reflects light of a part of the irradiated light of a predetermined wavelength band.
In the uneven structure, the deviation of the structural height of the convex portion is 1/3 or less of the average value of the structural height of the convex portion, and the structural height of the convex portion has an irregular distribution. ,
An optical nanoimprint mold having a grid-like structure in which a plurality of recesses are arranged in a grid pattern on a substrate, and the concave-convex structure is inverted. A flat portion exists between the adjacent recesses, and the recesses Is distributed deviating from the center position determined by the structural cycle of the lattice structure, and the distance between the center of the recess and the center position determined by the structural cycle of the lattice structure is the lattice structure. The process of preparing a mold for optical nanoimprint that is smaller than the pitch of
The step of applying a photocurable resin to the base material and
A step of transferring the structure formed in the mold to the photocurable resin layer by the optical nanoimprint method to form the uneven structure.
A step of forming a metal layer that reflects light in the wavelength band on a base material on which the uneven structure is formed, and
The metal layer is provided with a step of alternately laminating materials that transmit light in the wavelength band and have different refractive indexes with respect to the light in the wavelength band to form the laminated body. A method for manufacturing a colored structure, which comprises.
前記凹凸構造において、前記凸部の構造高さの偏差が、前記凸部の構造高さの平均値の1/3以下で、かつ、前記凸部の構造高さは不規則な分布を有し、
基板上に、複数の凹部を格子状に配列してなり、前記凹凸構造を反転した格子状構造を有する熱ナノインプリント用モールドであって、隣接した前記凹部の間に平坦部が存在し、前記凹部の中心が前記格子状構造の構造周期により決定される中心位置からずれて分布しており、前記凹部の中心と前記格子状構造の構造周期により決定される中心位置との距離が前記格子状構造のピッチよりも小さい熱ナノインプリント用モールドを用意する工程と、
前記基材に熱可塑性樹脂もしくは熱硬化性樹脂を塗布する工程と、
熱ナノインプリント法により、前記熱可塑性樹脂層もしくは前記熱硬化性樹脂層にモールドに形成された構造を転写して前記凹凸構造を形成する工程と、
前記凹凸構造が形成された基材上に、前記波長帯の光を反射する金属層を形成する工程と、
前記金属層上に、前記波長帯の光を透過し、且つ、前記波長帯の光に対して異なる屈折率を持つ材料を交互に積層して前記積層体を成膜する工程とを具備することを特徴とする、発色構造体の製造方法。 It has a base material, a concavo-convex structure formed on the surface of the base material or an aggregate of a plurality of convex portions formed on the base material, and a laminated body composed of two or more layers on the concavo-convex structure. A method for producing a color-developing structure that selectively reflects light of a part of the irradiated light of a predetermined wavelength band.
In the uneven structure, the deviation of the structural height of the convex portion is 1/3 or less of the average value of the structural height of the convex portion, and the structural height of the convex portion has an irregular distribution. ,
A mold for thermal nanoimprint having a grid-like structure in which a plurality of recesses are arranged in a grid pattern on a substrate, and the concave-convex structure is inverted. A flat portion exists between the adjacent recesses, and the recesses Is distributed deviating from the center position determined by the structural cycle of the lattice structure, and the distance between the center of the recess and the center position determined by the structural cycle of the lattice structure is the lattice structure. The process of preparing a mold for thermal nanoimprint that is smaller than the pitch of
The step of applying a thermoplastic resin or a thermosetting resin to the base material, and
A step of transferring the structure formed in the mold to the thermoplastic resin layer or the thermosetting resin layer by the thermal nanoimprint method to form the uneven structure.
A step of forming a metal layer that reflects light in the wavelength band on a base material on which the uneven structure is formed, and
The metal layer is provided with a step of alternately laminating materials that transmit light in the wavelength band and have different refractive indexes with respect to the light in the wavelength band to form the laminated body. A method for manufacturing a colored structure, which comprises.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015244471A JP6801181B2 (en) | 2015-12-15 | 2015-12-15 | Color-developing structure and its manufacturing method |
PCT/JP2016/005144 WO2017104138A1 (en) | 2015-12-15 | 2016-12-15 | Structured coloring body and method for producing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015244471A JP6801181B2 (en) | 2015-12-15 | 2015-12-15 | Color-developing structure and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017111248A JP2017111248A (en) | 2017-06-22 |
JP6801181B2 true JP6801181B2 (en) | 2020-12-16 |
Family
ID=59056254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015244471A Expired - Fee Related JP6801181B2 (en) | 2015-12-15 | 2015-12-15 | Color-developing structure and its manufacturing method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6801181B2 (en) |
WO (1) | WO2017104138A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101925467B1 (en) | 2017-06-27 | 2018-12-05 | 주식회사 엘지화학 | Decoration element and preparing method thereof |
WO2019117413A1 (en) | 2017-12-15 | 2019-06-20 | 주식회사 엘지화학 | Decorative member and manufacturing method therefor |
WO2019117683A1 (en) * | 2017-12-15 | 2019-06-20 | 주식회사 엘지화학 | Decorative member |
KR102201575B1 (en) * | 2017-12-15 | 2021-01-12 | 주식회사 엘지화학 | Decoration element |
EP3808209B1 (en) * | 2018-06-15 | 2023-11-29 | Lg Chem, Ltd. | Decoration member |
JP7358730B2 (en) * | 2018-10-03 | 2023-10-11 | 凸版印刷株式会社 | Coloring structure |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4731759B2 (en) * | 2001-08-09 | 2011-07-27 | 彰 ▲さい▼藤 | Chromogen |
JP4228058B2 (en) * | 2003-11-21 | 2009-02-25 | 彰 ▲さい▼藤 | Colored body and method for producing the same |
JP5077978B2 (en) * | 2005-03-11 | 2012-11-21 | 共同印刷株式会社 | Personal information protection sheet |
JP4853945B2 (en) * | 2006-02-23 | 2012-01-11 | 彰 齋藤 | Manufacturing method of display device |
GB2481697B (en) * | 2010-06-25 | 2013-07-24 | Andrew Richard Parker | Optical effect structures |
JP5938963B2 (en) * | 2012-03-16 | 2016-06-22 | 凸版印刷株式会社 | Display and labeled goods |
JP2015001578A (en) * | 2013-06-14 | 2015-01-05 | 日東電工株式会社 | Low emissivity member |
-
2015
- 2015-12-15 JP JP2015244471A patent/JP6801181B2/en not_active Expired - Fee Related
-
2016
- 2016-12-15 WO PCT/JP2016/005144 patent/WO2017104138A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JP2017111248A (en) | 2017-06-22 |
WO2017104138A1 (en) | 2017-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6801181B2 (en) | Color-developing structure and its manufacturing method | |
US10571607B2 (en) | Color developing structure and method of producing the same | |
JP6364754B2 (en) | Display body and manufacturing method of display body | |
JP6766860B2 (en) | Display body and manufacturing method of display body | |
JP6413300B2 (en) | Display body and manufacturing method of display body | |
JP2005153192A (en) | Color developing body and its manufacturing method | |
WO2018070431A1 (en) | Optical device, display body, color filter, and optical device manufacturing method | |
JP6201289B2 (en) | Image display body and information medium | |
JP6672585B2 (en) | Display body | |
JP6500943B2 (en) | Chromogenic structure, mold and method for producing chromogenic structure using mold | |
JP6176290B2 (en) | Coloring structure and method for producing the same | |
WO2016098329A1 (en) | Display, and method for manufacturing display | |
JP6825238B2 (en) | Display and its manufacturing method | |
JP6477795B2 (en) | Coloring structure and method for producing the same | |
KR101892037B1 (en) | Anti-glare and anti-reflection film and producing method thereof | |
JP7302277B2 (en) | DISPLAY AND METHOD FOR MANUFACTURING DISPLAY | |
JP6596820B2 (en) | Indicator | |
JP7136163B2 (en) | DISPLAY AND METHOD FOR MANUFACTURING DISPLAY | |
JP7326833B2 (en) | Coloring structure, display, and method for producing coloring structure | |
JPWO2018062481A1 (en) | Antireflective material and method of manufacturing the same | |
JP6834344B2 (en) | Display | |
JP2019200337A (en) | Security device and manufacturing method for the same | |
JP6790498B2 (en) | Display | |
JP2022102879A (en) | Display body | |
JP2017227837A (en) | Display body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200707 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200828 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200915 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201008 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201027 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201109 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6801181 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |