JP6787070B2 - 二軸延伸ポリプロピレンシート - Google Patents
二軸延伸ポリプロピレンシート Download PDFInfo
- Publication number
- JP6787070B2 JP6787070B2 JP2016225618A JP2016225618A JP6787070B2 JP 6787070 B2 JP6787070 B2 JP 6787070B2 JP 2016225618 A JP2016225618 A JP 2016225618A JP 2016225618 A JP2016225618 A JP 2016225618A JP 6787070 B2 JP6787070 B2 JP 6787070B2
- Authority
- JP
- Japan
- Prior art keywords
- molecular weight
- propylene
- component
- group
- biaxially stretched
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
プロピレン系重合体の透明性を改良する方法として、例えば、プロピレンとα−オレフィンとの共重合を行って結晶性を低下させ透明性を改良する方法が使用される。プロピレンとα−オレフィンとの共重合を行って透明性を改良する方法では、α−オレフィン量を多くするほど透明性が良くなるが、製品の剛性が著しく低下するためα−オレフィンは少量しか使用できず、透明性改良効果はおのずと制限されるという問題点がある。
このように、耐熱性の優れたポリプロピレンシートを用いて、透明性と剛性を兼備した熱成形体の包装製品が求められている。
一般的に結晶性樹脂であるポリプロピレンは、降伏点が存在し、低倍率延伸を行うとネッキングが発生し、延伸ムラ(厚みにムラ)が生じる。OPPとして公知の逐次二軸延伸ポリプロピレンの延伸倍率は、通常、縦×横=5×10倍程度の高倍率で行われているが、高倍率延伸により目的の延伸シート(厚み0.1〜1mm)を得る事は、原反の厚みが問題となり不可能である。
(i)メルトフローレート(MFR)(温度230℃、荷重2.16kg)が0.5g/10分以上、20g/10分以下である。
(ii)ゲルパーミエーションクロマトグラフィー(GPC)で測定する重量平均分子量(Mw)と数平均分子量(Mn)の比(Q値)が3.5以上、10.5以下である。
(iii)GPCによって得られる分子量分布曲線において、全量に対して、分子量(M)が200万以上の成分の比率が0.4重量%以上、10重量%未満である。
(iv)オルトジクロロベンゼン(ODCB)による昇温溶出分別(TREF)において、40℃以下の温度で溶出する成分が3.0重量%以下である。
(v)13C−NMRで測定するアイソタクチックトライアッド分率(mm)が95%以上である。
(vi)伸長粘度の測定における歪硬化度(λmax)が6.0以上である。
(vii) (MT230℃) ≧ 5g
[式中、MT230℃は、メルトテンションテスターを用いて、キャピラリー:直径2.1mm、シリンダー径:9.6mm、シリンダー押出速度:10mm/分、巻き取り速度:4.0m/分、温度:230℃の条件で測定したときの溶融張力を表す。]
(viii) (MaxDraw) ≧ 10m/分
[式中、MaxDraw(最高巻き取り速度)は、上記溶融張力の測定において、巻き取り速度を上げていったときの樹脂が破断する直前の巻き取り速度を表す。]
(ix) (ME) ≧ −0.26×log(MFR)+1.9
[式中、ME(メモリーエフェクト)は、オリフィスが長さ8.00mm、径1.00mmφのメルトインデクサーを用いて、シリンダー内温度を190℃に設定して、荷重をかけ、押し出し速度が0.1g/分の時に、オリフィスから押し出されたポリマーをエタノール中で急冷し、その際の押出物のストランド径をオリフィス径で除した値とする。]
さらに、本発明の第4の発明によれば、第1〜3のいずれかの発明において、プロピレン系重合体(A)は、さらに、下記要件(x)を満たすことを特徴とする二軸延伸ポリプロピレンシートが提供される。
(x)GPCによって得られる分子量分布曲線において、ピーク位置に相当する分子量の常用対数をTp、ピーク高さの50%高さとなる位置の分子量の常用対数をL50及びH50(L50はTpより低分子量側、H50はTpより高分子量側)とし、α及びβをそれぞれα=H50−Tp、β=Tp−L50と定義したとき、α/βが0.9より大きく、2.0未満である。
また、本発明の二軸延伸ポリプロピレンシートは、下記(i)〜(vi)、またはそれらに加えてさらに、(vii)及び(viii)、又はそれらに加えてさらに、(ix)及び/又は(x)の特性・性状を有するプロピレン系重合体(A)100〜5重量%と、DSCで測定した融点が150〜170℃であるプロピレン系重合体(B)0〜95重量%とを配合したプロピレン系樹脂組成物からなる押出シートを、二軸方向に延伸させることよって得られるものである。
(i)メルトフローレート(MFR)(温度230℃、荷重2.16kg)が0.5〜20g/10分である。
(ii)ゲルパーミエーションクロマトグラフィー(GPC)で測定する重量平均分子量(Mw)と数平均分子量(Mn)の比(Q値)が3.5〜10.5である。
(iii)GPCによって得られる分子量分布曲線において、全量に対して、分子量(M)が200万以上の成分の比率が0.4重量%以上10重量%未満である。
(iv)オルトジクロロベンゼン(ODCB)による昇温溶出分別(TREF)において、40℃以下の温度で溶出する成分が3.0重量%以下である。
(v)13C−NMRで測定するアイソタクチックトライアッド分率(mm)が95%以上である。
(vi)伸長粘度の測定における歪硬化度(λmax)が6.0以上である。
(vii) (MT230℃) ≧ 5g
[式中、MT230℃は、メルトテンションテスターを用いて、キャピラリー:直径2.1mm、シリンダー径:9.6mm、シリンダー押出速度:10mm/分、巻き取り速度:4.0m/分、温度:230℃の条件で測定したときの溶融張力を表す。]
(viii) (MaxDraw) ≧ 10m/分
[式中、MaxDraw(最高巻き取り速度)は、上記溶融張力の測定において、巻き取り速度を上げていったときの樹脂が破断する直前の巻き取り速度を表す。]
(ix)(ME) ≧ −0.26×log(MFR)+1.9
[式中、ME(メモリーエフェクト)は、オリフィスが長さ8.00mm、径1.00mmφのメルトインデクサーを用いて、シリンダー内温度を190℃に設定して、荷重をかけ、押し出し速度が0.1g/分の時に、オリフィスから押し出されたポリマーをエタノール中で急冷し、その際の押出物のストランド径をオリフィス径で除した値とする。]
(x)GPCによって得られる分子量分布曲線において、ピーク位置に相当する分子量の常用対数をTp、ピーク高さの50%高さとなる位置の分子量の常用対数をL50及びH50(L50はTpより低分子量側、H50はTpより高分子量側)とし、α及びβをそれぞれα=H50−Tp、β=Tp−L50と定義したとき、α/βが0.9より大きく、2.0未満である。
I.プロピレン系樹脂組成物の構成成分
1.プロピレン系重合体(A)
本発明の二軸延伸ポリプロピレンシートに用いられるプロピレン系樹脂組成物を構成するプロピレン系重合体(A)は、上記(i)〜(vi)、またはそれらに加えてさらに、(vii)及び(viii)、又はそれらに加えてさらに、(ix)及び/又は(x)の特性・性状を有する。
以下、項目毎に、順次説明する。
本発明に係るプロピレン系重合体(A)は、溶融流動性や溶融張力を制御した、物性と溶融加工性のバランスに優れた長鎖分岐型のプロピレン系重合体である。
本発明に係るプロピレン系重合体(A)は、上記長鎖分岐が導入されることにより、溶融物性が格段に向上していると、考察されている。
一般的には、分岐構造や分岐数の検出、定量には、13C−NMRが用いられる。また、分岐数や分岐分布の検出、定量には、13C−NMRやGPC−vis、GPC−mallsが用いられる。
分岐構造に関しては、長鎖分岐ができる機構、メカニズムを考慮して、本発明者は、下記のように推察している。
βメチル脱離反応で停止した末端のプロペニル構造を下記に示す(参照文献:Macromol. Rapid Commun. 2000,21,1103―1107)。
したがって、本発明に係るプロピレン系重合体(A)は、下記構造式(2)に示すような特定の分岐構造を有する。
構造式(2)において、Ca、Cb、Ccは、分岐炭素に隣接するメチレン炭素を示し、Cbrは、分岐鎖の根元のメチン炭素を示し、P1、P2、P3は、プロピレン系重合体残基を示す。
P1、P2、P3は、それ自体の中に、構造式(2)に記載されたCbrとは、別の分岐炭素(Cbr)を含有することもあり得る。
分岐メチン炭素Cbrに近接する3つのメチレン炭素が、ジアステレオトピックに非等価に3本に分かれて観測されることが特徴である。
分岐数は、上記の13C−NMRによる帰属を利用して、31.6〜31.7ppmに観測される分岐炭素(Cbr)の全骨格形成炭素1000個あたり個数を分岐数(密度)とする。但し、全骨格形成炭素とは、メチル炭素以外の全ての炭素原子を意味する。
また、分岐の量が多すぎると、ゲルが生成して成形品の外観を損ねるという懸念がある。さらに、分岐の量が多すぎると、成形時に高速で延伸した場合に、溶融体が破断を起こすという、いわゆる溶融延展性の悪化を引き起こすという問題がある。
したがって、分岐数は、0.4個以下がよく、好ましくは0.2個以下であり、更に好ましくは0.1未満である。
現在の高磁場NMRの13C−NMRを用いた場合でも、測定限界が0.1以上であり、現在までのところ定量まで至っていない。尚、分岐そのものは、検出される場合は、「trace」として評価される。
したがって、本発明に係るプロピレン系重合体(A)の分岐鎖長は、骨格炭素数500(ポリプロピレン分子量換算:1.1万)以上であり、好ましくは骨格炭素数1000(ポリプロピレン分子量換算:2.1万)以上であり、更に好ましくは骨格炭素数2000(ポリプロピレン分子量換算:4.2万)以上である。
ここでいうポリプロピレン分子量換算値は、厳密にはGPCで測定される分子量値とは異なるものであるが、GPCで測定される数平均分子量(Mn)に近似している。
したがって、本発明に係るプロピレン系重合体(A)の分岐長は、GPCで測定される数平均分子量(Mn)で1.1万以上、好ましくは2.1万以上、さらに好ましくは4.2万以上と、置き換えられる。
例えば、本発明に係るプロピレン系重合体(A)では、[A−1]由来の活性種から生成するマクロマーの分子量は、数平均分子量で5万の場合、組み込まれた分岐鎖の平均分子量が5万あり、骨格炭素に換算すると2400個と、解釈される。
上記[A−1]由来の活性種から生成するマクロマーの数平均分子量は、GPCにおいて[A−1]由来の部分のピークトップ、または[A−1]単独で重合を行った場合の分子量から推定できる。
触媒成分[A−2]由来の分子量成分は、[A−1]由来の分子量成分と比べて、より高分子量であるので、分岐分布としては、高分子量側([A−2]由来側)にも、分岐が導入された分布形態になっていると考察している。
また、[A−1]由来の分子量成分には、[A−1]自身でマクロマーを取り込んで、できた分岐構造も存在する。
上記[A−1]由来、[A−2]由来の分子量分布の一例を、図3に示す。
しかしながら、伸長粘度の測定における歪硬化度は6未満であり、本発明に係るプロピレン系重合体(A)の伸長粘度の測定における歪硬化度(λmax)が6.0以上と比べても、改良効果は十分ではない。これは単一の錯体で製造するため、望ましい分岐成分が十分に導入されていないためであり、分岐が単純に平均的に多くても、溶融物性改良の効果が小さいことを意味している。
本発明に係るプロピレン系重合体(A)は、平均的な分岐数が0.1個未満であるが、複数の錯体を組み合わせることで分岐を高分子量側にも導入することにより、溶融物性が顕著に改良されたものである。
側鎖の立体規則性は、[A−1]単独による重合体の立体規則性と等しいと考えられる。
本発明におけるプロピレン系重合体(A)は、溶融流動性や溶融張力を制御した、物性と溶融加工性のバランスに優れている。プロピレン系重合体(A)の物性について、説明する。
本発明に係るプロピレン系重合体(A)は、温度230℃、2.16kg荷重で測定するメルトフローレート(MFR)が0.5〜20g/10分であることを必要とする。
プロピレン系重合体(A)のメルトフローレート(MFR)は0.5〜20g/10分であり、0.5〜15g/10分が好ましく、0.9〜10g/10分の範囲にあるのがより好ましい。MFRがこの範囲にあると原反のシート成形性が優れる。
尚、メルトフローレート(MFR)は、JIS K6921−2の「プラスチック−ポリプロピレン(PP)成形用及び押出用材料−第2部:試験片の作り方及び性質の求め方」に準拠して、試験条件:230℃、荷重2.16kgfで測定した値である。
本発明に係るプロピレン系重合体(A)は、ゲルパーミエーションクロマトグラフィー(GPC)測定による重量平均分子量(Mw)と数平均分子量(Mn)の比、Mw/Mn(Q値)が、3.5〜10.5の範囲であることが必要である。
Q値は、分子量分布の広がりを表す指標であり、この値が大きいほど、分子量分布が広いことを意味する。Q値が小さすぎると、分布が狭い為に、溶融流動性と加工性のバランスが悪くなる。したがって、Q値は3.5以上が必要であり、好ましくは4.0以上である。更に好ましくは4.5以上である。一方、Q値が大きすぎると、必要としない(低)分子量成分の量が増えて、満足する物性のものが得られない。したがって、Q値は10.5以下が必要であり、好ましくは8.0以下であり、更に好ましくは7.5以下である。
本発明に係るプロピレン系重合体(A)は、GPCによって得られる分子量分布曲線において、ピーク位置に相当する分子量の常用対数をTp、ピーク高さの50%高さとなる位置の分子量の常用対数をL50及びH50(L50はTpより低分子量側、H50はTpより高分子量側)とし、α及びβをそれぞれα=H50−Tp、β=Tp−L50と定義したとき、α/βが0.9より大きく、2.0未満であることが望ましい。ここで、α/βは、分子量分布の広がりの高分子量側への偏りを表す指標である。
分子量分布の広がり方に関しては、GPCによって得られる分子量分布曲線で示される。即ち、分子量(MW)の常用対数を横軸として、縦軸に、当該MWに相当する分子の相対微分質量をプロットしたグラフが作成される。
なお、ここにいう分子量(MW)とは、プロピレン単独重合体を構成する個々の分子の分子量であって、プロピレン単独重合体の重量平均分子量(Mw)とは、異なるものである。図1は、分子量分布曲線の一例を示す図である。作成したグラフからαおよびβが求められる。本発明においては、上記のように、α/βが0.9より大きく、2.0未満であることが望ましい。
したがって、本発明のプロピレン単独重合体の分子量分布は、単一活性点で均一な重合をした重合体の分子量分布と比べて、より高分子量側に一層広がっていることを意味している。
本発明に係るプロピレン系重合体(A)は、α/βが0.9より大きいことが望ましく、好ましくは1.0以上であり、更に好ましくは1.1以上である。α/βが0.9より大きい、高分子量成分の量が相対的に十分あるため、溶融張力やスウェル比が高く、成形性が良好である。
また、本発明に係るプロピレン系重合体(A)は、α/βが2.0未満であることが望ましく、好ましくは1.7未満であり、更に好ましくは1.6未満である。α/βが2.0未満であると、高分子量成分の量が多くなり過ぎることがなく、流動性が良好である。
なお、分子量分布曲線において、ピークが2つ以上現れることがある。その場合は、最大ピークを本発明のピークと置き換えることができる。また、H50が2つ以上現れる場合は、一番高分子量側の分子量で置き換えることができる。同様に、L50が2つ以上現れる場合は、一番低分子量側の分子量で置き換えることができる。
本発明に係るプロピレン系重合体(A)は、GPCによって得られる分子量分布曲線において、重合体全量に対して、分子量(M)が200万以上の成分の比率(以下、分子量M(≧200万)又はW(200万以上)と略称することがある。)が0.4重量%以上10重量%未満である。
上記200万以上の比率(W(200万以上))は、重合体中に含まれる非常に高い分子量成分の比率を示す指標である。
上記非常に高い分子量成分の比率であるW(200万以上)は、GPCによって得られる積分分子量分布曲線(全量を1に規格化)において、分子量(M)が200万(Log(M)=6.3)以下までの積分値を、1から減じた値として定義する。積分分子量分布曲線の一例を同じく図1に示す。
また、本発明に係るプロピレン系重合体(A)は、望ましくは、W(200万以上)が10重量%未満である必要があり、好ましくは6.0重量%未満、更に好ましくは5重量%未満である。W(200万以上)が10重量%未満であると、流動性が良好で、非常に分子量の高い成分に起因するゲルの生成が抑制され、成形品の外観も良好である。また、W(200万以上)が10重量%未満であると、成形時に高速で延伸した場合に、溶融体が破断を起こすという、いわゆる溶融延展性の悪化を引き起こすことも防止できる。
検出器:FOXBORO社製MIRAN、1A、IR検出器(測定波長:3.42μm)
カラム:昭和電工社製AD806M/S(3本直列)
移動相溶媒:o−ジクロロベンゼン(ODCB)
測定温度:140℃
流速:1.0ml/分
注入量:0.2ml
なお、得られたクロマトグラムのベースラインと区間は、図2のように行う。
また、GPC測定で得られた保持容量から分子量への換算は、予め作成しておいた標準ポリスチレンによる検量線を用いて行う。使用する標準ポリスチレンは、何れも東ソー社製の以下の銘柄である。
銘柄:F380、F288、F128、F80、F40、F20、F10、F4、F1、A5000、A2500、A1000
各々が0.5mg/mLとなるように、ODCB(0.5mg/mLのBHTを含む)に溶解した溶液を0.2mL注入して、較正曲線を作成する。較正曲線は、最小二乗法で近似して得られる三次式を用いる。
分子量への換算に使用する粘度式:[η]=K×Mαは、以下の数値を用いる。
PS:K=1.38×10−4、α=0.7
PP:K=1.03×10−4、α=0.78
本発明に係るプロピレン系重合体(A)は、昇温溶出分別(TREF)測定によって得られる溶出曲線において、40℃以下の温度で溶出する成分が3.0重量%以下である必要があり、好ましくは2.0重量%以下であり、更に好ましくは1.0重量%以下あり、非常に好ましくは0.5重量%以下である。40℃以下の温度で溶出する成分が3.0重量%以下であると、40℃以下の温度で溶出する低結晶性成分に起因する、製品全体の結晶性の低下や、製品の剛性といった機械的強度の低下を抑制することができる。
試料を140℃でオルトジクロロベンゼンに溶解し溶液とする。これを140℃のTREFカラムに導入した後、8℃/分の降温速度で100℃まで冷却し、引き続き4℃/分の降温速度で40℃まで冷却後、10分間保持する。その後、溶媒であるオルトジクロロベンゼンを1mL/分の流速でカラムに流し、TREFカラム中で40℃のオルトジクロロベンゼンに溶解している成分を10分間溶出させ、次に昇温速度100℃/時間にてカラムを140℃までリニアに昇温し、溶出曲線を得る。
カラム充填材:100μm表面不活性処理ガラスビーズ
溶媒:オルトジクロロベンゼン
試料濃度:5mg/mL
試料注入量:0.1mL
溶媒流速:1mL/分
検出器:波長固定型赤外検出器、FOXBORO社製、MIRAN、1A
測定波長:3.42μm
本発明に係るプロピレン系重合体(A)は、13C−NMRによって得られるプロピレン単位3連鎖のmm分率が95%以上の立体規則性を有するものである。
mm分率は、ポリマー鎖中、頭−尾結合からなる任意のプロピレン単位3連鎖中、各プロピレン単位中のメチル分岐の方向が同一であるプロピレン単位3連鎖の割合である。このmm分率は、ポリプロピレン分子鎖中のメチル基の立体構造がアイソタクチックに制御されていることを示す値であり、高いほど、高度に制御されていることを意味する。
mm分率がこの値より小さいと、製品の弾性率が低下するなど機械的物性が低下してしまう。従って、mm分率は、好ましくは96%以上であり、さらに好ましくは97%以上である。
また、主鎖および側鎖の立体規則性は、後述するプロピレン系重合体(A)の製造方法で用いられる触媒成分[A−1]および[A−2]のもつ立体規則能力によって決まる。側鎖の立体規則性が低いと、例え主鎖の結晶性が高くても全体の結晶性を落としてしまう。そこでより高剛性の重合体を得るためには側鎖、主鎖とも立体規則性が高いことが好ましい。その値としては、主鎖、側鎖ともmm分率で95%以上である。特に好ましくは96%以上であり、更に好ましくは97%以上である。
試料375mgをNMRサンプル管(10φ)中で重水素化1,1,2,2、−テトラクロロエタン2.5mlに完全に溶解させた後、125℃においてプロトン完全デカップリング法で測定した。ケミカルシフトは、重水素化1,1,2,2−テトラクロロエタンの3本のピークの中央のピークを74.2ppmに設定した。他の炭素ピークのケミカルシフトはこれを基準とする。
フリップ角:90度
パルス間隔:10秒
共鳴周波数:100MHz以上
積算回数:10,000回以上
観測域:−20ppmから179ppm
データポイント数:32768
スペクトルの帰属は、Macromolecules,(1975年)8卷,687頁やPolymer,30巻 1350頁(1989年)を参考に行った。
プロピレン単位を中心として頭尾結合した3連鎖の中心プロピレンのメチル基に由来するピークは、その立体配置に応じて、3つの領域に生じる。
mm:約24.3〜約21.1ppm
mr:約21.2〜約20.5ppm
rr:約20.5〜約19.8ppm
各領域の化学シフト範囲は、分子量や、共重合体組成により若干シフトするが、上記3領域の識別は、容易である。
ここで、mm、mrおよびrrは、それぞれ下記の構造で表される。
mm分率=mm領域のピーク面積/(mm領域のピーク面積+mr領域のピーク面積+rr領域のピーク面積)×100 [%] (I)
従って、式(I)においてmm分率を算出する場合には、それぞれmr領域のピーク面積、rr領域のピーク面積から、頭−尾結合した3連鎖に基づかないピークでmr及びrr領域に現れる炭素A、A’、A”、B、B’に基づくピーク面積を減ずる必要がある。
炭素A’に基づくピーク面積は、位置不規則部分構造[構造(ii)及び構造(iii)]の炭素H及びI(34.7ppm付近及び35.0ppm付近で共鳴)と炭素J(34.1ppm付近で共鳴)のピーク面積の和の2/5と炭素K(33.7ppm付近で共鳴)のピーク面積の和により評価できる。
炭素A”に基づくピーク面積は、炭素L(27.7ppm付近で共鳴)のピーク面積の和により評価できる。
炭素Bに基づくピーク面積は、炭素Jにより評価できる。また、炭素B’に基づくピーク面積は、炭素Kにより評価できる。
なお、炭素Cピーク及び炭素C’ピークの位置は、注目するmm、mr、rr領域と全く関与しないので考慮する必要はない。
以上により、mm、mrおよびrrのピーク面積を評価することができるので、上記数式(I)に従って、プロピレン単位を中心として頭−尾結合からなる3連鎖部のmm分率を求めることができる。
本発明に係るプロピレン系重合体(A)は、伸長粘度の測定における歪硬化度(λmax)が6.0以上であることが必要である。
歪硬化度(λmax)は、溶融時強度を表す指標であり、この値が大きいと、溶融張力が向上する効果がある。したがって、この歪硬化度は、6.0以上が必要であり、好ましくは10.0以上、より好ましくは15.0以上である。
また、この歪硬化度は、伸長粘度の非線形性を表す指標であり、通常、分子の絡み合いが多いほど、この値が大きくなると言われている。分子の絡み合いは、分岐の量、分岐鎖の長さに影響を受ける。したがって、分岐の量、分岐の長さが長いほど、歪硬化度は、大きくなる。
したがって、本発明に係るプロピレン系重合体(A)の分岐鎖長は、前記したとおり、骨格炭素数500(ポリプロピレン分子量換算:1.1万)以上であり、好ましくは骨格炭素数1000(ポリプロピレン分子量換算:2.1万)以上であり、更に好ましくは骨格炭素数2000(ポリプロピレン分子量換算:4.2万)以上である。
ここでいうポリプロピレン分子量換算値は、前記したとおり、厳密にはGPCで測定される分子量値とは異なるものであるが、GPCで測定される数平均分子量(Mn)に近似している。したがって本発明のプロピレン系重合体の分岐長は、GPCで測定される数平均分子量(Mn)で1.1万以上、好ましくは2.1万以上、さらに好ましくは4.2万以上と、置き換えて考えられる。
装置:Rheometorics社製 Ares
冶具:ティーエーインスツルメント社製 Extentional Viscosity Fixture
測定温度:180℃
歪み速度:0.1/sec
試験片の作成:プレス成形して18mm×10mm、厚さ0.7mm、のシートを作成する。
装置:東洋精機製作所社製、Melten Rheometer
測定温度:180℃
歪み速度:0.1/sec
試験片の作成:東洋精機製作所社製キャピログラフを用い、180℃で内径3mmのオリフィスを用いて、速度10〜50mm/minで押し出しストランドを作成する。
歪み速度:0.1/secの場合の伸長粘度を、横軸に時間t(秒)、縦軸に伸長粘度ηE(Pa・秒)を両対数グラフでプロットする。その両対数グラフ上で歪み硬化を起こす直前の粘度を直線で近似し、歪量が4.0となるまでの伸長粘度ηEの最大値(ηmax)を求め、また、その時間までの近似直線上の粘度をηlinとする。
図4は、伸長粘度のプロット図の一例である。ηmax/ηlinを、λmaxと定義し、歪硬化度の指標とする。
なお、歪速度は、0.001/secから10.0/secの範囲で測定可能であり、歪硬化度は歪速度の違いで変化する。この歪硬化度の歪速度依存性は、導入された分岐の形態や長さで変化すると考えられる。
本発明に係るプロピレン系重合体(A)は、メモリーエフェクト(ME)が下記式(I−1)を満たすことが望ましい。
(ME) ≧ −0.26×log(MFR)+1.9 (I−1)
[式中、ME(メモリーエフェクト)は、オリフィスが長さ8.00mm、径1.00mmφのメルトインデクサーを用いて、シリンダー内温度を190℃に設定して、荷重をかけ、押し出し速度が0.1g/分の時に、オリフィスから押し出されたポリマーをエタノール中で急冷し、その際の押出物のストランド径をオリフィス径で除した値とする。]
MEは、ポリマーの非ニュートン性を表す指標であり、MEが大きいことはその重合体に緩和時間の長い成分が存在することを示している。すなわち同一のMFRでMEが大きい場合には、より長期緩和成分が重合体に分布していることを意味する。
また、MEは、Log(MFR)と、1次の相関を有することが経験的に知られており、一般には、分子量が大きくなるほど(すなわちMFRの値が小さくなるほど)、MEの値は大きくなる。
(ME) ≧ −0.26×log(MFR)+2.20 (I−2)
更に好ましくは下記式(I−3)を満足することである。
(ME) ≧ −0.26×log(MFR)+2.40 (I−3)
本発明に係るプロピレン系重合体(A)は、制御された分岐構造(分岐量、分岐長、分岐分布)を持つために、溶融物性が顕著に改良される。すなわち、高い溶融張力を持ちながら、優れた溶融流動性をもつ。溶融張力と溶融流動性の指標として、以下の測定方法で測定する溶融張力(MT)と最高巻取速度(MaxDraw)のバランスで表すことができる。
東洋精機製作所社製キャピログラフ1Bを用い、下記の条件で樹脂を紐状に押し出して、ローラーに巻き取っていった時にプーリーに検出される張力を溶融張力(MT)とする。
キャピラリー:直径2.1mm
シリンダー径:9.6mm
シリンダー押出速度:10mm/分
巻き取り速度:4.0m/分
温度:230℃
ここで、MTの値が大きい方が、溶融張力が高いことを意味し、MaxDrawが大きい方が、流動性や延展性が良いことを意味する。
本発明のプロピレン系重合体は、分子量分布を広げ分岐を導入することにより、溶融張力が改善されており、したがって、MTは、好ましくは5g以上であり、より好ましくは10g以上、更に好ましくは15g以上である。
本発明に係るプロピレン系重合体(A)は、分岐成分を制御することにより、高いMTを保ったまま、大きなMaxDrawを持つことができ、溶融張力と溶融延展性のバランスが改善されている。
したがって、本発明に係るプロピレン系重合体(A)は、MaxDrawが、好ましくは10m/分以上であり、より好ましくは20m/分以上であり、更に好ましくは30m/分以上である。
本発明に係るプロピレン系重合体(A)を製造する方法については、上記の溶融流動性や溶融張力を制御した、物性と加工性のバランスに優れる長鎖分岐型のプロピレン系重合体が得られる方法であればよく、特に制限はないが、例えば、制御した分岐成分を導入する方法としては、下記のような複数の錯体を用いる方法を挙げることができる。
(A):下記一般式(1)で表される化合物である成分[A−1]から少なくとも1種類、および一般式(2)で表される化合物である成分[A−2]から少なくとも1種類、選んだ2種以上の周期律表4族の遷移金属化合物
成分[A−1]:一般式(3)で表される化合物
成分[A−2]:一般式(4)で表される化合物
(B):イオン交換性層状珪酸塩
(C):有機アルミニウム化合物
(イ)触媒成分(A)
(i)成分[A−1]:一般式(3)で表される化合物
また、置換された2−フリル基、置換された2−チエニル基、置換された2−フルフリル基の置換基としては、メチル基、エチル基、プロピル基等の炭素数1〜6のアルキル基、フッ素原子、塩素原子等のハロゲン原子、メトキシ基、エトキシ基等の炭素数1〜6のアルコキシ基、トリアルキルシリル基が挙げられる。これらのうち、メチル基、トリメチルシリル基が好ましく、メチル基が特に好ましい。
さらに、R11およびR12として、特に好ましくは、2−(5−メチル)−フリル基である。また、R11およびR12は、互いに同一である場合が好ましい。
R13およびR14としては、好ましくは少なくとも1つが、フェニル基、4−t−ブチルフェニル基、2,3―ジメチルフェニル基、3,5―ジ−t−ブチルフェニル基、4−フェニル−フェニル基、クロロフェニル基、ナフチル基、又はフェナンスリル基であり、更に好ましくはフェニル基、4−t−ブチルフェニル基、4−クロロフェニル基である。また、2つのR2が互いに同一である場合が好ましい。
上記のQ11の具体例としては、メチレン、メチルメチレン、ジメチルメチレン、1,2−エチレン、等のアルキレン基;ジフェニルメチレン等のアリールアルキレン基;シリレン基;メチルシリレン、ジメチルシリレン、ジエチルシリレン、ジ(n−プロピル)シリレン、ジ(i−プロピル)シリレン、ジ(シクロヘキシル)シリレン等のアルキルシリレン基、メチル(フェニル)シリレン等の(アルキル)(アリール)シリレン基;ジフェニルシリレン等のアリールシリレン基;テトラメチルジシリレン等のアルキルオリゴシリレン基;ゲルミレン基;上記の2価の炭素数1〜20の炭化水素基を有するシリレン基のケイ素をゲルマニウムに置換したアルキルゲルミレン基;(アルキル)(アリール)ゲルミレン基;アリールゲルミレン基などを挙げることが出来る。これらの中では、炭素数1〜20の炭化水素基を有するシリレン基、または、炭素数1〜20の炭化水素基を有するゲルミレン基が好ましく、アルキルシリレン基、アルキルゲルミレン基が特に好ましい。
ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−チエニル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジフェニルシリレンビス{2−(5−メチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルゲルミレンビス{2−(5−メチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルゲルミレンビス{2−(5−メチル−2−チエニル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−t−ブチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−トリメチルシリル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−フェニル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(4,5−ジメチル−2−フリル)−4−フェニル−インデニル}]ハフニウムジクロライド、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−ベンゾフリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジフェニルシリレンビス{2−(5−メチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−メチル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−イソプロピル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フルフリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−クロロフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−フルオロフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−トリフルオロメチルフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−t−ブチルフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フリル)−4−(1−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フリル)−4−(2−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フリル)−4−(2−フェナンスリル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フリル)−4−(9−フェナンスリル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(1−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(2−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(2−フェナンスリル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(9−フェナンスリル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−t−ブチル−2−フリル)−4−(1−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−t−ブチル−2−フリル)−4−(2−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−t−ブチル2−−フリル)−4−(2−フェナンスリル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−t−ブチル2−−フリル)−4−(9−フェナンスリル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレン(2−メチル−4−フェニル−インデニル){2−(5−メチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレン(2−メチル−4−フェニル−インデニル){2−(5−メチル−2−チエニル)−4−フェニル−インデニル}]ハフニウム、などを挙げることができる。
また、上記R23およびR24は、それぞれ独立して、炭素数6〜30の、好ましくは炭素数6〜24の、ハロゲン、ケイ素、又は、これらから選択される複数のヘテロ元素を含有してもよいアリール基である。好ましい例としてはフェニル、3−クロロフェニル、4−クロロフェニル、3−フルオロフェニル、4−フルオロフェニル、4−メチルフェニル、4−i−プロピルフェニル、4−t−ブチルフェニル、4−トリメチルシリルフェニル、4−(2−フルオロ−4−ビフェニル)、4−(2−クロロ−4−ビフェニル)、1−ナフチル、2−ナフチル、4−クロロ−2−ナフチル、3−メチル−4−トリメチルシリルフェニル、3,5−ジメチル−4−t−ブチルフェニル、3,5−ジメチル−4−トリメチルシリルフェニル、3,5−ジクロロ−4−トリメチルシリルフェニル等が挙げられる。
ただし、煩雑な多数の例示を避けて代表的例示化合物のみ記載した。また中心金属がハフニウムの化合物を記載したが、同様のジルコニウム化合物も使用可能であり、種々の配位子や架橋結合基又は補助配位子を任意に使用し得ることは自明である。
ジクロロ{1,1’−ジメチルシリレンビス(2−メチル−4−フェニル−4−ヒドロアズレニル)}ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−t−ブチルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(3−クロロ−4−t−ブチルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(3−メチル−4−t−ブチルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(3−クロロ−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(3−メチル−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(1−ナフチル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(2−ナフチル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロ−2−ナフチル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(2−フルオロ−4−ビフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(2−クロロ−4−ビフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(9−フェナントリル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−n−プロピル−4−(3−クロロ−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(3−クロロ−4−t−ブチルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(3−メチル−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルゲルミレンビス{2−メチル−4−(2−フルオロ−4−ビフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルゲルミレンビス{2−メチル−4−(4−t−ブチルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−(9−シラフルオレン−9,9−ジイル)ビス{2−エチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(4−クロロ−2−ナフチル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(2−フルオロ−4−ビフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−(9−シラフルオレン−9,9−ジイル)ビス{2−エチル−4−(3,5−ジクロロ−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、などが挙げられる。
次に、本発明に係るプロピレン系重合体(A)の重合に用いられる触媒成分(B)は、イオン交換性層状珪酸塩である。
(i)イオン交換性層状珪酸塩の種類
本発明において、原料として使用するイオン交換性層状珪酸塩(以下、単に珪酸塩と略記する)とは、イオン結合などによって構成される面が互いに結合力で平行に積み重なった結晶構造を有し、かつ、含有されるイオンが交換可能である珪酸塩化合物をいう。大部分の珪酸塩は、天然には主に粘土鉱物の主成分として産出されるため、イオン交換性層状珪酸塩以外の夾雑物(石英、クリストバライト等)が含まれることが多いが、それらを含んでもよい。それら夾雑物の種類、量、粒子径、結晶性、分散状態によっては純粋な珪酸塩以上に好ましいことがあり、そのような複合体も、成分(B)に含まれる。
尚、本発明の原料とは、後述する本発明の化学処理を行う前段階の珪酸塩をさす。また、本発明で使用する珪酸塩は、天然産のものに限らず、人工合成物であってもよい。それらを含んでもよい。
すなわち、モンモリロナイト、ザウコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スチーブンサイト等のスメクタイト族、バーミキュライト等のバーミキュライト族、雲母、イライト、セリサイト、海緑石等の雲母族、アタパルジャイト、セピオライト、パリゴルスカイト、ベントナイト、パイロフィライト、タルク、緑泥石群等である。
本発明に係る触媒成分(B)のイオン交換性層状珪酸塩は、特に処理を行うことなくそのまま用いることができるが、化学処理を施すことが好ましい。ここでイオン交換性層状珪酸塩の化学処理とは、表面に付着している不純物を除去する表面処理と粘土の構造に影響を与える処理のいずれをも用いることができ、具体的には、酸処理、アルカリ処理、塩類処理、有機物処理等が挙げられる。
酸処理は、表面の不純物を取り除くほか、結晶構造のAl、Fe、Mg、等の陽イオンの一部または全部を溶出させることができる。
酸処理で用いられる酸は、好ましくは塩酸、硫酸、硝酸、リン酸、酢酸、シュウ酸から選択される。
処理に用いる塩類(次項で説明する)および酸は、2種以上であってもよい。塩類および酸による処理条件は、特には制限されないが、通常、塩類および酸濃度は、0.1〜50重量%、処理温度は、室温〜沸点、処理時間は、5分〜24時間の条件を選択して、イオン交換性層状珪酸塩から成る群より選ばれた少なくとも一種の化合物を構成している物質の少なくとも一部を溶出する条件で行うことが好ましい。また、塩類および酸は、一般的には水溶液で用いられる。
なお、本発明では、以下の酸類、塩類を組み合わせたものを処理剤として用いてもよい。また、これら酸類、塩類の組み合わせであってもよい。
本発明においては、塩類で処理される前の、イオン交換性層状珪酸塩の含有する交換可能な1族金属の陽イオンの40%以上、好ましくは60%以上を、下記に示す塩類より解離した陽イオンと、イオン交換することが好ましい。
このようなイオン交換を目的とした塩類処理で用いられる塩類は、1〜14族原子から成る群より選ばれた少なくとも一種の原子を含む陽イオンと、ハロゲン原子、無機酸および有機酸から成る群より選ばれた少なくとも一種の陰イオンとから成る化合物であり、更に好ましくは、2〜14族原子から成る群より選ばれた少なくとも一種の原子を含む陽イオンとCl、Br、I、F、PO4、SO4、NO3、CO3、C2O4、ClO4、OOCCH3、CH3COCHCOCH3、OCl2、O(NO3)2、O(ClO4)2、O(SO4)、OH、O2Cl2、OCl3、OOCH、OOCCH2CH3、C2H4O4およびC5H5O7から成る群から選ばれる少なくとも一種の陰イオンとから成る化合物である。
また、Ti(OOCCH3)4、Ti(CO3)2、Ti(NO3)4、Ti(SO4)2、TiF4、TiCl4、Zr(OOCCH3)4、Zr(CO3)2、Zr(NO3)4、Zr(SO4)2、ZrF4、ZrCl4、ZrOCl2、ZrO(NO3)2、ZrO(ClO4)2、ZrO(SO4)、HF(OOCCH3)4、HF(CO3)2、HF(NO3)4、HF(SO4)2、HFOCl2、HFF4、HFCl4、V(CH3COCHCOCH3)3、VOSO4、VOCl3、VCl3、VCl4、VBr3等が挙げられる。
酸、塩処理の他に、必要に応じて下記のアルカリ処理や有機物処理を行ってもよい。アルカリ処理で用いられる処理剤としては、LiOH、NaOH、KOH、Mg(OH)2、Ca(OH)2、Sr(OH)2、Ba(OH)2などが例示される。
また、有機物処理に用いられる有機処理剤の例としては、トリメチルアンモニウム、トリエチルアンモニウム、N,N−ジメチルアニリニウム、トリフェニルホスホニウム、等が挙げられる。
また、有機物処理剤を構成する陰イオンとしては、塩類処理剤を構成する陰イオンとして例示した陰イオン以外にも、例えばヘキサフルオロフォスフェート、テトラフルオロボレート、テトラフェニルボレートなどが例示されるが、これらに限定されるものではない。
イオン交換性層状珪酸塩の吸着水および層間水の加熱処理方法は、特に制限されないが、層間水が残存しないように、また、構造破壊を生じないよう条件を選ぶことが必要である。加熱時間は0.5時間以上、好ましくは1時間以上である。その際、除去した後の成分(B)の水分含有率が、温度200℃、圧力1mmHgの条件下で2時間脱水した場合の水分含有率を0重量%とした時、3重量%以下、好ましくは1重量%以下、であることが好ましい。
また、造粒の際に、有機物、無機溶媒、無機塩、各種バインダ−を用いてもよい。
上記のようにして得られた球状粒子は、重合工程での破砕や微粉の生成を抑制するためには0.2MPa以上、特に好ましくは0.5MPa以上の圧縮破壊強度を有することが望ましい。このような粒子強度の場合には、特に予備重合を行う場合に、粒子性状改良効果が有効に発揮される。
本発明に係るプロピレン系重合体(A)の重合に用いられる触媒成分(C)は、有機アルミニウム化合物である。成分(C)として用いられる有機アルミニウム化合物は、一般式:(AlR15 qZ3−q)pで示される化合物が適当である。
本発明では、この式で表される化合物を単独で、複数種混合して又は併用して使用することができることは言うまでもない。この式中、R15は、炭素数1〜20の炭化水素基を示し、Zは、ハロゲン、水素、アルコキシ基、アミノ基を示す。qは1〜3の、pは1〜2の整数を各々表す。R15としては、アルキル基が好ましく、またZは、それがハロゲンの場合には塩素が、アルコキシ基の場合には炭素数1〜8のアルコキシ基が、アミノ基の場合には炭素数1〜8のアミノ基が、好ましい。
本発明による触媒は、上記の各成分を(予備)重合槽内で、同時にもしくは連続的に、又は一度にもしくは複数回にわたって、接触させることによって形成させることができる。
各成分の接触は、脂肪族炭化水素又は芳香族炭化水素溶媒中で行うのが普通である。接触温度は、特に限定されないが、−20℃から150℃の間で行うのが好ましい。接触順序としては、合目的的な任意の組み合わせが可能であるが、特に好ましいものを各成分について示せば次の通りである。
成分(C)を使用する場合、成分(A)と成分(B)を接触させる前に、成分(A)と、又は成分(B)と、または成分(A)及び成分(B)の両方に成分(C)を接触させること、または、成分(A)と成分(B)を接触させるのと同時に成分(C)を接触させること、または、成分(A)と成分(B)を接触させた後に成分(C)を接触させることが可能であるが、好ましくは、成分(A)と成分(B)を接触させる前に、成分(C)といずれかに接触させる方法である。
また、各成分を接触させた後、脂肪族炭化水素又は芳香族炭化水素溶媒にて洗浄することが可能である。
成分[A−1]からは、低分子量の末端ビニルマクロマーを生成し、成分[A−2]からは、一部マクロマーを共重合した高分子量体を生成する。したがって、成分[A−1]の割合を変化させることで、生成する重合体の平均分子量、分子量分布、分子量分布の高分子量側への偏り、非常に高い分子量成分、分岐(量、長さ、分布)を制御することができ、そのことにより、歪硬化度、溶融張力、溶融延展性といった溶融物性を制御することができる。
また、使用する水素量に対する、平均分子量と触媒活性のバランスを調整することが可能である。
より高い溶融物性と高い触媒活性が必要な用途のプロピレン系重合体製造のために、特に好ましくは0.40以上であり、さらに好ましくは0.5以上である。また上限値は、特に好ましくは0.90以下であり、更に好ましくは0.8以下の範囲である。
重合様式は、前記成分(A)、成分(B)及び成分(C)を含むオレフィン重合用触媒とモノマーが効率よく接触するならば、あらゆる様式を採用し得る。
具体的には、不活性溶媒を用いるスラリー法、不活性溶媒を実質的に用いずプロピレンを溶媒として用いる、所謂バルク法、溶液重合法又は実質的に液体溶媒を用いず各モノマーをガス状に保つ気相法などが採用できる。また、連続重合、回分式重合を行う方法も適用される。また、単段重合以外に、2段以上の多段重合することも可能である。
また、重合温度は、0℃以上150℃以下である。特に、バルク重合を用いる場合には、40℃以上が好ましく、更に好ましくは50℃以上である。また上限は80℃以下が好ましく、更に好ましくは75℃以下である。
さらに、気相重合を用いる場合には、40℃以上が好ましく、更に好ましくは50℃以上である。また上限は100℃以下が好ましく、更に好ましくは90℃以下である。
さらに、気相重合を用いる場合には、1.5MPa以上が好ましく、更に好ましくは2.0MPa以上である。また上限は2.5MPa以下が好ましく、更に好ましくは2.0MPa以下である。
水素は、プロピレンに対してフィード比で、0〜1mol%の範囲で用いるのがよく、好ましくは0.0001mol%以上であり、さらに好ましくは0.001mol%以上用いるのがよい。
使用する水素の量を変化させることで、生成する重合体の平均分子量の他に、分子量分布、分子量分布の高分子量側への偏り、非常に高い分子量成分、分岐(量、長さ、分布)を制御することができ、そのことにより、歪硬化度、溶融張力、溶融延展性といった溶融物性を制御することができる。
この中では、本発明に係るプロピレン系重合体(A)を溶融物性と触媒活性をバランスよく得るためには、エチレンを5モル%以下で用いるのが好ましい。特に剛性の高い重合体を得るためには重合体中に含まれるエチレンを1モル%以下になるようにエチレンを用いるのがよく、更に好ましくはプロピレン単独重合である。
マクロマーの生成は、β−メチル脱離と一般に呼ばれる特殊な連鎖移動反応により生成すると考察され、本発明では、特定の構造をもつ成分[A−1]は、比較的低温の温度領域(40℃〜80℃)で、成長停止反応中β−メチル脱離反応の選択性が高く、また、ポリマー成長反応に対するβ−メチル脱離反応の比が従来の構造の錯体と比べて、大きいことが、見出されている。
従来は、β−メチル脱離反応を優先的に起こすために、プロピレン濃度の薄いスラリー重合での特殊な条件下(低圧、高温重合、水素無添加)でしか製造できなかったのに対して、特定の構造をもつ成分[A−1]を用いることにより、工業的に有効なバルク重合や気相重合によって、しかも実用的な圧力条件(1.0〜3.0MPa)および温度条件(40℃〜80℃)下で、製造が可能であることが分かった。
このことは、従来は特殊な条件(低圧、高温、水素無添加)であるマクロマー生成工程を経た後に、マクロマー共重合を行う多段重合を行わなければならなかったのに対し、成分[A−2]と組み合わせることにより、マクロマー生成工程とマクロマー共重合工程を同条件で行うことができる、つまり、同時重合、単段重合できることが分かった。
従来は、マクロマー生成とマクロマー共重合を単一の錯体で製造しているため、すなわち、成分[A−1]と成分[A−2]を同一の錯体で重合体を製造するため、マクロマー生成能力またはマクロマー共重合能力のどちらかが不十分であったり、高分子量側に分岐成分の導入量が不十分であったり、また、分子量の調整に水素を用いると、マクロマー自体の生成量が減少してしまうという問題点があった。
また、従来は、立体規則性の低い成分を使用して結晶性を落とすことによって、分岐生成効率を高めなければならなかったが、本発明の方法では、充分に立体規則性の高い成分を側鎖に簡便な方法で導入することが可能となった。
本発明で用いるプロピレン系重合体(B)は、重合に用いられる触媒としては、チタン、マグネシウム及びハロゲンを必須成分として含有する固体触媒成分(a)と、有機アルミニウム成分(b)からなるプロピレン重合用触媒が好ましい。また、チタン、マグネシウム、ハロゲン及び電子供与体を必須成分とする固体触媒成分(a)と、有機アルミニウム成分(b)とから形成されるチーグラー・ナッタ触媒が、上記重合に用いられることがより好ましい。
(i)チタン、マグネシウム及びハロゲンを必須成分として含有する固体成分
(ii)Si−OR1結合(ただし、R1は炭素数1から8の炭化水素基である。)を2つ以上含有する有機ケイ素化合物
(iii)ビニルシラン化合物
(iv)周期律I〜III族金属の有機金属化合物
成分(i)は、チタン、マグネシウム及びハロゲンを含有する原料固体成分である。これらチタン(Ti)−マグネシウム(Mg)−ハロゲンの三元素(三成分)はいずれも必須成分として含有するものである。ここで、「必須成分として含有する」ということは、挙示の三成分のほかに合目的的な他元素を含んでもよいこと、これらの元素はそれぞれが合目的的な任意の化合物として存在してもよいこと、ならびにこれら元素は相互に結合したものとして存在してもよいこと、を示すものである。チタン、マグネシウムおよびハロゲンを含む原料固体成分そのものは公知のものである。例えば、特開昭53−45688
号、同54−3894号、同54−31092号、同54−39483号、同54−94591号、同54−118484号、同54−131589号、同55−75411号、同55−90510号、同55−90511号、同55−90511号、同55−127405号、同55−147507号、同55−155003号、同56−18609号、同56−70005号、同56−72001号、同56−86905号、同56−90807号、同56−155206号、同57−92007号、同57−121003号、同58−5309号、同58−5310号、同58−5311号、同58−8706号、同58−27732号、同58−32604号、同58−32605号、同58−67703号、同58−117206号、同58−127708号、同58−183708号、同58−183709号、同59−149905号、同59−149906号、同60−130607号、同61−55104号、同61−204204号、同62−508号、同62−15209号、同62−20507号、同62−184005号、同62−236805号、同63−199207号、同63−264607号、同63−264608号、特開平1−79203号、同1−139601号、同1−215806号、同7−258328号、同7−269125号、同11−21309号、各公報等に記載のものが使用される。
これらの中で、より好ましいのは有機酸エステル化合物、酸ハライド化合物及びエーテル化合物であり、特に好ましいのはフタル酸ジエステル化合物及びフタル酸ジハライド化合物からなる群から選択されるものである。
(イ)ハロゲン化マグネシウムと電子供与体、チタン含有化合物を接触させる方法。
(ロ)アルミナ又はマグネシアをハロゲン化リン化合物で処理し、それにハロゲン化マグネシウム、電子供与体、チタンハロゲン含有化合物を接触させる方法。
−[Si(H)(R3)−O−]X−
ここで、上式中、R3は炭素数1〜10程度の炭化水素基であり、xはこのポリマーケイ素化合物の粘度が1〜100センチストークス程度となるような重合度を示す。
具体的には、メチルハイドロジェンポリシロキサン、エチルハイドロジェンポリシロキサン、フェニルハイドロジェンポリシロキサン、シクロヘキシルハイドロジェンポリシロキサン、1,3,5,7−テトラメチルシクロテトラシロキサン、1,3,5,7,9−ペンタメチルシクロペンタシロキサン等が好ましい。
(ホ)グリニャール試薬等の有機マグネシウム化合物をハロゲン化剤、還元剤等と作用させた後、これに必要に応じて電子供与体を接触させ、次いでチタン化合物、および電子供与体を接触させるかまたは、各々別に接触させる方法。
(ヘ)アルコキシマグネシウム化合物にハロゲン化剤および/またはチタン化合物を電子供与体の存在下もしくは不存在下に接触させるかまたは、各々別に接触させる方法。
本発明の固体触媒成分(a)を製造するために好ましく使用される成分(ii)は、Si−OR1結合(ただし、R1は炭素数1〜8の炭化水素基)を2つ以上含有する有機ケイ素化合物である。
固体触媒成分(a)を形成するために好ましく使用される成分(iii)は、ビニルシラン化合物である。ビニルシラン化合物としては、モノシラン(SiH4)中の少なくとも一つの水素原子がビニル基(CH2=CH−)に置き換えられ、そして残りの水素原子のうちのいくつかが、ハロゲン(好ましくはCl)、炭化水素基(好ましくは炭素数1〜12のアルキル基)、アリール基(好ましくはフェニル基)、アルコキシ基(好ましくは炭素数1〜12のアルコキシ基)、その他で置き換えられた構造を示すものである。
固体触媒成分(a)を形成するために好ましく使用される成分(iv)は、周期律I〜III族の有機金属化合物である。有機金属化合物であることからこの化合物は少なくとも一つの有機基・金属結合を持つ。その場合の有機基としては、炭素数1〜10程度、好ましくは1〜6程度、の炭化水素基が代表的である。この化合物の金属としては、リチウム、マグネシウム、アルミニウムおよび亜鉛、特にアルミニウムが代表的である。
これらのうちでは、特に有機アルミニウム化合物が好ましい。
固体触媒成分(a)は、該成分(a)を構成する各成分(i)〜(iv)、および必要により用いられる任意成分を、段階的にまたは一時的に相互に接触させて、その中間および/または最後に有機溶媒で洗浄することによって製造することができる。
具体的には、(イ):成分(i)と成分(iii)とを接触させた後に、成分(ii)及び成分(iv)を接触させ、最後に洗浄する方法、(ロ):成分(i)と成分(ii)を接触させた後に、成分(iii)、成分(iv)を接触させ、洗浄する方法、(ハ):成分(i)、(ii)、(iii)を同時に接触した後に、成分(iv)を接触させ、洗浄する方法などが採用される。
接触温度は、−50〜200℃程度、より好ましくは0〜100℃である。接触方法としては、回転ボールミル、振動ミル、ジェットミル、媒体撹拌粉砕機などによる機械的な方法、不活性希釈剤の存在下に撹拌により接触させる方法などがある。このとき使用する不活性希釈剤としては、脂肪族または芳香族の炭化水素およびハロ炭化水素、ポリシロキサン等が挙げられる。
成分(i)のチタン化合物の使用量は、使用するマグネシウム化合物の使用量に対してモル比(Ti/Mg)で0.0001〜1,000、より好ましくは0.01〜10である。ハロゲン源としてそのための化合物を使用する場合は、その使用量はチタン化合物および(または)マグネシウム化合物がハロゲンを含む、含まないにかかわらず、使用するマグネシウムの使用量に対してモル比で0.01〜1,000がよく、より好ましくは0.1〜100である。電子供与体の使用量は、前記のマグネシウム化合物の使用量に対してモル比(ハロゲン/Mg)で0.001〜10がよく、より好ましくは0.01〜5である。
なお、固体触媒成分(a)の製造の中間および/または最後には、前記溶剤洗浄の他にも、該溶剤洗浄で用いられるのと同様の不活性有機溶媒での洗浄工程を付加することができる。
かかるプロピレン系重合体(B)は、ポリプロピレンとして市販されているものの中から適宜選択し使用することもできる。市販品としては、日本ポリプロ社製「ノバテック」等が挙げられる。
この中で特にtert−ブチルメチルジメトキシシランを製造時に外部ドナーとして使用すると、プロピレン系重合体のアイソタクチックペンタッド分率(mmmm分率)がさらに高くなり、強いては剛性が向上する。
気相重合工程の各工程は、それぞれ何段でもよい。
また、重合温度は特に制限はないが、通常20〜100℃、好ましくは40〜80℃の範囲から選択される。各段の重合温度は同一でも異なっていてもよい。
また、多段の、各段のそれぞれの重合時間も特に限定されないが、例えば、1段目30分、2段目30分、3段目1時間のように設定される。
また(B)の配合量は0〜95重量%の範囲であり、0〜80重量%の範囲が好ましく、0〜50重量%の範囲がより好ましく、0〜30重量%の範囲がさらに好ましく、0〜20重量%の範囲が特に好ましく、0〜10重量%の範囲が最も好ましい。(B)の配合量が上記を上回ると均一延伸性を阻害する。
造核剤の配合量が0.1重量%以上であると透明性の改良効果が十分であり、1重量%以下であると費用対前記効果(コスト・パフォーマンス)の点から有利である。
なお、これら造核剤は2種以上を組み合わせて用いてもよい。
酸化防止剤としては、フェノール系酸化防止剤、フォスファイト系酸化防止剤およびチオ系酸化防止剤などが例示でき、中和剤としては、ステアリン酸カルシウムやステアリン酸亜鉛、ステアリン酸アルミニウムなどの高級脂肪酸塩類やハイドロタルサイト類が例示でき、光安定剤および紫外線吸収剤としては、ヒンダードアミン類、ニッケル錯化合物、ベンゾトリアゾール類、ベンゾフェノン類などが例示できる。
プロピレン系重合体組成物は、そのまま単独で使用することも、また、本発明の効果を損なわない範囲で、プロピレン系重合体(A)、(B)とは異なる別のポリプロピレンや、ポリエチレン、各種エラストマー、石油樹脂のような別のポリマーを添加して使用することも出来る。
本発明の二軸延伸ポリプロピレンシートは、少なくとも本発明のポリプロピレン系樹脂組成物を含む主層からなるシートであり、2層以上の多層構造であってもなんら差し支えない。例えば、主層の少なくとも片面に、エチレン−ビニルアルコール共重合体(EVOH)やポリアミド樹脂といったバリア性樹脂層および接着層を配置したバリアシートを設けても、さらに、最外層に高光沢層や低光沢層といった意匠性を持たせた層を配置することも可能である。
又、シートの片面および両面に、防曇剤、帯電防止剤、滑剤等の表面処理剤を塗布することもできる。
未延伸シートの製造は、公知の方法を用いることができ、例えば、Tダイから溶融押出した樹脂を冷却ロールに巻き付ける方法や、円形ダイスから溶融押出した樹脂を空冷または水冷により冷却固化する方法が挙げられる。
延伸方法は、公知の方法を用いることができ、例えば、テンター式延伸法、ロール間の速度差を利用したロール延伸法、パンタグラフ式バッチ延伸法などが挙げられる。
本発明で使用されるポリプロピレン系樹脂組成物を用いた原反シートの厚みは、1〜4mmであることが好ましく、1.5〜3.5mmがさらに好ましく、1.8〜3mmが特に好ましい。厚みが1mm以上であると、延伸後のシート肉厚を確保し易くなり、厚みが4mm以下であると、シート成形がし易くなる。
ポリプロピレン系シートの具体的製造法としては、ポリプロピレン系樹脂組成物に必要により他の成分(造核剤、各種添加剤、別のポリマー)を配合したポリプロピレン系樹脂組成物を、公知の単軸又は二軸のスクリュー押出機に通して、コートハンダーダイからシート状に押出した後、(内部で冷却水や油が循環している)金属ロール表面に、エアーナイフ、エアーチャンバー、硬質ゴムロール、スチールベルト、金属フレックスロール、金属ロールにて押さえつけ冷却固化されることによって得ることができる。又、シート両面をスチールベルトで挟んで冷却固化することもできる。
このようなシートの冷却方法の中では、シート両面に金属ロール及び/又はスチールベルト及び金属フレックスロールを使用する方法が表面凹凸の少ないシート表面、つまり透明性に優れたシートを得られることから最も好ましい方法である。
本発明の成形体は、本発明の二軸延伸ポリプロピレン系シートを用いて熱成形された成形体である。
本発明の成形体の一つの側面は、本発明の二軸延伸ポリプロピレン系シートを用いて融解ピーク温度以下で0.2MPa以上の圧空圧力で真空圧空成形された成形体である。
圧空圧力が0.2MPaを上回ると金型の形状を忠実に得ることが出来易くなる。圧空圧力は0.2MPa以上、好ましくは0.3MPa以上、さらに好ましくは0.35MPa以上である。
又、アシストプラグを設けることもでき、成形体の肉厚均一性が向上するので好ましい。
本発明の成形体は、意匠性に優れ電子レンジ加熱が可能なため、食品包装用蓋、食品容器、洗剤容器、医療用容器等の各種分野の製品において、広く用いることができる。
(1)メルトフローレート(MFR)[単位:g/10min]
プロピレン系樹脂は、JIS K7210:1999「プラスチック―熱可塑性プラスチックのメルトマスフローレイト(MFR)及びメルトボリュームフローレイト(MVR)の試験方法」のA法、条件M(230℃、2.16kg荷重)に準拠して測定し、エチレン・α−オレフィン共重合体は、JIS K6922−2:1997付属書に準拠し、190℃、荷重2.16kgで測定した。
(2)融点(Tm)および結晶化温度(Tc)
セイコーインスツルメンツ社製DSC6200を使用し、シート状にしたサンプル片を5mgアルミパンに詰め、室温から一旦200℃まで昇温速度100℃/分で昇温し、5分間保持した後に、10℃/分で20℃まで降温して、結晶化させた時の結晶最大ピーク温度(℃)として結晶化温度(Tc)を求め、その後、10℃/分で200℃まで昇温させた時の融解最大ピーク温度(℃)として融点(Tm)を求めた。
(3)分子量及び分子量分布(Mw/Mn、分子量M(≧200万)、α/β)
ゲルパーミエーションクロマトグラフィー(GPC)により、上記本明細書記載の方法で、測定及び算出した。
(4)昇温溶出分別(TREF)
TREF測定方法は、下記の装置を用い、前述した通りである。
(i)TREF部
TREFカラム:4.3mmφ×150mmステンレスカラム
カラム充填材:100μm表面不活性処理ガラスビーズ
加熱方式:アルミヒートブロック
冷却方式:ペルチェ素子(ペルチェ素子の冷却は水冷)
温度分布:±0.5℃
温調器:(株)チノー デジタルプログラム調節計KP1000(バルブオーブン)
加熱方式:空気浴式オーブン
測定時温度:140℃
温度分布:±1℃
バルブ:6方バルブ 4方バルブ
(ii)試料注入部
注入方式:ループ注入方式
注入量:ループサイズ 0.1ml
注入口加熱方式:アルミヒートブロック
測定時温度:140℃
(iii)検出部
検出器:波長固定型赤外検出器 FOXBORO社製 MIRAN 1A
検出波長:3.42μm
高温フローセル:LC−IR用ミクロフローセル 光路長1.5mm 窓形状2φ×4mm長丸 合成サファイア窓板
測定時温度:140℃
(iv)ポンプ部
送液ポンプ:センシュウ科学社製 SSC−3461ポンプ
(v)測定条件
溶媒:o−ジクロロベンゼン(0.5mg/mLのBHTを含む)
試料濃度:5mg/mL
試料注入量:0.1mL
溶媒流速 :1mL/分
東洋精機製作所社製キャピログラフ1Bを用い、下記の条件で樹脂を紐状に押し出して、ローラーに巻き取っていった時にプーリーに検出される張力を溶融張力(MT)として測定した。
キャピラリー:直径2.1mm
シリンダー径:9.6mm
シリンダー押出速度:10mm/分
巻き取り速度:4.0m/分
温度:230℃
また、巻き取り速度を4.0m/分から徐々に上げていったとき(加速度:5.4cm/s2)、紐状物が切断する直前の巻き取り速度を、最大巻取速度(MaxDraw)として測定した。
(6)ME(メモリーエフェクト)
タカラ社製のメルトインデクサーを用い、190℃でオリフィス径1.0mm、長さ8.0mm中を、荷重をかけて押し出し、押し出し速度が0.1g/分になるように荷重を調節し、その速度の時に、オリフィスから押し出されたポリマーを、エタノール中で急冷し、その際のストランド径の値をオリフィス径で除した値として算出した。この値は、Log(MFR)と相関する値であり、この値が大きいと、スウェルが大きく射出成形したときの製品外観がよくなることを示す。
(7)mm分率
日本電子社製、GSX−400、FT−NMRを用い、上記本明細書記載の方法で測定した。単位は%である。
(8)エチレン含量の測定
13C−NMRを用いて検量線を作成し、IRを用いて測定した。
(9)伸長粘度
上記本明細書記載の方法で測定した。
(10)組成分析
JIS法による化学分析により検量線を作成し、蛍光X線により測定した。
以下のいずれかの評価方法に従って測定した。
95mm角に切削した延伸前原反シートの表面中央に、50mm角内に10mm間隔での碁盤をスタンプし、二軸延伸機(東洋精機製作所社製二軸延伸試験装置)を用いて二軸延伸し(製造−1)、引き伸ばされた碁盤の交点厚み(交点計25箇所)を測定、厚みの標準偏差値を求めた。延伸倍率は縦方向×横方向=4×4倍(面倍率=16倍)で行った。
95mm角に切削した延伸前原反シートの表面中央に、50mm角内に10mm間隔での碁盤をスタンプし、二軸延伸機(ブルックナー社製KAROIV)を用いて二軸延伸し(製造−2)、引き伸ばされた碁盤の交点厚み(交点計25箇所)を測定、厚みの標準偏差値を求めた。延伸倍率は縦方向×横方向=3×3倍(面倍率=9倍)で行った。
[1]プロピレン系重合体(A)
下記の製造例1〜2で製造したプロピレン系樹脂(PP−1)、プロピレン系樹脂(PP−2)を用いた。
[触媒成分(A)の合成例1]
(1)ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−t−ブチルフェニル)インデニル}]ハフニウムの合成:(成分[A−1](錯体1)の合成):
(1−a)4−(4−t−ブチルフェニル)−インデンの合成:
1000mlのガラス製反応容器に、1−ブロモ−4−t−ブチル−ベンゼン(40g、0.19mol)、ジメトキシエタン(400ml)を加え、−70℃まで冷却した。ここに、t−ブチルリチウム−ペンタン溶液(260ml、0.38mol、1.46mol/L)を滴下した。滴下後、徐々に室温まで戻しながら5時間攪拌した。再び−70℃まで冷却し、そこにトリイソプロピルボレート(46ml、0.20mol)のジメトキシエタン溶液(100ml)を滴下した。滴下後、徐々に室温に戻しながら一夜攪拌した。
反応液を氷水(1L)中に注ぎ、そこから3回エーテル抽出を行い、エーテル層を飽和食塩水で中性になるまで洗浄した。ここに硫酸ナトリウムを加え一晩放置し反応液を乾燥させた。無水硫酸ナトリウムをろ過し、溶媒を減圧留去して、シリカゲルカラムで精製し、4−(4−t−ブチルフェニル)−インデン(37g、収率98%)を淡黄色液体として得た。
1000mlのガラス製反応容器に、4−(4−t−ブチルフェニル)−インデン(37g、0.15mol)、ジメチルスルホキシド(400ml)、蒸留水(11ml)を加え、そこにN−ブロモスクシンイミド(35g、0.20mol)を徐々に加え、そのまま室温で1時間攪拌した。
反応液を氷水(1L)中に注ぎ、そこから3回トルエンで抽出を行った。トルエン層を飽和食塩水で洗浄し、p−トルエンスルホン酸(4.3g、22mmol)を加え、水分を除去しながら2時間加熱還流させた。
反応液を分液ロートに移し食塩水で中性になるまで洗浄した。ここに硫酸ナトリウムを加え一晩放置し反応液を乾燥させた。無水硫酸ナトリウムをろ過し、溶媒を減圧留去して、シリカゲルカラムで精製し、2−ブロモ−4−(4−t−ブチルフェニル)−インデン(46g、収率95%)を淡黄色固体として得た。
1000mlのガラス製反応容器に、メチルフラン(13.8g、0.17mol)、ジメトキシエタン(400ml)を加え、−70℃まで冷却した。ここにn−ブチルリチウム−ヘキサン溶液(111ml、0.17mol、1.52mol/L)を滴下した。滴下後、徐々に室温まで戻しながら3時間攪拌した。再び70℃まで冷却し、そこにトリイソプロピルボレート(41ml、0.18mol)を含むジメトキシエタン溶液(100ml)を滴下した。滴下後、徐々に室温に戻しながら一夜攪拌した。
反応液に蒸留水(50ml)を加え、30分間攪拌した後、炭酸ナトリウム54gの水溶液(100ml)、2−ブロモ−4−(4−t−ブチルフェニル)−インデン(46g、0.14mol)、テトラキス(トリフェニルフォスフィノ)パラジウム(5g、4.3mmol)を順に加え、その後、低沸成分を除去しながら加熱し80℃で3時間加熱した。
反応液を氷水(1L)中に注ぎ、そこから3回エーテル抽出を行い、エーテル層を飽和食塩水で中性になるまで洗浄した。ここに硫酸ナトリウムを加え一晩放置し反応液を乾燥させた。無水硫酸ナトリウムをろ過し、溶媒を減圧留去して、シリカゲルカラムで精製し、ヘキサンで再結晶を行い4−(4−t−ブチルフェニル)−2−(5−メチル−2−フリル)−インデン(30.7g、収率66%)を無色結晶として得た。
1000mlのガラス製反応容器に、4−(4−t−ブチルフェニル)−2−(5−メチル−2−フリル)−インデン(22g、66mmol)、THF(200ml)を加え、−70℃まで冷却した。ここにn−ブチルリチウム−ヘキサン溶液(42ml、67mmol、1.60mol/L)を滴下した。滴下後、徐々に室温まで戻しながら3時間攪拌した。再び−70℃まで冷却し、1−メチルイミダゾール(0.3ml、3.8mmol)を加え、ジメチルジクロロシラン(4.3g、33mmol)を含むTHF溶液(100ml)を滴下した。滴下後、徐々に室温に戻しながら一夜攪拌した。
反応液に蒸留水を加え、分液ロートに移し食塩水で中性になるまで洗浄した。ここに硫酸ナトリウムを加え一晩放置し反応液を乾燥させた。無水硫酸ナトリウムをろ過し、溶媒を減圧留去して、シリカゲルカラムで精製し、ジメチルビス(2−(5−メチル−2−フリル)−4−(4−t−ブチルフェニル))−インデニル)シランの淡黄色固体(22g、収率92%)を得た。
500mlのガラス製反応容器に、ジメチルビス(2−(5−メチル−2−フリル)−4−(4−t−ブチルフェニル)−インデニル)シラン9.6g(13.0ミリモル)、ジエチルエーテル300mlを加え、ドライアイス−メタノール浴で−70℃まで冷却した。ここに1.59モル/リットルのn−ブチルリチウム−ヘキサン溶液16ml(26ミリモル)を滴下した。滴下後、室温に戻し3時間攪拌した。反応液の溶媒を減圧で留去し、トルエン250ml、ジエチルエーテル10mlを加え、ドライアイス−メタノール浴で−70℃まで冷却した。そこに、四塩化ハフニウム4.2g(13.0ミリモル)を加えた。その後、徐々に室温に戻しながら一夜攪拌した。
溶媒を減圧留去し、ジクロロメタン/ヘキサンで再結晶を行い、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−t−ブチルフェニル)−インデニル}]ハフニウムのラセミ体(純度99%以上)を、黄橙色結晶として1.3g(収率22%)得た。
[1H−NMR(CDCl3)同定結果]:
ラセミ体:δ0.95(s,6H),δ1.18(s,18H),δ2.09(s,6H),δ5.80(d,2H),δ6.37(d,2H),δ6.75(dd,2H),δ7.09(d,2H),δ7.34(s,2H),δ7.33(d,2H),δ7.35(d,4H),δ7.87(d,4H)。
(1)rac−ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウムの合成:(成分[A−1](錯体2)の合成):
rac−ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウムの合成は、特開平11―240909号公報の実施例1に記載の方法と同様に、実施した。
(2−1)イオン交換性層状珪酸塩の化学処理
セパラブルフラスコ中で蒸留水3456gに96%硫酸(1044g)を加えその後、層状珪酸塩としてモンモリロナイト(水沢化学社製ベンクレイSL:平均粒径19μm)600gを加えた。このスラリーを0.5℃/分で1時間かけて90℃まで昇温し、90℃で120分反応させた。この反応スラリーを1時間で室温まで冷却し、蒸留水2400gを加えた後にろ過したところケーキ状固体1230gを得た。
次に、セパラブルフラスコ中に、硫酸リチウム648g、蒸留水1800gを加え硫酸リチウム水溶液としたところへ、上記ケーキ状固体を全量投入し、更に蒸留水522gを加えた。このスラリーを0.5℃/分で1時間かけて90℃まで昇温し、90℃で120分反応させた。この反応スラリーを1時間で室温まで冷却し、蒸留水1980gを加えた後にろ過し、更に蒸留水でpH3まで洗浄し、ろ過を行ったところ、ケーキ状固体1150gを得た。
得られた固体を窒素気流下130℃で2日間予備乾燥後、53μm以上の粗大粒子を除去し、更に215℃、窒素気流下、滞留時間10分の条件でロータリーキルン乾燥することにより、化学処理スメクタイト340gを得た。
この化学処理スメクタイトの組成は、Al:7.81重量%、Si:36.63重量%、Mg:1.27重量%、Fe:1.82重量%、Li:0.20重量%であり、Al/Si=0.222[mol/mol]であった。
3つ口フラスコ(容積1L)中に、上で得られた化学処理スメクタイト10gを入れ、ヘプタン(65mL)を加えてスラリーとし、これにトリイソブチルアルミニウム(25mmol:濃度143mg/mLのヘプタン溶液を34.6mL)を加えて1時間攪拌後、ヘプタンで1/1000まで洗浄し、全容量を100mLとなるようにヘプタンを加えた。
また、別のフラスコ(容積200mL)中で、前記触媒成分(A)の合成例1で作製したrac−ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−t−ブチルフェニル)インデニル}]ハフニウム(105μmol)をトルエン(30mL)に溶解し(溶液1)、更に、別のフラスコ(容積200mL)中で、前記触媒成分(A)の合成例2で作製したrac−ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウム(45μmol)をトルエン(12mL)に溶解した(溶液2)。
その後、ヘプタンを356mL追加し、このスラリーを1Lオートクレーブに導入した。
オートクレーブの内部温度を40℃にしたのちプロピレンを10g/時の速度でフィードし、2時間40℃を保ちつつ予備重合を行った。その後、プロピレンフィードを止めて、50℃に昇温し、オートクレーブ内の圧力が0.05MPaになるまで残重合を行った。得られた触媒スラリーの上澄みをデカンテーションで除去した後、残った部分に、トリイソブチルアルミニウム(6mmol:濃度143mg/mLのヘプタン溶液を8.3mL)を加えて5分攪拌した。
この固体を2時間減圧乾燥することにより、乾燥予備重合触媒27.5gを得た。予備重合倍率(予備重合ポリマー量を固体触媒量で除した値)は1.75であった(予備重合触媒1)。
内容積200リットルの撹拌式オートクレーブ内をプロピレンで十分に置換した後、十分に脱水した液化プロピレン40kgを導入した。これに水素7.8NL(0.70g)、トリイソブチルアルミニウム(0.12mol:濃度50g/Lのヘプタン溶液を0.47L)を加えた後、内温を70℃まで昇温した。次いで予備重合触媒を2.4g(予備重合ポリマーを除いた重量で)、アルゴンで圧入して重合を開始させ、内部温度を70℃に維持した。2時間経過後に、エタノールを100ml圧入し、未反応のプロピレンをパージし、オートクレーブ内を窒素置換することにより重合を停止した。得られたポリマーを90℃窒素気流下で1時間乾燥し、18.7kgの重合体を得た。
触媒活性は7800gPP/g触媒であった。MFRは2.3g/10分であった。
添加する水素を9.9NL(0.88g)で行う以外はプロピレン系樹脂(PP−1)の製造と同様に実施し、23.5kgの重合体を得た。触媒活性は9800gPP/g触媒であった。MFRは9.0g/10分であった。
市販のポリプロピレン樹脂(FL203D、FL4、FY4、FY6HA)を用いた。
(市販品の特性)
ノバテックFL203D(商品名):
日本ポリプロ社製のプロピレン単独重合体(MFR=3.0g/10min、融点=160℃)
ノバテックFL4(商品名):
日本ポリプロ社製のプロピレン単独重合体(MFR=5.0g/10min、融点=162℃)
ノバテックFY4(商品名):
日本ポリプロ社製のプロピレン単独重合体(MFR=5.0g/10min、融点=160℃)
ノバテックFY6HA(商品名):
日本ポリプロ社製のプロピレン単独重合体(MFR=2.4g/10min、融点=162℃)
(1)プロピレン系樹脂(PP−1)を100重量部に対し、フェノール系酸化防止剤としてIRGANOX1010(商品名、チバ・スペシャルティ・ケミカルズ社製)を0.05質量部、リン系酸化防止剤としてIRGAFOS168(商品名、チバ・スペシャルティ・ケミカルズ社)製を0.1質量部、中和剤としてステアリン酸カルシウムを0.03質量部を配合し、スーパーミキサーで窒素シール後、3分間混合した後、押出機にて溶融混錬しペレット化することで、ポリプロピレン系樹脂組成物1を得た。
得られたペレットについて測定した各種物性を表1に示す。
上記で得られたペレットをスクリュー口径65mmの押出機に投入し、樹脂温度230℃にて加熱溶融可塑化してT型ダイスより押出して得たポリプロピレン系シートを、60℃の水で内部が冷却された鏡面仕上げの金属製キャストロ−ルと、同様に70℃の水で内部が冷却された鏡面仕上げの金属製キャストにて挟み冷却固化させながら2m/分の速度で連続的に引き取り、幅800mm、厚み2.0mmのシートを得た。
次いで、このシートを用いて、二軸延伸試験装置(東洋精機製作所社製)で、154℃で6分間の加熱後に、延伸速度1.0m/minにて縦方向及び横方向に同時に4×4倍まで延伸し、二軸延伸シートを得た。
この二軸延伸シートについて、前述の評価を行った。結果を表1に示す。
本発明の構成を満足する二軸延伸ポリプロピレンシートは、均一延伸性に優れたものであった。
実施例1で得られたポリプロピレン系樹脂組成物1を75重量%とプロピレン系重合体(B:FL4)を25重量%とをブレンドしたポリプロピレン系樹脂組成物を用い、二軸延伸装置の加熱温度を158℃とした以外は実施例1と同様に実施し、二軸延伸シートを得た。
この二軸延伸シートについて、前述の評価を行った。結果を表1に示す。
本発明の構成を満足する二軸延伸ポリプロピレンシートは、均一延伸性に優れたものであった。
プロピレン系樹脂(PP−1)の代わりに、プロピレン系樹脂(PP−2)を用い、二軸延伸装置の加熱温度を156℃とした以外は実施例1と同様に実施し、二軸延伸シートを得た。
