[go: up one dir, main page]

JP6792821B2 - Support structure of glass supply pipe, flat glass manufacturing equipment, flat glass manufacturing method, and preheating method of glass supply pipe - Google Patents

Support structure of glass supply pipe, flat glass manufacturing equipment, flat glass manufacturing method, and preheating method of glass supply pipe Download PDF

Info

Publication number
JP6792821B2
JP6792821B2 JP2016242208A JP2016242208A JP6792821B2 JP 6792821 B2 JP6792821 B2 JP 6792821B2 JP 2016242208 A JP2016242208 A JP 2016242208A JP 2016242208 A JP2016242208 A JP 2016242208A JP 6792821 B2 JP6792821 B2 JP 6792821B2
Authority
JP
Japan
Prior art keywords
glass
glass supply
supply pipe
support
support structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016242208A
Other languages
Japanese (ja)
Other versions
JP2018095519A (en
Inventor
周作 玉村
周作 玉村
仁 金谷
仁 金谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2016242208A priority Critical patent/JP6792821B2/en
Priority to KR1020197011478A priority patent/KR102331492B1/en
Priority to CN201780070891.XA priority patent/CN109982980B/en
Priority to PCT/JP2017/041824 priority patent/WO2018110217A1/en
Priority to TW106141592A priority patent/TWI752126B/en
Publication of JP2018095519A publication Critical patent/JP2018095519A/en
Application granted granted Critical
Publication of JP6792821B2 publication Critical patent/JP6792821B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/08Feeder spouts, e.g. gob feeders
    • C03B7/094Means for heating, cooling or insulation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/167Means for preventing damage to equipment, e.g. by molten glass, hot gases, batches
    • C03B5/1672Use of materials therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/08Feeder spouts, e.g. gob feeders
    • C03B7/094Means for heating, cooling or insulation
    • C03B7/096Means for heating, cooling or insulation for heating
    • C03B7/098Means for heating, cooling or insulation for heating electric

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Resistance Heating (AREA)

Description

本発明は、溶融ガラスを移送するガラス供給管を支持する構造、このガラス供給管を使用する板ガラス製造装置及び板ガラス製造方法、並びにガラス供給管の予熱方法に関する。 The present invention relates to a structure for supporting a glass supply pipe for transferring molten glass, a plate glass manufacturing apparatus and a plate glass manufacturing method using the glass supply pipe, and a method for preheating the glass supply pipe.

周知のように、液晶ディスプレイ(LCD)、有機ELディスプレイ(OLED)などのフラットパネルディスプレイ(FPD)用のガラス基板に代表されるように、各種分野に利用される板ガラスには、表面欠陥やうねりに対して厳しい製品品位が要求されるのが実情である。 As is well known, flat glass used in various fields has surface defects and waviness, as represented by glass substrates for flat panel displays (FPD) such as liquid crystal displays (LCD) and organic EL displays (OLED). The reality is that strict product quality is required.

このような要求を満たすために、板ガラスの製造方法としてダウンドロー法が広く利用されている。このダウンドロー法としては、オーバーフローダウンドロー法やスロットダウンドロー法が公知である。 In order to meet such demands, the down draw method is widely used as a method for manufacturing flat glass. As this down draw method, an overflow down draw method and a slot down draw method are known.

オーバーフローダウンドロー法は、断面が略くさび形の成形体の上部に設けられたオーバーフロー溝に溶融ガラスを流し込み、このオーバーフロー溝から両側に溢れ出た溶融ガラスを成形体の両側の側壁部に沿って流下させながら、成形体の下端部で融合一体化し、一枚の板ガラスを連続成形するというものである。また、スロットダウンドロー法は、溶融ガラスが供給される成形体の底壁にスロット状の開口部が形成され、この開口部を通じて溶融ガラスを流下させることにより一枚の板ガラスを連続成形するというものである。 In the overflow down draw method, molten glass is poured into an overflow groove provided in the upper part of a molded body having a substantially wedge-shaped cross section, and the molten glass overflowing from the overflow groove on both sides is flowed along the side walls on both sides of the molded body. While flowing down, it is fused and integrated at the lower end of the molded body to continuously mold a single piece of flat glass. Further, in the slot down draw method, a slot-shaped opening is formed in the bottom wall of the molded body to which the molten glass is supplied, and the molten glass is allowed to flow down through the opening to continuously form a single plate glass. Is.

特にオーバーフローダウンドロー法では、成形された板ガラスの表裏両面が、成形過程において、成形体の如何なる部位とも接触せずに成形されるので、非常に平面度がよく傷等の欠陥のない火造り面となる。 In particular, in the overflow down draw method, both the front and back surfaces of the molded flat glass are molded without contacting any part of the molded body during the molding process, so the fire-making surface is extremely flat and has no defects such as scratches. It becomes.

オーバーフローダウンドロー法を用いる板ガラス製造装置としては、特許文献1に開示されるように、成形体を内部に有する成形槽と、成形槽の下方に設置される徐冷炉と、徐冷炉の下方に設けられる冷却部及び切断部とを備えたものがある。この板ガラス製造装置は、成形体の頂部から溶融ガラスを溢れさせると共に、その下端部で融合させることで板ガラス(ガラスリボン)を成形し、この板ガラスを徐冷炉に通過させてその内部歪みを除去し、冷却部で室温まで冷却した後に、切断部で所定寸法に切断するように構成されている。 As a plate glass manufacturing apparatus using the overflow down draw method, as disclosed in Patent Document 1, a molding tank having a molded body inside, a slow cooling furnace installed below the molding tank, and cooling provided below the slow cooling furnace are provided. Some are provided with a portion and a cutting portion. In this flat glass manufacturing apparatus, molten glass overflows from the top of the molded body and is fused at the lower end to form flat glass (glass ribbon), and the flat glass is passed through a slow cooling furnace to remove its internal strain. After cooling to room temperature in the cooling part, it is configured to cut into a predetermined size in the cutting part.

特開2012−197185号公報Japanese Unexamined Patent Publication No. 2012-197185

上記の板ガラス製造装置では、成形槽の上流側に配置されるガラス溶解槽において、ガラス原料を溶解させて溶融ガラスとし、この溶融ガラスを下流側の成形槽に供給する。溶解槽と成形槽との間には、溶融ガラスを成形槽に移送するためのガラス供給路が設けられる。このガラス供給路は、例えば白金等の金属により構成される複数のガラス供給管を接続してなる。 In the above-mentioned flat glass manufacturing apparatus, in the glass melting tank arranged on the upstream side of the molding tank, the glass raw material is melted to form molten glass, and the molten glass is supplied to the molding tank on the downstream side. A glass supply path for transferring the molten glass to the molding tank is provided between the melting tank and the molding tank. This glass supply path is formed by connecting a plurality of glass supply tubes made of a metal such as platinum.

ガラス供給路によって移送される溶融ガラスは、たとえば1600℃以上の高温となることから、板ガラス製造装置の操業にあたり、溶融ガラスを移送することができるように、事前にガラス供給管を加熱(予熱)する必要がある。この場合において、各ガラス供給管を連結したままの状態(ガラス供給路の状態)で加熱すると、各ガラス供給管の膨張により、その連結部分が変形及び損傷するおそれがある。このため、ガラス供給路の加熱は、各ガラス供給管を分離させた状態で行うことが望ましい。 Since the molten glass transferred through the glass supply path has a high temperature of, for example, 1600 ° C. or higher, the glass supply pipe is heated (preheated) in advance so that the molten glass can be transferred when operating the plate glass manufacturing apparatus. There is a need to. In this case, if the glass supply pipes are heated in the connected state (the state of the glass supply path), the connected portion may be deformed or damaged due to the expansion of the glass supply pipes. Therefore, it is desirable to heat the glass supply path in a state where each glass supply tube is separated.

この場合、予熱を好適に行うことができるように、そして予熱終了後に容易に接続することができるように、各ガラス供給管を好適に支持することが必要になる。 In this case, it is necessary to favorably support each glass supply tube so that preheating can be suitably performed and that the glass supply pipes can be easily connected after the preheating is completed.

本発明は、上記の事情に鑑みて為されたものであり、ガラス供給管を好適に支持しながら予熱工程を実行することが可能なガラス供給管の支持構造、板ガラス製造装置、板ガラス製造方法、及びガラス供給管の予熱方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a glass supply pipe support structure capable of performing a preheating step while suitably supporting the glass supply pipe, a flat glass manufacturing apparatus, a flat glass manufacturing method, and the like. And to provide a method of preheating a glass supply tube.

本発明は上記の課題を解決するためのものであり、通電加熱を行う通電加熱部を有するガラス供給管と、前記通電加熱部を支持する支持部材と、を備える、ガラス供給管の支持構造であって、前記通電加熱部と前記支持部材との間に絶縁部材を備えることを特徴とする。 The present invention is for solving the above-mentioned problems, and is a support structure of a glass supply pipe including a glass supply pipe having an energization heating portion for performing energization heating and a support member for supporting the energization heating portion. It is characterized in that an insulating member is provided between the energizing heating unit and the supporting member.

かかる構成によれば、支持部材によってガラス供給管の通電加熱部を支持しながら、当該通電加熱部の通電によってガラス供給管を加熱することにより、ガラス供給管の予熱工程を好適に実行できる。さらに、支持部材と通電加熱部との間に絶縁部材が配されることにより、支持部材から他の設備への漏電を確実に防止するとともに、ガラス供給管を効率良く加熱することが可能になる。 According to such a configuration, the preheating step of the glass supply tube can be suitably executed by heating the glass supply tube by the energization of the energization heating section while supporting the energization heating portion of the glass supply tube by the support member. Further, by arranging the insulating member between the support member and the energization heating portion, it is possible to surely prevent electric leakage from the support member to other equipment and efficiently heat the glass supply pipe. ..

上記構成の支持構造において、前記支持部材は、前記ガラス供給管を収容する長尺状のケーシングに固定されることが望ましい。予熱工程が終了すると、複数のガラス供給管を接続することにより溶融ガラスを移送可能なガラス供給路が構成される。支持部材をケーシングに固定することにより、ガラス供給管とケーシングとを連結することができるため、ガラス供給路を構成する際に、ガラス供給管及びケーシングの位置合わせを容易に行うことができる。 In the support structure having the above configuration, it is desirable that the support member is fixed to a long casing that houses the glass supply pipe. When the preheating process is completed, a glass supply path capable of transferring molten glass is constructed by connecting a plurality of glass supply pipes. By fixing the support member to the casing, the glass supply pipe and the casing can be connected, so that the alignment of the glass supply pipe and the casing can be easily performed when the glass supply path is formed.

本発明に係るガラス供給管の支持構造は、前記通電加熱部と前記支持部材とを繋ぐ連結部材を備え、前記絶縁部材は、前記連結部材の中途部に設けられてなることが望ましい。このように、絶縁部材を有する連結部材によって前記支持部材と前記通電加熱部を連結することにより、ガラス供給管の予熱工程を好適に行うことができる。 It is desirable that the support structure of the glass supply pipe according to the present invention includes a connecting member that connects the energizing heating portion and the supporting member, and the insulating member is provided in the middle of the connecting member. In this way, the preheating step of the glass supply pipe can be suitably performed by connecting the support member and the energizing heating portion with a connecting member having an insulating member.

前記支持部材は、前記ケーシングの外面に設けられる支柱と、前記通電加熱部の加熱による前記ガラス供給管の膨張に伴う前記通電加熱部の変位を許容するように、前記連結部材をスライド可能に支持するスライド支持部と、を備えることが望ましい。 The support member slidably supports the support column provided on the outer surface of the casing and the connecting member so as to allow displacement of the energization heating portion due to expansion of the glass supply pipe due to heating of the energization heating portion. It is desirable to provide a slide support portion to be provided.

予熱工程において加熱されるガラス供給管は、温度の上昇とともに膨張する。上記の構成により、スライド支持部は、ガラス供給管の膨張に伴う通電加熱部の変位に応じて連結部材を移動(スライド)させることができる。したがって、ガラス供給管の膨張による通電加熱部及び連結部材の変形及び損傷を確実に防止できる。 The glass supply tube heated in the preheating step expands as the temperature rises. With the above configuration, the slide support portion can move (slide) the connecting member according to the displacement of the energization heating portion due to the expansion of the glass supply pipe. Therefore, deformation and damage of the energized heating portion and the connecting member due to the expansion of the glass supply pipe can be reliably prevented.

本発明に係るガラス供給管の支持構造は、前記連結部材を前記スライド支持部に固定する固定部材を備え得る。予熱工程が完了した場合に、この固定部材によって連結部材をスライド支持部に固定することで、ガラス供給管とケーシングとを一体に連結できる。これにより、予熱工程後に、ガラス供給路を構成する場合におけるガラス供給管及びケーシングの位置決めを容易に行うことができる。 The support structure of the glass supply pipe according to the present invention may include a fixing member for fixing the connecting member to the slide support portion. When the preheating step is completed, the glass supply pipe and the casing can be integrally connected by fixing the connecting member to the slide support portion by this fixing member. Thereby, after the preheating step, the positioning of the glass supply pipe and the casing in the case of forming the glass supply path can be easily performed.

上記構成のガラス供給管の支持構造において、前記スライド支持部は、前記連結部材の一部が挿通される孔を含み、前記孔は、前記ケーシングの長手方向に沿う長孔であることが望ましい。これにより、スライド支持部は、連結部材をこの長孔に沿って好適にスライドさせることができる。 In the support structure of the glass supply pipe having the above configuration, it is desirable that the slide support portion includes a hole through which a part of the connecting member is inserted, and the hole is an elongated hole along the longitudinal direction of the casing. As a result, the slide support portion can suitably slide the connecting member along the elongated hole.

上記構成のガラス供給管の支持構造において、前記ガラス供給管は、筒状に構成される本体部を備え、前記通電加熱部は、前記本体部の各端部に設けられるフランジ部及び電極部を含み、前記本体部は、前記端部が前記ケーシングから突出した状態で前記ケーシングに収容されており、前記支持部材は、前記電極部を支持するように構成されてなることが望ましい。 In the support structure of the glass supply pipe having the above configuration, the glass supply pipe includes a main body portion formed in a tubular shape, and the energization heating portion includes flange portions and electrode portions provided at each end of the main body portion. It is desirable that the main body portion is housed in the casing with the end portion protruding from the casing, and the support member is configured to support the electrode portion.

これによれば、本体部をケーシングにより支持することで、ガラス供給管を確実に保持できる。本体部の端部はケーシングから突出していることから、通電加熱によりガラス供給管が膨張する際に、端部の変位をケーシングが阻害することはない。また、本体部の端部は、ケーシングに阻害されることなく変位することから、その膨張の際に、ケーシング内で本体部の膨張が阻害されることもない。このため、長手方向の膨張による本体部の損傷をも効果的に防止できる。 According to this, the glass supply pipe can be reliably held by supporting the main body portion by the casing. Since the end of the main body protrudes from the casing, the casing does not hinder the displacement of the end when the glass supply pipe expands due to energization heating. Further, since the end portion of the main body portion is displaced without being hindered by the casing, the expansion of the main body portion is not hindered in the casing during its expansion. Therefore, damage to the main body due to expansion in the longitudinal direction can be effectively prevented.

上記の構成に限らず、前記支持部材は、前記ガラス供給管が配置される建屋の天井に固定されてもよい。支持部材を建屋の天井に固定することで、ガラス供給管を好適に支持した状態で、その予熱工程を確実に実行できる。 Not limited to the above configuration, the support member may be fixed to the ceiling of the building in which the glass supply pipe is arranged. By fixing the support member to the ceiling of the building, the preheating step can be reliably executed while the glass supply pipe is suitably supported.

本発明は上記の課題を解決するためのものであり、ガラス原料を溶解して溶融ガラスを生成する溶解槽と、前記溶融ガラスを板ガラスに成形する成形槽と、溶解槽から成形槽へと溶融ガラスを移送するガラス供給路と、を備える板ガラス製造装置において、前記ガラス供給路は、複数のガラス供給管を接続してなり、上記いずれかのガラス供給管の支持構造をさらに備えることを特徴とする。 The present invention is for solving the above-mentioned problems, and is a melting tank that melts a glass raw material to generate molten glass, a molding tank that molds the molten glass into plate glass, and melting from a melting tank to a molding tank. In a flat glass manufacturing apparatus including a glass supply path for transferring glass, the glass supply path is characterized by connecting a plurality of glass supply tubes and further comprising a support structure for any of the above glass supply tubes. To do.

上記の構成に係る板ガラス製造装置によれば、支持部材によってガラス供給管の通電加熱部を支持しながら、当該通電加熱部の通電によってガラス供給管を加熱することにより、ガラス供給管の予熱工程を好適に実行できる。さらに、支持部材と通電加熱部との間に絶縁部材が配されることにより、支持部材から他の設備への漏電を確実に防止するとともに、ガラス供給管を効率良く加熱することが可能になる。 According to the flat glass manufacturing apparatus according to the above configuration, the preheating step of the glass supply tube is performed by heating the glass supply tube by energizing the energization heating section while supporting the energization heating portion of the glass supply tube by the support member. It can be carried out suitably. Further, by arranging the insulating member between the support member and the energization heating portion, it is possible to surely prevent electric leakage from the support member to other equipment and efficiently heat the glass supply pipe. ..

本発明は上記の課題を解決するためのものであり、上記の板ガラス製造装置により前記板ガラスを製造する方法であって、前記複数のガラス供給管を分離した状態で、前記ガラス供給管を前記通電加熱部により通電加熱する予熱工程と、予熱工程後に、前記ガラス供給管を接続して前記ガラス供給路を形成する工程と、前記ガラス供給路により前記溶融ガラスを前記成形槽に移送し、前記成形槽により前記溶融ガラスを前記板ガラスとして成形する工程と、を備え、前記予熱工程は、前記ガラス供給管を前記支持部材により支持し、かつ前記絶縁部材により前記ガラス供給管と前記支持部材とを絶縁した状態で、前記通電加熱部により前記ガラス供給管を通電加熱することを特徴とする。 The present invention is for solving the above-mentioned problems, and is a method of manufacturing the flat glass by the above-mentioned flat glass manufacturing apparatus, in which the said glass supply pipe is energized with the plurality of glass supply pipes separated. A preheating step of energizing and heating by a heating unit, a step of connecting the glass supply pipe to form the glass supply path after the preheating step, and a step of transferring the molten glass to the molding tank by the glass supply path and forming the molding. The preheating step includes a step of forming the molten glass as the plate glass by a tank, and the glass supply pipe is supported by the support member, and the glass supply pipe and the support member are insulated by the insulating member. It is characterized in that the glass supply pipe is energized and heated by the energizing heating unit in this state.

本方法によれば、支持部材によってガラス供給管の通電加熱部を支持しながら、当該通電加熱部の通電によってガラス供給管を加熱することにより、ガラス供給管の予熱工程を好適に実行できる。さらに、絶縁部材によって支持部材と通電加熱部とを絶縁することで、支持部材から他の設備への漏電を確実に防止するとともに、ガラス供給管を効率良く加熱することが可能になる。 According to this method, the preheating step of the glass supply tube can be suitably executed by heating the glass supply tube by energization of the energization heating section while supporting the energization heating portion of the glass supply tube by the support member. Further, by insulating the support member and the energization heating portion with the insulating member, it is possible to surely prevent electric leakage from the support member to other equipment and to efficiently heat the glass supply pipe.

本発明は上記の課題を解決するためのものであり、上記のガラス供給管の支持構造によって前記ガラス供給管を予熱する方法であって、前記ガラス供給管を前記通電加熱部により通電加熱する予熱工程を備え、前記予熱工程は、前記ガラス供給管を前記支持部材により支持し、かつ前記絶縁部材により前記ガラス供給管と前記支持部材とを絶縁した状態で、前記通電加熱部により前記ガラス供給管を通電加熱することを特徴とする。 The present invention is for solving the above-mentioned problems, and is a method of preheating the glass supply pipe by the support structure of the above-mentioned glass supply pipe, and preheating the glass supply pipe by energizing and heating by the energizing heating unit. In the preheating step, the glass supply pipe is supported by the support member, and the glass supply pipe and the support member are insulated by the insulating member, and the glass supply pipe is provided by the energizing heating unit. It is characterized by energizing and heating.

かかる構成によれば、支持部材によってガラス供給管の通電加熱部を支持しながら、当該通電加熱部の通電によってガラス供給管を加熱することにより、ガラス供給管の予熱工程を好適に実行できる。さらに、絶縁部材によって支持部材と通電加熱部とを絶縁することで、支持部材から他の設備への漏電を確実に防止するとともに、ガラス供給管を効率良く加熱することが可能になる。 According to such a configuration, the preheating step of the glass supply tube can be suitably executed by heating the glass supply tube by the energization of the energization heating section while supporting the energization heating portion of the glass supply tube by the support member. Further, by insulating the support member and the energization heating portion with the insulating member, it is possible to surely prevent electric leakage from the support member to other equipment and to efficiently heat the glass supply pipe.

本発明によれば、ガラス供給管を好適に支持しながら予熱工程を実行することが可能になる。 According to the present invention, it is possible to carry out the preheating step while suitably supporting the glass supply tube.

板ガラス製造装置の全体構成を示す側面図である。It is a side view which shows the whole structure of the flat glass manufacturing apparatus. 第一実施形態に係るガラス供給管の支持構造を示す側面図である。It is a side view which shows the support structure of the glass supply pipe which concerns on 1st Embodiment. ガラス供給管の支持構造の一部を示す平面図である。It is a top view which shows a part of the support structure of a glass supply pipe. ガラス供給管の予熱方法における一工程を示す部分拡大側面図である。It is a partially enlarged side view which shows one step in the preheating method of a glass supply pipe. ガラス供給管の予熱方法における一工程を示す部分拡大側面図である。It is a partially enlarged side view which shows one step in the preheating method of a glass supply pipe. 第二実施形態に係るガラス供給管の支持構造を示す側面図である。It is a side view which shows the support structure of the glass supply pipe which concerns on 2nd Embodiment. ガラス供給管の予熱方法における一工程を示す部分拡大側面図である。It is a partially enlarged side view which shows one step in the preheating method of a glass supply pipe. ガラス供給管の予熱方法における一工程を示す部分拡大側面図である。It is a partially enlarged side view which shows one step in the preheating method of a glass supply pipe. ガラス供給管の予熱方法における一工程を示す部分拡大側面図である。It is a partially enlarged side view which shows one step in the preheating method of a glass supply pipe. 第三実施形態に係るガラス供給管の支持構造を示す正面図である。It is a front view which shows the support structure of the glass supply pipe which concerns on 3rd Embodiment. 同実施形態に係るガラス供給管の支持構造を示す側面図である。It is a side view which shows the support structure of the glass supply pipe which concerns on this embodiment. 第四実施形態に係るガラス供給管の支持構造を示す正面図である。It is a front view which shows the support structure of the glass supply pipe which concerns on 4th Embodiment. 同実施形態に係るガラス供給管の支持構造を示す側面図である。It is a side view which shows the support structure of the glass supply pipe which concerns on this embodiment.

以下、本発明を実施するための形態について図面を参照しながら説明する。図1乃至図5は、本発明に係る板ガラス製造装置及び板ガラス製造方法の第一実施形態を示す。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. 1 to 5 show a first embodiment of a flat glass manufacturing apparatus and a flat glass manufacturing method according to the present invention.

図1に示すように、本実施形態に係る板ガラス製造装置は、上流側から順に、溶解槽1と、清澄槽2と、均質化槽(攪拌槽)3と、状態調整槽4と、成形槽5と、各槽1〜5を連結するガラス供給路6a〜6dとを備える。この他、板ガラス製造装置は、成形槽5により成形された板ガラスGRを徐冷する徐冷炉(図示せず)及び徐冷後に板ガラスGRを切断する切断装置(図示せず)を備え得る。 As shown in FIG. 1, the flat glass manufacturing apparatus according to the present embodiment has a melting tank 1, a clarification tank 2, a homogenizing tank (stirring tank) 3, a state adjusting tank 4, and a molding tank in this order from the upstream side. 5 and glass supply paths 6a to 6d connecting the tanks 1 to 5 are provided. In addition, the plate glass manufacturing apparatus may include a slow cooling furnace (not shown) for slowly cooling the plate glass GR formed by the molding tank 5, and a cutting device (not shown) for cutting the plate glass GR after slow cooling.

溶解槽1は、投入されたガラス原料を溶解して溶融ガラスGMを生成する溶解工程を行うための容器である。溶解槽1は、ガラス供給路6aを介して清澄槽2に接続されている。清澄槽2は、溶解槽1から供給された溶融ガラスGMを清澄剤等の作用により脱泡する清澄工程を行うための容器である。清澄槽2は、ガラス供給路6bを介して均質化槽3に接続されている。 The melting tank 1 is a container for performing a melting step of melting the charged glass raw material to produce molten glass GM. The melting tank 1 is connected to the clarification tank 2 via a glass supply path 6a. The clarification tank 2 is a container for performing a clarification step of defoaming the molten glass GM supplied from the dissolution tank 1 by the action of a clarifying agent or the like. The clarification tank 2 is connected to the homogenization tank 3 via a glass supply path 6b.

均質化槽3は、清澄された溶融ガラスGMを攪拌翼等により攪拌し、均一化する均質化工程を行うための容器である。均質化槽3は、ガラス供給路6cを介して状態調整槽4に接続されている。状態調整槽4は、溶融ガラスGMを成形に適した状態に調整する状態調整工程を行うための容器である。状態調整槽4は、ガラス供給路6dを介して成形槽5に接続されている。 The homogenization tank 3 is a container for performing a homogenization step of stirring the clarified molten glass GM with a stirring blade or the like to homogenize it. The homogenizing tank 3 is connected to the state adjusting tank 4 via a glass supply path 6c. The state adjusting tank 4 is a container for performing a state adjusting step of adjusting the molten glass GM to a state suitable for molding. The state adjusting tank 4 is connected to the molding tank 5 via a glass supply path 6d.

成形槽5は、溶融ガラスGMを所望の形状に成形するための容器である。本実施形態では、成形槽5は、オーバーフローダウンドロー法によって溶融ガラスGMを板状に成形する。詳細には、成形槽5は、断面形状(図1の紙面と直交する断面形状)が略楔形状を成しており、この成形槽5の上部には、オーバーフロー溝(図示せず)が形成されている。 The molding tank 5 is a container for molding the molten glass GM into a desired shape. In the present embodiment, the forming tank 5 forms the molten glass GM into a plate shape by the overflow down draw method. Specifically, the forming tank 5 has a substantially wedge-shaped cross-sectional shape (cross-sectional shape orthogonal to the paper surface of FIG. 1), and an overflow groove (not shown) is formed in the upper part of the forming tank 5. Has been done.

成形槽5は、ガラス供給路6dによって溶融ガラスGMがオーバーフロー溝に供給された後、溶融ガラスGMをオーバーフロー溝から溢れ出させて、成形槽5の両側の側壁面(紙面の表裏面側に位置する側面)に沿って流下させる。成形槽5は、流下させた溶融ガラスGMを側壁面の下端部で融合させ、板ガラスGRに成形する。 In the molding tank 5, after the molten glass GM is supplied to the overflow groove by the glass supply path 6d, the molten glass GM overflows from the overflow groove, and the side wall surfaces (positioned on the front and back sides of the paper surface) on both sides of the molding tank 5 Let it flow down along the side). In the forming tank 5, the molten glass GM that has flowed down is fused at the lower end of the side wall surface to form a flat glass GR.

成形された板ガラスGRは、例えば、厚みが0.01〜10mmであって、液晶ディスプレイや有機ELディスプレイなどのフラットパネルディスプレイ、有機EL照明、太陽電池などの基板や保護カバーに利用される。なお、成形槽5は、スロットダウンドロー法などの他のダウンドロー法を実行するものであってもよい。 The molded flat glass GR has a thickness of, for example, 0.01 to 10 mm, and is used for flat panel displays such as liquid crystal displays and organic EL displays, substrates for organic EL lighting, solar cells, and protective covers. The molding tank 5 may execute another down draw method such as the slot down draw method.

ガラス供給路6a〜6dは、複数のガラス供給管7と、ガラス供給管7を収容する長尺状のケーシング8と、ガラス供給管7とケーシング8とを繋ぐ各連結部材9a,9bとを備える。本実施形態では、ケーシング8と各連結部材9a,9bとによってガラス供給管7を支持する構造(支持構造)が構成される。 The glass supply paths 6a to 6d include a plurality of glass supply pipes 7, a long casing 8 for accommodating the glass supply pipes 7, and connecting members 9a and 9b for connecting the glass supply pipes 7 and the casing 8. .. In the present embodiment, the casing 8 and the connecting members 9a and 9b form a structure (support structure) for supporting the glass supply pipe 7.

ガラス供給管7は、白金又は白金合金により構成される。図2に示すように、ガラス供給管7は、溶融ガラスGMを移送する長尺状の本体部10と、本体部10の端部に設けられる通電加熱部11a,11bとを備える。本体部10は、筒状(例えば円筒状)に構成されるが、この形状に限定されない。本体部10は、ケーシング8よりも長く構成される。このため、本体部10の各端部は、ケーシング8と端部から長手方向に突出している。 The glass supply pipe 7 is made of platinum or a platinum alloy. As shown in FIG. 2, the glass supply pipe 7 includes a long main body portion 10 for transferring the molten glass GM, and energizing heating portions 11a and 11b provided at the end portions of the main body portion 10. The main body 10 is formed in a cylindrical shape (for example, a cylindrical shape), but is not limited to this shape. The main body 10 is longer than the casing 8. Therefore, each end of the main body 10 projects in the longitudinal direction from the casing 8 and the end.

通電加熱部11a,11bは、本体部10の内部の溶融ガラスGMを通電加熱する第一通電加熱部11aと、本体部10の他端部を加熱する第二通電加熱部11bとを含む。各通電加熱部11a,11bは、本体部10の端部における外周面を囲むように構成されるフランジ部12と、このフランジ部12の上部に一体に構成される電極部13とを有する。各通電加熱部11a,11bは、電極部13に所定の電圧を印加することで本体部10を直接的に通電加熱する。 The energized heating units 11a and 11b include a first energized heating unit 11a that energizes and heats the molten glass GM inside the main body 10, and a second energized heating unit 11b that heats the other end of the main body 10. Each of the energizing heating portions 11a and 11b has a flange portion 12 configured to surround the outer peripheral surface at the end portion of the main body portion 10, and an electrode portion 13 integrally formed on the upper portion of the flange portion 12. Each of the energizing heating units 11a and 11b directly energizes and heats the main body portion 10 by applying a predetermined voltage to the electrode portion 13.

フランジ部12は、円板状に構成されるが、この形状に限定されない。電極部13は、フランジ部12と一体に構成される第一の部分13aと、この第一の部分13aの端部に一体に構成される第二の部分13bとを有する。第一の部分13aは、フランジ部12の上部から上方に突出する矩形状の板部である。第二の部分13bは、第一の部分13aに対して直角に繋がる矩形状の板部である。第二の部分13bは、第一の部分13aの上端部から略水平方向又は本体部10の長手方向に沿って突出する。第二の部分13bは、当該第二の部分を上下方向に貫通する孔13cを有する。 The flange portion 12 is formed in a disk shape, but is not limited to this shape. The electrode portion 13 has a first portion 13a integrally formed with the flange portion 12 and a second portion 13b integrally formed with an end portion of the first portion 13a. The first portion 13a is a rectangular plate portion that projects upward from the upper portion of the flange portion 12. The second portion 13b is a rectangular plate portion connected at a right angle to the first portion 13a. The second portion 13b projects from the upper end portion of the first portion 13a in a substantially horizontal direction or along the longitudinal direction of the main body portion 10. The second portion 13b has a hole 13c that penetrates the second portion in the vertical direction.

ケーシング8は、鋼その他の金属により円筒体として構成されるが、この形状に限定されない。ケーシング8は、ガラス供給管7の本体部10を囲むように配される断熱材(例えば耐火煉瓦)14を収容する。ケーシング8は、板ガラス製造装置が配置される工場等の建屋内において、図示しない架台等により位置変更可能に支持されている。 The casing 8 is formed of steel or other metal as a cylindrical body, but is not limited to this shape. The casing 8 accommodates a heat insulating material (for example, refractory bricks) 14 arranged so as to surround the main body 10 of the glass supply pipe 7. The casing 8 is supported so as to be repositionable by a frame or the like (not shown) in a building such as a factory where a flat glass manufacturing apparatus is arranged.

図2に示すように、ケーシング8は、ガラス供給管7を支持するための部材(以下「支持部材」という)15a,15bを備える。各支持部材15a,15bは、第一通電加熱部11aに対応する第一支持部材15aと、第二通電加熱部11bに対応する第二支持部材15bとを含む。各支持部材15a,15bは、ケーシング8の上部外面から上方に突出する支柱16と、各連結部材9a,9bの一端部が連結されるスライド支持部17とを備える。 As shown in FIG. 2, the casing 8 includes members (hereinafter referred to as “support members”) 15a and 15b for supporting the glass supply pipe 7. Each of the support members 15a and 15b includes a first support member 15a corresponding to the first energization heating unit 11a and a second support member 15b corresponding to the second energization heating unit 11b. Each of the support members 15a and 15b includes a support column 16 projecting upward from the upper outer surface of the casing 8 and a slide support portion 17 to which one end of each of the connecting members 9a and 9b is connected.

支柱16は、鋼その他の金属により長尺状に構成される。支柱16は、その一端部(下端部)が溶接等の手段によりケーシング8の外面に固定されてなる。支柱16は、ケーシング8の上部において、ケーシング8の半径方向に沿って上方に突出する。支柱16は、電極部13の第一の部分13aよりも長く構成される。したがって、支柱16は、電極部13の位置よりも高い位置でスライド支持部17を支持する。 The support column 16 is formed of steel or other metal in an elongated shape. One end (lower end) of the support 16 is fixed to the outer surface of the casing 8 by means such as welding. The column 16 projects upward along the radial direction of the casing 8 at the upper part of the casing 8. The support column 16 is formed longer than the first portion 13a of the electrode portion 13. Therefore, the support column 16 supports the slide support portion 17 at a position higher than the position of the electrode portion 13.

図3は、スライド支持部17の平面図を示す。図2、図3に示すように、スライド支持部17は、支柱16の上端部から水平方向又はケーシング8の長手方向(筒心方向)に沿って突出する。スライド支持部17は、その突出方向に沿って長く構成される孔(以下「長孔」という)17aを有する。長孔17aは、スライド支持部17を上下方向に貫通する。この長孔17aには、各連結部材9a,9bの一部が挿通され得る。 FIG. 3 shows a plan view of the slide support portion 17. As shown in FIGS. 2 and 3, the slide support portion 17 projects from the upper end portion of the support column 16 in the horizontal direction or along the longitudinal direction (cylindrical direction) of the casing 8. The slide support portion 17 has a hole (hereinafter referred to as a “long hole”) 17a formed long along the projecting direction thereof. The elongated hole 17a penetrates the slide support portion 17 in the vertical direction. A part of each connecting member 9a, 9b can be inserted into the elongated hole 17a.

各連結部材9a,9bは、第一通電加熱部11aと第一支持部材15aとを連結する第一連結部材9aと、第二通電加熱部11bと第二支持部材15bとを連結する第二連結部材9bとを含む。各連結部材9a,9bは、スライド支持部17に連結される第一連結部18と、各通電加熱部11a,11bに連結される第二連結部19と、当該連結部材9a,9bの中途部に設けられる絶縁部材20とを備える。第一連結部18は、第一固定部材21によってスライド支持部17に固定され、第二連結部19は、第二固定部材22によって各通電加熱部11a,11bに固定されている。 Each of the connecting members 9a and 9b is a first connecting member 9a that connects the first energizing heating portion 11a and the first supporting member 15a, and a second connecting member that connects the second energizing heating portion 11b and the second supporting member 15b. Includes member 9b. Each of the connecting members 9a and 9b includes a first connecting portion 18 connected to the slide support portion 17, a second connecting portion 19 connected to the energizing heating portions 11a and 11b, and an intermediate portion of the connecting members 9a and 9b. The insulating member 20 provided in the above is provided. The first connecting portion 18 is fixed to the slide support portion 17 by the first fixing member 21, and the second connecting portion 19 is fixed to the energizing heating portions 11a and 11b by the second fixing member 22.

第一連結部18は、金属製のねじ部材により構成される。第一連結部18の一端部(上端部)は、各支持部材15a,15bのスライド支持部17に固定され得る。第一連結部18の他端部は、絶縁部材20と一体に形成される。 The first connecting portion 18 is composed of a metal screw member. One end (upper end) of the first connecting portion 18 may be fixed to the slide supporting portion 17 of each of the supporting members 15a and 15b. The other end of the first connecting portion 18 is formed integrally with the insulating member 20.

第一固定部材21は、一対のナット21a,21bを含む。各ナット21a,21bは、第一連結部18に螺合されている。各ナット21a,21bは、第一連結部18がスライド支持部17の長孔17aに挿通された状態において、スライド支持部17を挟むように締結されることで、第一連結部18を当該スライド支持部17に固定する。 The first fixing member 21 includes a pair of nuts 21a and 21b. The nuts 21a and 21b are screwed into the first connecting portion 18. The nuts 21a and 21b are fastened so as to sandwich the slide support portion 17 in a state where the first connecting portion 18 is inserted into the elongated hole 17a of the slide support portion 17, so that the first connecting portion 18 is slid. It is fixed to the support portion 17.

第二連結部19は、第一連結部18と同様に、金属製のねじ部材により構成される。第二連結部19の一端部(上端部)は、第一連結部18の他端部と接触することなく、絶縁部材20と一体に形成される。第二連結部19の他端部(下端部)は、各通電加熱部11a,11bにおける電極部13の第二の部分13bに貫通形成された孔13cに挿通されるとともに、第二固定部材22によって当該第二の部分13bに固定される。 The second connecting portion 19 is made of a metal screw member like the first connecting portion 18. One end (upper end) of the second connecting portion 19 is formed integrally with the insulating member 20 without coming into contact with the other end of the first connecting portion 18. The other end (lower end) of the second connecting portion 19 is inserted into a hole 13c formed through the second portion 13b of the electrode portion 13 in each of the energizing heating portions 11a and 11b, and the second fixing member 22 is inserted. Is fixed to the second portion 13b.

第二固定部材22は、一対のナット22a,22bを含む。各ナット22a,22bは、第二連結部19に螺合されている。各ナット22a,22bは、第二連結部19の一部が電極部13の第二の部分13bの孔13cに挿通された状態において、当該第二の部分13bを挟むように締結されることで、第二連結部19を当該第二の部分13bに固定する。 The second fixing member 22 includes a pair of nuts 22a and 22b. The nuts 22a and 22b are screwed into the second connecting portion 19. The nuts 22a and 22b are fastened so as to sandwich the second portion 13b in a state where a part of the second connecting portion 19 is inserted into the hole 13c of the second portion 13b of the electrode portion 13. , The second connecting portion 19 is fixed to the second portion 13b.

絶縁部材20は、例えば、合成ゴムその他の各種材料により直方体状又は円柱状に構成されるが、これに限定されるものではない。絶縁部材20は、第一連結部18の下端部と、第二連結部19の上端部とを接触させることなく離間した状態で、当該第一連結部18及び第二連結部19と一体に成形される。このように、絶縁部材20は、第一連結部18及び第二連結部19により各支持部材15a,15bと電極部13とを繋いだ状態で、当該各支持部材15a,15bと電極部13との間に介在する。 The insulating member 20 is formed of, for example, synthetic rubber or other various materials in a rectangular parallelepiped shape or a columnar shape, but is not limited thereto. The insulating member 20 is integrally molded with the first connecting portion 18 and the second connecting portion 19 in a state where the lower end portion of the first connecting portion 18 and the upper end portion of the second connecting portion 19 are separated from each other without contacting each other. Will be done. In this way, the insulating member 20 is connected to the support members 15a, 15b and the electrode portion 13 by the first connecting portion 18 and the second connecting portion 19, and the supporting members 15a, 15b and the electrode portion 13 are connected to each other. Intervene between.

以下、上記構成の板ガラス製造装置を使用して板ガラスを製造する方法について説明する。 Hereinafter, a method of manufacturing a flat glass using the flat glass manufacturing apparatus having the above configuration will be described.

本方法は、溶解槽1にて原料ガラスを溶解させ(溶解工程)、溶融ガラスGMを得た後、この溶融ガラスGMに対し、順に清澄槽2による清澄工程、均質化槽3による均質化工程、及び状態調整槽4による状態調整工程を実施する。その後、この溶融ガラスGMを成形槽5に移送し、成形槽5による成形工程により溶融ガラスGMから板ガラスGRを成形する。その後、徐冷により板ガラスGRの内部歪みが除去される(徐冷工程)。その後、板ガラスGRは、下流側の工程により、所定寸法に切断され(切断工程)、あるいはロール状に巻き取られる(巻取工程)。 In this method, the raw material glass is melted in the melting tank 1 (melting step) to obtain the molten glass GM, and then the molten glass GM is sequentially subjected to a clarification step by the clarification tank 2 and a homogenization step by the homogenization tank 3. , And the state adjustment step by the state adjustment tank 4. After that, the molten glass GM is transferred to the molding tank 5, and the plate glass GR is molded from the molten glass GM by the molding step by the molding tank 5. After that, the internal strain of the plate glass GR is removed by slow cooling (slow cooling step). After that, the flat glass GR is cut to a predetermined size (cutting step) or wound into a roll by a process on the downstream side (winding step).

以上のような一連の工程を実行するにあたり、事前にガラス供給路6a〜6d及び他の構成要素(成形槽5等)を加熱する必要がある(以下「予熱工程」という)。予熱工程は、各ガラス供給路6a〜6dを、その構成要素であるガラス供給管7に分離した状態で、各ガラス供給管7に対して実行される。各ガラス供給管7は、各通電加熱部11a,11bの加熱により膨張するため、この膨張を許容するように各支持部材15a,15bに支持されることが望ましい。本実施形態では、ケーシング8に設けられた各支持部材15a,15bに、ガラス供給管7の膨張を許容する手段が設けられている。 In executing the series of steps as described above, it is necessary to heat the glass supply paths 6a to 6d and other components (molding tank 5 and the like) in advance (hereinafter referred to as "preheating step"). The preheating step is executed for each glass supply pipe 7 in a state where each glass supply passage 6a to 6d is separated into the glass supply pipe 7 which is a component thereof. Since each glass supply pipe 7 expands by heating each of the energizing heating portions 11a and 11b, it is desirable that the glass supply pipes 7 be supported by the supporting members 15a and 15b so as to allow this expansion. In the present embodiment, the support members 15a and 15b provided on the casing 8 are provided with means for allowing the glass supply pipe 7 to expand.

以下、ガラス供給管7の予熱工程(予熱方法)について、図4及び図5を参照しながら詳細に説明する。なお、各連結部材9a,9b、各通電加熱部11a,11b、各支持部材15a,15bは同じ構成であるため、以下では、第一連結部材9a、第一通電加熱部11a、及び第一支持部材15aの動作について説明する(後述する第二実施形態の図7乃至図9において同じ)。 Hereinafter, the preheating step (preheating method) of the glass supply pipe 7 will be described in detail with reference to FIGS. 4 and 5. Since each connecting member 9a, 9b, each energizing heating unit 11a, 11b, and each supporting member 15a, 15b have the same configuration, the first connecting member 9a, the first energizing heating unit 11a, and the first support are described below. The operation of the member 15a will be described (the same applies to FIGS. 7 to 9 of the second embodiment described later).

予熱工程を実行するにあたり、事前に第一固定部材21による第一連結部材9aの固定を解除しておく。すなわち、図4において実線で示すように、一対のナット21a,21bのうち、下側に位置するナット21bを緩め、スライド支持部17の下面から下方に離間させる。このとき、上側のナット21aは操作されない。この状態において、スライド支持部17は、その上面によって上側のナット21aをスライド(摺動)可能に支持する。この態様により、第一支持部材15aは、本体部10の膨張に伴う第一通電加熱部11aの変位を許容するようにガラス供給管7を支持する。なお、第二固定部材22は、一対のナット22a,22bを締結することにより、第一連結部材9aの第二連結部19を電極部13の第二の部分13bに固定している。 Before executing the preheating step, the fixing of the first connecting member 9a by the first fixing member 21 is released. That is, as shown by the solid line in FIG. 4, the nut 21b located on the lower side of the pair of nuts 21a and 21b is loosened and separated downward from the lower surface of the slide support portion 17. At this time, the upper nut 21a is not operated. In this state, the slide support portion 17 slidably supports the upper nut 21a by its upper surface. According to this aspect, the first support member 15a supports the glass supply pipe 7 so as to allow the displacement of the first energization heating portion 11a due to the expansion of the main body portion 10. The second fixing member 22 fixes the second connecting portion 19 of the first connecting member 9a to the second portion 13b of the electrode portion 13 by fastening a pair of nuts 22a and 22b.

この状態で電極部13に電圧を印加し、加熱を開始する。ガラス供給管7の本体部10は、図4において二点鎖線で示すように、加熱に応じて膨張する。この膨張により、第一通電加熱部11aは、第一支持部材15aから離れるようにその位置を変える。第一固定部材21による締結が解除されていることから、第一連結部材9aは、二点鎖線で示すように、第一通電加熱部11aの位置の変化に応じて移動する。このとき、第一固定部材21における上側のナット21aは、スライド支持部17の長孔17aの方向に沿って当該スライド支持部17の上面をスライド(摺動)する。加熱中において、第一支持部材15aと電極部13とが第一連結部材9aの絶縁部材20によって絶縁されるため、第一支持部材15aが通電されることはない。 In this state, a voltage is applied to the electrode portion 13 to start heating. The main body 10 of the glass supply tube 7 expands in response to heating, as shown by the alternate long and short dash line in FIG. Due to this expansion, the first energization heating unit 11a changes its position so as to be separated from the first support member 15a. Since the fastening by the first fixing member 21 is released, the first connecting member 9a moves according to the change in the position of the first energizing heating unit 11a as shown by the alternate long and short dash line. At this time, the upper nut 21a of the first fixing member 21 slides (slides) the upper surface of the slide support portion 17 along the direction of the elongated hole 17a of the slide support portion 17. During heating, the first support member 15a and the electrode portion 13 are insulated by the insulating member 20 of the first connecting member 9a, so that the first support member 15a is not energized.

なお、この加熱により、ケーシング8もその長手方向に膨張する。ケーシング8とガラス供給管7との間に断熱材14が介在することから、ケーシング8の膨張量(膨張長さ)ΔL2は、本体部10の膨張量(膨張長さ)ΔL1よりも小さい(図4参照)。 By this heating, the casing 8 also expands in the longitudinal direction thereof. Since the heat insulating material 14 is interposed between the casing 8 and the glass supply pipe 7, the expansion amount (expansion length) ΔL2 of the casing 8 is smaller than the expansion amount (expansion length) ΔL1 of the main body 10 (FIG. 4).

本体部10が十分に加熱されると、図5において二点鎖線及び実線で示すように、緩めていた第一固定部材21における下側のナット21bを締め付ける。これにより下側のナット21aは、スライド支持部17の下面に当接する。これにより、一対のナット21a,21bによってスライド支持部17を挟み、第一連結部材9aをスライド支持部17に固定する。その後、ガラス供給管7は、予熱が完了した他のガラス供給管7に接続される。複数のガラス供給管7を接続することにより、ガラス供給路6a〜6dが構成される(ガラス供給管形成工程)。 When the main body 10 is sufficiently heated, the lower nut 21b of the loosened first fixing member 21 is tightened as shown by the alternate long and short dash line and the solid line in FIG. As a result, the lower nut 21a comes into contact with the lower surface of the slide support portion 17. As a result, the slide support portion 17 is sandwiched between the pair of nuts 21a and 21b, and the first connecting member 9a is fixed to the slide support portion 17. After that, the glass supply pipe 7 is connected to another glass supply pipe 7 whose preheating has been completed. By connecting a plurality of glass supply pipes 7, glass supply passages 6a to 6d are configured (glass supply pipe forming step).

その後、ガラス供給路6a〜6dを、対応する他の構成要素(溶解槽1、清澄槽2、均質化槽3、状態調整槽4、及び成形槽5)に接続し、板ガラス製造装置を組み立てる(板ガラス製造装置の組立工程)。板ガラス製造方法は、上記の予熱工程後に、既述の溶解工程、清澄工程、均質化工程、状態調整工程、及び成形工程を実行する。 After that, the glass supply paths 6a to 6d are connected to other corresponding components (melting tank 1, clarification tank 2, homogenization tank 3, state adjustment tank 4, and molding tank 5) to assemble the flat glass manufacturing apparatus ( Assembling process of flat glass manufacturing equipment). In the plate glass manufacturing method, after the above preheating step, the above-mentioned melting step, clarification step, homogenization step, state adjustment step, and molding step are executed.

以上説明した本実施形態によれば、各支持部材15a,15bによってガラス供給管7の各通電加熱部11a,11bを支持しながら、当該通電加熱部11a,11bの通電によってガラス供給管7を加熱することにより、ガラス供給管7の予熱工程(方法)を好適に実行できる。さらに、各支持部材15a,15bと各通電加熱部11a,11bとの間に絶縁部材20を設けることにより、各支持部材15a,15bからケーシング8を通じて他の設備に通電(漏電)することを確実に防止できる。これにより、ガラス供給管7を効率良く加熱することが可能になる。 According to the present embodiment described above, the glass supply pipe 7 is heated by the energization of the energization heating portions 11a and 11b while the energization heating portions 11a and 11b of the glass supply pipe 7 are supported by the support members 15a and 15b. By doing so, the preheating step (method) of the glass supply pipe 7 can be suitably executed. Further, by providing the insulating member 20 between the support members 15a and 15b and the energization heating portions 11a and 11b, it is ensured that the other equipment is energized (leakage) from the support members 15a and 15b through the casing 8. Can be prevented. This makes it possible to efficiently heat the glass supply pipe 7.

図6乃至図9は、ガラス供給管の支持構造に係る第二実施形態を示す。本実施形態において、ガラス供給管7の第一通電加熱部11a及び第二通電加熱部11bは、フランジ部12と、このフランジ部12の下部に設けられる電極部13とを備える。電極部13は、フランジ部12の下部から下方に突出する矩形状の板部である。電極部13は、各連結部材9a,9bを固定するための孔13cを有する。孔13cは、各連結部材9a,9bを挿通可能な円形に構成される。孔13cは、本体部10の長手方向に沿って電極部13を貫通する。 6 to 9 show a second embodiment relating to the support structure of the glass supply pipe. In the present embodiment, the first energization heating portion 11a and the second energization heating portion 11b of the glass supply pipe 7 include a flange portion 12 and an electrode portion 13 provided below the flange portion 12. The electrode portion 13 is a rectangular plate portion that projects downward from the lower portion of the flange portion 12. The electrode portion 13 has holes 13c for fixing the connecting members 9a and 9b. The hole 13c is formed in a circular shape through which the connecting members 9a and 9b can be inserted. The hole 13c penetrates the electrode portion 13 along the longitudinal direction of the main body portion 10.

図6に示すように、第一支持部材15a及び第二支持部材15bは、ケーシング8の下部に設けられる支柱16を有する。この構成に限らず、各支持部材15a,15bは、ケーシング8の下部に設けられる板部材であってもよい。支柱16は、各連結部材9a,9bを固定するための孔16aを有する。孔16aは、各連結部材9a,9bを挿通可能な円形に構成される。孔16aは、水平方向又は本体部10の長手方向に沿って支柱16を貫通する。 As shown in FIG. 6, the first support member 15a and the second support member 15b have a support column 16 provided at the lower part of the casing 8. Not limited to this configuration, the support members 15a and 15b may be plate members provided in the lower part of the casing 8. The support column 16 has holes 16a for fixing the connecting members 9a and 9b. The holes 16a are formed in a circular shape through which the connecting members 9a and 9b can be inserted. The hole 16a penetrates the support column 16 in the horizontal direction or along the longitudinal direction of the main body 10.

図6に示すように、各連結部材9a,9bは、第一実施形態と同様に、第一連結部18、第二連結部19、及び絶縁部材20を有する。各連結部材9a,9bは、上記の第一実施形態において、上下方向に沿うように設けられていたが、本実施形態では、水平方向又はガラス供給管7における本体部10の長手方向に沿うように配される。各連結部材9a,9bの第一連結部18は、第一固定部材21に係る一対のナット21a,21bによって、各支持部材15a,15bに固定されている。各連結部材9a,9bの第二連結部19は、第二固定部材22に係る一対のナット22a,22bによって電極部13に固定される。 As shown in FIG. 6, each connecting member 9a, 9b has a first connecting portion 18, a second connecting portion 19, and an insulating member 20, as in the first embodiment. In the first embodiment described above, the connecting members 9a and 9b are provided along the vertical direction, but in the present embodiment, they are provided in the horizontal direction or along the longitudinal direction of the main body 10 in the glass supply pipe 7. Is placed in. The first connecting portion 18 of each connecting member 9a, 9b is fixed to each of the supporting members 15a, 15b by a pair of nuts 21a, 21b related to the first fixing member 21. The second connecting portion 19 of each connecting member 9a, 9b is fixed to the electrode portion 13 by a pair of nuts 22a, 22b related to the second fixing member 22.

本実施形態における他の構成は、第一実施形態と同じである。第一実施形態と共通する本実施形態の構成要素には、共通の符号を付している(以下、第三実施形態、第四実施形態において同じ)。 Other configurations in this embodiment are the same as in the first embodiment. The components of the present embodiment that are common to the first embodiment are designated by a common reference numeral (hereinafter, the same applies to the third embodiment and the fourth embodiment).

以下、本実施形態に係るガラス供給管7の予熱方法について図7乃至図9を参照しながら説明する。本実施形態では、ガラス供給管7を予熱する場合、所定の時間が経過する度に、第一固定部材21による第一連結部18の固定の解除及び再度の固定と、第二固定部材22による第二連結部19の固定の解除及び再度の固定とを繰り返し行う。 Hereinafter, the method for preheating the glass supply tube 7 according to the present embodiment will be described with reference to FIGS. 7 to 9. In the present embodiment, when the glass supply pipe 7 is preheated, each time a predetermined time elapses, the first fixing member 21 releases and re-fixes the first connecting portion 18, and the second fixing member 22 is used. The fixing of the second connecting portion 19 is released and fixed again.

具体的には、予熱工程の実施にあたり、当初は第一連結部18を第一固定部材21により第一通電加熱部11aの電極部13に固定したままの状態にしておく(図7参照)。この状態のままで第一通電加熱部11aにより本体部10を所定時間加熱した後、第一固定部材21による第一連結部18の固定、及び第二固定部材22による第二連結部19の固定を一旦解除する。具体的には、図8に示すように、一対のナット21a,21bのうち、一方のナット21aを緩めて支柱16から離間させる。このとき、他方のナット21bは操作されず、支柱16に接触したままの状態である。 Specifically, in carrying out the preheating step, the first connecting portion 18 is initially kept fixed to the electrode portion 13 of the first energizing heating portion 11a by the first fixing member 21 (see FIG. 7). In this state, the main body 10 is heated by the first energizing heating unit 11a for a predetermined time, and then the first connecting portion 18 is fixed by the first fixing member 21 and the second connecting portion 19 is fixed by the second fixing member 22. Once released. Specifically, as shown in FIG. 8, one of the pair of nuts 21a and 21b is loosened and separated from the support column 16. At this time, the other nut 21b is not operated and remains in contact with the support column 16.

これにより、第一固定部材21による規制が解除され、本体部10はその長手方向に膨張する。このとき、第一通電加熱部11aは、図8において二点鎖線で示すように、本体部10の膨張に応じて第一支持部材15aから離間するように変位する。 As a result, the regulation by the first fixing member 21 is released, and the main body 10 expands in the longitudinal direction thereof. At this time, as shown by the alternate long and short dash line in FIG. 8, the first energization heating unit 11a is displaced so as to be separated from the first support member 15a in response to the expansion of the main body portion 10.

図9に示すように、第一連結部材9aは、第一通電加熱部11aの変位に応じて移動する。第一連結部材9aの第一連結部18は、支柱16の孔16aに支持されながら摺動(スライド)する。すなわち、本実施形態において、支柱16の孔16aは、本体部10の膨張に伴う第一通電加熱部11aの変位を許容するように、第一連結部材9aをスライド可能に支持するスライド支持部として機能する。 As shown in FIG. 9, the first connecting member 9a moves according to the displacement of the first energizing heating unit 11a. The first connecting portion 18 of the first connecting member 9a slides while being supported by the hole 16a of the support column 16. That is, in the present embodiment, the hole 16a of the support column 16 serves as a slide support portion that slidably supports the first connecting member 9a so as to allow the displacement of the first energization heating portion 11a due to the expansion of the main body portion 10. Function.

第一連結部材9aの移動により、第一固定部材21における一方のナット21aは、支柱16に接近するように移動し、他方のナット21bは、支柱16から離間するように移動する(図9において実線で示す)。その後、他方のナット21bを図9の二点鎖線で示すように締める。これにより、一対のナット21a,21bによって支柱16を挟み、第一連結部材9aを支柱16に固定する。この固定後、さらに本体部10の加熱を継続するとともに、所定時間経過後に、上記のような第一連結部材9aの支柱16に対する固定の解除と再度の固定とを繰り返す。 Due to the movement of the first connecting member 9a, one nut 21a in the first fixing member 21 moves so as to approach the support column 16, and the other nut 21b moves so as to separate from the support column 16 (in FIG. 9). Shown by solid line). Then, the other nut 21b is tightened as shown by the alternate long and short dash line in FIG. As a result, the support column 16 is sandwiched between the pair of nuts 21a and 21b, and the first connecting member 9a is fixed to the support column 16. After this fixing, the heating of the main body 10 is continued, and after a lapse of a predetermined time, the fixing of the first connecting member 9a to the support column 16 is released and fixed again.

以上のように、本実施形態では、本体部10の加熱中において、定期的に各支持部材15a,15bに対する各連結部材9a,9bの固定解除と再固定とを繰り返す。これにより、ガラス供給管7を支持しながら、本体部10の膨張による各通電加熱部11a,11bの変位を許容でき、各通電加熱部11a,11bの破損を防止できる。よって、ガラス供給管7の予熱工程を好適に実行できる。 As described above, in the present embodiment, while the main body portion 10 is being heated, the fixing and re-fixing of the connecting members 9a and 9b to the supporting members 15a and 15b are periodically repeated. As a result, while supporting the glass supply pipe 7, the displacement of the energized heating units 11a and 11b due to the expansion of the main body 10 can be tolerated, and damage to the energized heating units 11a and 11b can be prevented. Therefore, the preheating step of the glass supply pipe 7 can be suitably executed.

図10及び図11は、ガラス供給管の支持構造に係る第三実施形態を示す。本実施形態において、ガラス供給管7は、本体部10の各端部に第一通電加熱部11a及び第二通電加熱部11bを有する。第一通電加熱部11a側の支持構造と第二通電加熱部11b側の支持構造とは同じ構造であるため、以下、第一通電加熱部11a側の支持構造について説明する。 10 and 11 show a third embodiment relating to the support structure of the glass supply pipe. In the present embodiment, the glass supply pipe 7 has a first energization heating portion 11a and a second energization heating portion 11b at each end of the main body portion 10. Since the support structure on the first energization heating section 11a side and the support structure on the second energization heating section 11b side have the same structure, the support structure on the first energization heating section 11a side will be described below.

本実施形態において、ガラス供給管7の第一通電加熱部11aは、第一支持部材15aによって支持されている。また、ケーシング8は、長手方向の一端部が一対の支持部材23によって支持される。支持部材23は、複数対に構成されてケーシング8を支持し得る。各支持部材15a,23は、板ガラス製造装置が配置される工場等における建屋の天井Cに固定される。 In the present embodiment, the first energization heating portion 11a of the glass supply pipe 7 is supported by the first support member 15a. Further, one end of the casing 8 in the longitudinal direction is supported by a pair of support members 23. The support member 23 may be configured in a plurality of pairs to support the casing 8. The support members 15a and 23 are fixed to the ceiling C of the building in a factory or the like where the flat glass manufacturing apparatus is arranged.

ガラス供給管7の第一支持部材15aは、第一連結部材9aを介して第一通電加熱部11aの電極部13に連結される。ケーシング8の支持部材23は、一対の連結部材24を介して、当該ケーシング8に連結される。連結部材24は、支持部材23の数に応じて複数対に構成され得る。 The first support member 15a of the glass supply pipe 7 is connected to the electrode portion 13 of the first energization heating portion 11a via the first connecting member 9a. The support member 23 of the casing 8 is connected to the casing 8 via a pair of connecting members 24. The connecting member 24 may be configured in a plurality of pairs depending on the number of supporting members 23.

第一支持部材15aに連結される第一連結部材9aは、当該第一支持部材15aに連結される第一連結部18と、第一通電加熱部11aの電極部13に連結される第二連結部19と、第一連結部18と第二連結部19との間に介在する絶縁部材20とを備える。第一連結部18及び第二連結部19は、ワイヤ等の可撓性を有する線状部材により構成される。第一連結部18の一端部(上端部)は、支持部材15aに連結される。第一連結部18の他端部(下端部)は、絶縁部材20と一体に構成される。第二連結部19の一端部(上端部)は、絶縁部材20と一体に構成される。第二連結部19の他端部(下端部)は、第一通電加熱部11aの電極部13に固定される。これにより、第一通電加熱部11aの電極部13は、第一連結部材9aを介して第一支持部材15aに支持される。 The first connecting member 9a connected to the first supporting member 15a is connected to the first connecting portion 18 connected to the first supporting member 15a and the second connecting portion 13 connected to the electrode portion 13 of the first energizing heating unit 11a. A portion 19 and an insulating member 20 interposed between the first connecting portion 18 and the second connecting portion 19 are provided. The first connecting portion 18 and the second connecting portion 19 are composed of a flexible linear member such as a wire. One end (upper end) of the first connecting portion 18 is connected to the support member 15a. The other end (lower end) of the first connecting portion 18 is integrally formed with the insulating member 20. One end (upper end) of the second connecting portion 19 is integrally formed with the insulating member 20. The other end (lower end) of the second connecting portion 19 is fixed to the electrode portion 13 of the first energizing heating portion 11a. As a result, the electrode portion 13 of the first energization heating portion 11a is supported by the first support member 15a via the first connecting member 9a.

ケーシング8に連結される連結部材24は、ワイヤ等の可撓性を有する線状部材により構成される。各連結部材24は、一端部(上端部)が支持部材23に固定され、他端部(下端部)がケーシング8に固定されてなる。 The connecting member 24 connected to the casing 8 is composed of a flexible linear member such as a wire. One end (upper end) of each connecting member 24 is fixed to the support member 23, and the other end (lower end) is fixed to the casing 8.

ケーシング8の外面には、当該ケーシング8を支持部材23に連結するための一対の突起部25が設けられる。各突起部25は、ケーシング8の外面から横方向(水平方向)に突出する。各突起部25には、連結部材24の下端部が連結される。これにより、ケーシング8は、連結部材24を介して、天井Cに固定される支持部材23に支持される。 A pair of protrusions 25 for connecting the casing 8 to the support member 23 are provided on the outer surface of the casing 8. Each protrusion 25 projects laterally (horizontally) from the outer surface of the casing 8. The lower end of the connecting member 24 is connected to each protrusion 25. As a result, the casing 8 is supported by the support member 23 fixed to the ceiling C via the connecting member 24.

本実施形態においてガラス供給管7を予熱する場合、加熱により、ガラス供給管7の本体部10はその長手方向に膨張する。第一通電加熱部11aは、本体部10の膨張に応じて変位する。この場合、第一支持部材15aは、第一連結部材9aが変形することにより、第一通電加熱部11aの変位を許容する。このため、本体部10の膨張によって第一通電加熱部11aが変形及び損傷することはない。これにより、ガラス供給管7の予熱工程を好適に実行できる。また、予熱工程中にケーシング8も膨張することとなるが、支持部材23は、連結部材24の変形により当該ケーシング8の膨張を許容する。これにより、予熱工程中における第一通電加熱部11aの変形及び損傷が防止される。 When the glass supply pipe 7 is preheated in the present embodiment, the main body 10 of the glass supply pipe 7 expands in the longitudinal direction due to the heating. The first energization heating unit 11a is displaced according to the expansion of the main body portion 10. In this case, the first support member 15a allows the first energization heating unit 11a to be displaced due to the deformation of the first connecting member 9a. Therefore, the expansion of the main body 10 does not deform or damage the first energizing heating unit 11a. As a result, the preheating step of the glass supply pipe 7 can be suitably executed. Further, the casing 8 also expands during the preheating step, but the support member 23 allows the casing 8 to expand due to the deformation of the connecting member 24. As a result, deformation and damage of the first energization heating unit 11a during the preheating step are prevented.

予熱工程終了後に、板ガラス製造装置を組み立てるとともに、溶解工程、清澄工程、均質化工程、状態調整工程、成形工程等を経て、板ガラスGRが製造される。 After the preheating step is completed, the flat glass manufacturing apparatus is assembled, and the flat glass GR is manufactured through a melting step, a clarification step, a homogenization step, a state adjusting step, a molding step, and the like.

図12及び図13は、ガラス供給管の支持構造に係る第四実施形態を示す。上記の第三実施形態では、一個の第一支持部材15aによってガラス供給管7の各通電加熱部11a11bを支持するとともに、一対の支持部材23によってケーシング8を支持する構成を例示したが、本実施形態では、複数(例えば三個)の支持部材15a〜15cによって各通電加熱部11a,11bを支持する。このように複数の支持部材15a〜15cを用いることにより、各通電加熱部11a,11bの支持箇所における荷重を分散することができ、各通電加熱部11a,11bの変形や破損を好適に抑制できる。 12 and 13 show a fourth embodiment relating to the support structure of the glass supply pipe. In the third embodiment described above, one first support member 15a supports each energizing heating portion 11a11b of the glass supply pipe 7, and a pair of support members 23 support the casing 8. In the embodiment, each of the energizing heating portions 11a and 11b is supported by a plurality of (for example, three) supporting members 15a to 15c. By using the plurality of support members 15a to 15c in this way, it is possible to disperse the load at the support points of the energization heating portions 11a and 11b, and it is possible to suitably suppress the deformation and breakage of the energization heating portions 11a and 11b. ..

以下、各通電加熱部11aを支持する支持部材15a〜15cを、順に第一支持部材15a、第二支持部材15b、及び第三支持部材15cという。本実施形態においても、第一通電加熱部11a側の支持構造と、第二通電加熱部11b側の支持構造とは同じ構成であるため、以下では、第一通電加熱部11a側の支持構造について説明する。 Hereinafter, the support members 15a to 15c that support each energization heating unit 11a will be referred to as a first support member 15a, a second support member 15b, and a third support member 15c, respectively. Also in this embodiment, the support structure on the first energization heating unit 11a side and the support structure on the second energization heating unit 11b side have the same configuration. Therefore, the support structure on the first energization heating unit 11a side will be described below. explain.

第一通電加熱部11aは、第一支持部材15aに連結される電極部13の他、第二支持部材15b及び第三支持部材15cに連結される一対の突起部26を有する。各突起部26は、フランジ部12の側部から横方向(水平方向)に突出してなる。 The first energization heating unit 11a has an electrode portion 13 connected to the first support member 15a, and a pair of protrusions 26 connected to the second support member 15b and the third support member 15c. Each protrusion 26 projects laterally (horizontally) from the side portion of the flange portion 12.

第一支持部材15aは、中途部に絶縁部材20を有する第一連結部材9aを介して第一通電加熱部11aの電極部13に連結される。第一連結部材9aは、第三実施形態において例示したものと同じ構成を有する。同様に第二支持部材15b及び第三支持部材15cは、第一連結部材9aと同じ構成を有する第二連結部材9b及び第三連結部材9cを介して、各突起部26に連結される。 The first support member 15a is connected to the electrode portion 13 of the first energization heating portion 11a via the first connecting member 9a having the insulating member 20 in the middle portion. The first connecting member 9a has the same configuration as that illustrated in the third embodiment. Similarly, the second support member 15b and the third support member 15c are connected to each protrusion 26 via the second connecting member 9b and the third connecting member 9c having the same configuration as the first connecting member 9a.

本実施形態においてガラス供給管7を予熱するには、第一実施形態と同様に、ガラス供給路6a〜6dをガラス供給管7に分離させ、第一通電加熱部11aを、各連結部材9a〜9cを介して各支持部材15a〜15cにより支持した状態で、当該第一通電加熱部11aにより本体部10を通電加熱する。 In order to preheat the glass supply pipe 7 in the present embodiment, the glass supply passages 6a to 6d are separated into the glass supply pipe 7 and the first energization heating unit 11a is connected to the connecting members 9a to 9a as in the first embodiment. The main body 10 is energized and heated by the first energizing heating unit 11a in a state of being supported by the supporting members 15a to 15c via the 9c.

通電加熱により、ガラス供給管7の本体部10はその長手方向に膨張する。第一通電加熱部11aは、本体部10の膨張に応じて変位する。この場合において、各支持部材15a〜15cは、各連結部材9a〜9cの変形により、各通電加熱部11は、可撓性を有することから、各通電加熱部11a,11bの変位を規制することはない。このため、本体部10の膨張によって各通電加熱部11a,11bが変形及び損傷することはない。これにより、ガラス供給管7の予熱工程を好適に実行できる。 The main body 10 of the glass supply tube 7 expands in the longitudinal direction by energizing and heating. The first energization heating unit 11a is displaced according to the expansion of the main body portion 10. In this case, since each of the support members 15a to 15c has flexibility due to the deformation of each of the connecting members 9a to 9c, the displacement of each of the current-carrying heating parts 11a and 11b should be regulated. There is no. Therefore, the expansion of the main body 10 does not deform or damage the energizing heating portions 11a and 11b. As a result, the preheating step of the glass supply pipe 7 can be suitably executed.

なお、本発明は、上記実施形態の構成に限定されるものではなく、上記した作用効果に限定されるものでもない。本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 The present invention is not limited to the configuration of the above embodiment, and is not limited to the above-mentioned action and effect. The present invention can be modified in various ways without departing from the gist of the present invention.

上記の第一実施形態及び第二実施形態では、異なる構成のガラス供給管7及びその支持構造を例示したが、これらを適宜組み合わせてガラス供給路6a〜6dを構成してもよい。 In the first embodiment and the second embodiment described above, the glass supply pipe 7 having different configurations and the support structure thereof have been illustrated, but these may be appropriately combined to form the glass supply passages 6a to 6d.

1 溶解槽
5 成形槽
6a ガラス供給路
6b ガラス供給路
6c ガラス供給路
6d ガラス供給路
7 ガラス供給管
8 ケーシング
9a 連結部材
9b 連結部材
11a 通電加熱部
11b 通電加熱部
15a 支持部材
15b 支持部材
15c 支持部材
16 支柱
17 スライド支持部
17a 長孔
20 絶縁部材
21 固定部材
C 建屋の天井
GM 溶融ガラス
GR 板ガラス
1 Melting tank 5 Molding tank 6a Glass supply path 6b Glass supply path 6c Glass supply path 6d Glass supply path 7 Glass supply pipe 8 Casing 9a Connecting member 9b Connecting member 11a Energizing heating section 11b Energizing heating section 15a Support member 15b Support member 15c Support Member 16 Strut 17 Slide support 17a Long hole 20 Insulation member 21 Fixing member C Building ceiling GM Molten glass GR Plate glass

Claims (11)

