[go: up one dir, main page]

JP6786203B2 - Submarine construction material and submarine structure using this material - Google Patents

Submarine construction material and submarine structure using this material Download PDF

Info

Publication number
JP6786203B2
JP6786203B2 JP2015178186A JP2015178186A JP6786203B2 JP 6786203 B2 JP6786203 B2 JP 6786203B2 JP 2015178186 A JP2015178186 A JP 2015178186A JP 2015178186 A JP2015178186 A JP 2015178186A JP 6786203 B2 JP6786203 B2 JP 6786203B2
Authority
JP
Japan
Prior art keywords
submarine
construction material
steelmaking slag
vol
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015178186A
Other languages
Japanese (ja)
Other versions
JP2017053150A (en
Inventor
裕一 田中
裕一 田中
彩人 堤
彩人 堤
山田 耕一
耕一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP2015178186A priority Critical patent/JP6786203B2/en
Publication of JP2017053150A publication Critical patent/JP2017053150A/en
Application granted granted Critical
Publication of JP6786203B2 publication Critical patent/JP6786203B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Revetment (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、潜堤構築材料およびこの材料を用いた潜堤構造に関する。 The present invention relates to a dike construction material and a dike structure using this material.

人工干潟は、潜堤を設置した後に浚渫土等の中詰材を投入し、その上に覆砂を行うことにより造成する(例えば、特許文献4参照)。潜堤の材料としては礫材の他に、製鋼スラグ(例えば、特許文献1参照)や固化体(例えば、特許文献2参照)等が使用される。また、浚渫土と製鋼スラグの混合材(例えば、特許文献3参照)も潜堤材への利用が進められている(例えば、非特許文献1,2参照)。 An artificial tidal flat is created by putting a filling material such as dredged soil after installing a submarine and covering it with sand (see, for example, Patent Document 4). As the material of the dike, in addition to the gravel material, steelmaking slag (see, for example, Patent Document 1), a solidified body (see, for example, Patent Document 2) and the like are used. Further, a mixed material of dredged soil and steelmaking slag (see, for example, Patent Document 3) is also being used as a submerged material (see, for example, Non-Patent Documents 1 and 2).

図8に従来の人工干潟構造の一例を概略的に示す。この人工干潟は、水底の原地盤G上に浚渫土に製鋼スラグを混合した混合材料により潜堤1を構築した後、岸側(陸側)の原地盤G上に浚渫土等からなる中詰材2を投入し、その上に覆砂3を行うことで造成される。 FIG. 8 schematically shows an example of a conventional artificial tidal flat structure. In this artificial tidal flat, after the submarine 1 is constructed with a mixed material of dredged soil mixed with steelmaking slag on the original ground G on the bottom of the water, the filling is made of dredged soil on the original ground G on the shore side (land side). It is created by putting the material 2 into the material and covering it with sand 3.

特開2005-256497号公報Japanese Patent Application Laid-Open No. 2005-256497 特開2011-246336号公報Japanese Unexamined Patent Publication No. 2011-246336 特開2009-121167号公報Japanese Unexamined Patent Publication No. 2009-121167 特開2011-208365号公報Japanese Unexamined Patent Publication No. 2011-208365

「カルシア改質土 設計・施工マニュアル」カルシア改質土研究会(2013)"Calcia Modified Soil Design and Construction Manual" Calcia Modified Soil Study Group (2013) 山田耕一・辻 匠・渡部要一・水谷崇亮・森川嘉之・鵜飼亮行「軟弱地盤上のカルシア改質土を用いた干潟潜堤に関する実験と考察」土木学会論文集B3(海洋開発),vol.69,No.2,I_1048-1053,2013 (www.jstage.jst.go.jp/article/jscejoe/69/2/69_I_1048/_article/references/-char/ja/)Koichi Yamada, Takumi Tsuji, Yoichi Watanabe, Takaaki Mizutani, Yoshiyuki Morikawa, Ryoyuki Ukai "Experiments and Discussions on Tidal Flat Submersibles Using Calcia Modified Soil on Soft Ground" , Vol.69, No.2, I_1048-1053, 2013 (www.jstage.jst.go.jp/article/jscejoe/69/2/69_I_1048/_article/references/-char/ja/)

干潟潜堤に用いられる、軟弱地盤における浚渫土と製鋼スラグとの混合材料のめり込みに関する模型実験の報告(非特許文献2)によれば、混合材料の固化に伴い、潜堤底面1a(図8)にクラックの発生がみられ、クラックは最大で数mmにも達した。こうしたクラックは、潜堤の安定性に影響を及ぼすことが考えるため好ましくない。 According to a report of a model experiment on the embedding of a mixed material of dredged soil and steelmaking slag in soft ground used for a tidal flat submarine (Non-Patent Document 2), the bottom surface 1a of the submarine 1a (Fig. 8) as the mixed material solidifies. Cracks were found in the cracks, and the cracks reached a maximum of several mm. Such cracks are not preferable because they may affect the stability of the dike.

本発明は、上述のような従来技術の問題に鑑み、潜堤におけるクラック発生の問題を回避でき潜堤の安定性を保つことができる潜堤構築材料およびこの材料を用いた潜堤構造を提供することを目的とする。 In view of the above-mentioned problems of the prior art, the present invention provides a submarine construction material capable of avoiding the problem of crack generation in the submarine and maintaining the stability of the submarine, and a submarine structure using this material. The purpose is to do.

上記目的を達成するための潜堤構築材料は、堤体が水面下に没する潜堤を構築するための材料であって、含水比を100〜300%に調整した粘性土と粒径37.5mm以下の製鋼スラグとを、前記粘性土が内割り体積比で70〜90%、前記製鋼スラグが内割り体積比で30〜10%となるように混合し、さらに繊維状物質を外割り体積比で0.1〜1.0%添加した材料についての一軸圧縮試験において圧縮ひずみが5%または5%以上で圧縮応力が減少しない特性を有することを特徴とする。
The submarine construction material for achieving the above objectives is a material for constructing a submarine in which the embankment body is submerged under the water surface, and is a cohesive soil having a water content ratio adjusted to 100 to 300% and a particle size of 37.5 mm. The following steelmaking slags are mixed so that the cohesive soil has an internal division volume ratio of 70 to 90% and the steelmaking slag has an internal division volume ratio of 30 to 10% , and the fibrous material has an external division volume ratio. It is characterized in that it has a property that the compressive stress does not decrease when the compressive strain is 5% or 5% or more in the uniaxial compression test for the material to which 0.1 to 1.0% is added.