この二軸延伸シートについて、前述の評価を行った。結果を表1に示す。
本発明の構成を満足する二軸延伸ポリプロピレンシートは、均一延伸性に優れたものであった。
表1に示す配合と二軸延伸装置の加熱温度にて、実施例1と同様に二軸延伸ポリプロピレンシートを得た結果を表1に示す。
本発明の構成を満たさない二軸延伸ポリプロピレンシートは、均一延伸性に劣り、熱成形用シートとして用いる事が不可能な物であった。
(3)ポリプロピレンシート及び二軸延伸シートの製造−2
実施例1で得られたペレットをスクリュー口径65mmの押出機に投入し、樹脂温度230℃にて加熱溶融可塑化してT型ダイスより押出して得たポリプロピレン系シートを、80℃の水で内部が冷却された鏡面仕上げの金属製キャストロ−ルと、同様に90℃の水で内部が冷却された鏡面仕上げの金属製キャストにて挟み冷却固化させながら1.0m/分の速度で連続的に引き取り、幅700mm、厚み3.0mmのシートを得た。
次いで、このシートを用いて二軸延伸試験装置(ブルックナー社製KAROIV)で、155℃で3分間の加熱後に、延伸速度1.0m/minにて縦方向及び横方向に同時に3×3倍まで延伸し、二軸延伸シートを得た。
この二軸延伸シートについて、前述の評価を行った。結果を表2に示す。
本発明の構成を満足する二軸延伸ポリプロピレンシートは、均一延伸性に優れたものであった。
表2に示す配合と二軸延伸機の加熱温度にて、実施例4と同様に二軸延伸ポリプロピレンシートを得た。結果を表2に示す。
これらの二軸延伸シートについて、前述の評価を行った。結果を表2に示す。
本発明の構成を満足する二軸延伸ポリプロピレンシートは、均一延伸性に優れたものであった。
表2に示す配合と二軸延伸機の加熱温度にて、実施例4と同様に二軸延伸ポリプロピレンシートを得た。結果を表2に示す。
本発明の構成を満たさない二軸延伸ポリプロピレンシートは、均一延伸性に劣り、熱成形用シートとして用いる事が不可能な物であった。
Claims (9)
- 下記(i)〜(vi)に規定する要件を満たすことを特徴とするプロピレン系重合体(A)100〜5重量%と、DSCで測定した融点が150〜170℃であるプロピレン系重合体(B)を0〜95重量%配合したポリプロピレン系樹脂組成物からなる押出シートを二軸方向に延伸して得られる二軸延伸ポリプロピレンシート。
(i)メルトフローレート(MFR)(温度230℃、荷重2.16kg)が0.5g/10分以上、20g/10分以下である。
(ii)ゲルパーミエーションクロマトグラフィー(GPC)で測定する重量平均分子量(Mw)と数平均分子量(Mn)の比(Q値)が3.5以上、10.5以下である。
(iii)GPCによって得られる分子量分布曲線において、全量に対して、分子量(M)が200万以上の成分の比率が0.4重量%以上、10重量%未満である。
(iv)オルトジクロロベンゼン(ODCB)による昇温溶出分別(TREF)において、40℃以下の温度で溶出する成分が3.0重量%以下である。
(v)13C−NMRで測定するアイソタクチックトライアッド分率(mm)が95%以上である。
(vi)伸長粘度の測定における歪硬化度(λmax)が6.0以上である。 - プロピレン系重合体(A)は、さらに、下記要件(vii)及び(viii)を満たすことを特徴とする請求項1に記載の二軸延伸ポリプロピレンシート。
(vii) (MT230℃) ≧ 5g
[式中、MT230℃は、メルトテンションテスターを用いて、キャピラリー:直径2.1mm、シリンダー径:9.6mm、シリンダー押出速度:10mm/分、巻き取り速度:4.0m/分、温度:230℃の条件で測定したときの溶融張力を表す。]
(viii) (MaxDraw) ≧ 10m/分
[式中、MaxDraw(最高巻き取り速度)は、上記溶融張力の測定において、巻き取り速度を上げていったときの樹脂が破断する直前の巻き取り速度を表す。] - プロピレン系重合体(A)は、さらに、下記要件(ix)を満たすことを特徴とする請求項1又は2に記載の二軸延伸ポリプロピレンシート。
(ix) (ME) ≧ −0.26×log(MFR)+1.9
[式中、ME(メモリーエフェクト)は、オリフィスが長さ8.00mm、径1.00mmφのメルトインデクサーを用いて、シリンダー内温度を190℃に設定して、荷重をかけ、押し出し速度が0.1g/分の時に、オリフィスから押し出されたポリマーをエタノール中で急冷し、その際の押出物のストランド径をオリフィス径で除した値とする。] - プロピレン系重合体(A)は、さらに、下記要件(x)を満たすことを特徴とする請求項1〜3のいずれか1項に記載の二軸延伸ポリプロピレンシート。
(x)GPCによって得られる分子量分布曲線において、ピーク位置に相当する分子量の常用対数をTp、ピーク高さの50%高さとなる位置の分子量の常用対数をL50及びH50(L50はTpより低分子量側、H50はTpより高分子量側)とし、α及びβをそれぞれα=H50−Tp、β=Tp−L50と定義したとき、α/βが0.9より大きく、2.0未満である。 - MD及びTDの各々で1.5倍以上延伸され、面倍率にて3〜30倍延伸されてなる事を特徴とする請求項1〜4のいずれか1項に記載の二軸延伸ポリプロピレンシート。
- 延伸後のシート厚みが0.1mm〜1mmである請求項1〜6のいずれか1項に記載の二軸延伸ポリプロピレンシート。
- 延伸後のシート厚みの標準偏差が50以下となる請求項1〜7のいずれか1項に記載の二軸延伸ポリプロピレンシート。
- 請求項1〜8のいずれか1項に記載の二軸延伸ポリプロピレンシートを熱成形して得られる成形体。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015228707 | 2015-11-24 | ||
JP2015228707 | 2015-11-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017101229A JP2017101229A (ja) | 2017-06-08 |
JP6787070B2 true JP6787070B2 (ja) | 2020-11-18 |
Family
ID=59017989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016225618A Active JP6787070B2 (ja) | 2015-11-24 | 2016-11-21 | 二軸延伸ポリプロピレンシート |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6787070B2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017221985A1 (ja) * | 2016-06-24 | 2017-12-28 | 王子ホールディングス株式会社 | 二軸延伸ポリプロピレンフィルム、金属化フィルム、及び、コンデンサ |
KR102285140B1 (ko) * | 2018-12-03 | 2021-08-02 | 한화솔루션 주식회사 | 올레핀 중합용 촉매의 제조방법 |
JPWO2021162021A1 (ja) * | 2020-02-12 | 2021-08-19 | ||
JPWO2022107706A1 (ja) * | 2020-11-17 | 2022-05-27 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5342915B2 (ja) * | 2008-05-13 | 2013-11-13 | 日本ポリプロ株式会社 | ポリプロピレン系熱成形用シートおよびその深絞り成形体 |
JP5673913B2 (ja) * | 2009-08-31 | 2015-02-18 | 大日本印刷株式会社 | 深絞り用積層体及び深絞り容器 |
JP2015021043A (ja) * | 2013-07-18 | 2015-02-02 | 日本ポリプロ株式会社 | ポリプロピレン系二軸延伸フィルム |
-
2016
- 2016-11-21 JP JP2016225618A patent/JP6787070B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017101229A (ja) | 2017-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6064668B2 (ja) | ポリプロピレン系樹脂組成物および発泡シート | |
JP6089765B2 (ja) | ポリプロピレン系樹脂発泡シートおよび熱成形体 | |
JP4553966B2 (ja) | プロピレン系重合体 | |
JP5342915B2 (ja) | ポリプロピレン系熱成形用シートおよびその深絞り成形体 | |
JP6098274B2 (ja) | プロピレン−エチレン共重合体樹脂組成物並びにフィルム | |
JP5297838B2 (ja) | ポリプロピレン系発泡延伸フィルム | |
JP5140625B2 (ja) | プロピレン系樹脂組成物及びそれを用いた食品容器、医療部材 | |
JP6787070B2 (ja) | 二軸延伸ポリプロピレンシート | |
JP5342922B2 (ja) | 押出発泡成形用樹脂組成物およびそれを用いた発泡体 | |
JP5124517B2 (ja) | ポリプロピレン系ブロー成形体 | |
JP5286147B2 (ja) | ポリプロピレン系深絞り成形体 | |
JP5256102B2 (ja) | ポリプロピレン系射出ブロー成形体 | |
JP5862486B2 (ja) | 押出しラミネート用ポリプロピレン系樹脂組成物および積層体 | |
JP5297834B2 (ja) | ポリプロピレン系発泡フィルム | |
JP2015054919A (ja) | 溶断シール用ポリプロピレン系樹脂組成物及びポリプロピレン系フィルム | |
JP5849913B2 (ja) | 押出しラミネート用ポリプロピレン系樹脂組成物および積層体 | |
JP6213176B2 (ja) | 押出しラミネート用ポリプロピレン系樹脂組成物および積層体 | |
JP5880369B2 (ja) | 押出しラミネート用ポリプロピレン系樹脂組成物および積層体 | |
JP6213179B2 (ja) | 押出しラミネート用ポリプロピレン系樹脂組成物および積層体 | |
JP6213180B2 (ja) | 押出しラミネート用ポリプロピレン系樹脂組成物および積層体 | |
JP2009299024A (ja) | プロピレン系複合樹脂組成物およびそれを用いた押出成形体 | |
JP6244946B2 (ja) | 射出成形用プロピレン系樹脂組成物および成形品 | |
JP7331677B2 (ja) | ポリプロピレン系樹脂組成物および発泡シート | |
JP2019014078A (ja) | 多層シートおよびその成形体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190604 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200423 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200714 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200929 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201012 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6787070 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |