[go: up one dir, main page]

JP6801170B2 - Manufacturing method of rotation angle detection magnet, rotation angle detection device and rotation angle detection magnet - Google Patents

Manufacturing method of rotation angle detection magnet, rotation angle detection device and rotation angle detection magnet Download PDF

Info

Publication number
JP6801170B2
JP6801170B2 JP2015178863A JP2015178863A JP6801170B2 JP 6801170 B2 JP6801170 B2 JP 6801170B2 JP 2015178863 A JP2015178863 A JP 2015178863A JP 2015178863 A JP2015178863 A JP 2015178863A JP 6801170 B2 JP6801170 B2 JP 6801170B2
Authority
JP
Japan
Prior art keywords
magnet
rotation angle
angle detection
rotation
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015178863A
Other languages
Japanese (ja)
Other versions
JP2017053776A (en
Inventor
正宏 増澤
正宏 増澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2015178863A priority Critical patent/JP6801170B2/en
Publication of JP2017053776A publication Critical patent/JP2017053776A/en
Application granted granted Critical
Publication of JP6801170B2 publication Critical patent/JP6801170B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、回転する被検出物の回転角を磁気的に検出する際に使用される回転角検出用磁石、該回転角検出用磁石を備えて被検出物の回転角を検出する回転角検出装置、及び前記回転角検出用磁石を製造する回転角検出用磁石の製造方法に関する。 The present invention includes a magnet for detecting a rotation angle used when magnetically detecting the rotation angle of a rotating object to be detected, and a magnet for detecting the angle of rotation, and detecting the angle of rotation of the object to be detected. The present invention relates to an apparatus and a method for manufacturing a magnet for detecting an angle of rotation, which manufactures the magnet for detecting the angle of rotation.

回転する被検出物の回転角を磁気的に検出する検出装置に使用される磁石の形状は略円板状であることが一般的である。そして、この略円板状の磁石は、その着磁方向の違いにより2つのタイプに類別される。 The shape of the magnet used in the detection device that magnetically detects the rotation angle of the rotating object to be detected is generally a substantially disk shape. The substantially disc-shaped magnets are classified into two types according to the difference in the magnetizing direction.

一方のタイプは、半円分の各領域にN極とS極とを1極ずつ着磁させて、着磁方向を回転軸と直交する径方向としたものであり、径2極着磁型磁石と呼ばれる。他方のタイプは、回転軸方向に沿って異極を着磁させて、着磁方向を回転軸方向と平行にしたものであり、面2極着磁型磁石と呼ばれる。特許文献1には、このような径2極着磁型磁石または面2極着磁型磁石を使用した回転角検出器が開示されている。 One type is a type in which the north pole and the south pole are magnetized one by one in each region of a semicircle, and the magnetizing direction is the radial direction orthogonal to the rotation axis. It is called a magnet. The other type is a magnet in which a different pole is magnetized along the rotation axis direction so that the magnetizing direction is parallel to the rotation axis direction, and is called a surface two-pole magnetizing type magnet. Patent Document 1 discloses a rotation angle detector using such a diameter 2-pole magnetizing magnet or a surface 2-pole magnetizing magnet.

特開2010−160036号公報Japanese Unexamined Patent Publication No. 2010-160036

磁石の着磁方向が何れであっても、磁気検出用のセンサ素子は、回転軸と直交する方向の漏洩磁束成分を検出しており、何れの着磁型の磁石を使用するかは、磁石とセンサ素子との間の距離、センサ素子の感度、磁石の磁力の強さ等を考慮して決定される。 Regardless of the magnetizing direction of the magnet, the sensor element for magnetic detection detects the leakage magnetic flux component in the direction orthogonal to the rotation axis, and which magnetizing type magnet is used depends on the magnet. It is determined in consideration of the distance between the magnet and the sensor element, the sensitivity of the sensor element, the strength of the magnetic force of the magnet, and the like.

面2極着磁型磁石の場合には、漏洩磁束が磁石表面から遠くへ到達し易くなるため、磁石とセンサ素子との間の距離を大きくとれる。これに対して、径2極着磁型磁石の場合には、漏洩磁束が磁石表面よりも遠くへ到達し難くなるため、センサ素子を磁石近傍に配置せざるを得なくなる。磁石とセンサ素子との距離を大きくとれると、例えばセンサ素子を制御基板などに固定するためのモールド樹脂を厚くしたり、非磁性ステンレスなどのカバーで覆ったりすることが可能になるため、構造上の信頼性が向上するし、構造設計の自由度も増大する。よって、磁石とセンサ素子との間の距離は大きいほど有利な点が多い。 In the case of a surface two-pole magnetizing type magnet, the leakage magnetic flux easily reaches far from the magnet surface, so that the distance between the magnet and the sensor element can be increased. On the other hand, in the case of a magnetized magnet having two poles in diameter, the leakage magnetic flux is less likely to reach farther than the surface of the magnet, so that the sensor element must be arranged in the vicinity of the magnet. If the distance between the magnet and the sensor element can be increased, for example, the mold resin for fixing the sensor element to the control board or the like can be thickened, or it can be covered with a cover such as non-magnetic stainless steel. The reliability of the magnet is improved, and the degree of freedom in structural design is also increased. Therefore, the larger the distance between the magnet and the sensor element, the more advantageous points there are.

一方で、面2極着磁型磁石と径2極着磁型磁石とでは、着磁の作業性が著しく異なる。面2極に着磁する場合には、磁石の寸法に合わせた専用の着磁ヨーク(着磁コイル及び鉄ヨークを組み合わせたもの)を用いて、磁石を1個ずつ着磁するのが一般的である。これは、着磁に必要な磁界強度が2テスラ以上とかなり大きいので、一度に複数の磁石を着磁するための磁気回路を構成するのが困難なためである。一方、径2極に着磁する場合には、空心コイルを用いることで2テスラ以上の磁界強度を比較的大きな空間で容易に発生し得るため、大量の磁石を一度に径2極へ着磁できる。つまり、径2極着磁は低コストで大量生産向きの着磁方式と言える。 On the other hand, the workability of magnetizing is significantly different between the surface 2-pole magnetizing type magnet and the diameter 2-pole magnetizing type magnet. When magnetizing on two planes, it is common to magnetize magnets one by one using a dedicated magnetizing yoke (combined magnetizing coil and iron yoke) that matches the dimensions of the magnet. Is. This is because the magnetic field strength required for magnetizing is as large as 2 tesla or more, and it is difficult to construct a magnetic circuit for magnetizing a plurality of magnets at one time. On the other hand, when magnetizing to two poles in diameter, a magnetic field strength of 2 tesla or more can be easily generated in a relatively large space by using an air-core coil, so a large number of magnets can be magnetized to two poles in diameter at once. it can. That is, it can be said that 2-pole magnetizing with a diameter is a low-cost magnetizing method suitable for mass production.

以上のように、径2極着磁型磁石は、着磁の作業性が良好であるという利点を有する反面、センサ素子との距離を大きくとり難いという欠点がある。 As described above, the two-pole magnetizing type magnet has an advantage that the magnetizing workability is good, but has a drawback that it is difficult to obtain a large distance from the sensor element.

磁石とセンサ素子との距離を大きくする対策として、特許文献1における径2極着磁型磁石では、略円板状の磁石におけるセンサ素子との対向面を周囲より窪ませた形状としている。しかしながら、特許文献1にあっては、磁石におけるセンサ素子との対向面(磁石の中央部)のみを窪ませただけであり、センサ素子に対向しない磁石の縁部はそのままである。そのため、センサ素子を固定する制御基板との距離は依然として短いままであるので、構造上の信頼性は向上しない。また、所要の検出感度を得るために磁石の大きさを保とうとすれば、磁石の直径を長くせざるを得ず、磁石の寸法、及びこの磁石を用いた検出器のサイズが大きくなるという問題がある。 As a measure to increase the distance between the magnet and the sensor element, the two-pole magnetized magnet having a diameter in Patent Document 1 has a substantially disk-shaped magnet having a shape in which the surface facing the sensor element is recessed from the surroundings. However, in Patent Document 1, only the surface of the magnet facing the sensor element (the central portion of the magnet) is recessed, and the edge portion of the magnet not facing the sensor element remains as it is. Therefore, the distance from the control board to which the sensor element is fixed is still short, and the structural reliability is not improved. Further, if the size of the magnet is to be maintained in order to obtain the required detection sensitivity, the diameter of the magnet must be increased, and the size of the magnet and the size of the detector using this magnet become large. There is.

本発明は斯かる事情に鑑みてなされたものであり、小さい形状であっても、着磁の作業性が良好であり、しかもセンサ素子までの距離を大きくできる径2極着磁型磁石である回転角検出用磁石、サイズの小型化を図れる回転角検出装置、及び、小型の回転角検出用磁石を製造できる回転角検出用磁石の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and is a two-pole magnetized magnet having a diameter that is good in magnetizing workability even if it has a small shape and can increase the distance to the sensor element. An object of the present invention is to provide a rotation angle detection magnet, a rotation angle detection device capable of reducing the size, and a method for manufacturing a rotation angle detection magnet capable of manufacturing a small rotation angle detection magnet.

本発明に係る回転角検出用磁石は、回転角を磁気的に検出する際に使用される回転角検出用磁石において、径方向に着磁された略円板状をなしており、回転方向に180度ずつ2等分する各領域にN極及びS極が1極ずつ着磁されており、中央部は凸形状部分となっており、該凸形状部分は、着磁方向に対向して中央部側に傾斜する一対の傾斜部と、該一対の傾斜部に連なる平坦部とを有し、前記平坦部は着磁方向を短手寸法、着磁方向に直交する方向を長手寸法とした短冊状をなす平坦面を有し、前記長手寸法は直径に略等しく、前記一対の傾斜部は互いに異なる磁極に着磁されており、前記凸形状部分の端から周縁に延在する平坦な部分を備えていることを特徴とする。 The rotation angle detection magnet according to the present invention is a rotation angle detection magnet used when magnetically detecting a rotation angle, and has a substantially disk shape magnetized in the radial direction and is formed in the rotation direction. One N pole and one S pole are magnetized in each region divided into two equal parts by 180 degrees, and the central part is a convex part, and the convex part is opposed to the magnetizing direction and is in the center. A strip having a pair of inclined portions inclined toward the portion side and a flat portion connected to the pair of inclined portions, the flat portion having a magnetizing direction as a short dimension and a direction orthogonal to the magnetizing direction as a longitudinal dimension. It has a flat surface having a shape, the longitudinal dimension is substantially equal to the diameter, the pair of inclined portions are magnetized to different magnetic poles, and a flat portion extending from the end of the convex portion to the peripheral edge is formed. It is characterized by having.

本発明の回転角検出用磁石は、全体が略円板状をなしていて、その径方向に着磁されており、着磁方向に対向して中央部側に傾斜する一対の傾斜部と、この一対の傾斜部に連なる平坦部とからなる凸形状部分を中央部に有している。また、平坦部の長手寸法は直径に略等しい。小型であっても、センサ素子に対向する中央部にこのような凸形状部分を設けているためセンサ素子との距離を大きくできると共に、径2極着磁であるため着磁は容易に行える。 The rotation angle detection magnet of the present invention has a substantially disk shape as a whole, is magnetized in the radial direction thereof, and has a pair of inclined portions that face the magnetizing direction and are inclined toward the central portion. A convex portion formed by a flat portion connected to the pair of inclined portions is provided in the central portion. Further, the longitudinal dimension of the flat portion is substantially equal to the diameter. Even if it is small, the distance from the sensor element can be increased because such a convex portion is provided in the central portion facing the sensor element, and magnetization can be easily performed because the diameter is two poles.

本発明に係る回転角検出用磁石は、前記平坦部の短手寸法は直径の1/4以上1/2以下であって、自身の回転面と前記傾斜部とのなす角度は30度以上60度以下であることを特徴とする。 In the rotation angle detection magnet according to the present invention, the lateral dimension of the flat portion is 1/4 or more and 1/2 or less of the diameter, and the angle formed by its own rotating surface and the inclined portion is 30 degrees or more and 60 degrees. It is characterized by being less than or equal to the degree.

本発明の回転角検出用磁石では、略矩形状をなす平坦部の長手寸法は直径に略等しく、短手寸法は直径の1/4以上1/2以下であり、傾斜部の傾斜角度(自身の回転面と前記傾斜部とのなす角度、すなわち、回転角検出装置に組み込まれた場合に、回転軸に直交する回転面と傾斜部とのなす角度)は30度以上60度以下である。よって、比較的小型の形状であっても漏洩磁束を遠くへ到達させることができ、遠く離れた位置でのセンサ素子の配置を可能とする。 In the rotation angle detection magnet of the present invention, the longitudinal dimension of the flat portion having a substantially rectangular shape is substantially equal to the diameter, the lateral dimension is 1/4 or more and 1/2 or less of the diameter, and the inclination angle of the inclined portion (self). The angle formed by the rotating surface and the inclined portion, that is, the angle formed by the rotating surface perpendicular to the rotation axis and the inclined portion when incorporated in the rotation angle detecting device) is 30 degrees or more and 60 degrees or less. Therefore, even if the shape is relatively small, the leakage magnetic flux can reach a long distance, and the sensor element can be arranged at a far away position.

本発明に係る回転角検出装置は、回転する被検出物の回転角を検出する回転角検出装置において、前記被検出物に取り付けられて回転する回転軸と、該回転軸と一体的に回転する上述した回転角検出用磁石と、該回転角検出用磁石の回転による前記回転軸と直交する方向の漏洩磁束成分を検出するセンサ素子とを備えることを特徴とする。 The rotation angle detecting device according to the present invention is a rotation angle detecting device that detects the rotation angle of a rotating object to be detected, and is attached to the object to be detected and rotates integrally with the rotating shaft. It is characterized by including the above-mentioned rotation angle detection magnet and a sensor element that detects a leakage magnetic flux component in a direction orthogonal to the rotation axis due to rotation of the rotation angle detection magnet.

本発明の回転角検出装置では、センサ素子が、上記の回転角検出用磁石の回転による回転軸と直交する方向の漏洩磁束成分を検出し、この検出結果に基づいて被検出物の回転角を求める。 In the rotation angle detection device of the present invention, the sensor element detects the leakage magnetic flux component in the direction orthogonal to the rotation axis due to the rotation of the rotation angle detection magnet, and based on this detection result, the rotation angle of the object to be detected is determined. Ask.

本発明に係る回転角検出装置は、前記センサ素子は、前記回転角検出用磁石の前記平坦部に対向して配置されていることを特徴とする。 The rotation angle detection device according to the present invention is characterized in that the sensor element is arranged so as to face the flat portion of the rotation angle detection magnet.

本発明の回転角検出装置では、回転角検出用磁石の平坦部にセンサ素子を対向配置している。よって、回転角検出用磁石とセンサ素子との軸ズレが生じても検出精度は損なわれない。 In the rotation angle detection device of the present invention, the sensor elements are arranged to face each other on the flat portion of the rotation angle detection magnet. Therefore, the detection accuracy is not impaired even if the rotation angle detection magnet and the sensor element are displaced from each other.

本発明に係る回転角検出装置は、前記回転角検出用磁石を固定するための爪部を有する金属製の固定治具を更に備えることを特徴とする。 The rotation angle detection device according to the present invention is further provided with a metal fixing jig having a claw portion for fixing the rotation angle detection magnet.

本発明の回転角検出装置では、金属製の固定治具の爪部にて回転角検出用磁石を固定する。よって、回転角検出用磁石が回転軸と確実に一体的に回転するため、回転角の検出精度は高くなる。 In the rotation angle detection device of the present invention, the rotation angle detection magnet is fixed by the claw portion of the metal fixing jig. Therefore, since the rotation angle detection magnet rotates reliably and integrally with the rotation axis, the rotation angle detection accuracy becomes high.

本発明に係る回転角検出用磁石の製造方法は、回転角を磁気的に検出する際に使用される回転角検出用磁石を製造する方法において、磁性粉と熱硬化性樹脂との混合物を圧縮成形して上述した回転角検出用磁石を製造することを特徴とする。 The method for manufacturing a magnet for detecting the angle of rotation according to the present invention is a method for manufacturing a magnet for detecting the angle of rotation used when magnetically detecting the angle of rotation, in which a mixture of magnetic powder and a thermosetting resin is compressed. It is characterized in that the magnet for detecting the rotation angle described above is manufactured by molding.

本発明の回転角検出用磁石の製造方法では、圧縮成形により回転角検出用磁石を製造する。よって、射出成形に比べて材料に占める磁性粉の割合を大きくできて、小型でありながら必要十分な磁力を有する回転角検出用磁石を製造できる。 In the method for manufacturing a magnet for detecting the rotation angle of the present invention, the magnet for detecting the rotation angle is manufactured by compression molding. Therefore, the ratio of magnetic powder to the material can be increased as compared with injection molding, and a magnet for detecting the rotation angle, which is small but has a necessary and sufficient magnetic force, can be manufactured.

本発明によれば、小型の形状であっても着磁の作業性が良好であり、しかもセンサ素子までの距離を大きくできる径2極着磁型の回転角検出用磁石を提供できる、また、この回転角検出用磁石を使用した検出精度が高い回転角検出装置を提供できる。さらに、この小型であって必要十分な磁力を有する回転角検出用磁石を製造できる。 According to the present invention, it is possible to provide a two-pole magnetizing type magnet for detecting the angle of rotation, which has good magnetizing workability even in a small shape and can increase the distance to the sensor element. It is possible to provide a rotation angle detection device using this rotation angle detection magnet and having high detection accuracy. Further, it is possible to manufacture this small magnet for detecting the rotation angle having a necessary and sufficient magnetic force.

本発明に係る回転角検出用磁石を示す斜視図である。It is a perspective view which shows the rotation angle detection magnet which concerns on this invention. 本発明に係る回転角検出装置の全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the rotation angle detection apparatus which concerns on this invention. 本発明に係る回転角検出装置を示す断面図、側面図及び上面図である。It is sectional drawing, side view and top view which show the rotation angle detection apparatus which concerns on this invention. 本発明に係る回転角検出用磁石における各寸法を表す上面図及び側面図である。It is a top view and a side view showing each dimension in the rotation angle detection magnet which concerns on this invention. 各実施例における回転角検出用磁石の各寸法、及びセンサ素子間の距離を表す図表である。It is a figure which shows each dimension of the rotation angle detection magnet in each Example, and the distance between sensor elements. 従来例と比較例と実施例とにおける磁石の直径、着磁方式、及びセンサ素子間の距離を表す図表である。It is a figure which shows the diameter of the magnet, the magnetizing method, and the distance between sensor elements in a prior art example, a comparative example, and an Example. 比較例と実施例とにおける磁石の形状及び磁界方向分布を示す概略図である。It is the schematic which shows the shape of a magnet and the magnetic field direction distribution in a comparative example and an Example.

以下、本発明をその実施の形態を示す図面に基づいて詳述する。図1は、本発明に係る回転角検出用磁石を示す斜視図である。 Hereinafter, the present invention will be described in detail with reference to the drawings showing the embodiments thereof. FIG. 1 is a perspective view showing a magnet for detecting a rotation angle according to the present invention.

本発明に係る回転角検出用磁石1(以下、単に磁石1という)は、例えばNd−Fe−B系のボンド磁石であり、全体として略円板状をなしている。磁石1は、回転方向に180度ずつ2等分する各領域にN極及びS極が1極ずつ着磁されており、径2極型着磁磁石である。 The rotation angle detection magnet 1 (hereinafter, simply referred to as magnet 1) according to the present invention is, for example, an Nd-Fe-B-based bond magnet, and has a substantially disk shape as a whole. The magnet 1 is a two-pole type magnetizing magnet having an N pole and an S pole magnetized in each region divided into two equal parts by 180 degrees in the rotation direction.

磁石1の中央部は、上方側に(後述するセンサ素子4と対向する側に)突出する凸形状部分11となっている。凸形状部分11は、着磁方向(図1の矢符方向)に対向して中央部側に傾斜する一対の傾斜部12、12と、該一対の傾斜部12、12に連なる平坦部13とを有している。言い換えると、この凸形状部分11では、着磁方向から見た輪郭は傾斜がない矩形状をなしており、着磁方向から90度回転した方向から見た輪郭は、上方に向かう左右対称な一対の傾斜を両端部に有しており、この一対の傾斜に連なった平坦を中央部に有している。 The central portion of the magnet 1 is a convex portion 11 that projects upward (toward the side facing the sensor element 4 described later). The convex portion 11 includes a pair of inclined portions 12 and 12 that face the magnetizing direction (direction of the arrow in FIG. 1) and are inclined toward the central portion, and a flat portion 13 that is continuous with the pair of inclined portions 12 and 12. have. In other words, in this convex portion 11, the contour seen from the magnetizing direction has a rectangular shape with no inclination, and the contour seen from the direction rotated 90 degrees from the magnetizing direction is a pair of symmetrical upwards. Has slopes at both ends, and has a flatness connected to this pair of slopes at the center.

平坦部13の上面である平坦面は、着磁方向を短手寸法、また着磁方向に直交する方向を長手寸法とした短冊状をなしている。この短冊状の長手寸法は、磁石1の直径にほぼ等しく、短手寸法は磁石1の直径の1/4以上1/2以下である。また、傾斜部12、12の上面は傾斜面であり、傾斜部12、12の傾斜角度は30度以上60度以下である。この傾斜角度は、磁石1の回転面と傾斜部12、12とのなす角度である。 The flat surface, which is the upper surface of the flat portion 13, has a strip shape with the magnetizing direction as the short dimension and the direction orthogonal to the magnetizing direction as the longitudinal dimension. The strip-shaped longitudinal dimension is substantially equal to the diameter of the magnet 1, and the lateral dimension is 1/4 or more and 1/2 or less of the diameter of the magnet 1. The upper surface of the inclined portions 12 and 12 is an inclined surface, and the inclined angle of the inclined portions 12 and 12 is 30 degrees or more and 60 degrees or less. This inclination angle is an angle formed by the rotating surface of the magnet 1 and the inclined portions 12, 12.

図2は、本発明に係る回転角検出装置の全体構成を示す斜視図である。また、図3は、本発明に係る回転角検出装置を示す断面図、側面図及び上面図である。回転角検出装置10は、図1に構成を示す前述した磁石1と、回転する被検出物(図示せず)に例えば締結により取り付けられて軸心周りに回転する回転軸2と、磁石1を支持固定する固定治具3と、磁石1からの漏洩磁束を検出するセンサ素子4と、センサ素子4に接続された算出部5とを備えている。 FIG. 2 is a perspective view showing the overall configuration of the rotation angle detection device according to the present invention. Further, FIG. 3 is a cross-sectional view, a side view, and a top view showing the rotation angle detecting device according to the present invention. The rotation angle detection device 10 includes the above-mentioned magnet 1 whose configuration is shown in FIG. 1, a rotation shaft 2 which is attached to a rotating object to be detected (not shown) by, for example, fastening and rotates around the axis, and a magnet 1. It includes a fixing jig 3 for supporting and fixing, a sensor element 4 for detecting the leakage magnetic flux from the magnet 1, and a calculation unit 5 connected to the sensor element 4.

固定治具3は、例えば鉄製であって、薄板状をなしている。固定治具3は、磁石1の下面及び側面部を覆っており、着磁方向の両側に設けられた爪部3a、3aにより磁石1を固定している。磁石1の上面は、固定治具3にて覆われておらず、傾斜部12、12の傾斜面と、平坦部13の短冊状の平坦面とは開放されている。 The fixing jig 3 is made of iron, for example, and has a thin plate shape. The fixing jig 3 covers the lower surface and the side surface of the magnet 1, and the magnet 1 is fixed by the claws 3a and 3a provided on both sides in the magnetizing direction. The upper surface of the magnet 1 is not covered with the fixing jig 3, and the inclined surfaces of the inclined portions 12 and 12 and the strip-shaped flat surface of the flat portion 13 are open.

回転軸2は、長尺の円柱状をなしており、圧入に耐えられるように例えばステンレス鋼などの低炭素鋼からなる。回転軸2の一端は、固定治具3の中心にかしめ固定されている。回転角の検出時には、回転軸2の他端が被検出物に取り付けられて、被検出物の回転に応じて、回転軸2、固定治具3及び磁石1が一体的に回転するようになっている。 The rotating shaft 2 has a long columnar shape, and is made of low carbon steel such as stainless steel so as to withstand press fitting. One end of the rotating shaft 2 is caulked and fixed to the center of the fixing jig 3. At the time of detecting the rotation angle, the other end of the rotating shaft 2 is attached to the object to be detected, and the rotating shaft 2, the fixing jig 3 and the magnet 1 are integrally rotated according to the rotation of the object to be detected. ing.

センサ素子4は、磁石1の平坦部13の上方に適長距離(d)だけ離隔して(図3参照)設けられている。センサ素子4は、磁界の向きの変化によって出力が変化するAMR素子またはGMR素子などの磁気検出素子である。なお、磁石1からのセンサ素子4までの距離dは、センサ素子4の感度、磁石1の磁力の強さなどを考慮して適切に設定すれば良い。 The sensor element 4 is provided above the flat portion 13 of the magnet 1 by an appropriate long distance (d) (see FIG. 3). The sensor element 4 is a magnetic detection element such as an AMR element or a GMR element whose output changes according to a change in the direction of a magnetic field. The distance d from the magnet 1 to the sensor element 4 may be appropriately set in consideration of the sensitivity of the sensor element 4, the strength of the magnetic force of the magnet 1, and the like.

センサ素子4は、磁石1からの回転軸2と直交する方向の漏洩磁束を検出して算出部5に出力する。算出部5は、センサ素子4からの出力結果に基づいて被検出物の回転角を算出する。 The sensor element 4 detects the leakage magnetic flux from the magnet 1 in the direction orthogonal to the rotation axis 2 and outputs it to the calculation unit 5. The calculation unit 5 calculates the rotation angle of the object to be detected based on the output result from the sensor element 4.

磁石1の中央部に平坦部13を設けており、平坦部13の上方にセンサ素子4を設けているので、磁石1とセンサ素子4との間に軸ズレが生じた場合でも、検出機能が損なわれ難くなる。よって、平坦部13の短寸の幅は、軸ズレの設計値と略等しくすることが好ましい。 Since the flat portion 13 is provided in the central portion of the magnet 1 and the sensor element 4 is provided above the flat portion 13, even if an axis shift occurs between the magnet 1 and the sensor element 4, the detection function can be performed. It becomes hard to be damaged. Therefore, it is preferable that the short width of the flat portion 13 is substantially equal to the design value of the axial deviation.

次に、上述したような本発明に係る磁石1の製造方法について説明する。本発明の磁石1は、圧縮成形法を用いて具体的には以下のような手順で製造する。 Next, the method for manufacturing the magnet 1 according to the present invention as described above will be described. The magnet 1 of the present invention is specifically manufactured by the following procedure using a compression molding method.

まず、異方性Nd−Fe−B系磁性粉末に、熱硬化性樹脂(例えばエポキシ樹脂)を添加混合して材料を得る。熱硬化性樹脂は多く含まれると、磁石の磁気特性が低下するので、1質量%以上8質量%以下の添加が好ましい。 First, a thermosetting resin (for example, an epoxy resin) is added and mixed with the anisotropic Nd-Fe-B-based magnetic powder to obtain a material. If a large amount of thermosetting resin is contained, the magnetic properties of the magnet are deteriorated. Therefore, it is preferable to add 1% by mass or more and 8% by mass or less.

次いで、得られた材料を成形機内の所定温度のプレス金型に充填し、成形機にて成形圧力を加えて所定形状に賦形しながら空心コイルにより圧下方向に垂直な磁界を印加して着磁することにより、径2極着磁された図1に示すような磁石1を製造する。なお、等方性の磁性粉末を使用する場合には、磁界を印加して成形する必要がない。 Next, the obtained material is filled in a press die at a predetermined temperature in the molding machine, and a magnetic field perpendicular to the rolling direction is applied by an air core coil while applying molding pressure in the molding machine to shape the shape into a predetermined shape. By magnetizing, a magnet 1 as shown in FIG. 1, which is magnetized with two poles in diameter, is manufactured. When an isotropic magnetic powder is used, it is not necessary to apply a magnetic field for molding.

なお、使用する磁性粉末は、異方性Nd−Fe−B系磁性粉末以外に、ハードフェライト粉末、Sm−Fe−N系磁性粉末、Sm−Co系磁性粉末がある。また、異方性Nd−Fe−B系磁性粉末には、熱硬化性樹脂に加えて、滑材を添加してよい。滑材としては例えばステアリン酸カルシウムがある。添加量は0.1質量%以上2質量%以下が好ましい。 The magnetic powder used includes hard ferrite powder, Sm-Fe-N magnetic powder, and Sm-Co magnetic powder in addition to the anisotropic Nd-Fe-B magnetic powder. Further, in addition to the thermosetting resin, a lubricant may be added to the anisotropic Nd-Fe-B based magnetic powder. Examples of lubricants include calcium stearate. The addition amount is preferably 0.1% by mass or more and 2% by mass or less.

圧縮成形法では、射出成形法に比べて、材料の大きな流動性が要求されないので、材料における磁性粉末の充填率(割合)を大きくすることができる。よって、本発明では、圧縮成形法により磁石1を製造するので、射出成形に比べて、上述したような形状をなす小型で磁気特性が良い磁石1を製造できる。 Since the compression molding method does not require a large fluidity of the material as compared with the injection molding method, the filling rate (ratio) of the magnetic powder in the material can be increased. Therefore, in the present invention, since the magnet 1 is manufactured by the compression molding method, it is possible to manufacture the magnet 1 having the above-mentioned shape and having good magnetic characteristics as compared with injection molding.

次に、上述したような本発明に係る磁石1の具体的な実施例について説明する。図4は、本発明に係る回転角検出用磁石における各寸法を表す上面図及び側面図であり、図5は、各実施例(実施例1−3)における回転角検出用磁石の各寸法、及び、センサ素子間の距離を表す図表である。 Next, a specific example of the magnet 1 according to the present invention as described above will be described. FIG. 4 is a top view and a side view showing each dimension of the rotation angle detection magnet according to the present invention, and FIG. 5 shows each dimension of the rotation angle detection magnet in each Example (Example 1-3). It is a chart showing the distance between sensor elements.

図4及び図5にあって、Φ(mm)は磁石1の直径を表し、h(mm)は磁石1の高さ(下面から平坦部13の上面までの距離)を表し、w(mm)は平坦部13における短寸の幅を表し、θ(度)は、傾斜部12の傾斜角度を表しており、回転軸2と直交する磁石1の回転面と磁石1の傾斜部12とのなす角度である傾斜部の12の傾斜角を表す。また、図5に示すd(mm)は、前述したように磁石1及びセンサ素子4間の距離を表しており、各実施例にあって、Φ、h、w、θを変更した場合に、センサ素子4の感度を50mTとしたときの距離を表している。 In FIGS. 4 and 5, Φ (mm) represents the diameter of the magnet 1, h (mm) represents the height of the magnet 1 (the distance from the lower surface to the upper surface of the flat portion 13), and w (mm). Represents the width of the short dimension in the flat portion 13, θ (degree) represents the inclination angle of the inclined portion 12, and is formed by the rotating surface of the magnet 1 orthogonal to the rotating axis 2 and the inclined portion 12 of the magnet 1. It represents 12 inclination angles of the inclined portion which is an angle. Further, d (mm) shown in FIG. 5 represents the distance between the magnet 1 and the sensor element 4 as described above, and when Φ, h, w, and θ are changed in each embodiment, It represents the distance when the sensitivity of the sensor element 4 is 50 mT.

なお、回転角検出装置は被検出物に比べて極めて小さくすることが一般的であるので、使用される磁石の直径(Φ)は5〜30mm程度、より好ましくは10〜20mm程度が望まれる。よって、実施例として、図5に示すように、直径(Φ)がそれぞれ、10mm、15mm、20mmである3種の実施例1−3を提示している。 Since the rotation angle detection device is generally extremely small compared to the object to be detected, the diameter (Φ) of the magnet used is preferably about 5 to 30 mm, more preferably about 10 to 20 mm. Therefore, as an example, as shown in FIG. 5, three types of Examples 1-3 having diameters (Φ) of 10 mm, 15 mm, and 20 mm are presented.

本発明の磁石1では、平坦部13は短冊状をなしており、平坦部13の長手寸法は直径(Φ)に略等しく、平坦部13の短手寸法(w)は直径(Φ)の1/4以上1/2以下であって、傾斜部12の傾斜角(θ)は30度以上60度以下であることが好ましい。好ましい理由は、以下の通りである。 In the magnet 1 of the present invention, the flat portion 13 has a strip shape, the longitudinal dimension of the flat portion 13 is substantially equal to the diameter (Φ), and the lateral dimension (w) of the flat portion 13 is 1 of the diameter (Φ). It is preferable that the inclination angle (θ) of the inclined portion 12 is 30 degrees or more and 60 degrees or less. The preferred reasons are as follows.

磁石1の平坦部13の短手寸法(w)が直径(Φ)の1/4未満になって小さすぎる場合には、磁界の均一な領域が狭くなるため、センサ素子4と磁石1との組付け精度を高める必要性が生じて使い勝手が悪くなる。一方、短手寸法(w)が直径(Φ)の1/2を超えて大きすぎる場合には、磁束が上面側へ流れ難くなって、センサ素子4との間の距離(d)を大きく取れなくなる。また、傾斜角(θ)が30度未満になって小さすぎる場合には、磁束が上面側へ流れ難くなって、センサ素子4との間の距離(d)を大きく取れなくなる。一方、傾斜角(θ)が60度を超えて大きすぎる場合には、磁石1の高さ(h)が大きくなって小型化を阻害する。 If the short dimension (w) of the flat portion 13 of the magnet 1 is less than 1/4 of the diameter (Φ) and is too small, the uniform region of the magnetic field becomes narrow, so that the sensor element 4 and the magnet 1 It becomes necessary to improve the assembly accuracy and the usability deteriorates. On the other hand, when the short dimension (w) exceeds 1/2 of the diameter (Φ) and is too large, it becomes difficult for the magnetic flux to flow to the upper surface side, and a large distance (d) from the sensor element 4 can be obtained. It disappears. Further, when the inclination angle (θ) is less than 30 degrees and is too small, it becomes difficult for the magnetic flux to flow to the upper surface side, and the distance (d) from the sensor element 4 cannot be increased. On the other hand, when the inclination angle (θ) exceeds 60 degrees and is too large, the height (h) of the magnet 1 becomes large, which hinders miniaturization.

次に、本発明における実施例、本発明との比較を行うための比較例、及び、特許文献1に開示された従来例との関係について説明する。実施例、比較例、従来例はいずれも異方性Nd−Fe−B系の磁性粉末に、熱硬化性樹脂であるエポキシ樹脂を2質量%添加混合し、1×103 MPaにて成形したのち、200℃に加熱して作製した。 Next, an example in the present invention, a comparative example for making a comparison with the present invention, and a relationship with a conventional example disclosed in Patent Document 1 will be described. In each of the examples, comparative examples, and conventional examples, 2% by mass of epoxy resin, which is a thermosetting resin, was added and mixed with anisotropic Nd-Fe-B-based magnetic powder, and molded at 1 × 10 3 MPa. After that, it was produced by heating to 200 ° C.

図6は、従来例と比較例と実施例とにおける磁石の直径、着磁方式及びセンサ素子間の距離を表す図表である。センサ素子間の距離は、センサ素子の感度を50mTとしたときの距離である。また、図7は、比較例と実施例とにおける磁石の形状及び磁界方向分布を示す概略図である。 FIG. 6 is a chart showing the diameter of the magnet, the magnetizing method, and the distance between the sensor elements in the conventional example, the comparative example, and the embodiment. The distance between the sensor elements is the distance when the sensitivity of the sensor elements is 50 mT. Further, FIG. 7 is a schematic view showing the shape and magnetic field direction distribution of the magnets in the comparative example and the embodiment.

図6における従来例1は、特許文献1に開示された例にあるセンサ素子との対向面を窪ませた磁石であり、直径が10mmである面2極着磁型磁石を使用している。また、図6における従来例2は、特許文献1に開示された例にあるセンサ素子との対向面を窪ませた磁石であり、直径が20mmである径2極着磁型磁石を使用している。図6及び図7における比較例1は、直径が10mmである面2極着磁型磁石を使用している。図6及び図7における比較例2は、全体として完全に円板形状をなしており、直径が10mmである径2極着磁型磁石を使用している。図6及び図7における比較例3は、周方向の一部の領域のみに傾斜面を有する本発明の構成とは異なり、周方向の全域にわたって傾斜面を形成した構成をなしており、直径が10mmである径2極着磁型磁石を使用している。図6及び図7における実施例1は、図5に示した形状をなす本発明に係る磁石を使用している。 Conventional Example 1 in FIG. 6 is a magnet having a recessed surface facing the sensor element in the example disclosed in Patent Document 1, and uses a surface two-pole magnetizing magnet having a diameter of 10 mm. Further, Conventional Example 2 in FIG. 6 is a magnet having a recessed surface facing the sensor element in the example disclosed in Patent Document 1, and uses a two-pole magnetizing magnet having a diameter of 20 mm. There is. Comparative Example 1 in FIGS. 6 and 7 uses a surface 2-pole magnetizing magnet having a diameter of 10 mm. Comparative Example 2 in FIGS. 6 and 7 has a completely disk shape as a whole, and uses a two-pole magnetizing magnet having a diameter of 10 mm. Comparative Example 3 in FIGS. 6 and 7 has a configuration in which an inclined surface is formed over the entire circumferential direction, unlike the configuration of the present invention in which an inclined surface is provided only in a part of the circumferential direction, and the diameter is large. A 2-pole magnetized magnet with a diameter of 10 mm is used. Example 1 in FIGS. 6 and 7 uses a magnet according to the present invention having the shape shown in FIG.

なお、面2極着磁型磁石では、センサ素子との対向面の裏面であって、回転軸と接する面である磁石主面には、通常、磁束漏洩を抑えるためにヨークを張付けている。上記の実施例1、比較例1−3、従来例1及び2では何れも高さを5mmで揃えているが、従来例1及び比較例1は、磁石の高さと前記ヨークの高さとを合わせて5mmとしている。 In the surface 2-pole magnetizing type magnet, a yoke is usually attached to the main surface of the magnet, which is the back surface of the surface facing the sensor element and is in contact with the rotation axis, in order to suppress magnetic flux leakage. In the above-mentioned Example 1, Comparative Example 1-3, and Conventional Examples 1 and 2, the height is aligned at 5 mm, but in Conventional Example 1 and Comparative Example 1, the height of the magnet and the height of the yoke are matched. It is set to 5 mm.

従来例1及び比較例1のような面2極着磁の磁石を使用している場合には、従来例2、比較例2及び比較例3のような径2極着磁の磁石を使用している場合に比べて、センサ素子までの距離を大きく取れることが分かる。これに対して、実施例1では、径2極着磁の磁石を使用しているにもかかわらず、面2極着磁の磁石を使用した場合と略同程度であるセンサ素子までの距離を実現できている。 When a surface 2-pole magnetizing magnet as in Conventional Example 1 and Comparative Example 1 is used, a diameter 2-pole magnetizing magnet as in Conventional Example 2, Comparative Example 2 and Comparative Example 3 is used. It can be seen that the distance to the sensor element can be increased as compared with the case where the magnet element is used. On the other hand, in the first embodiment, although a magnet having a diameter of two poles is used, the distance to the sensor element is about the same as when a magnet having a two-pole magnetizing surface is used. It has been realized.

比較例2と比較例3とを比較した場合、周方向全域にわたって傾斜面を形成している比較例3では、傾斜面の存在によって、比較例2に比べて、センサ素子までの距離をより大きくすることができている。しかしながら、比較例3では、同一直径をなす面2極着磁の磁石を使用している例(従来例1及び比較例1)のような大きな離隔距離を達成できていない。 When Comparative Example 2 and Comparative Example 3 are compared, in Comparative Example 3 in which the inclined surface is formed over the entire circumferential direction, the distance to the sensor element is larger than that in Comparative Example 2 due to the presence of the inclined surface. Can be done. However, in Comparative Example 3, it is not possible to achieve a large separation distance as in the example (Conventional Example 1 and Comparative Example 1) in which magnets having two poles of the same diameter are used.

比較例3と実施例1とを比較した場合、周方向全域にわたって傾斜面を形成した比較例3では中央部付近で磁束の落ち込みが見られてセンサ素子までの距離が小さくなっているのに対して、着磁方向に対向する方向にのみ傾斜面を形成した実施例1ではこのような磁束の落ち込みは見られずにセンサ素子までの距離を大きくできている。しかも、実施例1では、同一直径をなす面2極着磁の磁石を使用している例(従来例1及び比較例1)と同程度の大きな距離を達成できている。 When Comparative Example 3 and Example 1 are compared, in Comparative Example 3 in which the inclined surface is formed over the entire circumferential direction, a drop in magnetic flux is observed near the central portion, whereas the distance to the sensor element is small. Therefore, in the first embodiment in which the inclined surface is formed only in the direction opposite to the magnetizing direction, such a drop in magnetic flux is not observed and the distance to the sensor element can be increased. Moreover, in the first embodiment, a large distance comparable to that of the example (conventional example 1 and comparative example 1) in which magnets having two poles of the same diameter are used can be achieved.

以上のことから、本発明では、上述した形状をなす径2極着磁の磁石1を用いることにより、径2極着磁型磁石が本来有している着磁の良好な作業性を維持しながら、さらに面2極着磁型磁石の場合と同等であるセンサ素子までの距離を実現することができる。即ち、本発明では、着磁の良好な作業性(言い換えると低コストでの大量生産性)とセンサ素子までの大きな距離(言い換えると構造信頼性及び設計自由度の向上)とを両立することが可能である。 From the above, in the present invention, by using the magnet 1 having a 2-pole magnetism having the above-mentioned shape, the good workability of magnetism originally possessed by the 2-pole magnetizing magnet can be maintained. However, it is possible to realize the distance to the sensor element, which is the same as in the case of the surface two-pole magnetizing type magnet. That is, in the present invention, it is possible to achieve both good workability of magnetization (in other words, mass productivity at low cost) and a large distance to the sensor element (in other words, improvement of structural reliability and design freedom). It is possible.

なお、上述した実施の形態では、磁石1と、固定治具3と、回転軸2とを一体化させた構成としたが、固定治具3は用いずに磁石1及び回転軸2にて一体構成とするようにしても良い。また、固定治具3及び回転軸2は何れも用いずに、磁石1を被検出物に直接取り付けて、被検出物の回転角を検出するようにも構成できる。 In the above-described embodiment, the magnet 1, the fixing jig 3, and the rotating shaft 2 are integrated, but the magnet 1 and the rotating shaft 2 are integrated without using the fixing jig 3. It may be configured. Further, the magnet 1 can be directly attached to the object to be detected without using the fixing jig 3 and the rotating shaft 2, and the rotation angle of the object to be detected can be detected.

なお、開示された実施の形態は、全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上述の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。 It should be noted that the disclosed embodiments are exemplary in all respects and are not considered to be restrictive. The scope of the present invention is shown by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

1 磁石(回転角検出用磁石)
2 回転軸
3 固定治具
3a 爪部
4 センサ素子
5 算出部
11 凸形状部分
12 傾斜部
13 平坦部

1 Magnet (Magnet for detecting rotation angle)
2 Rotating shaft 3 Fixing jig 3a Claw part 4 Sensor element 5 Calculation part 11 Convex shape part 12 Inclined part 13 Flat part

Claims (6)

回転角を磁気的に検出する際に使用される回転角検出用磁石において、
径方向に着磁された略円板状をなしており、回転方向に180度ずつ2等分する各領域にN極及びS極が1極ずつ着磁されており、中央部は凸形状部分となっており、該凸形状部分は、着磁方向に対向して中央部側に傾斜する一対の傾斜部と、該一対の傾斜部に連なる平坦部とを有し、前記平坦部は着磁方向を短手寸法、着磁方向に直交する方向を長手寸法とした短冊状をなす平坦面を有し、前記長手寸法は直径に略等しく、前記一対の傾斜部は互いに異なる磁極に着磁されており、前記凸形状部分の端から周縁に延在する平坦な部分を備えていることを特徴とする回転角検出用磁石。
In the rotation angle detection magnet used when magnetically detecting the rotation angle,
It has a substantially disk-like shape magnetized in the radial direction, and one north pole and one south pole are magnetized in each region that divides into two equal parts by 180 degrees in the rotation direction, and the central part is a convex part. The convex-shaped portion has a pair of inclined portions that face the magnetizing direction and are inclined toward the central portion, and a flat portion that is continuous with the pair of inclined portions, and the flat portion is magnetized. It has a strip-shaped flat surface whose direction is the short dimension and the direction orthogonal to the magnetizing direction is the longitudinal dimension, the longitudinal dimension is substantially equal to the diameter, and the pair of inclined portions are magnetized to different magnetic poles. A magnet for detecting a rotation angle, which is characterized by having a flat portion extending from the end of the convex portion to the peripheral edge .
前記平坦部の短手寸法は直径の1/4以上1/2以下であって、自身の回転面と前記傾斜部とのなす角度は30度以上60度以下であることを特徴とする請求項1に記載の回転角検出用磁石。 The claim is characterized in that the lateral dimension of the flat portion is 1/4 or more and 1/2 or less of the diameter, and the angle formed by its own rotating surface and the inclined portion is 30 degrees or more and 60 degrees or less. The magnet for detecting the rotation angle according to 1. 回転する被検出物の回転角を検出する回転角検出装置において、
前記被検出物に取り付けられて回転する回転軸と、
該回転軸と一体的に回転する請求項1または2に記載の回転角検出用磁石と、
該回転角検出用磁石の回転による前記回転軸と直交する方向の漏洩磁束成分を検出するセンサ素子と
を備えることを特徴とする回転角検出装置。
In a rotation angle detection device that detects the rotation angle of a rotating object to be detected,
A rotating shaft attached to the object to be detected and rotating,
The rotation angle detection magnet according to claim 1 or 2, which rotates integrally with the rotation shaft.
A rotation angle detection device including a sensor element that detects a leakage magnetic flux component in a direction orthogonal to the rotation axis due to rotation of the rotation angle detection magnet.
前記センサ素子は、前記回転角検出用磁石の前記平坦部に対向して配置されていることを特徴とする請求項3に記載の回転角検出装置。 The rotation angle detection device according to claim 3, wherein the sensor element is arranged so as to face the flat portion of the rotation angle detection magnet. 前記回転角検出用磁石を固定するための爪部を有する金属製の固定治具を更に備えることを特徴とする請求項3または4に記載の回転角検出装置。 The rotation angle detection device according to claim 3 or 4, further comprising a metal fixing jig having a claw portion for fixing the rotation angle detection magnet. 回転角を磁気的に検出する際に使用される回転角検出用磁石を製造する方法において、
磁性粉と熱硬化性樹脂との混合物を圧縮成形して請求項1または2に記載の回転角検出用磁石を製造することを特徴とする回転角検出用磁石の製造方法。
In the method of manufacturing a magnet for detecting the angle of rotation used when magnetically detecting the angle of rotation.
A method for manufacturing a magnet for detecting an angle of rotation, which comprises molding a mixture of a magnetic powder and a thermosetting resin by compression molding to manufacture the magnet for detecting the angle of rotation according to claim 1 or 2.
JP2015178863A 2015-09-10 2015-09-10 Manufacturing method of rotation angle detection magnet, rotation angle detection device and rotation angle detection magnet Active JP6801170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015178863A JP6801170B2 (en) 2015-09-10 2015-09-10 Manufacturing method of rotation angle detection magnet, rotation angle detection device and rotation angle detection magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015178863A JP6801170B2 (en) 2015-09-10 2015-09-10 Manufacturing method of rotation angle detection magnet, rotation angle detection device and rotation angle detection magnet

Publications (2)

Publication Number Publication Date
JP2017053776A JP2017053776A (en) 2017-03-16
JP6801170B2 true JP6801170B2 (en) 2020-12-16

Family

ID=58317706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015178863A Active JP6801170B2 (en) 2015-09-10 2015-09-10 Manufacturing method of rotation angle detection magnet, rotation angle detection device and rotation angle detection magnet

Country Status (1)

Country Link
JP (1) JP6801170B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0736466Y2 (en) * 1989-01-10 1995-08-16 アルプス電気株式会社 Rotation detection device
JPH03274413A (en) * 1990-03-24 1991-12-05 Seiko Epson Corp magnetic encoder
JP2003274624A (en) * 2002-03-15 2003-09-26 Hitachi Metals Ltd Magnet unit for detecting angle of rotation
JP2006058256A (en) * 2004-08-24 2006-03-02 Nsk Ltd Rotation detector
JP5151958B2 (en) * 2008-04-11 2013-02-27 株式会社安川電機 POSITION DETECTION DEVICE AND ROTARY LINEAR MOTOR HAVING THE SAME
JP3161399U (en) * 2010-05-18 2010-07-29 長野計器株式会社 Pointer reader
JP5141780B2 (en) * 2011-01-12 2013-02-13 Tdk株式会社 Rotation angle sensor
JP2012251843A (en) * 2011-06-02 2012-12-20 Alps Electric Co Ltd Magnet and magnetic detection device using the magnet
DE102011079657A1 (en) * 2011-07-22 2013-01-24 Robert Bosch Gmbh Electric motor with a rotor position magnet
JP6208562B2 (en) * 2013-11-08 2017-10-04 株式会社エムジー Magnet, measuring method and magnetizing apparatus

Also Published As

Publication number Publication date
JP2017053776A (en) 2017-03-16

Similar Documents

Publication Publication Date Title
JP6463789B2 (en) Magnetic angular position sensor
CN101424544A (en) Position sensor utilizing a linear hall-effect sensor
US10982974B2 (en) Magnet, magnet structure, and rotational angle detector
US20210351669A1 (en) Magnet structure, rotational angle detector, and electric power steering device
JP5870567B2 (en) Bow magnets and magnetic field molds
JP2007214393A (en) Annular polar anisotropic plastic magnet and rotor used for motor
TWI289967B (en) Anisotropic bond magnet for four-magnetic-pole motor, motor using the same, device for orientation processing of anisotropic bond magnet for four-magnetic-pole motor
JP2008209340A (en) Magnetic rotator and rotational angle detector
CN107834716B (en) Sintered magnet
JP6801170B2 (en) Manufacturing method of rotation angle detection magnet, rotation angle detection device and rotation angle detection magnet
US10416001B2 (en) Magnet arrangement for rotational angle detection
JP7081145B2 (en) Magnet structure, rotation angle detector and electric power steering device
JP5678831B2 (en) Coercive force identification method of coercive force distribution magnet
CN104969310B (en) The correction of the angular error of permanent magnet
JP2014103743A (en) Coil bobbin protection member of motor stator and magnetization method of motor rotor using the same
US10976347B2 (en) Magnet extension
JP7453684B2 (en) Ring-shaped magnet, method for manufacturing ring-shaped magnet, and mold used therein
JP5012130B2 (en) Angle sensor
JP2016205978A (en) Method for manufacturing rotation angle detection device
JP2006003251A (en) Magnetic encoder
US20240426636A1 (en) Magnetic sensor device and rotation sensing device
JP7576505B2 (en) Manufacturing method and magnetizing device for permanent magnets
JP6954187B2 (en) Magnet structure, rotation angle detector and electric power steering device
JP2006300736A (en) Backyoke for magnetic type encoder, magnetic type encoder, and manufacturing method therefor
US9281110B2 (en) External-magnet-type magnetic circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201109

R150 Certificate of patent or registration of utility model

Ref document number: 6801170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350