この潜堤構築材料によれば、粘性土に製鋼スラグを混合することで、強度を向上させることができる。また、繊維状物質の添加により粒状材料である製鋼スラグに繊維状物質が絡みやすくなることで、高い変形追随性を有するとともに、ひずみが加えられても強度低下が抑制され、クラックの発生を抑制することができる。また、この潜堤構築材料は強度回復性を有し、材料にクラックが発生したとしても強度を回復することができる。このように、本潜堤構築材料を用いることで、潜堤におけるクラック発生の問題を回避することができ潜堤の安定性を保つことができる。 According to this submerged levee construction material, the strength can be improved by mixing steelmaking slag with cohesive soil. In addition, the addition of the fibrous substance makes it easier for the fibrous substance to get entangled with the steelmaking slag, which is a granular material, so that it has high deformation followability, and even if strain is applied, the decrease in strength is suppressed and the occurrence of cracks is suppressed. can do. In addition, this submarine construction material has strength recovery property, and even if a crack occurs in the material, the strength can be recovered. In this way, by using this submarine construction material, the problem of crack generation in the submarine can be avoided and the stability of the submarine can be maintained.

粘性土の含水比が100%以上であると、製鋼スラグや繊維状物質との施工性が低下せずに良好で、含水比300%以下であると、強度が低下せずに良好である。製鋼スラグの混合量が体積比30%以下であると、流動性・施工性が低下せずに良好であり、また、体積比10%以上であると、強度の向上が期待できる。また、繊維状物質の添加量が体積比0.1%以上であると、強度低下抑制・変形追随性付与・強度回復の効果を得ることができ、また、添加量が体積比1.0%以下であると、流動性・施工性を確保できるとともに添加量が多くなり過ぎずにコストがさほどかさまない。 When the water content of the cohesive soil is 100% or more, the workability with steelmaking slag and fibrous substances is not deteriorated, and when the water content is 300% or less, the strength is not lowered and it is good. When the mixing amount of the steelmaking slag is 30% or less by volume, the fluidity and workability are not deteriorated, and it is good, and when the volume ratio is 10% or more, the strength can be expected to be improved. Further, when the amount of the fibrous substance added is 0.1% or more by volume, the effects of suppressing the decrease in strength, imparting deformation followability, and recovering the strength can be obtained, and when the amount of the fibrous substance added is 1.0% or less by volume. In addition to ensuring fluidity and workability, the amount of addition does not become too large and the cost does not increase so much.

上記潜堤構築材料において、前記潜堤構築材料についての一軸圧縮試験において圧縮ひずみが5%または5%以上で圧縮応力が減少しない特性を有する
The submarine construction material has a property that the compressive stress does not decrease when the compressive strain is 5% or 5% or more in the uniaxial compression test for the submarine construction material .

上記目的を達成するための潜堤構造は、上述の潜堤構築材料から構築されたことを特徴とする。かかる潜堤構造によれば、潜堤におけるクラック発生の問題を回避できるので、安定性を保つことのできる潜堤構造を実現できる。 The submarine structure for achieving the above object is characterized in that it is constructed from the above-mentioned submarine construction material. According to such a submarine structure, the problem of crack generation in the submarine can be avoided, so that a submarine structure capable of maintaining stability can be realized.

また、別の潜堤構造は、上述の潜堤構築材料から構築された潜堤下部と、前記潜堤構築材料以外の材料から構築された潜堤上部と、を有することを特徴とする。かかる潜堤構造によれば、潜堤下部におけるクラック発生の問題を回避できるので、安定性を保つことのできる潜堤構造を実現できるとともに、潜堤全体の材料コストを削減可能である。 Another submarine structure is characterized by having a submarine lower part constructed from the above-mentioned submarine construction material and a submarine upper part constructed from a material other than the submarine construction material. According to such a submarine structure, the problem of crack generation in the lower part of the submarine can be avoided, so that a submarine structure capable of maintaining stability can be realized and the material cost of the entire submarine can be reduced.

上記別の潜堤構造において、前記潜堤構築材料以外の材料は、前記潜堤構築材料において前記繊維状物質の添加を省略した材料であることが好ましい。 In the other submarine structure, the material other than the submarine construction material is preferably a material in which the addition of the fibrous substance is omitted in the submarine construction material.

本発明によれば、潜堤におけるクラック発生の問題を回避でき潜堤の安定性を保つことができる潜堤構築材料およびこの材料を用いた潜堤構造を提供することができる。 According to the present invention, it is possible to provide a levee construction material capable of avoiding the problem of crack generation in the levee and maintaining the stability of the levee, and a levee structure using this material.

本実施形態による人工干潟用潜堤を示す概略図である。It is the schematic which shows the dike for artificial tidal flat by this embodiment. 本実施形態による別の人工干潟用潜堤を示す概略図である。It is a schematic diagram which shows another dike for artificial tidal flat by this embodiment. 本実施例において表1の材料について実施した一軸圧縮試験から得られた応力ひずみ線図を示す図である。It is a figure which shows the stress-strain diagram obtained from the uniaxial compression test performed on the material of Table 1 in this Example. (a)〜(i)は本実施例において表2の材料について実施した一軸圧縮試験から得られた応力ひずみ線図を示す図である。(A) to (i) are diagrams showing stress-strain diagrams obtained from the uniaxial compression test performed on the materials shown in Table 2 in this example. 本実施例において強度回復の確認のために表3の材料について実施した一軸圧縮試験から得られた圧縮ひずみと圧縮応力比との関係を示す図である。It is a figure which shows the relationship between the compressive strain and the compressive stress ratio obtained from the uniaxial compression test performed on the material of Table 3 for confirmation of strength recovery in this Example. 本実施例において表4に示す材料について実施したフロー試験の結果を示す図である。It is a figure which shows the result of the flow test performed on the material shown in Table 4 in this Example. 本実施例において表5に示す材料について実施したフロー試験の結果を示す図である。It is a figure which shows the result of the flow test performed on the material shown in Table 5 in this Example. 従来の人工干潟構造の一例を示す概略図である。It is a schematic diagram which shows an example of the conventional artificial tidal flat structure.

以下、本発明を実施するための形態について図面を用いて説明する。図1は本実施形態による人工干潟用潜堤を示す概略図である。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a schematic view showing a submarine for an artificial tidal flat according to the present embodiment.

図1に示すように、本実施形態による人工干潟用潜堤10は、水底の原地盤G上に、粘性土と製鋼スラグとを混合しさらに繊維状物質を添加した潜堤構築材料を用いて水面下に没するように構築されている。人工干潟は、潜堤10と、潜堤10の構築後に岸側(陸側)の原地盤G上に投入された浚渫土等からなる中詰材11と、中詰材11の上に設けられた覆砂12とから構成される。 As shown in FIG. 1, the artificial tidal flat submarine 10 according to the present embodiment uses a submarine construction material in which cohesive soil and steelmaking slag are mixed and a fibrous substance is added on the original ground G of the water bottom. It is constructed to be submerged under the surface of the water. The artificial tidal flat is provided on the submarine 10, the filling material 11 made of the dredged soil and the like thrown onto the original ground G on the shore side (land side) after the construction of the submarine 10, and the filling material 11. It is composed of a sand cover 12.

図1の潜堤10の構築のための潜堤構築材料は、含水比を100〜300%に調整した粘性土(内割り体積比で70〜90%)と粒径37.5mm以下の製鋼スラグ(内割り体積比で10〜30%)とを混合し、さらに繊維状物質を外割り体積比で0.1〜1.0%添加したものである。 The submarine construction materials for constructing the submarine 10 in FIG. 1 are cohesive soil (70-90% in terms of internal volume ratio) whose water content is adjusted to 100 to 300% and steelmaking slag with a particle size of 37.5 mm or less (internal division volume ratio). It is a mixture of 10 to 30% by volume of internal division) and 0.1 to 1.0% of fibrous substance added by volume ratio of external division.

上述の粘性土としては、浚渫土の他、購入材料、たとえば山粘土、ベントナイトなどを使用できる。含水比を100〜300%に調整して使用する。 As the above-mentioned cohesive soil, in addition to dredged soil, purchased materials such as mountain clay and bentonite can be used. Adjust the water content to 100-300% before use.

上述の製鋼スラグは粒径37.5mm以下であり、目標強度等に応じて、製鋼スラグの混合量を10〜30%(体積比)の範囲で調整する。なお、製鋼スラグとして、高炉で製造された銑鉄を転炉で精錬する工程で生成される粒状体である転炉系製鋼スラグを用いることが好ましい。 The above-mentioned steelmaking slag has a particle size of 37.5 mm or less, and the mixing amount of the steelmaking slag is adjusted in the range of 10 to 30% (volume ratio) according to the target strength and the like. As the steelmaking slag, it is preferable to use a converter-type steelmaking slag which is a granular material produced in the process of refining pig iron produced in a blast furnace in a converter.

上述の繊維状物質として各種繊維を使用可能であり、たとえば、ポリエステル、ポリプロピレン、ポリエチレン、ビニロン等を使用できる。繊維の寸法は任意であるが、製鋼スラグのザラザラした表面に繊維が引っかかるため、混練時に事前の短繊維をほぐす手間を省略することが可能である。また、細い繊維を使用することにより、少ない繊維量で効果を発揮することが可能である。添加量は外割り体積比で0.1〜1.0%の範囲で調整される。 Various fibers can be used as the above-mentioned fibrous substance, and for example, polyester, polypropylene, polyethylene, vinylon and the like can be used. The size of the fiber is arbitrary, but since the fiber is caught on the rough surface of the steelmaking slag, it is possible to save the trouble of loosening the short fiber in advance at the time of kneading. Further, by using fine fibers, it is possible to exert the effect with a small amount of fibers. The amount of addition is adjusted in the range of 0.1 to 1.0% in terms of the volume ratio of the outer division.

かかる潜堤構築材料によれば、粘性土に製鋼スラグを混合することで、強度を向上させることができる。また、繊維状物質の添加により粒状材料である製鋼スラグに繊維状物質が絡みやすくなることで、高い変形追随性を有するとともに、ひずみが加えられても強度低下が抑制され、クラックの発生を抑制することができる。このため、図1の潜堤10の下部10aにおけるクラック発生が抑制される。さらに、この潜堤構築材料によれば、材料にクラックが発生しても、その後、強度の回復を期待することができる。以上から、上記潜堤構築材料を用いることで、浚渫土と製鋼スラグとを混合した混合材料からなる潜堤におけるクラック発生の問題を回避でき、潜堤10の安定性を維持することができる。 According to such a dike construction material, the strength can be improved by mixing steelmaking slag with cohesive soil. In addition, the addition of the fibrous substance makes it easier for the fibrous substance to get entangled with the steelmaking slag, which is a granular material, so that it has high deformation followability, and even if strain is applied, the decrease in strength is suppressed and the occurrence of cracks is suppressed. can do. Therefore, the occurrence of cracks in the lower portion 10a of the dike 10 in FIG. 1 is suppressed. Furthermore, according to this submerged levee construction material, even if a crack occurs in the material, it can be expected that the strength will be restored thereafter. From the above, by using the above-mentioned submarine construction material, it is possible to avoid the problem of crack generation in the submarine made of a mixed material in which dredged soil and steelmaking slag are mixed, and it is possible to maintain the stability of the submarine 10.

粘性土の含水比が100%以上であると、製鋼スラグや繊維状物質との施工性が低下せずに良好で、含水比300%以下であると、強度が低下せずに良好である。製鋼スラグの混合量が体積比30%以下であると、流動性・施工性が低下せずに良好であり、また、体積比10%以上であると、強度の向上が期待できる。また、繊維状物質の添加量が体積比0.1%以上であると、強度低下抑制・変形追随性付与・強度回復の効果を得ることができ、また、添加量が体積比1.0%以下であると、流動性・施工性を確保できるとともに添加量が多くなり過ぎずにコストがさほどかさまない。 When the water content of the cohesive soil is 100% or more, the workability with steelmaking slag and fibrous substances is not deteriorated, and when the water content is 300% or less, the strength is not lowered and it is good. When the mixing amount of the steelmaking slag is 30% or less by volume, the fluidity and workability are not deteriorated, and it is good, and when the volume ratio is 10% or more, the strength can be expected to be improved. Further, when the amount of the fibrous substance added is 0.1% or more by volume, the effects of suppressing the decrease in strength, imparting deformation followability, and recovering the strength can be obtained, and when the amount of the fibrous substance added is 1.0% or less by volume. In addition to ensuring fluidity and workability, the amount of addition does not become too large and the cost does not increase so much.