筒状に構成される本体部と、前記本体部の各端部に設けられ、通電加熱を行う通電加熱部を有するガラス供給管と、
前記通電加熱部を支持する支持部材と
前記ガラス供給管を収容する長尺状のケーシングと、を備える、ガラス供給管の支持構造であって、
前記通電加熱部と前記支持部材との間に絶縁部材を備え、
前記本体部は、前記端部が前記ケーシングから突出した状態で前記ケーシングに収容されることを特徴とする、ガラス供給管の支持構造。
A body portion configured into a cylindrical shape, provided at each end of the body portion, and the glass supply tube having a conductive heating unit which performs conduction heating,
A support member for supporting the electrical heating unit,
A support structure for a glass supply tube, comprising a long casing for accommodating the glass supply tube.
An insulating member is provided between the energizing heating unit and the supporting member.
Said body portion, said end portion is accommodated in the casing so as to protrude from the casing, characterized in Rukoto, support structure of the glass supply tube.
前記支持部材は、前記ケーシングに固定されてなる、請求項1に記載のガラス供給管の支持構造。 The support member is formed by fixed before mute pacing, the support structure of the glass supply tube according to claim 1. 前記通電加熱部と前記支持部材とを繋ぐ連結部材を備え、
前記絶縁部材は、前記連結部材の中途部に設けられてなる、請求項1又は2に記載のガラス供給管の支持構造。
A connecting member for connecting the energizing heating unit and the supporting member is provided.
The support structure for a glass supply pipe according to claim 1 or 2, wherein the insulating member is provided in the middle of the connecting member.
前記支持部材は、前記ケーシングの外面に設けられる支柱と、前記通電加熱部の加熱による前記ガラス供給管の膨張に伴う前記通電加熱部の変位を許容するように、前記連結部材をスライド可能に支持するスライド支持部と、を備える、請求項に記載のガラス供給管の支持構造。 The support member slidably supports the support column provided on the outer surface of the casing and the connecting member so as to allow displacement of the energization heating portion due to expansion of the glass supply pipe due to heating of the energization heating portion. The support structure for a glass supply tube according to claim 3 , further comprising a slide support portion. 前記連結部材を前記スライド支持部に固定する固定部材を備える、請求項4に記載のガラス供給管の支持構造。 The support structure for a glass supply pipe according to claim 4, further comprising a fixing member for fixing the connecting member to the slide support portion. 前記スライド支持部は、前記連結部材の一部が挿通される孔を含み、
前記孔は、前記ケーシングの長手方向に沿う長孔である、請求項4又は5に記載のガラス供給管の支持構造。
The slide support includes a hole through which a part of the connecting member is inserted.
The support structure for a glass supply pipe according to claim 4 or 5, wherein the holes are elongated holes along the longitudinal direction of the casing.
前記通電加熱部は、フランジ部及び電極部を含み、
前記支持部材は、前記電極部を支持するように構成されてなる、請求項1から6のいずれか一項に記載のガラス供給管の支持構造。
The electrical heating unit includes a flange portion and the electrode portion,
The support structure for a glass supply tube according to any one of claims 1 to 6, wherein the support member is configured to support the electrode portion.
通電加熱を行う通電加熱部を有するガラス供給管と、前記通電加熱部を支持する支持部材とを備える、ガラス供給管の支持構造であって、
前記通電加熱部と前記支持部材との間に絶縁部材を備え、
前記支持部材は、前記ガラス供給管が配置される建屋の天井に固定されてなることを特徴とする、ガラス供給管の支持構造。
It is a support structure of a glass supply pipe including a glass supply pipe having an energization heating portion for performing energization heating and a support member for supporting the energization heating portion.
An insulating member is provided between the energizing heating unit and the supporting member.
The support structure of the glass supply pipe is characterized in that the support member is fixed to the ceiling of the building in which the glass supply pipe is arranged.
ガラス原料を溶解して溶融ガラスを生成する溶解槽と、前記溶融ガラスを板ガラスに成形する成形槽と、溶解槽から成形槽へと溶融ガラスを移送するガラス供給路と、を備える板ガラス製造装置において、
前記ガラス供給路は、複数のガラス供給管を接続してなり、
請求項1から8のいずれか一項に記載のガラス供給管の支持構造をさらに備えることを特徴とする、板ガラス製造装置。
In a plate glass manufacturing apparatus including a melting tank for melting a glass raw material to generate molten glass, a molding tank for molding the molten glass into a plate glass, and a glass supply path for transferring the molten glass from the melting tank to the molding tank. ,
The glass supply path is formed by connecting a plurality of glass supply pipes.
A flat glass manufacturing apparatus further comprising the support structure for the glass supply pipe according to any one of claims 1 to 8.
請求項9に記載の板ガラス製造装置により前記板ガラスを製造する方法であって、
前記複数のガラス供給管を分離した状態で、前記ガラス供給管を前記通電加熱部により通電加熱する予熱工程と、
予熱工程後に、前記ガラス供給管を接続して前記ガラス供給路を形成する工程と、
前記ガラス供給路により前記溶融ガラスを前記成形槽に移送し、前記成形槽により前記溶融ガラスを前記板ガラスとして成形する工程と、を備え、
前記予熱工程は、前記ガラス供給管を前記支持部材により支持し、かつ前記絶縁部材により前記ガラス供給管と前記支持部材とを絶縁した状態で、前記通電加熱部により前記ガラス供給管を通電加熱することを特徴とする、板ガラス製造方法。
A method of manufacturing the flat glass by the flat glass manufacturing apparatus according to claim 9.
A preheating step of energizing and heating the glass supply pipe by the energizing heating unit with the plurality of glass supply pipes separated.
After the preheating step, the step of connecting the glass supply pipe to form the glass supply path and
A step of transferring the molten glass to the molding tank by the glass supply path and molding the molten glass as the plate glass by the molding tank is provided.
In the preheating step, the glass supply pipe is energized and heated by the energizing heating unit in a state where the glass supply pipe is supported by the supporting member and the glass supply pipe and the supporting member are insulated by the insulating member. A method for manufacturing flat glass, characterized in that.
請求項1から8のいずれか一項に記載のガラス供給管の支持構造によって前記ガラス供給管を予熱する方法であって、
前記ガラス供給管を前記通電加熱部により通電加熱する予熱工程を備え、
前記予熱工程は、前記ガラス供給管を前記支持部材により支持し、かつ前記絶縁部材により前記ガラス供給管と前記支持部材とを絶縁した状態で、前記通電加熱部により前記ガラス供給管を通電加熱することを特徴とする、ガラス供給管の予熱方法。
A method of preheating the glass supply tube by the support structure of the glass supply tube according to any one of claims 1 to 8.
A preheating step of energizing and heating the glass supply pipe by the energizing heating unit is provided.
In the preheating step, the glass supply pipe is energized and heated by the energizing heating unit in a state where the glass supply pipe is supported by the supporting member and the glass supply pipe and the supporting member are insulated by the insulating member. A method for preheating a glass supply tube, which is characterized by the fact that.
JP2016242208A 2016-12-14 2016-12-14 Support structure of glass supply pipe, flat glass manufacturing equipment, flat glass manufacturing method, and preheating method of glass supply pipe Active JP6792821B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016242208A JP6792821B2 (en) 2016-12-14 2016-12-14 Support structure of glass supply pipe, flat glass manufacturing equipment, flat glass manufacturing method, and preheating method of glass supply pipe
KR1020197011478A KR102331492B1 (en) 2016-12-14 2017-11-21 Support structure of glass supply pipe, plate glass manufacturing apparatus, plate glass manufacturing method, and preheating method of glass supply pipe
CN201780070891.XA CN109982980B (en) 2016-12-14 2017-11-21 Support structure for glass supply pipe, apparatus for manufacturing sheet glass, method for manufacturing sheet glass, and method for preheating glass supply pipe
PCT/JP2017/041824 WO2018110217A1 (en) 2016-12-14 2017-11-21 Support structure for glass supply pipe, plate glass production device, plate glass production method, and preheating method for glass supply pipe
TW106141592A TWI752126B (en) 2016-12-14 2017-11-29 Support structure for glass supply pipe, plate glass manufacturing apparatus, plate glass manufacturing method, and preheating method for glass supply pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016242208A JP6792821B2 (en) 2016-12-14 2016-12-14 Support structure of glass supply pipe, flat glass manufacturing equipment, flat glass manufacturing method, and preheating method of glass supply pipe

Publications (2)

Publication Number Publication Date
JP2018095519A JP2018095519A (en) 2018-06-21
JP6792821B2 true JP6792821B2 (en) 2020-12-02

Family

ID=62558336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016242208A Active JP6792821B2 (en) 2016-12-14 2016-12-14 Support structure of glass supply pipe, flat glass manufacturing equipment, flat glass manufacturing method, and preheating method of glass supply pipe

Country Status (5)

Country Link
JP (1) JP6792821B2 (en)
KR (1) KR102331492B1 (en)
CN (1) CN109982980B (en)
TW (1) TWI752126B (en)
WO (1) WO2018110217A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102672587B1 (en) * 2018-09-27 2024-06-07 코닝 인코포레이티드 Modular molten glass transfer device
US12017945B2 (en) * 2018-09-27 2024-06-25 Corning Incorporated Assembly for supporting an electrical flange in a glass manufacturing apparatus
JP7439066B2 (en) 2018-09-27 2024-02-27 コーニング インコーポレイテッド Glass forming equipment with modular glass fining system
JP7167888B2 (en) * 2019-09-11 2022-11-09 Agc株式会社 Glass melting furnace and glass manufacturing method
JP2023130739A (en) * 2022-03-08 2023-09-21 日本電気硝子株式会社 Apparatus and method for manufacturing glass article

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6286337B1 (en) * 2000-06-29 2001-09-11 Corning Incorporated Tubing system for reduced pressure finer
CN100534938C (en) * 2001-08-08 2009-09-02 布鲁斯科技公司 Sheet glass forming apparatus
US7032412B2 (en) * 2003-03-13 2006-04-25 Corning Incorporated Methods of manufacturing glass sheets with reduced blisters
JP4711171B2 (en) * 2004-12-28 2011-06-29 日本電気硝子株式会社 Sheet glass manufacturing apparatus and sheet glass manufacturing method
JP5656080B2 (en) 2010-03-23 2015-01-21 日本電気硝子株式会社 Manufacturing method of glass substrate
US9242886B2 (en) * 2010-11-23 2016-01-26 Corning Incorporated Delivery apparatus for a glass manufacturing apparatus and methods
TWI538889B (en) * 2011-10-11 2016-06-21 Avanstrate Inc Manufacture of glass plates
JP5730806B2 (en) * 2012-04-05 2015-06-10 AvanStrate株式会社 Manufacturing method of glass substrate
CN103508654B (en) * 2012-06-29 2016-08-03 安瀚视特控股株式会社 The manufacture method of glass substrate and the manufacture device of glass substrate
JP5730259B2 (en) * 2012-09-27 2015-06-03 AvanStrate株式会社 Glass manufacturing apparatus and glass manufacturing method
JP5777590B2 (en) * 2012-09-28 2015-09-09 AvanStrate株式会社 Glass substrate manufacturing method and glass substrate manufacturing apparatus
KR20160043536A (en) * 2013-08-20 2016-04-21 코닝 인코포레이티드 Method and Apparatus for Glass Sheet Manufacturing Including an Induction Heated Enclosure
JP6263355B2 (en) * 2013-09-06 2018-01-17 AvanStrate株式会社 Glass melting apparatus, glass sheet manufacturing apparatus, electrode for glass melting apparatus, and glass sheet manufacturing method
KR102205920B1 (en) * 2014-06-30 2021-01-20 아반스트레이트 가부시키가이샤 Method of making glass substrate, glass substrate and bundle of glass substrates

Also Published As

Publication number Publication date
CN109982980A (en) 2019-07-05
KR20190091442A (en) 2019-08-06
TWI752126B (en) 2022-01-11
WO2018110217A1 (en) 2018-06-21
JP2018095519A (en) 2018-06-21
KR102331492B1 (en) 2021-11-26
TW201833045A (en) 2018-09-16
CN109982980B (en) 2021-11-02

Similar Documents

Publication Publication Date Title
JP6792821B2 (en) Support structure of glass supply pipe, flat glass manufacturing equipment, flat glass manufacturing method, and preheating method of glass supply pipe
TWI757566B (en) Manufacturing method and manufacturing apparatus of glass article
CN110291048B (en) Glass manufacturing method and method for preheating glass supply pipe
JP2017114711A (en) Sheet glass manufacturing apparatus and sheet glass manufacturing method
KR20220021921A (en) glass conveying device
KR20150113864A (en) Method and apparatus for making glass sheet
JP6925582B2 (en) Manufacturing method and manufacturing equipment for glass articles
KR102250965B1 (en) Plate glass manufacturing apparatus and plate glass manufacturing method
KR102760974B1 (en) Assembly for supporting electrical flanges in glass manufacturing equipment
JP7138843B2 (en) Method for manufacturing glass article
WO2023171385A1 (en) Device and method for producing glass article
WO2023100688A1 (en) Glass article manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201022

R150 Certificate of patent or registration of utility model

Ref document number: 6792821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150