図2は本実施形態による別の人工干潟用潜堤を示す概略図である。図2の人工干潟用潜堤20は、水底の原地盤G上に潜堤構築材料から構築された潜堤下部21と、その上に構築された潜堤上部22と、を有し、水面下に没するように構築されている。潜堤下部21は、図1の潜堤10と同様の潜堤構築材料を用いて構築されるが、潜堤上部22は上記潜堤構築材料以外の材料から構築されている。かかる潜堤上部22のための材料は、上記潜堤構築材料において繊維状物質の添加を省略した材料であることが好ましい。 FIG. 2 is a schematic view showing another artificial tidal flat dike according to the present embodiment. The artificial tidal flat submarine 20 of FIG. 2 has a submarine lower part 21 constructed from a submarine construction material on the original ground G of the water bottom and a submarine upper part 22 constructed on the submarine construction material, and is underwater. It is built to be submerged in. The submarine lower part 21 is constructed by using the same submarine construction material as the submarine 10 in FIG. 1, but the submarine upper part 22 is constructed from a material other than the submarine construction material. The material for the submarine upper portion 22 is preferably a material in which the addition of the fibrous substance is omitted in the submarine construction material.

図2の潜堤20によれば、潜堤下部21の下部21aにおけるクラック発生が抑制され、またクラックが発生してもその後強度の回復を期待できるので、潜堤20全体の安定性を維持することができる。また、潜堤全体ではなく、クラックが生じやすい潜堤下部21のみをクラック発生の抑制可能な上記潜堤構築材料から構築し、潜堤上部22を、繊維状物質を含まない材料で構築することで、潜堤全体の材料コストを削減可能である。なお、繊維状物質を添加した上記潜堤構築材料から構築した潜堤下部21の厚さは、潜堤の設置水深や構造、必要強度等を基に決定することが好ましい。 According to the submarine 20 of FIG. 2, the occurrence of cracks in the lower portion 21a of the submarine lower portion 21 is suppressed, and even if a crack occurs, the strength can be expected to recover thereafter, so that the stability of the entire submarine 20 is maintained. be able to. Further, not the entire submarine, but only the submarine lower part 21 where cracks are likely to occur is constructed from the submarine construction material capable of suppressing the occurrence of cracks, and the submarine upper part 22 is constructed from a material that does not contain fibrous material. Therefore, it is possible to reduce the material cost of the entire submarine. The thickness of the submarine lower portion 21 constructed from the submarine construction material to which the fibrous substance is added is preferably determined based on the installation water depth and structure of the submarine, the required strength, and the like.

次に、図1の潜堤10および図2の潜堤下部21の施工方法の一例について説明する。ただし、施工方法は、本例に限定されず、他の方法であってもよい。 Next, an example of the construction method of the submarine 10 of FIG. 1 and the submarine lower part 21 of FIG. 2 will be described. However, the construction method is not limited to this example, and other methods may be used.

(1)調泥
浚渫土等の粘性土に所定量の海水または清水を加え、粘性土を目的とする含水比に調整する。
(1) Add a predetermined amount of seawater or fresh water to cohesive soil such as mud-adjusted dredged soil, and adjust the water content ratio for cohesive soil.

(2)混練
調整泥をミキサーに送り、所定の体積比で製鋼スラグ・短繊維を加え練り混ぜ、潜堤構築材料を製造する。
(2) Kneading Adjusting mud is sent to a mixer, steelmaking slag and short fibers are added and kneaded at a predetermined volume ratio, and a submarine construction material is manufactured.

(3)圧送
製造された潜堤構築材料を、圧送ポンプを用いて、圧送管により打設場所まで搬送する。
(3) Pumping The manufactured submarine construction material is transported to the casting site by a pumping pipe using a pumping pump.

(4)打設
トレミー管により所定の位置に潜堤構築材料を水中打設する。すなわち、潜堤構築材料を図1の潜堤10、図2の潜堤下部21に相当する位置に水中打設することで、潜堤10、潜堤下部21を構築する。なお、潜堤上部22も同様にして構築できるが、潜堤構築材料の混練時に短繊維の添加を省略する。また、潜堤構築材料の水中投入は、グラブによる水中投入によって行うようにしてもよい。
(4) Placement The submerged levee construction material is placed underwater at a predetermined position using a tremie pipe. That is, the submarine 10 and the submarine lower portion 21 are constructed by underwater casting of the submarine construction material at positions corresponding to the submarine 10 in FIG. 1 and the submarine lower portion 21 in FIG. The upper part 22 of the submarine can be constructed in the same manner, but the addition of short fibers is omitted when kneading the submarine construction material. Further, the submerged levee construction material may be put into water by grab.

また、本実施形態による潜堤構築材料によれば、繊維を混合することにより流動性が低下するため、一般的なカルシア改質土と比較して潜堤の勾配を大きくすることが可能である。このため、潜堤構築に使用する材料を低減でき、コスト削減を図ることができる。 Further, according to the submarine construction material according to the present embodiment, since the fluidity is reduced by mixing the fibers, it is possible to increase the gradient of the submarine as compared with general calcia modified soil. .. Therefore, the material used for the construction of the submarine can be reduced, and the cost can be reduced.

本発明による潜堤構築材料について実施例によりさらに説明するが、本発明は本実施例に限定されるものではない。 The submarine construction material according to the present invention will be further described with reference to Examples, but the present invention is not limited to the present Examples.

変形追随性
本実施例の潜堤構築材料は、含水比160%に調整した浚渫土(土粒子密度2.633 g/cm3、液性限界101.3%)と、製鋼スラグ(室内試験のため粒径9.5mm以下に調整)とを混合し、ポリエステル短繊維(繊維長20mm、繊維径14.8μm)を所定の体積比fで添加し混合したものである。実施例1〜6では短繊維の配合割合を体積比で0.1〜1.0vol%まで6段階に変え、比較例1では短繊維を配合していない。実施例1〜6および比較例1についての配合を次の表1に示す。
Deformity followability The submarine construction materials of this example are dredged soil (soil particle density 2.633 g / cm 3 , liquid limit 101.3%) adjusted to a water content of 160% and steelmaking slag (particle size 9.5 for laboratory tests). (Adjusted to mm or less) was mixed, and polyester short fibers (fiber length 20 mm, fiber diameter 14.8 μm) were added at a predetermined volume ratio f and mixed. In Examples 1 to 6, the blending ratio of the short fibers was changed in 6 steps from 0.1 to 1.0 vol% by volume, and in Comparative Example 1, the short fibers were not blended. The formulations for Examples 1-6 and Comparative Example 1 are shown in Table 1 below.

Figure 0006786203
Figure 0006786203

表1のように繊維添加量をパラメータにした潜堤構築材料を作製し、養生7日後に一軸圧縮試験を実施した。この一軸圧縮試験から得られた応力ひずみ線図を図3に示す。なお、一軸圧縮試験は、JIS A 1216に基づいて実施した。 As shown in Table 1, a dike construction material with the amount of fiber added as a parameter was prepared, and a uniaxial compression test was carried out 7 days after curing. The stress-strain diagram obtained from this uniaxial compression test is shown in FIG. The uniaxial compression test was carried out based on JIS A 1216.

図3の結果から、短繊維を混合しない比較例1では5%の圧縮ひずみに達する前から圧縮応力が低下したのに対し、実施例2〜6のように短繊維を体積比で0.2%vol以上添加すると、5%以上の大ひずみレベルにおいても圧縮応力が低下しない材料となることがわかる。また、短繊維を体積比で0.1vol%添加した実施例1では、圧縮ひずみが5%のとき圧縮応力が低下しないことがわかる。また、繊維添加量が体積比で0.2〜1.0vol%の実施例2〜6では、繊維の添加量に応じて5%以上の大ひずみレベルにおいて圧縮応力の保持効果が高くなることがわかる。つまり、繊維添加量が増すと、変形追随性が向上する。 From the results of FIG. 3, in Comparative Example 1 in which the short fibers were not mixed, the compressive stress decreased before reaching the compressive strain of 5%, whereas the short fibers were 0.2% vol by volume as in Examples 2 to 6. It can be seen that when the above is added, the material does not reduce the compressive stress even at a large strain level of 5% or more. Further, in Example 1 in which short fibers were added in an amount of 0.1 vol% by volume, it can be seen that the compressive stress does not decrease when the compressive strain is 5%. Further, in Examples 2 to 6 in which the fiber addition amount is 0.2 to 1.0 vol% by volume, it can be seen that the compressive stress holding effect is enhanced at a large strain level of 5% or more depending on the fiber addition amount. That is, as the amount of fiber added increases, the deformation followability improves.

上述のように、繊維添加量が0.1〜1.0vol%の実施例1〜6では、繊維の添加量に応じてひずみ5%またはそれ以上における圧縮応力が低下せず、変形追随性が向上することがわかる。また、繊維添加量が1.0vol%を超えた場合においても圧縮応力が低下しないと考えられるが、5%のひずみレベルにおいて添加量を増やすことによる顕著な差が認められないこと、添加量の増加はコストアップの要因となることから、繊維添加量の上限は、1.0vol%と設定することが妥当であることがわかる。 As described above, in Examples 1 to 6 in which the amount of fiber added is 0.1 to 1.0 vol%, the compressive stress at a strain of 5% or more does not decrease depending on the amount of fiber added, and the deformation followability is improved. I understand. In addition, it is considered that the compressive stress does not decrease even when the fiber addition amount exceeds 1.0 vol%, but no significant difference is observed by increasing the addition amount at the strain level of 5%, and the addition amount increases. It can be seen that it is appropriate to set the upper limit of the amount of fiber added to 1.0 vol% because it causes a cost increase.

製鋼スラグの体積比による圧縮強度
次に、別の浚渫土(土粒子密度2.668g/cm3、液性限界84.3%)を用い、次の表2に示すように、浚渫土の含水比を125,150,175%とそれぞれ変化させるとともに、製鋼スラグ(粒径37.5mm以下)の体積比を20vol%(実施例7〜11)、30vol%(実施例12〜16)と変化させ、ポリエステル短繊維(繊維長20mm、繊維径14.8μm)の添加量を0.1〜1.0vol%と変化させて潜堤構築材料を作製した。また、繊維を添加せず製鋼スラグの体積比を20vol%(比較例2)、30vol%(比較例3)とした材料、および、製鋼スラグの体積比を40vol%とし繊維添加量を0、0.1〜1.0vol%(比較例4〜9)とした材料を同様にして作製した。これらの材料について、養生7日後に一軸圧縮試験をJIS A 1216に基づいて実施した。この一軸圧縮試験から得られた応力ひずみ線図を図4(a)〜(i)に示す。
Compressive strength by volume ratio of steelmaking slag Next, using another dred soil (soil particle density 2.668 g / cm 3 , liquid limit 84.3%), as shown in Table 2 below, the water content ratio of the dred soil was 125,150,175. The volume ratio of steelmaking slag (particle size 37.5 mm or less) was changed to 20 vol% (Examples 7 to 11) and 30 vol% (Examples 12 to 16), and polyester short fibers (fiber length 20 mm) were changed. , Fiber diameter 14.8 μm) was changed from 0.1 to 1.0 vol% to prepare a slag construction material. In addition, the volume ratio of steelmaking slag was 20vol% (Comparative Example 2) and 30vol% (Comparative Example 3) without adding fibers, and the volume ratio of steelmaking slag was 40vol% and the amount of fiber added was 0, 0.1. Materials set to ~ 1.0 vol% (Comparative Examples 4 to 9) were prepared in the same manner. For these materials, a uniaxial compression test was carried out 7 days after curing based on JIS A 1216. The stress-strain curves obtained from this uniaxial compression test are shown in FIGS. 4 (a) to 4 (i).

Figure 0006786203
Figure 0006786203

図4(a)〜(f)に示される結果から、製鋼スラグの体積比が20vol%の場合には繊維添加量が0.2vol%以上のケースにおいて、製鋼スラグの体積比が30vol%の場合には繊維添加量が0.3vol%以上のケースにおいて、5%のひずみレベルにおいて圧縮応力が低下しないことがわかる。この傾向は、浚渫土の含水比が125,150,175%のいずれでも同じである。また、図4(g)〜(i)から、製鋼スラグの体積比が40vol%の比較例の場合には繊維添加量が0.5vol%以下のケースにおいて、5%未満のひずみレベルにおいて圧縮応力が低下していることがわかる。 From the results shown in FIGS. 4A to 4F, when the volume ratio of the steelmaking slag is 20vol%, the amount of fiber added is 0.2vol% or more, and the volume ratio of the steelmaking slag is 30vol%. It can be seen that the compressive stress does not decrease at a strain level of 5% when the amount of fiber added is 0.3 vol% or more. This tendency is the same regardless of the water content of the dredged soil of 125,150,175%. Further, from FIGS. 4 (g) to 4 (i), in the case of the comparative example in which the volume ratio of the steelmaking slag is 40 vol%, the compressive stress is applied at a strain level of less than 5% in the case where the fiber addition amount is 0.5 vol% or less. It can be seen that it is decreasing.

強度の回復
次に、含水比160%に調整した浚渫土(土粒子密度2.633g/cm3、液性限界101.3%)に、次の表3のように、実施例17として製鋼スラグ(室内試験のため粒径9.5mm以下に調整)を所定の体積比で、ポリエステル短繊維(繊維長20mm、繊維径14.8μm)を所定の体積比で添加し混合して潜堤構築材料を得た。繊維の添加量は、本実施形態による潜堤構築材料における繊維添加量(0.1〜1.0vol%)の中央値に近いことから0.5vol%とした。また、繊維の添加の有無によるせん断強度の回復性を比較するため、比較例10として繊維添加量を0vol%とした材料を得た。なお、繊維の比重を1.38g/cm3とすると、繊維添加量が0.5vol%の場合の単位体積あたりの繊維重量は6.9kg/m3となる。
Recovery of strength Next, as shown in Table 3 below, steelmaking slag (indoor test) was applied to the dredged soil (soil particle density 2.633 g / cm 3 , liquid limit 101.3%) adjusted to a water content of 160%. Therefore, the particle size was adjusted to 9.5 mm or less) at a predetermined volume ratio, and polyester short fibers (fiber length 20 mm, fiber diameter 14.8 μm) were added at a predetermined volume ratio and mixed to obtain a submarine construction material. The amount of fiber added was set to 0.5 vol% because it was close to the median amount of fiber added (0.1 to 1.0 vol%) in the dike construction material according to the present embodiment. Further, in order to compare the recoverability of the shear strength with and without the addition of fibers, a material having a fiber addition amount of 0 vol% was obtained as Comparative Example 10. Assuming that the specific gravity of the fiber is 1.38 g / cm 3 , the fiber weight per unit volume is 6.9 kg / m 3 when the fiber addition amount is 0.5 vol%.

Figure 0006786203
Figure 0006786203

上記潜堤構築材料から作製した供試体を28日間養生してから、5%のひずみレベルまで一軸圧縮した後、載荷を一旦停止し供試体をとりだし、85日間暴露した後、再び一軸圧縮試験を実施した。暴露方法は、供試体をラップで包み乾燥を防ぐ方法(気中暴露)による。なお、最初に与える圧縮のひずみレベルを5%とした理由は、比較例10の繊維添加量0vol%の供試体では、5%を超える圧縮ひずみを与えると、その後、供試体をとりだし暴露の準備をする際に供試体が崩壊してしまう恐れがあるためである。 After curing the specimen prepared from the above submarine construction material for 28 days, uniaxial compression is performed to a strain level of 5%, loading is temporarily stopped, the specimen is taken out, exposed for 85 days, and then the uniaxial compression test is performed again. Carried out. The exposure method is a method of wrapping the specimen in a wrap to prevent drying (air exposure). The reason why the compression strain level given first was set to 5% is that in the specimen with a fiber addition amount of 0 vol% in Comparative Example 10, when a compression strain exceeding 5% was applied, the specimen was then taken out to prepare for exposure. This is because there is a risk that the specimen will collapse when doing so.

図5(a)に比較例10、図5(b)に実施例17の各圧縮試験の結果を示す。図5(a)(b)の縦軸の圧縮応力は、圧縮ひずみ5%以下における圧縮応力の最大値により正規化(圧縮応力比)している。図5(a)のように繊維を添加していない場合、再負荷すると最初の圧縮時の一軸圧縮強さ以下であったのに対し、図5(b)のように繊維添加量が0.5vol%とした場合、浚渫土に製鋼スラグと繊維を添加することで、最初の圧縮時の一軸圧縮強さを超え、強度回復が確認できる。このように、本実施例の潜堤構築材料によれば、クラックが発生しても、その後の強度の回復を期待することができる。 FIG. 5A shows the results of each compression test of Comparative Example 10 and FIG. 5B shows the results of each compression test of Example 17. The compressive stress on the vertical axis of FIGS. 5 (a) and 5 (b) is normalized (compressive stress ratio) by the maximum value of the compressive stress when the compressive strain is 5% or less. When no fibers were added as shown in FIG. 5 (a), the amount of added fibers was 0.5 vol as shown in FIG. 5 (b), whereas the reloading was less than the uniaxial compressive strength at the time of initial compression. When% is set, by adding steelmaking slag and fibers to the drowned soil, the uniaxial compressive strength at the time of initial compression is exceeded, and strength recovery can be confirmed. As described above, according to the submerged levee construction material of the present embodiment, even if a crack occurs, it can be expected that the strength will be restored thereafter.

フロー試験(1)
次に、含水比126.5%の浚渫土(土粒子密度2.668g/cm3、液性限界84.3%)に、表4のように、実施例18〜27として製鋼スラグ(粒径37.5mm以下)を所定の体積比(20vol%,30vol%)で混合し、ポリエステル短繊維(繊維長20mm、繊維径14.8μm)を体積比0.1〜1.0vol%添加し混合した材料についてJHS A 313に基づいてフロー試験を実施した。また、比較例11〜14として繊維添加量を0vol%,1.5vol%とした材料についても同様のフロー試験を実施した。
Flow test (1)
Next, as shown in Table 4, steelmaking slag (particle size 37.5 mm or less) was applied to the drenched soil (soil particle density 2.668 g / cm 3 , liquid limit 84.3%) having a water content of 126.5% as Examples 18 to 27. Flow test based on JHS A 313 for mixed materials by mixing at a predetermined volume ratio (20vol%, 30vol%), adding short polyester fibers (fiber length 20 mm, fiber diameter 14.8 μm) at a volume ratio of 0.1 to 1.0 vol%. Was carried out. Further, as Comparative Examples 11 to 14, the same flow test was carried out for the materials in which the fiber addition amounts were 0 vol% and 1.5 vol%.

Figure 0006786203
Figure 0006786203

これらの試験結果を図6に示す。ここで、良好な施工性・流動性の指標としてフロー値85mm以上と規定することにする。図6から、短繊維の添加量が増えるに従い、フロー値が小さくなることがわかる。短繊維を1.5vol%添加した比較例12,14では、良好な施工性の指標であるフロー値85mmよりも低くなったが、1.0vol%の繊維添加量の実施例22,27でフロー値が85mm以上となったので、繊維添加量の上限は1.0vol%であることが良好な施工性・流動性を得る点で好ましいことを確認できた。 The results of these tests are shown in FIG. Here, the flow value of 85 mm or more is specified as an index of good workability and fluidity. From FIG. 6, it can be seen that the flow value decreases as the amount of short fibers added increases. In Comparative Examples 12 and 14 in which 1.5 vol% of short fibers were added, the flow value was lower than the flow value of 85 mm, which is an index of good workability, but in Examples 22 and 27 in which the fiber addition amount of 1.0 vol% was added, the flow value was higher. Since it was 85 mm or more, it was confirmed that it is preferable that the upper limit of the amount of fiber added is 1.0 vol% in terms of obtaining good workability and fluidity.

法面勾配
また、含水比126.5%の浚渫土(土粒子密度2.668g/cm3、液性限界84.3%)に、製鋼スラグ(粒径37.5mm以下)を体積比で30vol%混合し、ポリエステル短繊維(繊維長20mm、繊維径14.8μm)を0.3vol%添加し混合した材料を用いて、水中打設した際の法面の勾配は1:3であった。これに対し、短繊維を添加しない場合の法面勾配は1:4程度であったことから、短繊維を添加した材料の使用により潜堤としての使用材料を減らす効果を期待することができる。
Slope gradient In addition, 30 vol% of steelmaking slag (particle size 37.5 mm or less) is mixed with drenched soil (soil particle density 2.668 g / cm 3 , liquid limit 84.3%) with a water content of 126.5% to shorten the polyester. Using a material in which 0.3 vol% of fibers (fiber length 20 mm, fiber diameter 14.8 μm) was added and mixed, the slope of the slope was 1: 3 when placed in water. On the other hand, since the slope gradient when short fibers were not added was about 1: 4, the effect of reducing the materials used as dikes can be expected by using the materials to which short fibers were added.

フロー試験(2)
次に、表5のように、実施例28〜30として含水比160%に調整した浚渫土(土粒子密度2.633 g/cm3、液性限界101.3%)と製鋼スラグ(室内試験のため粒径9.5mm以下に調整)とを所定の体積比で混合し、ポリエステル短繊維(繊維長20mm、繊維径14.8μm)を体積比0.5vol%で添加し混合し、これに流動性を向上させるため、分散材(AMPS系)を2kg/m3添加した材料についてJHS A 313に基づいてフロー試験を実施した。また、比較例15として製鋼スラグの体積比を40vol%とした以外は同様の材料についてフロー試験を実施した。
Flow test (2)
Next, as shown in Table 5, the drenched soil (soil particle density 2.633 g / cm 3 , liquid limit 101.3%) and steelmaking slag (particle size for laboratory test) adjusted to a water content of 160% as Examples 28 to 30. (Adjusted to 9.5 mm or less) is mixed at a predetermined volume ratio, and short polyester fibers (fiber length 20 mm, fiber diameter 14.8 μm) are added at a volume ratio of 0.5 vol% and mixed to improve fluidity. A flow test was carried out based on JHS A 313 for a material to which 2 kg / m 3 of a dispersant (AMPS type) was added. Further, as Comparative Example 15, a flow test was carried out on the same material except that the volume ratio of the steelmaking slag was set to 40 vol%.

Figure 0006786203
Figure 0006786203

図7に試験結果を示す。図7から製鋼スラグの混合量が増えるにしたがって、フロー値が小さくなり、材料の流動性が低下することがわかる。製鋼スラグの混合量を40vol%とした比較例15は、フロー値が85mm未満となって、流動性が低く、材料が硬く混練が難しくなることを確認した。これに対し、製鋼スラグの添加量が30vol%以下の実施例28〜30はフロー値が85mmを超えて、流動性を確保できることがわかる。材料の混合打設には一定の流動性が求められるところ、ここでは必要となる流動性をフロー値85mm以上とし、これを満たす配合として、製鋼スラグの混合量を10〜30vol%とすることが妥当であることが確認できた。なお、製鋼スラグの混合量を30vol%とした際の材令28日の一軸圧縮強さは、300kN/m2程であった。 FIG. 7 shows the test results. From FIG. 7, it can be seen that as the mixing amount of the steelmaking slag increases, the flow value decreases and the fluidity of the material decreases. In Comparative Example 15 in which the mixing amount of the steelmaking slag was 40 vol%, it was confirmed that the flow value was less than 85 mm, the fluidity was low, the material was hard, and kneading was difficult. On the other hand, in Examples 28 to 30 in which the amount of steelmaking slag added is 30 vol% or less, the flow value exceeds 85 mm, and it can be seen that fluidity can be ensured. A certain level of fluidity is required for mixed casting of materials, but here the required fluidity should be 85 mm or more, and the mixing amount of steelmaking slag should be 10 to 30 vol% as a formulation that satisfies this. It was confirmed that it was appropriate. When the mixing amount of steelmaking slag was 30 vol%, the uniaxial compressive strength on the 28th of the material age was about 300 kN / m 2 .

以上のように本発明を実施するための形態について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。たとえば、本発明による潜堤構築材料および潜堤構造は、人工干潟の潜堤に適用することができるが、人工干潟以外の潜堤に適用できることはもちろんである。 Although the embodiments for carrying out the present invention have been described above, the present invention is not limited to these, and various modifications can be made within the scope of the technical idea of the present invention. For example, the dike construction material and the dike structure according to the present invention can be applied to a dike of an artificial tidal flat, but of course, it can be applied to a dike other than the artificial tidal flat.

また、本発明による粘性土と製鋼スラグと繊維状物質とから構成される材料は、潜堤に限定されず、たとえば、消波構造物の人工リーフの中詰材等にも適用可能である。 Further, the material composed of the cohesive soil, the steelmaking slag and the fibrous material according to the present invention is not limited to the dike, and can be applied to, for example, a filling material for an artificial leaf of a wave-dissipating structure.

本発明の潜堤構築材料および潜堤構造によれば、潜堤におけるクラック発生の問題を回避でき潜堤の安定性を保つことができるので、たとえば、人工干潟において安定した潜堤を構築することができる。 According to the submarine construction material and the submarine structure of the present invention, the problem of crack generation in the submarine can be avoided and the stability of the submarine can be maintained. Therefore, for example, a stable submarine is constructed in an artificial tidal flat. Can be done.

10 人工干潟用潜堤、潜堤
10a 下部
11 中詰材
12 覆砂
20 人工干潟用潜堤、潜堤
21 潜堤下部
21a 下部
22 潜堤上部
G 原地盤
10 Artificial tidal flat submarine, submarine 10a Lower part 11 Filling material 12 Sand covering 20 Artificial tidal flat submarine, submarine 21 Submarine lower part 21a Lower part 22 Submarine upper part G Original ground

Claims (4)

堤体が水面下に没する潜堤を構築するための材料であって、
含水比を100〜300%に調整した粘性土と粒径37.5mm以下の製鋼スラグとを、前記粘性土が内割り体積比で70〜90%、前記製鋼スラグが内割り体積比で30〜10%となるように混合し、さらに繊維状物質を外割り体積比で0.1〜1.0%添加した材料についての一軸圧縮試験において圧縮ひずみが5%または5%以上で圧縮応力が減少しない特性を有する潜堤構築材料。
It is a material for constructing a submarine where the embankment body is submerged under the surface of the water.
Cohesive soil with a water content adjusted to 100 to 300% and steelmaking slag with a particle size of 37.5 mm or less are divided into 70 to 90% of the cohesive soil and 30 to 10% of the steelmaking slag. In a uniaxial compression test on a material that has been mixed so as to be% and further added a fibrous substance in an external volume ratio of 0.1 to 1.0%, the latent property has a property that the compressive stress does not decrease when the compressive strain is 5% or 5% or more. Embankment construction material.
請求項1に記載の潜堤構築材料から構築されたことを特徴とする潜堤構造。 A submarine structure characterized in that it was constructed from the submarine construction material according to claim 1 . 請求項1に記載の潜堤構築材料から構築された潜堤下部と、前記潜堤構築材料以外の材料から構築された潜堤上部と、を有することを特徴とする潜堤構造。 A submarine structure having a lower submarine constructed from the submarine construction material according to claim 1 and an upper submarine constructed from a material other than the submarine construction material. 前記潜堤構築材料以外の材料は、前記潜堤構築材料において前記繊維状物質の添加を省略した材料である請求項に記載の潜堤構造。 The submarine structure according to claim 3 , wherein the material other than the submarine construction material is a material in which the addition of the fibrous substance is omitted in the submarine construction material.
JP2015178186A 2015-09-10 2015-09-10 Submarine construction material and submarine structure using this material Active JP6786203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015178186A JP6786203B2 (en) 2015-09-10 2015-09-10 Submarine construction material and submarine structure using this material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015178186A JP6786203B2 (en) 2015-09-10 2015-09-10 Submarine construction material and submarine structure using this material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019236491A Division JP6829758B2 (en) 2019-12-26 2019-12-26 Submarine construction material and submarine structure using this material

Publications (2)

Publication Number Publication Date
JP2017053150A JP2017053150A (en) 2017-03-16
JP6786203B2 true JP6786203B2 (en) 2020-11-18

Family

ID=58320519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015178186A Active JP6786203B2 (en) 2015-09-10 2015-09-10 Submarine construction material and submarine structure using this material

Country Status (1)

Country Link
JP (1) JP6786203B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE063660T2 (en) 2017-03-17 2024-01-28 Nippon Steel Corp Coated steel sheet
JP7465052B2 (en) * 2018-02-28 2024-04-10 五洋建設株式会社 Manufacturing method for improved soil with high water content
JP7481799B2 (en) * 2018-10-24 2024-05-13 五洋建設株式会社 Method for manufacturing material for forming structure including inclined portion and method for forming same
JP7307319B2 (en) * 2019-04-23 2023-07-12 日本製鉄株式会社 Method for preventing outflow of slag in converter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5238326A (en) * 1992-04-03 1993-08-24 Creter Richard E Submerged breakwater for use as a perch for sand retention
JP4736449B2 (en) * 2005-02-01 2011-07-27 Jfeスチール株式会社 Construction method of shallow ground
JP4678496B2 (en) * 2005-05-23 2011-04-27 東洋建設株式会社 Impervious structure of waste disposal site
JP5790597B2 (en) * 2012-07-03 2015-10-07 新日鐵住金株式会社 Method for predicting strength of modified soil and method for producing modified soil using the same
JP5954351B2 (en) * 2013-08-30 2016-07-20 Jfeスチール株式会社 Artificial shallow ground or tidal flat and its repair method
JP6411202B2 (en) * 2014-12-18 2018-10-24 五洋建設株式会社 Impermeable material

Also Published As

Publication number Publication date
JP2017053150A (en) 2017-03-16

Similar Documents

Publication Publication Date Title
JP6786203B2 (en) Submarine construction material and submarine structure using this material
CN102918001B (en) Artificial stone-like material and manufacture method thereof
CN209397587U (en) A single pile anti-scouring bottom protection
JP6411202B2 (en) Impermeable material
JP5400680B2 (en) Artificial shallow or tidal flat
JP5896057B2 (en) Manufacturing method of artificial stone
JP5318013B2 (en) How to improve dredged soil
JP6101019B2 (en) Soil-based deformation following water-blocking material and method for producing the same
JP2015172319A (en) Underground impervious wall construction material
JP5907246B2 (en) Manufacturing method of solidified body
JP6829758B2 (en) Submarine construction material and submarine structure using this material
JP4678496B2 (en) Impervious structure of waste disposal site
JP6669543B2 (en) Construction method of backing structure and mixed material
TW201144257A (en) Method for producing artificial stone material
JP5954351B2 (en) Artificial shallow ground or tidal flat and its repair method
CN206457952U (en) A kind of high performance concrete anticorrosion high temperature resistant plate material
JP6508526B2 (en) Weight fluidization treated soil
Chan Strength improvement characteristic of cement-solidified dredged marine clay with relation to water-cement ratio
CN103253889A (en) Nano-material reinforcing agent and application method thereof in reinforcement of earth construction
CHIEN et al. Study on sludge recycling with compaction type and placing type by rice husk-cement-stabilized soil method
JP2017141543A (en) Artificial shallow ground or tideland
JP2011174227A (en) Creation method for composite lightweight soil for in-situ construction
JP3608539B2 (en) How to use upsoil generated during offshore improvement work
JP7145910B2 (en) Method for manufacturing artificial stone, method for conveying artificial stone, and artificial stone
CN210766609U (en) An earthquake-resistant and economical caisson wharf

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191001

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20191226

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200609

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200825

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20200908

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20200910

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20201013

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201028

R150 Certificate of patent or registration of utility model

Ref document number: 6786203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150