JP6781954B2 - Surface coating cutting tool with excellent chipping resistance and peeling resistance with a hard coating layer - Google Patents
Surface coating cutting tool with excellent chipping resistance and peeling resistance with a hard coating layer Download PDFInfo
- Publication number
- JP6781954B2 JP6781954B2 JP2017011623A JP2017011623A JP6781954B2 JP 6781954 B2 JP6781954 B2 JP 6781954B2 JP 2017011623 A JP2017011623 A JP 2017011623A JP 2017011623 A JP2017011623 A JP 2017011623A JP 6781954 B2 JP6781954 B2 JP 6781954B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- avg
- average
- content ratio
- section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005520 cutting process Methods 0.000 title claims description 60
- 239000011248 coating agent Substances 0.000 title claims description 42
- 238000000576 coating method Methods 0.000 title claims description 42
- 239000011247 coating layer Substances 0.000 title claims description 35
- 239000010410 layer Substances 0.000 claims description 332
- 239000010936 titanium Substances 0.000 claims description 76
- 239000000203 mixture Substances 0.000 claims description 67
- 229910052719 titanium Inorganic materials 0.000 claims description 53
- 229910052782 aluminium Inorganic materials 0.000 claims description 52
- 230000008859 change Effects 0.000 claims description 47
- 239000013078 crystal Substances 0.000 claims description 41
- 239000000758 substrate Substances 0.000 claims description 36
- 239000002131 composite material Substances 0.000 claims description 34
- 230000000737 periodic effect Effects 0.000 claims description 27
- 150000004767 nitrides Chemical class 0.000 claims description 23
- 239000002245 particle Substances 0.000 claims description 17
- 229910052799 carbon Inorganic materials 0.000 claims description 14
- 229910052757 nitrogen Inorganic materials 0.000 claims description 14
- 150000001875 compounds Chemical class 0.000 claims description 10
- 239000011195 cermet Substances 0.000 claims description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 6
- 229910052582 BN Inorganic materials 0.000 claims description 4
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 4
- 239000012790 adhesive layer Substances 0.000 claims description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 4
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 4
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 2
- 239000001569 carbon dioxide Substances 0.000 claims description 2
- 229910002090 carbon oxide Inorganic materials 0.000 claims description 2
- 239000000843 powder Substances 0.000 description 17
- 239000007789 gas Substances 0.000 description 14
- 229910001018 Cast iron Inorganic materials 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 230000002159 abnormal effect Effects 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 230000007423 decrease Effects 0.000 description 9
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 4
- 241000446313 Lamella Species 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910004349 Ti-Al Inorganic materials 0.000 description 2
- 229910004692 Ti—Al Inorganic materials 0.000 description 2
- 229910001315 Tool steel Inorganic materials 0.000 description 2
- MMCOUVMKNAHQOY-UHFFFAOYSA-N carbonoperoxoic acid Chemical compound OOC(O)=O MMCOUVMKNAHQOY-UHFFFAOYSA-N 0.000 description 2
- 238000001887 electron backscatter diffraction Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 229910021480 group 4 element Inorganic materials 0.000 description 2
- 229910021478 group 5 element Inorganic materials 0.000 description 2
- 229910021476 group 6 element Inorganic materials 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000005211 surface analysis Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 206010053759 Growth retardation Diseases 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HSUBYXNYMJBNAE-UHFFFAOYSA-N [N]=O.C(O)(O)=O Chemical compound [N]=O.C(O)(O)=O HSUBYXNYMJBNAE-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- -1 carbonic acid nitride Chemical class 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000002524 electron diffraction data Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Description
本発明は、鋳鉄等の高熱発生を伴う高速断続切削加工で、硬質被覆層がすぐれた耐チッピング性、耐剥離性を備えることにより、長期の使用に亘ってすぐれた切削性能を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。 The present invention is a high-speed intermittent cutting process that generates high heat of cast iron or the like, and the hard coating layer has excellent chipping resistance and peeling resistance, so that the surface coating exhibits excellent cutting performance over a long period of use. It relates to a cutting tool (hereinafter referred to as a covering tool).
従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットあるいは立方晶窒化ホウ素(以下、cBNで示す)基超高圧焼結体で構成された工具基体(以下、これらを総称して工具基体という)の表面に、硬質被覆層として、Ti−Al系の複合窒化物層を物理蒸着法により被覆形成した被覆工具が知られており、これらは、すぐれた耐摩耗性を発揮することが知られている。
ただ、前記従来のTi−Al系の複合窒化物層を被覆形成した被覆工具は、比較的耐摩耗性にすぐれるものの、高速断続切削条件で用いた場合にチッピング、剥離等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, it is generally composed of tungsten carbide (hereinafter referred to as WC) -based cemented carbide, titanium carbonitride (hereinafter referred to as TiCN) -based cermet or cubic boron nitride (hereinafter referred to as cBN) -based ultrahigh-pressure sintered body. A coated tool in which a Ti—Al-based composite nitride layer is coated and formed as a hard coating layer on the surface of a tool substrate (hereinafter, collectively referred to as a tool substrate) by a physical vapor deposition method is known. These are known to exhibit excellent wear resistance.
However, although the conventional covering tool coated with the Ti-Al-based composite nitride layer has relatively excellent wear resistance, abnormal wear such as chipping and peeling occurs when used under high-speed intermittent cutting conditions. Since it is easy to use, various proposals have been made for improving the hard coating layer.
例えば、特許文献1には、TiCl4、AlCl3、NH3の混合反応ガス中で、650〜900℃の温度範囲において化学蒸着を行うことにより、Alの含有割合xの値が0.65〜0.95である(Ti1−xAlx)N層を蒸着形成できることが記載されているが、この文献では、この(Ti1−xAlx)N層の上にさらにAl2O3層を被覆し、これによって断熱効果を高めることを目的とするものであるから、Alの含有割合xの値を0.65〜0.95まで高めた(Ti1−xAlx)N層の形成によって、切削性能にどのような影響を及ぼしているかについては明らかでない。 For example, in Patent Document 1, the value of Al content ratio x is 0.65- by performing chemical vapor deposition in a mixed reaction gas of TiCl 4 , AlCl 3 , and NH 3 in a temperature range of 650 to 900 ° C. It is described that a (Ti 1-x Al x ) N layer of 0.95 can be formed by vapor deposition, but in this document, an Al 2 O 3 layer is further formed on the (Ti 1-x Al x ) N layer. Since the purpose is to enhance the heat insulating effect by coating the aluminum layer, the value of the Al content ratio x is increased to 0.65 to 0.95 (Ti 1-x Al x ). It is not clear how this affects the cutting performance.
また、例えば、特許文献2には、TiCN層、Al2O3層を内層として、その上に、化学蒸着法により、立方晶構造あるいは六方晶構造を含む立方晶構造の(Ti1−xAlx)N層(ただし、原子比で、xは0.65〜0.90)を外層として被覆するとともに該外層に100〜1100MPaの圧縮応力を付与することにより、被覆工具の耐熱性と疲労強度を改善することが提案されている。 Further, for example, Patent Document 2, TiCN layer, the the Al 2 O 3 layer as an inner layer, thereon by chemical vapor deposition, the cubic structure containing cubic structure or hexagonal structure (Ti 1-x Al x ) N layer (however, x is 0.65 to 0.90 in atomic ratio) is coated as an outer layer, and compressive stress of 100 to 1100 MPa is applied to the outer layer to obtain heat resistance and fatigue strength of the coating tool. It has been proposed to improve.
また、例えば、特許文献3には、基材表面に形成された硬質被膜のうちの少なくとも1層をCVD法により形成した表面被覆部材において、第1単位層と第2単位層とが交互に多層積層され、第1単位層は、Tiと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第1化合物を含み、第2単位層は、Alと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第2化合物を含むことにより、表面被覆部材の耐摩耗性、耐溶着性および耐熱衝撃性を向上させることが提案されている。 Further, for example, in Patent Document 3, in a surface coating member in which at least one layer of a hard coating formed on the surface of a base material is formed by a CVD method, the first unit layer and the second unit layer are alternately laminated. Laminated, the first unit layer contains a first compound containing Ti and one or more elements selected from the group consisting of B, C, N and O, and the second unit layer contains Al and B, It has been proposed to improve the wear resistance, welding resistance and thermal shock resistance of the surface coating member by containing a second compound containing one or more elements selected from the group consisting of C, N and O. There is.
また、例えば、特許文献4には、基材表面に形成された硬質被膜のうちの少なくとも1層をCVD法により形成した表面被覆部材において、前記層のうち少なくとも1層は、硬質粒子を含む層であり、前記硬質粒子は、第1単位層と第2単位層とが交互に積層された多層構造を含み、前記第1単位層は、周期表の4族元素、5族元素、6族元素およびAlからなる群より選ばれる1種以上の元素と、B、C、NおよびOからなる群より選ばれる1種以上の元素とからなる第1化合物を含み、前記第2単位層は、周期表の4族元素、5族元素、6族元素およびAlからなる群より選ばれる1種以上の元素と、B、C、NおよびOからなる群より選ばれる1種以上の元素とからなる第2化合物を含むことにより、表面被覆部材の耐摩耗性、耐溶着性を向上させることが提案されている。 Further, for example, in Patent Document 4, in a surface coating member in which at least one layer of a hard coating formed on the surface of a base material is formed by a CVD method, at least one of the layers is a layer containing hard particles. The hard particles include a multilayer structure in which first unit layers and second unit layers are alternately laminated, and the first unit layer is a group 4 element, a group 5 element, and a group 6 element in the periodic table. The second unit layer comprises a first compound consisting of one or more elements selected from the group consisting of and Al and one or more elements selected from the group consisting of B, C, N and O, and the second unit layer has a period. The first element consisting of one or more elements selected from the group consisting of group 4 elements, group 5 elements, group 6 elements and Al in the table, and one or more elements selected from the group consisting of B, C, N and O. It has been proposed to improve the wear resistance and welding resistance of the surface coating member by containing the two compounds.
近年の切削加工における省力化および省エネ化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にあり、被覆工具には、より一層、耐チッピング性、耐欠損性、耐剥離性等の耐異常損傷性が求められるとともに、長期の使用に亘ってのすぐれた耐摩耗性が求められている。
しかし、前記特許文献1に記載されている化学蒸着法で蒸着形成した(Ti1−xAlx)N層については、Alの含有割合xを高めることができ、また、立方晶構造を形成させることができることから、所定の硬さを有し耐摩耗性にすぐれた硬質被覆層が得られるものの、工具基体との密着強度は十分でなく、また、靭性に劣るという課題があった。
また、前記特許文献2に記載されている被覆工具は、所定の硬さを有し耐摩耗性にはすぐれるものの、層間の密着強度が不十分で、鋳鉄等の高速断続切削加工に供した場合には、チッピング、欠損、剥離等の異常損傷が発生しやすく、満足できる切削性能を発揮するとは言えないという課題があった。
さらに、前記特許文献3、4に記載される被覆工具においても、鋳鉄等の高速断続切削加工に供した場合には、チッピング、欠損、剥離等の異常損傷が発生しやすく、満足できる切削性能を発揮するとはいえなかった。
そこで、本発明は、鋳鉄等の高速断続切削等に供した場合であっても、層間の密着強度に優れ、チッピング、剥離等の異常損傷を発生することなく、長期の使用に亘ってすぐれた耐摩耗性を発揮する被覆工具を提供することを目的とする。
In recent years, there has been a strong demand for labor saving and energy saving in cutting, and along with this, cutting tends to be faster and more efficient, and covering tools have even more chipping resistance and chipping resistance. Abnormal damage resistance such as peeling resistance is required, and excellent wear resistance over a long period of use is required.
However, in the (Ti 1-x Al x ) N layer formed by vapor deposition by the chemical vapor deposition method described in Patent Document 1, the Al content ratio x can be increased and a cubic crystal structure is formed. Therefore, although a hard coating layer having a predetermined hardness and excellent wear resistance can be obtained, there is a problem that the adhesion strength with the tool substrate is not sufficient and the toughness is inferior.
Further, the covering tool described in Patent Document 2 has a predetermined hardness and is excellent in wear resistance, but the adhesion strength between layers is insufficient, and it is used for high-speed intermittent cutting of cast iron and the like. In this case, there is a problem that abnormal damage such as chipping, chipping, and peeling is likely to occur, and it cannot be said that satisfactory cutting performance is exhibited.
Further, even in the covering tools described in Patent Documents 3 and 4, when they are subjected to high-speed intermittent cutting of cast iron or the like, abnormal damage such as chipping, chipping, and peeling is likely to occur, and satisfactory cutting performance is obtained. I couldn't say that it would work.
Therefore, the present invention is excellent in adhesion strength between layers even when subjected to high-speed intermittent cutting of cast iron or the like, without causing abnormal damage such as chipping or peeling, and is excellent over a long period of use. It is an object of the present invention to provide a covering tool exhibiting abrasion resistance.
本発明者らは、前述の観点から、少なくともTiとAlの複合窒化物または複合炭窒化物(以下、「TiAlCN」、「(Ti,Al)(C,N)」あるいは「(Ti1−xAlx)(CyN1−y)」で示すことがある)を含む硬質被覆層を形成した被覆工具の耐チッピング性、耐剥離性の改善をはかるべく、鋭意研究を重ねた結果、次のような知見を得た。 From the above viewpoint, the present inventors have at least a composite nitride or composite nitride of Ti and Al (hereinafter, "TiAlCN", "(Ti, Al) (C, N)" or "(Ti 1-x )". As a result of intensive research to improve the chipping resistance and peeling resistance of the covering tool formed with the hard coating layer containing (Al x ) ( Cy N 1-y ) ”), the following I got the following findings.
即ち、本発明者らは、硬質被覆層を少なくともTiAlCN層を含むものとして構成するとともに、該TiAlCN層を表面側から工具基体側に向かって、上部層αと密着層βの2層で構成し、上部層αのAlの平均含有量Xαavgを0.60以上(但し、原子比)に高めるとともに、密着層β内にTiとAlの周期的な組成変化を形成することにより、TiAlCN層内の結晶粒に歪を与えて耐摩耗性を向上させ得ること、また、切削加工時のクラックの進展を組成変化界面で抑制し、靱性を向上させ得ること、さらに、密着層β内にAl含有量の組成傾斜構造を形成することにより、格子不整合に伴う歪みが層厚方向で徐々に緩和され、密着層βの硬さを維持したまま、付着強度の向上を図り得ることを見出した。
その結果、少なくとも前記上部層αと密着層βを備える硬質被覆層を形成した被覆工具は、鋳鉄等の高速断続切削等に供した場合であっても、層間の密着強度にすぐれるとともに、チッピング、剥離等の異常損傷の発生を抑制し、長期の使用に亘ってすぐれた耐摩耗性を発揮することを見出したのである。
That is, the present inventors configure the hard coating layer as including at least the TiAlCN layer, and the TiAlCN layer is composed of two layers, an upper layer α and an adhesion layer β, from the surface side toward the tool substrate side. By increasing the average Al content Xα avg of the upper layer α to 0.60 or more (however, the atomic ratio) and forming a periodic composition change of Ti and Al in the adhesion layer β, the inside of the TiAlCN layer. It is possible to improve the wear resistance by giving strain to the crystal grains of the above, to suppress the growth of cracks during cutting at the composition change interface, and to improve the toughness, and further, Al is contained in the adhesion layer β. It has been found that by forming the composition gradient structure of the amount, the strain due to the lattice mismatch is gradually relaxed in the layer thickness direction, and the adhesion strength can be improved while maintaining the hardness of the adhesion layer β.
As a result, the coating tool having formed the hard coating layer having at least the upper layer α and the adhesion layer β has excellent adhesion strength between layers and chipping even when used for high-speed intermittent cutting of cast iron or the like. It has been found that it suppresses the occurrence of abnormal damage such as peeling and exhibits excellent wear resistance over a long period of use.
本発明は、前記知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層が設けられた表面被覆切削工具において、
(a)前記硬質被覆層は、平均層厚が1〜20μmのTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、
(b)前記TiとAlの複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の相を少なくとも含み、
(c)前記TiとAlの複合窒化物または複合炭窒化物層は、硬質被覆層表面側から工具基体表面側に向かって、平均層厚が0.5μm以上の上部層αと、TiとAlの周期的な組成変化が存在する平均層厚が0.1〜5.0μmの密着層βからなる2層を含み、
(d)前記上部層αは、その組成を、
組成式:(Ti1−XαAlXα)(CYαN1−Yα)
で表した場合、AlのTiとAlの合量に占める平均含有割合XαavgおよびCのCとNの合量に占める平均含有割合Yαavg(但し、Xαavg、Yαavgはいずれも原子比)は、それぞれ、0.60≦Xαavg≦0.95、0≦Yαavg≦0.005を満足し、
(e)前記TiとAlの周期的な組成変化が存在する密着層βは、その組成を、
組成式:(Ti1−XβAlXβ)(CYβN1−Yβ)で表し、平均層厚をLβavg(μm)とした場合、TiとAlの周期的な組成変化の周期は1nm以上23nm以下であり、その層厚方向に[Lβavg]+2分割した各区間におけるAlのTiとAlの合量に占める平均含有割合およびCのCとNの合量に占める平均含有割合を求めたとき、各区間のAlのTiとAlの合量に占める平均含有割合XβavgおよびCのCとNの合量に占める平均含有割合Yβavg(但し、Xβavg、Yβavgはいずれも原子比)は、それぞれ、0.10≦Xβavg<0.60、0≦Yβavg≦0.005を満足し、
(f)前記密着層βの平均層厚をLβavg(μm)とし、前記密着層βをその層厚方向に[Lβavg]+2分割し、分割した各区間におけるAlのTiとAlの合量に占める平均含有割合Xβavgを、それぞれ分割した区間毎に求めたとき、工具基体側の区間におけるXβavgに比して、硬質被覆層表面側の区間におけるXβavgが単調増加し、最も工具基体側の区間のXβavgよりも最も硬質被覆層表面側の区間におけるXβavgの方が大きい値であり、かつ、最も硬質被覆層表面側の区間におけるXβ avg の値は0.48以上であることを特徴とする表面被覆切削工具。
(2) 前記上部層αのAlのTiとAlの合量に占める平均含有割合Xαavgは、0.70≦Xαavg≦0.95であることを特徴とする(1)に記載の表面被覆切削工具。
(3) 前記密着層βを、その縦断面から観察したとき、TiとAlの周期的な組成変化の周期は1nm以上20nm未満であり、かつ、周期的に変化するAlのTiとAlの合量に占める含有割合Xβの隣接する極大値と極小値の差の平均値は0.01〜0.07であることを特徴とする(1)または(2)に記載の表面被覆切削工具。
(4) 前記上部層αのTiとAlの複合窒化物または複合炭窒化物層について、該層の縦断面を観察した場合に、複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒の粒界部に、六方晶構造を有する微粒結晶粒が存在し、該微粒結晶粒の存在する面積割合は5面積%以下であり、該微粒結晶粒の平均粒径Rは0.01〜0.3μmであることを特徴とする(1)〜(3)のいずれかに記載の表面被覆切削工具。
(5) 前記工具基体と前記密着層βの間に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1〜20μmの合計平均層厚を有する下部層γが存在することを特徴とする(1)〜(4)のいずれかに記載の表面被覆切削工具。
(6) 前記上部層αの上部に、少なくとも酸化アルミニウム層を含む最上部層δが1〜25μmの合計平均層厚で存在することを特徴とする(1)〜(5)のいずれかに記載の表面被覆切削工具。」
に特徴を有するものである。
The present invention has been made based on the above findings.
"(1) Surface coating cutting in which a hard coating layer is provided on the surface of a tool substrate composed of either a tungsten carbide-based cemented carbide, a titanium nitride-based cermet, or a cubic boron nitride-based cemented carbide. In the tool
(A) The hard coating layer contains at least a composite nitride or composite carbonitride layer of Ti and Al having an average layer thickness of 1 to 20 μm.
(B) The Ti and Al composite nitride or composite carbonitride layer contains at least a phase of the composite nitride or composite carbonitride having a NaCl-type face-centered cubic structure.
(C) The Ti and Al composite nitride or composite carbonitride layer has an upper layer α having an average layer thickness of 0.5 μm or more and Ti and Al from the surface side of the hard coating layer toward the surface side of the tool substrate. Containing two layers composed of the adhesion layer β having an average layer thickness of 0.1 to 5.0 μm in which there is a periodic composition change of
(D) The composition of the upper layer α is
Composition formula: (Ti 1-Xα Al Xα ) ( CYα N 1-Yα )
When expressed in an average proportion occupied in the total amount of the average content ratio X [alpha avg and C of C and N occupying the total amount of Ti and Al Al Yα avg (however, Xα avg, Yα avg Any atomic ratio) Satisfy 0.60 ≤ Xα avg ≤ 0.95 and 0 ≤ Yα avg ≤ 0.005, respectively.
(E) The adhesive layer β in which the periodic composition change of Ti and Al exists has the composition.
Composition formula: Expressed as (Ti 1-Xβ Al Xβ ) ( CYβ N 1-Yβ ), and when the average layer thickness is Lβ avg (μm), the period of periodic composition change of Ti and Al is 1 nm or more and 23 nm. When the average content ratio of Al in the total amount of Ti and Al and the average content ratio of C in the total amount of C and N in each section divided into [Lβ avg ] + 2 in the layer thickness direction are calculated as follows. , The average content ratio of Al in the total amount of Ti and Al in each section Xβ avg and the average content ratio of C in the total amount of C and N Yβ avg (however, both Xβ avg and Yβ avg are atomic ratios) , 0.10 ≤ Xβ avg <0.60, 0 ≤ Yβ avg ≤ 0.005, respectively.
(F) The average layer thickness of the close contact layer β is Lβ avg (μm), and the close contact layer β is divided into [Lβ avg ] + 2 in the layer thickness direction, and the total amount of Ti and Al of Al in each divided section. when the average content ratio X? avg, were determined for each section obtained by dividing each occupying the, compared to X? avg in the tool base side of the section, X? avg monotonously increases in the hard coating layer surface side of the section, most tool substrate side of Ri greater value der towards X? avg in the most hard layer surface of the section than X? avg interval, and the value of X? avg in the most hard layer surface of the section 0.48 above der A surface coating cutting tool characterized by the fact that.
(2) The surface coating according to (1), wherein the average content ratio Xα avg of Al in the total amount of Ti and Al of the upper layer α is 0.70 ≦ Xα avg ≦ 0.95. Cutting tools.
(3) When the close contact layer β is observed from its vertical cross section, the period of periodic composition change of Ti and Al is 1 nm or more and less than 20 nm, and the combination of Ti and Al of Al which changes periodically. The surface coating cutting tool according to (1) or (2), wherein the average value of the difference between the adjacent maximum value and the minimum value of the content ratio Xβ in the amount is 0.01 to 0.07.
(4) With respect to the Ti and Al composite nitride or composite carbonitride layer of the upper layer α, when the longitudinal cross section of the layer is observed, the NaCl-type face center in the composite nitride or composite carbonitride layer is observed. Fine crystal grains having a hexagonal structure are present at the grain boundaries of individual crystal grains having a cubic structure, and the area ratio in which the fine crystal grains are present is 5 area% or less, and the average grain of the fine crystal grains is 5 or less. The surface-coated cutting tool according to any one of (1) to (3), wherein the diameter R is 0.01 to 0.3 μm.
(5) One or two or more Ti compounds among the carbide layer, the nitride layer, the carbonitride layer, the carbonic acid oxide layer and the carbonic acid nitrogen oxide layer of Ti between the tool substrate and the adhesion layer β. The surface coating cutting tool according to any one of (1) to (4), wherein a lower layer γ composed of layers and having a total average layer thickness of 0.1 to 20 μm is present.
(6) Described in any one of (1) to (5), wherein an uppermost layer δ including at least an aluminum oxide layer is present above the upper layer α with a total average layer thickness of 1 to 25 μm. Surface coating cutting tool. "
It has the characteristics of.
本発明について、以下に詳細に説明する。 The present invention will be described in detail below.
TiAlCN層:
図1〜4に、本発明の硬質被覆層を構成するTiとAlの複合窒化物または複合炭窒化物層(TiAlCN層)の縦断面模式図の例を示し、また、図5、図6に、密着層βの層厚方向にわたるTiとAlの周期的組成変化の態様の例を示す。
本発明の硬質被覆層は、TiAlCN層を少なくとも含む。このTiAlCN層は、硬さが高く、すぐれた耐摩耗性を有するが、平均層厚が1μm未満では各層の耐摩耗性が十分に発揮されず、20μmを越えると、TiAlCN層の結晶粒が粗大化し易くなり、チッピング、剥離を発生しやすくなることから、その平均層厚は1μm以上20μm以下と定めた。
また、本発明のTiAlCN層は、NaCl型の面心立方構造を有するTiAlCN結晶粒の相を含むことから、所定の硬さを有し耐摩耗性にすぐれる。
TiAlCN layer:
1 to 4 show an example of a schematic vertical cross-sectional view of a composite nitride or composite carbonitride layer (TiAlCN layer) of Ti and Al constituting the hard coating layer of the present invention, and FIGS. 5 and 6 show. , An example of the mode of the periodic composition change of Ti and Al over the layer thickness direction of the adhesion layer β is shown.
The hard coating layer of the present invention contains at least a TiAlCN layer. This TiAlCN layer has high hardness and excellent wear resistance, but if the average layer thickness is less than 1 μm, the wear resistance of each layer is not sufficiently exhibited, and if it exceeds 20 μm, the crystal grains of the TiAlCN layer are coarse. The average layer thickness was set to 1 μm or more and 20 μm or less because it is easy to form and chipping and peeling are likely to occur.
Further, since the TiAlCN layer of the present invention contains a phase of TiAlCN crystal grains having a NaCl-type face-centered cubic structure, it has a predetermined hardness and is excellent in wear resistance.
TiAlCN層の組成:
本発明の硬質被覆層を構成するTiAlCN層は、図1〜図4に示すように、硬質被覆層の表面側から工具基体側に向かって、上部層αと密着層βの順で形成された2層を含み、さらに、密着層βは、該層を層厚方向に複数の区間に分割し、分割したそれぞれの区間におけるAlのTiとAlの合量に占める平均含有割合(以下、「AlのTiとAlの合量に占める平均含有割合」を、単に、「Alの平均含有割合」という)Xβavgをそれぞれの分割した区間で求めたとき、工具基体側の区間におけるAlの平均含有割合Xβavgに比して、硬質被覆層表面側の区間におけるAlの平均含有割合Xβavgの方が大きい値となる組成変化構造を有する。
Composition of TiAlCN layer:
As shown in FIGS. 1 to 4, the TiAlCN layer constituting the hard coating layer of the present invention was formed in the order of the upper layer α and the adhesion layer β from the surface side of the hard coating layer toward the tool substrate side. The adhesion layer β further comprises two layers, and the layer is divided into a plurality of sections in the layer thickness direction, and the average content ratio of Al to the total amount of Ti and Al in each of the divided sections (hereinafter, “Al”). The average content ratio of Ti and Al in the total amount of Ti and Al is simply referred to as the "average content ratio of Al"). When Xβ avg is obtained in each divided section, the average content ratio of Al in the section on the tool substrate side. compared to X? avg, it has a composition change structure as a value larger average proportion X? avg of Al in the hard coating layer surface side of the section.
前記上部層αは、その組成を、
組成式:(Ti1−XαAlXα)(CYαN1−Yα)
で表した場合、AlのTiとAlの合量に占める平均含有割合(以下、「AlのTiとAlの合量に占める平均含有割合」を、単に、「Alの平均含有割合」という)XαavgおよびCのCとNの合量に占める平均含有割合(以下、「CのCとNの合量に占める平均含有割合」を、単に、「Cの平均含有割合」という)Yαavg(但し、Xαavg、Yαavgはいずれも原子比)は、それぞれ、0.60≦Xαavg≦0.95、0≦Yαavg≦0.005を満足することが必要である。
その理由は、Alの平均含有割合Xαavgが0.60未満では、上部層αは耐酸化性に劣るため、鋳鉄等の高速断続切削に供した場合には、耐摩耗性が十分でない。一方、Alの平均含有割合Xαavgが0.95を超えると、硬さに劣る六方晶の析出量が増大し硬さが低下するため、耐摩耗性が低下する。
したがって、上部層αにおけるAlの平均含有割合Xαavgは、0.60≦Xαavg≦0.95と定めた。なお、好ましいXαavgは、0.70≦Xαavg≦0.95である。
また、上部層αに含まれるCの平均含有割合Yαavgは、0≦Yαavg≦0.005の範囲の微量であるとき、上部層αと前記密着層βとの密着性が向上し、かつ、潤滑性が向上することによって切削時の衝撃を緩和し、結果として硬質被覆層全体としての耐欠損性および耐チッピング性が向上する。一方、Cの平均含有割合Yαavgが0.005を超えると、上部層αの靭性が低下し、その結果、耐欠損性および耐チッピング性も低下するため好ましくない。
したがって、上部層αにおけるCの平均含有割合Yαavgは、0≦Yavg≦0.005と定めた。
また、前記上部層αの平均層厚をLαavgとし、密着層βの平均層厚をLβavgとした場合、上部層αと密着層βの合計平均層厚(=Lαavg+Lβavg)は、1μm≦Lαavg+Lβavg≦20μmとする。
これは、合計平均層厚が1μm未満では耐摩耗性を十分に担持できず、一方、20μmを超えるとTiAlCN層の結晶粒が粗大化し易くなり、チッピングを発生しやすくなるという理由による。また、上部層αの平均層厚は0.5μm以上とする。これは上部層αの平均層厚が0.5μm未満では耐摩耗性が十分に発揮されないという理由による。
The composition of the upper layer α is
Composition formula: (Ti 1-Xα Al Xα ) ( CYα N 1-Yα )
When represented by, the average content ratio of Al in the total amount of Ti and Al (hereinafter, "the average content ratio of Al in the total amount of Ti and Al" is simply referred to as "the average content ratio of Al") Xα. Average content ratio of avg and C in the total amount of C and N (hereinafter, "average content ratio of C in the total amount of C and N" is simply referred to as "average content ratio of C") Yα avg (However, , Xα avg and Yα avg are all atomic ratios), and it is necessary to satisfy 0.60 ≦ Xα avg ≦ 0.95 and 0 ≦ Yα avg ≦ 0.005, respectively.
The reason is that when the average content ratio Xα avg of Al is less than 0.60, the upper layer α is inferior in oxidation resistance, so that the wear resistance is not sufficient when it is subjected to high-speed intermittent cutting of cast iron or the like. On the other hand, when the average content ratio Xα avg of Al exceeds 0.95, the amount of precipitation of hexagonal crystals inferior in hardness increases and the hardness decreases, so that the wear resistance decreases.
Therefore, the average content ratio of Al in the upper layer α, Xα avg, was set to 0.60 ≦ Xα avg ≦ 0.95. The preferred Xα avg is 0.70 ≦ Xα avg ≦ 0.95.
Further, when the average content ratio Yα avg of C contained in the upper layer α is a small amount in the range of 0 ≦ Yα avg ≦ 0.005, the adhesion between the upper layer α and the adhesion layer β is improved, and the adhesion is improved. By improving the lubricity, the impact at the time of cutting is alleviated, and as a result, the fracture resistance and chipping resistance of the hard coating layer as a whole are improved. On the other hand, when the average content ratio Yα avg of C exceeds 0.005, the toughness of the upper layer α is lowered, and as a result, the fracture resistance and the chipping resistance are also lowered, which is not preferable.
Therefore, the average content ratio Yα avg of C in the upper layer α was set to 0 ≦ Y avg ≦ 0.005.
Further, when the average layer thickness of the upper layer α is Lα avg and the average layer thickness of the adhesion layer β is Lβ avg , the total average layer thickness (= Lα avg + Lβ avg ) of the upper layer α and the adhesion layer β is It is assumed that 1 μm ≤ Lα avg + Lβ avg ≤ 20 μm.
This is because if the total average layer thickness is less than 1 μm, the wear resistance cannot be sufficiently supported, while if it exceeds 20 μm, the crystal grains of the TiAlCN layer are likely to be coarsened and chipping is likely to occur. The average layer thickness of the upper layer α is 0.5 μm or more. This is because the wear resistance is not sufficiently exhibited when the average layer thickness of the upper layer α is less than 0.5 μm.
前記密着層βは、その組成を、
組成式:(Ti1−XβAlXβ)(CYβN1−Yβ)
で表し、平均層厚をLβavg(μm)とし、前記密着層βをその層厚方向に[Lβavg]+2分割し、分割した各区間におけるAlの平均含有割合XβavgおよびCのCとNの合量に占める平均含有割合Yβavgを、それぞれ分割した区間毎に求めたとき、各区間のAlの平均含有割合XβavgとCの平均含有割合Yβavg(但し、Xβavg、Yβavgはいずれも原子比)はいずれも、0.10≦Xβavg<0.60、0≦Yβavg≦0.005を満足する。
Xβavgを0.10以上とした理由は、0.10未満では硬度が十分でなく、耐摩耗性が損なわれるためであり、Xβavg<0.60とした理由は、Alの平均含有割合Xβavgが0.60以上になり、上部層αのAlの平均含有割合Xαavgより高いAlの平均含有割合になると、上部層αより硬さが向上する一方で靱性が低下することにより、耐欠損性の低下が生じ、また、チッピングや剥離が発生しやすくなるためである。
また、Yβavgについては、前記した上部層αのYαavgと同様な理由により0≦Yβavg≦0.005とした。
また、密着層βの平均層厚は0.1μm以上5.0μm以下と定めた。これは密着層βの平均層厚が0.1μm未満では十分な耐摩耗性、耐亀裂進展抑制性能、密着強度が十分に発揮されず、5.0μmを超えるとチッピング、剥離を発生しやすくなるという理由による。
The composition of the adhesive layer β is
Composition formula: (Ti 1-Xβ Al Xβ ) ( CYβ N 1-Yβ )
Represented by, the average layer thickness is Lβ avg (μm), the adhesion layer β is divided into [Lβ avg ] + 2 in the layer thickness direction, and the average content ratio of Al in each divided section is Xβ avg and C and N of C. When the average content ratio Yβ avg in the total amount of AVG was obtained for each divided section, the average content ratio Xβ avg of Al and the average content ratio Yβ avg of C in each section (however, Xβ avg and Yβ avg are any). Also, the atomic ratio) satisfies 0.10 ≦ Xβ avg <0.60, 0 ≦ Yβ avg ≦ 0.005.
The reason why Xβ avg is 0.10 or more is that the hardness is not sufficient and the wear resistance is impaired when it is less than 0.10, and the reason why Xβ avg <0.60 is the average content ratio of Al Xβ. When avg is 0.60 or more and the average content of Al in the upper layer α is higher than that of Xα avg, the hardness is improved as compared with the upper layer α, but the toughness is lowered, so that the fracture resistance is reduced. This is because the property is deteriorated and chipping and peeling are likely to occur.
As for the Ybeta avg, was 0 ≦ Yβ avg ≦ 0.005 the same reason as Yarufa avg upper layer α mentioned above.
Further, the average layer thickness of the adhesion layer β was determined to be 0.1 μm or more and 5.0 μm or less. This is because if the average layer thickness of the adhesion layer β is less than 0.1 μm, sufficient wear resistance, crack growth suppression performance, and adhesion strength are not sufficiently exhibited, and if it exceeds 5.0 μm, chipping and peeling are likely to occur. Because of that.
さらに、前記密着層βは、その平均層厚をLβavg(μm)とし、前記密着層βをその層厚方向に[Lβavg]+2分割し、分割した各区間におけるAlの平均含有割合Xβavgを、それぞれ分割した区間毎に求めたとき、工具基体側の区間におけるXβavgに比して、硬質被覆層表面側の区間におけるXβavgが単調増加し、最も工具基体側の区間のXβavgよりも最も硬質被覆層表面側の区間におけるXβavgの方が大きい値となる組成変化構造(ラメラ構造)を有する。
ここで、[Lβavg]はガウス記号を表し、[Lβavg]はLβavgを超えない最大の整数を表す数学記号であり、言い換えれば、[Lβavg]は、n≦Lβavg<n+1で定義される数値(ただし、nは整数)をいう。また、ここでいう単調増加とは、Xβn≦Xβn+1のこと(但し、最も工具基体側の区間のXβavgよりも最も硬質被覆層表面側の区間におけるXβavgの方が大きい値となる)をいう。
例えば、密着層のLβavg=1.5(μm)の場合、[1.5]=1であるから、『[Lβavg]+2分割』とは、1+2=3分割ということになる。
なお、図6に、密着層βが3分割された模式図を示す。
つまり、密着層のLβavgを1.5(μm)としたとき、密着層βをその層厚方向に3つの区間に分割し、工具基体側の第1分割区間におけるAlの平均含有割合XβavgがXβ1、同じく中央部の第2分割区間におけるAlの平均含有割合XβavgがXβ2、同じく上部層α側の第3分割区間におけるAlの平均含有割合XβavgがXβ3であった場合には、Xβ1≦Xβ2<Xβ3という組成変化構造(ラメラ構造)を密着層βは有するということである。
Further, the close contact layer β has an average layer thickness of Lβ avg (μm), and the close contact layer β is divided into [Lβ avg ] + 2 in the layer thickness direction, and the average content ratio of Al in each of the divided sections is Xβ avg. and when determined for each section divided respectively, compared to X? avg in the tool base side of the section, X? avg monotonously increases in the hard coating layer surface side of the section, from X? avg of the most tool base side section Also has a composition change structure (lamella structure) in which Xβ avg has a larger value in the section on the surface side of the hardest coating layer.
Here, [Lβ avg ] represents a Gaussian symbol, [Lβ avg ] is a mathematical symbol representing the maximum integer not exceeding Lβ avg , in other words, [Lβ avg ] is n ≦ Lβ avg <n + 1 Refers to a numerical value defined by (where n is an integer). Further, the monotonous increase referred to here means Xβ n ≤ Xβ n + 1 (however, the value of Xβ avg in the section on the surface side of the hardest coating layer is larger than that of Xβ avg in the section on the most tool substrate side). To say.
For example, when Lβ avg = 1.5 (μm) of the adhesion layer, [1.5] = 1, so “[Lβ avg ] + 2 division” means 1 + 2 = 3 division.
Note that FIG. 6 shows a schematic diagram in which the adhesion layer β is divided into three parts.
That is, when the Lβ avg of the adhesion layer is 1.5 (μm), the adhesion layer β is divided into three sections in the layer thickness direction, and the average content ratio of Al in the first division section on the tool substrate side Xβ avg. If but X? 1, also the average content X? avg of Al in the second divided section of the central portion X? 2, also the average content X? avg of Al in the third divided section of the upper layer α side was X? 3 Means that the adhesion layer β has a composition-changing structure (lamella structure) of Xβ 1 ≤ Xβ 2 <Xβ 3 .
図5、図6に、密着層βの前記組成変化構造(ラメラ構造)の態様の概略模式図を示す。
図5に示す態様においては、密着層βにおけるAlの含有割合Xβは、少しずつの増減を繰り返しながら、全体としては、工具基体側から上部層側に向かってXβは増加していく。
また、図6に示す別の態様においては、密着層βにおけるAlの含有割合Xβは、長周期の増減と短周期の増減とを少しずつ繰り返しながら、全体としては、工具基体側から上部層側に向かってXβは増加していく。
なお、本発明でいう「TiとAlの周期的な組成変化」とは、Alの含有割合が増減を繰り返しながら、全体としては、工具基体側から上部層側に向かって増加することをいう。
本発明の密着層βは、前記したAlの平均含有割合XβavgとCの平均含有割合Yβavgを有し、さらに、前記したTiとAlの周期的な組成変化を形成することによって、密着層β内のTiAlCN結晶粒にひずみが生じ、硬さが向上し、また、切削加工時のクラックの進展が、組成変化構造(ラメラ構造)の界面で抑制され靱性が向上するとともに、TiAlCN結晶粒の格子歪が順次に緩和されるため、上部層αとの密着性の向上が図られる。
図6のように長周期の増減と短周期の増減を繰り返す場合でも、分割した区間毎の平均値において、工具基体側の区間におけるXβavgに比して、硬質被覆層表面側の区間におけるXβavgの方が大きい値となる場合には殆どその効果を損なわない。
なお、本発明では特に規定していないが、上部層αが、密着層βのような組成変化構造(ラメラ構造)を備えることも排除するものではない。また、この時、上部層αと密着層βについて分析上区別する上で、各層のAlのTiとAlの合量に占める平均含有割合の範囲、0.60≦Xαavg≦0.95と0.10≦Xβavg<0.60にて区別されるものとする。
したがって、鋳鉄等の高速断続切削加工において、切れ刃に断続的・衝撃的な高負荷が作用した場合でも、上部層αと密着層βの層間密着強度に優れるため、チッピング、剥離等の異常損傷の発生が抑制され、長期の使用に亘ってすぐれた耐摩耗性が発揮される。
5 and 6 show a schematic schematic diagram of the aspect of the composition change structure (lamellar structure) of the adhesion layer β.
In the embodiment shown in FIG. 5, the Al content ratio Xβ in the adhesion layer β gradually increases and decreases, and as a whole, Xβ increases from the tool substrate side toward the upper layer side.
Further, in another aspect shown in FIG. 6, the Al content ratio Xβ in the adhesion layer β gradually increases and decreases in a long period and a short period, and as a whole, from the tool substrate side to the upper layer side. Xβ increases toward.
The "periodic composition change of Ti and Al" in the present invention means that the content ratio of Al increases from the tool substrate side to the upper layer side as a whole while repeatedly increasing and decreasing.
The adhesion layer β of the present invention has the above-mentioned average content ratio Xβ avg of Al and the average content ratio Yβ avg of C, and further forms the above-mentioned periodic composition change of Ti and Al to form the above-mentioned adhesion layer. The TiAlCN crystal grains in β are distorted to improve the hardness, and the growth of cracks during cutting is suppressed at the interface of the composition change structure (lamella structure) to improve the toughness, and the TiAlCN crystal grains are improved. Since the lattice strain is sequentially relaxed, the adhesion to the upper layer α can be improved.
Even when the long-period increase / decrease and the short-period increase / decrease are repeated as shown in FIG. 6, the mean value for each divided section is Xβ in the section on the surface side of the hard coating layer as compared with Xβ avg in the section on the tool substrate side. When the value of avg is larger, the effect is hardly impaired.
Although not particularly specified in the present invention, it is not excluded that the upper layer α has a composition-changing structure (lamellar structure) such as the adhesion layer β. Further, at this time, in order to analytically distinguish the upper layer α and the close contact layer β, the range of the average content ratio of Al in the total amount of Ti and Al of each layer, 0.60 ≤ Xα avg ≤ 0.95 and 0 .10 ≤ Xβ avg <0.60 shall be distinguished.
Therefore, in high-speed intermittent cutting of cast iron, etc., even when an intermittent or shocking high load acts on the cutting edge, the interlayer adhesion strength between the upper layer α and the adhesion layer β is excellent, so that abnormal damage such as chipping and peeling occurs. Is suppressed, and excellent wear resistance is exhibited over a long period of use.
また、前記周期的な組成変化を有する密着層βについて、透過型電子顕微鏡を用いて、加速電圧200kVの条件において密着層βの微小領域の観察を行い、エネルギー分散型X線分光法(EDS)を用いて、断面側から面分析あるいは線分析を行うことによって、周期的な組成変化の状態を確認することができる。
前記の面分析により、前記密着層βをその層厚方向に[Lβavg]+2分割し、分割した各区間における50nm×50nmの視野を少なくとも10点以上測定し、Alの平均含有割合Xβavgとして、それぞれ分割した区間毎に求めることが出来る。
また、前記の線分析によって、周期的に変化するAlの含有割合Xβの隣接する極大値と極小値の差の平均値を求めることができ、また、組成変化の周期を求めることができる。なお、TiとAlの周期的な組成変化の周期とは、TiとAlの周期的な組成変化の周期が最小となる方向において測定される隣り合う極小値の長さ(距離)のことである。
具体的な組成変化の周期、Alの含有割合Xβの隣接する極大値と極小値の差の平均値は、次のようにして求めることができる。
図5を用いて説明すると、密着層βについて、波状に変化し、かつ、全体的には右肩上がりの傾向を示す周期的な組成変化が測定された場合、極大値同士をそれぞれ結ぶ近似線分と極小値同士をそれぞれ結ぶ近似線分を作成し、工具基体(あるいは後記する下部層γ)との界面における密着層βのAlの含有割合Xβの極大値と極小値の差ΔXβLを求め、また、上部層αとの界面における密着層βのAlの含有割合Xβの極大値と極小値の差ΔXβHを求め、(ΔXβL+ΔXβH)/2の値を、Alの含有割合Xβの隣接する極大値と極小値の差の平均値ΔXβとして算出する。
また、組成変化の周期は、密着層βの平均層厚Lβavg(μm)を、Alの含有割合Xβの組成変化において形成された極小値の数で割った値として求めることができる。この時、分析した線上にポアが存在する場合あるいは、組成変化が無い、もしくは明瞭でない場合にはこの部分の長さを平均層厚Lβavg(μm)から除き、線上のAlの含有割合Xβの組成変化において形成された極小値の数で割った値として求める。
なお、図6に示す長周期と短周期の組み合わせからなる組成変化の態様については、長周期によって形成されるAlの含有割合Xβの極大値と極小値から算出された値を、Alの含有割合Xβの隣接する極大値と極小値の差の平均値とし、また、組成変化の周期とした。
Further, with respect to the close contact layer β having a periodic composition change, a minute region of the close contact layer β is observed under the condition of an acceleration voltage of 200 kV using a transmission electron microscope, and energy dispersive X-ray spectroscopy (EDS) is performed. It is possible to confirm the state of periodic composition change by performing surface analysis or line analysis from the cross-sectional side using.
By the above-mentioned surface analysis, the close contact layer β was divided into [Lβ avg ] + 2 in the layer thickness direction, and at least 10 points or more were measured in a field of view of 50 nm × 50 nm in each divided section to obtain an average Al content ratio Xβ avg. , Can be obtained for each divided section.
Further, by the above-mentioned line analysis, the average value of the difference between the adjacent maximum value and the minimum value of the periodically changing Al content ratio Xβ can be obtained, and the period of the composition change can be obtained. The period of the periodic composition change of Ti and Al is the length (distance) of adjacent minimum values measured in the direction in which the period of the periodic composition change of Ti and Al is minimized. ..
The specific cycle of the composition change and the average value of the difference between the adjacent maximum value and the minimum value of the Al content ratio Xβ can be obtained as follows.
Explaining with reference to FIG. 5, when the cyclic composition change of the adhesion layer β, which changes in a wavy shape and shows an upward tendency as a whole, is measured, the approximate lines connecting the maximum values are measured. Create an approximate line segment connecting the minute and the minimum value, and find the difference between the maximum value and the minimum value of the Al content ratio Xβ of the adhesion layer β at the interface with the tool substrate (or the lower layer γ described later) ΔXβ L. , also obtain a difference DerutaXbeta H between the maximum value and the minimum value of the content Xβ of Al of the contact layer β at the interface between the upper layer alpha, the value of (ΔXβ L + ΔXβ H) / 2, the content ratio Xβ of Al It is calculated as the average value ΔXβ of the difference between the adjacent maximum and minimum values.
Further, the cycle of the composition change can be obtained as a value obtained by dividing the average layer thickness Lβavg (μm) of the close contact layer β by the number of the minimum values formed in the composition change of the Al content ratio Xβ. At this time, if there is a pore on the analyzed line, or if there is no composition change or it is not clear, the length of this portion is excluded from the average layer thickness Lβ avg (μm), and the Al content ratio Xβ on the line It is calculated as a value divided by the number of minimum values formed in the composition change.
Regarding the aspect of the composition change consisting of the combination of the long period and the short period shown in FIG. 6, the value calculated from the maximum value and the minimum value of the Al content ratio Xβ formed by the long period is used as the Al content ratio. The average value of the difference between the adjacent maximum and minimum values of Xβ was used, and the period of composition change was used.
密着層βにおける前記組成変化の周期は1〜20nmとすることが好ましいが、これは、周期が1nm未満では、結晶粒の歪みが大きくなり過ぎ、格子欠陥が多くなり、硬さが低下し、一方、その周期が20nmを超えると、切削時に摩耗が進行する面に作用する力により生じるクラック進展を抑制し、靱性を向上させる十分な緩衝作用を期待することができないためである。
また、密着層βにおける周期的な組成変化において、Alの含有割合Xβの隣接する極大値と極小値の差の平均値ΔXβは0.01〜0.07であることが好ましいが、これは、隣接する極大値と極小値の差の平均値ΔXβが0.01未満では、結晶粒の歪みが小さく十分な硬さ向上効果が見込めず、一方、極大値と極小値の差の平均値ΔXβが0.07を超えると結晶粒の格子歪が大きくなりすぎ、格子欠陥が増加するため、硬さが低下傾向を示すようになるからである。
The period of the composition change in the close contact layer β is preferably 1 to 20 nm, but if the period is less than 1 nm, the distortion of the crystal grains becomes too large, the lattice defects increase, and the hardness decreases. On the other hand, if the period exceeds 20 nm, it is not possible to expect a sufficient buffering action to suppress crack growth caused by a force acting on a surface where wear progresses during cutting and improve toughness.
Further, in the periodic composition change in the close contact layer β, the average value ΔXβ of the difference between the adjacent maximum value and the minimum value of the Al content ratio Xβ is preferably 0.01 to 0.07. If the average value ΔXβ of the difference between the adjacent maximum and minimum values is less than 0.01, the distortion of the crystal grains is small and a sufficient hardness improvement effect cannot be expected, while the average value ΔXβ of the difference between the maximum and minimum values is This is because if it exceeds 0.07, the lattice strain of the crystal grains becomes too large and the lattice defects increase, so that the hardness tends to decrease.
六方晶構造を有する微粒結晶粒:
本発明の上部層α、密着層βでは、NaCl型の面心立方構造を有するTiAlCN結晶粒の粒界に六方晶構造の微粒結晶粒を含有することができるが、NaCl型の面心立方構造を有するTiAlCN結晶粒の粒界に靱性に優れた微粒六方晶が存在することで粒界における摩擦が低減し、靱性が向上する。
しかし、六方晶構造の微粒結晶粒の面積割合が5面積%を超えると相対的に硬さが低下し好ましくなく、また、六方晶構造の微粒結晶粒の平均粒径Rが0.01μm未満であると靱性向上の効果が見られず、0.3μmを超えると、硬さが低下し、耐摩耗性が損なわれるため、平均粒径Rは0.01〜0.3μmとすることが好ましい。
なお、本発明でいう粒界中に存在する六方晶構造の微粒結晶粒は、透過型電子顕微鏡を用いて電子線回折図形を解析することにより同定することができ、また、六方晶構造の微粒結晶粒の平均粒子径は、粒界を含んだ0.1μm×0.1μmの測定範囲内に存在する粒子について、粒径を測定し、それらの平均値を算出することによって求めることができる。
なお、粒径は六方晶と同定した各々の結晶粒に対して外接円を作成し、その外接円の直径を求め、その平均値を粒径とした。
Fine crystal grains with a hexagonal structure:
In the upper layer α and the close contact layer β of the present invention, fine crystal grains having a hexagonal structure can be contained at the grain boundaries of TiAlCN crystal grains having a NaCl-type face-centered cubic structure, but the NaCl-type face-centered cubic structure. By the presence of fine hexagonal crystals having excellent toughness at the grain boundaries of TiAlCN crystal grains having the above, friction at the grain boundaries is reduced and toughness is improved.
However, when the area ratio of the hexagonal structure fine crystal grains exceeds 5 area%, the hardness is relatively lowered, which is not preferable, and the average particle size R of the hexagonal structure fine crystal grains is less than 0.01 μm. If there is, the effect of improving toughness is not seen, and if it exceeds 0.3 μm, the hardness is lowered and the wear resistance is impaired. Therefore, the average particle size R is preferably 0.01 to 0.3 μm.
The hexagonal structure fine particles existing in the grain boundaries in the present invention can be identified by analyzing the electron diffraction pattern using a transmission electron microscope, and the hexagonal structure fine particles can be identified. The average particle size of the crystal grains can be obtained by measuring the particle size of the particles existing in the measurement range of 0.1 μm × 0.1 μm including the grain boundaries and calculating the average value thereof.
As for the particle size, an circumscribed circle was created for each crystal grain identified as a hexagonal crystal, the diameter of the circumscribed circle was obtained, and the average value was taken as the particle size.
下部層γおよび最上部層δ:
本発明の被覆工具は、硬質被覆層として、前記上部層αおよび前記密着層βを設けることにより、耐チッピング性、耐剥離性が向上するが、TiAlCN層は、それだけでも十分な効果を奏するが、図2、図3、図4として例示するように、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1〜20μmの合計平均層厚を有する下部層γを設けた場合(図2参照)、および/または、少なくとも酸化アルミニウム層を含む最上部層δを1〜25μmの合計平均層厚で設けた場合(図3、4参照)には、これらの層が奏する効果と相俟って、一層すぐれた特性が発揮される。
Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなる下部層γを設ける場合、下部層γの合計平均層厚が0.1μm未満では、下部層γを形成した効果が十分に奏されず、一方、20μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。
また、酸化アルミニウム層を含む最上部層δの合計平均層厚が1μm未満では、上部層δを形成した効果が十分に奏されず、一方、25μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。
Lower layer γ and uppermost layer δ:
In the coating tool of the present invention, the chipping resistance and the peeling resistance are improved by providing the upper layer α and the adhesion layer β as the hard coating layer, but the TiAlCN layer alone exerts a sufficient effect. As illustrated in FIGS. 2, 3, and 4, a Ti compound having one or more layers of a carbide layer, a nitride layer, a carbonitride layer, a carbon oxide layer, and a carbon dioxide oxide layer of Ti. When a lower layer γ consisting of layers and having a total average layer thickness of 0.1 to 20 μm is provided (see FIG. 2), and / or a total average of 1 to 25 μm of the uppermost layer δ including at least an aluminum oxide layer. When the layer thickness is increased (see FIGS. 3 and 4), more excellent characteristics are exhibited in combination with the effects of these layers.
When the lower layer γ composed of one or more Ti compound layers of the carbide layer, the nitride layer, the carbonic acid nitride layer, the coal oxide layer and the carbonic acid oxide layer of Ti is provided, the total of the lower layers γ is provided. If the average layer thickness is less than 0.1 μm, the effect of forming the lower layer γ is not sufficiently exhibited, while if it exceeds 20 μm, the crystal grains are likely to be coarsened and chipping is likely to occur.
Further, when the total average layer thickness of the uppermost layer δ including the aluminum oxide layer is less than 1 μm, the effect of forming the upper layer δ is not sufficiently exhibited, while when it exceeds 25 μm, the crystal grains tend to be coarsened and chipping. Is likely to occur.
本発明は、工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、硬質被覆層が、TiAlCN層からなる上部層αおよび密着層βを少なくとも含み、あるいは、さらに下部層γ、上部層δを含み、特に、密着層β内にTiとAlの周期的な組成変化を形成することにより、密着層β内の結晶粒に歪を与えることで硬さが向上し、また、切削加工時のクラックの進展を組成変化界面で抑制し、さらに、密着層β内にAl含有量の組成傾斜構造を形成することにより、格子不整合に伴う歪みが層厚方向で徐々に緩和されることから、密着層βの硬さを維持したまま、上部層αとの付着強度の向上を図り得る。
その結果、本発明の被覆工具は、鋳鉄等の高速断続切削等に供した場合であっても、層間の密着強度にすぐれるとともに、チッピング、剥離等の異常損傷の発生を抑制し、長期の使用に亘ってすぐれた耐摩耗性を発揮するという効果が奏される。
According to the present invention, in a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool substrate, the hard coating layer contains at least an upper layer α and an adhesion layer β composed of a TiAlCN layer, or further, a lower layer γ and an upper layer. It contains the layer δ, and in particular, by forming a periodic composition change of Ti and Al in the adhesion layer β, the crystal grains in the adhesion layer β are distorted to improve the hardness, and the cutting process is performed. By suppressing the growth of cracks at the time at the composition change interface and further forming a composition gradient structure with Al content in the adhesion layer β, the strain due to lattice mismatch is gradually relaxed in the layer thickness direction. Therefore, it is possible to improve the adhesion strength with the upper layer α while maintaining the hardness of the adhesion layer β.
As a result, the covering tool of the present invention has excellent adhesion strength between layers even when it is used for high-speed intermittent cutting of cast iron or the like, and suppresses the occurrence of abnormal damage such as chipping and peeling for a long period of time. It has the effect of exhibiting excellent wear resistance over use.
つぎに、本発明の被覆工具を実施例により具体的に説明する。
なお、実施例においては、工具基体として、炭化タングステン基超硬合金あるいは炭窒化チタン基サーメットを用いたものについて説明するが、立方晶窒化ホウ素基超高圧焼結体を工具基体とした場合にも、同様な効果が得られる。
Next, the covering tool of the present invention will be specifically described with reference to Examples.
In the examples, a tool base using a tungsten carbide-based cemented carbide or a titanium nitride-based cermet will be described, but a cubic boron nitride-based ultrahigh-pressure sintered body may also be used as the tool base. , The same effect can be obtained.
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr3C2粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の工具基体A〜Cをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder having an average particle size of 1 to 3 μm are prepared, and these raw material powders are blended as shown in Table 1. It was blended into the composition, further added with wax, mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, press-molded into a green compact of a predetermined shape at a pressure of 98 MPa, and this green compact was pressed in a vacuum of 5 Pa at 1370. Vacuum sintered at a predetermined temperature within the range of ~ 1470 ° C. under the condition of holding for 1 hour, and after sintering, manufacture tool bases A to C made of WC-based superhard alloy having an insert shape of ISO standard SEEN1203AFSN. did.
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、WC粉末、Co粉末およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったTiCN基サーメット製の工具基体Dを作製した。 Further, as the raw material powder, both (TiC / TiN = 50/50 in mass ratio) TiCN having an average particle diameter of 0.5~2μm powder, Mo 2 C powder, ZrC powder, NbC powder, WC powder, Co powder And Ni powder are prepared, these raw material powders are blended into the compounding composition shown in Table 2, wet-mixed with a ball mill for 24 hours, dried, and then press-molded into a green compact at a pressure of 98 MPa. The body was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool base D made of TiCN-based cermet having an insert shape of ISO standard SEEN1203AFSN was prepared.
つぎに、これらの工具基体A〜Dの表面に、表3に示されるガス条件及び表4に示される形成条件で、TiとAlの周期的な組成変化が形成された表11に示されるTiAlCN層からなる密着層βを形成した。
次いで、表7に示されるガス条件及び表8に示される形成条件で、表11に示されるTiAlCN層からなる上部層αを形成した。
上記の成膜工程により、WC基超硬合金あるいはTiCN基サーメットからなる工具基体の表面に、密着層βおよび上部層αからなる硬質被覆層を形成することにより、表11に示す本発明被覆工具5〜8、13〜16を作製した。
Next, on the surfaces of these tool bases A to D, periodic composition changes of Ti and Al were formed under the gas conditions shown in Table 3 and the forming conditions shown in Table 4, and TiAlCN shown in Table 11 was formed. An adhesive layer β composed of layers was formed.
Then, under the gas conditions shown in Table 7 and the formation conditions shown in Table 8, the upper layer α composed of the TiAlCN layer shown in Table 11 was formed.
The coating tool of the present invention shown in Table 11 is formed by forming a hard coating layer composed of an adhesion layer β and an upper layer α on the surface of a tool substrate made of a WC-based cemented carbide or a TiCN-based cermet by the above film forming step. 5-8 and 13-16 were prepared.
また、前記工具基体A〜Dの表面に、まず、表9に示される形成条件でTi化合物からなる下部層γを形成し、ついで、表3に示されるガス条件及び表4に示される形成条件で、TiとAlの周期的な組成変化が形成された表11に示されるTiAlCN層からなる密着層βを形成し、次いで、表7に示されるガス条件及び表8に示される形成条件で、表11に示されるTiAlCN層からなる上部層αを形成し、次いで、表9に示される通常の化学蒸着条件で、α−Al2O3層からなる最上部層δを形成した。
上記の各成膜工程により、WC基超硬合金あるいはTiCN基サーメットからなる工具基体の表面に、下部層γ、密着層β、上部層αおよび最上部層δからなる硬質被覆層を形成することにより、表11に示す本発明被覆工具1、2、6、11、12、14を作製した。
なお、本発明被覆工具3〜5、7〜10、13、15,16は、最上部層δを形成していない。
Further, first, a lower layer γ composed of a Ti compound is formed on the surfaces of the tool substrates A to D under the formation conditions shown in Table 9, and then the gas conditions shown in Table 3 and the formation conditions shown in Table 4 are formed. Then, the adhesion layer β composed of the TiAlCN layer shown in Table 11 was formed in which the periodic composition change of Ti and Al was formed, and then under the gas conditions shown in Table 7 and the formation conditions shown in Table 8. The upper layer α composed of the TiAlCN layer shown in Table 11 was formed, and then the uppermost layer δ composed of the α-Al 2 O 3 layer was formed under the usual chemical vapor deposition conditions shown in Table 9.
By each of the above film forming steps, a hard coating layer composed of a lower layer γ, an adhesion layer β, an upper layer α and an uppermost layer δ is formed on the surface of a tool substrate made of a WC-based cemented carbide or a TiCN-based cermet. As a result, the covering tools 1, 2, 6, 11, 12, and 14 of the present invention shown in Table 11 were produced.
The covering tools 3 to 5, 7 to 10, 13, 15, and 16 of the present invention do not form the uppermost layer δ.
なお、本発明被覆工具の密着層βの成膜におけるNH3を用いた熱CVD法による成膜に際しては、NH3とH2からなるガス群Aと、TiCl4、AlCl3、N2、C2H4、H2からなるガス群Bをそれぞれ供給する。密着層βの成膜は、AlCl3/TiCl4比を逐次的に増加させながら成膜することにより、工具基体表面から硬質皮膜表面方向へAl量が増加する密着層βを成膜する。この時、ガスA,Bの供給位相差が存在し、かつガスA,Bの供給周期を長くすることによって、工具基体表面へ成膜される皮膜の組成のゆらぎが生じ、さらに原子の再配列が生じることによって、層厚方向に対してAlとTiの組成変化が生じる。 ガスA,Bの供給周期が短すぎると、再配列が十分に行われず、AlとTiの組成変化が生じない、あるいは、Al量の増加が不連続な(周期的に変化するAlの含有割合Xβの隣接する極大値と極小値の差の平均値が0.01〜0.07の範囲を外れる)AlとTiの組成変化を多く含むようになり、前者は結晶粒の歪みによる硬さの向上効果が得られず不適であり、後者も結晶粒内の歪みが大きくなり過ぎ、格子欠陥が増加し硬さが低下するため望ましくない。
なお、密着層β内にAlやTiが偏析した異相が存在しても上記発明の効果を損なわない。
In the film formation by the thermal CVD method using NH 3 in the film formation of the adhesion layer β of the coating tool of the present invention, the gas group A composed of NH 3 and H 2 and TiCl 4 , AlCl 3 , N 2 and C 2 A gas group B composed of H 4 and H 2 is supplied. The adhesion layer β is formed by sequentially increasing the AlCl 3 / TiCl 4 ratio to form the adhesion layer β in which the amount of Al increases from the surface of the tool substrate toward the surface of the hard film. At this time, there is a supply phase difference between the gases A and B, and by lengthening the supply cycle of the gases A and B, the composition of the film formed on the surface of the tool substrate fluctuates, and the atoms are rearranged. Causes a change in the composition of Al and Ti in the layer thickness direction. If the supply cycles of the gases A and B are too short, the rearrangement is not sufficiently performed, the composition of Al and Ti does not change, or the increase in the amount of Al is discontinuous (the content ratio of Al that changes periodically). The average value of the difference between the adjacent maximum and minimum values of Xβ is outside the range of 0.01 to 0.07). It now contains many changes in the composition of Al and Ti, and the former is the hardness due to the strain of the crystal grains. It is unsuitable because the improving effect cannot be obtained, and the latter is also not desirable because the strain in the crystal grains becomes too large, lattice defects increase, and the hardness decreases.
Even if a different phase in which Al or Ti is segregated exists in the adhesion layer β, the effect of the above invention is not impaired.
比較の目的で、工具基体A〜Dの表面に、表9に示される形成条件でTi化合物からなる下部層γを形成し、あるいは、形成せずに、表5に示されるガス条件及び表6に示される形成条件で周期的な組成変化のある密着層βを形成し、また、周期的な組成変化のない密着層βを形成し、あるいは、形成せずに、表7に示されるガス条件及び表8に示される形成条件でTiAlCN層からなる上部層αを形成することによって、表12に示す比較例被覆工具1〜16を作製した。
なお、表9に示される形成条件で、α−Al2O3からなる最上部層δを成膜することで、表12に示す比較例被覆工具1、2、6、9、10、14を作製した。
For the purpose of comparison, the gas conditions shown in Table 5 and Table 6 show that the lower layer γ composed of the Ti compound is formed or not formed on the surfaces of the tool substrates A to D under the formation conditions shown in Table 9. The gas conditions shown in Table 7 form the adhesion layer β having a periodic composition change under the formation conditions shown in Table 7, and form the adhesion layer β having no periodic composition change, or without forming the adhesion layer β. By forming the upper layer α composed of the TiAlCN layer under the formation conditions shown in Table 8, Comparative Examples Covering Tools 1 to 16 shown in Table 12 were produced.
By forming the uppermost layer δ composed of α-Al 2 O 3 under the formation conditions shown in Table 9, the comparative example covering tools 1, 2, 6, 9, 10 and 14 shown in Table 12 can be formed. Made.
本発明被覆工具1〜16、比較例被覆工具1〜16の各構成層の工具基体表面に垂直な方向の縦断面を、走査型電子顕微鏡(倍率5000倍)あるいは、透過型電子顕微鏡を用いて、加速電圧200kVの条件に置いて基体と垂直な任意の断面から任意の領域において観察を行い、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表11および表12に示される目標層厚と実質的に同じ平均層厚を示した。
また、本発明被覆工具1〜16の密着層β、上部層α、比較例被覆工具1〜16の密着層β、上部層αを構成するTiAlCN層の平均Al含有割合Xβavg、Xαavg、平均C含有割合Yβavg、Yαavgについては、透過型電子顕微鏡を用いて、該層の微小領域の観察を行い、エネルギー分散型X線分光法(EDS)によって工具基体表面と垂直な方向についての線分析を行うことにより求めた。 ただし、Cの含有割合Yavgについては、ガス原料としてCを含むガスを用いなくても、不可避的に含有されるCの含有割合を除外している。具体的には、例えば、Cを含むガス原料であるC2H4の供給量を0とした場合に、複合窒化物または複合炭窒化物層から検出されるC成分の含有割合(原子比)を不可避的なCの含有割合として求め、例えば、C2H4を意図的に供給したから場合に得られる複合窒化物または複合炭窒化物層に含まれるC成分の含有割合(原子比)前記不可避的に含有されるCの含有割合を差し引いた値をYavgとして定めた。
Using a scanning electron microscope (magnification 5000 times) or a transmission electron microscope, a vertical cross section of each of the constituent layers of the covering tools 1 to 16 of the present invention and the covering tools 1 to 16 in the direction perpendicular to the tool substrate surface is used. , Observation was performed in an arbitrary region from an arbitrary cross section perpendicular to the substrate under the condition of an acceleration voltage of 200 kV, and the layer thicknesses of 5 points in the observation field were measured and averaged to obtain the average layer thickness. The average layer thickness substantially the same as the target layer thickness shown in Tables 11 and 12 was shown.
Further, the average Al content ratios of the TiAlCN layers constituting the adhesion layer β and the upper layer α of the coating tools 1 to 16 of the present invention, the adhesion layer β of the coating tools 1 to 16 of the comparative example, and the upper layer α Xβ avg , Xα avg , average. C content Ybeta avg, for Yarufa avg, using a transmission electron microscope, carried out observation of the layer of micro-regions, the line in the direction perpendicular and tool substrate surface by an energy dispersive X-ray spectroscopy (EDS) It was obtained by conducting an analysis. However, regarding the C content ratio Yavg , the C content ratio that is inevitably contained is excluded even if a gas containing C is not used as a gas raw material. Specifically, for example, when the supply amount of C 2 H 4 , which is a gas raw material containing C, is set to 0, the content ratio (atomic ratio) of the C component detected from the composite nitride or the composite carbonitride layer. As the unavoidable C content ratio, for example, the content ratio (atomic ratio) of the C component contained in the composite nitride or composite carbonitride layer obtained when C 2 H 4 is intentionally supplied. The value obtained by subtracting the content ratio of C inevitably contained was defined as Yavg .
また、本発明被覆工具1〜16の密着層β、あるいは、比較例被覆工具の周期的組成変化が形成されている密着層βについては、密着層βの平均層厚がLβavg(μm)である場合に、前記密着層βをその層厚方向に[Lβavg]+2分割し、分割された各区間(例えば、m分割された区間1,区間2,・・区間m。但し、区間1が工具基体側であり、区間mが上部層α側である。)における層厚方向のAlの含有割合Xβを測定し、各区間の層厚方向中央位置におけるAlの含有割合を該区間のAlの平均含有割合(例えば、区間1におけるXβavg1,区間2におけるXβavg2,・・区間mにおけるXβavgm)とし、Xβavg1≦Xβavg2≦・・<Xβavgmのであるかを確認した。 Further, for the adhesion layer β of the coating tools 1 to 16 of the present invention or the adhesion layer β in which the periodic composition change of the comparative example coating tool is formed, the average layer thickness of the adhesion layer β is Lβ avg (μm). In a certain case, the close contact layer β is divided into [Lβ avg ] + 2 in the layer thickness direction, and each divided section (for example, m divided section 1, section 2, ... Section m. However, section 1 is The Al content ratio Xβ in the layer thickness direction in the tool substrate side and the section m is the upper layer α side) is measured, and the Al content ratio at the center position in the layer thickness direction of each section is the Al content ratio of the section. mean proportion (e.g., X? AVG2 in X? avg1, section 2 in the section 1, X? AVGM in .. interval m) and was confirmed whether it is the Xβ avg1 ≦ Xβ avg2 ≦ ·· < Xβ avgm.
さらに、本発明被覆工具1〜16の密着層β、あるいは、比較例被覆工具の周期的組成変化が形成されている密着層βについては、透過型電子顕微鏡を用いて、加速電圧200kVの条件において密着層βの微小領域の観察を行い、エネルギー分散型X線分光法(EDS)を用いて、縦断面側から線分析を行うことによって、TiとAlの周期的な組成変化を測定した。
つまり、透過型電子顕微鏡を用いた微小領域の観察と、エネルギー分散型X線分光法(EDS)を用いた縦断面側からの線分析により、工具基体(あるいは下部層γ)との界面における密着層βのAlの含有割合Xβの極大値と極小値の差ΔXβLを求め、また、上部層αとの界面における密着層βのAlの含有割合Xβの極大値と極小値の差ΔXβHを求め、(ΔXβL+ΔXβH)/2の値を、Alの含有割合Xβの隣接する極大値と極小値の差の平均値ΔXβとして算出した。
また、組成変化の周期は、密着層βの平均層厚Lβavg(μm)を、Alの含有割合Xβの組成変化において形成された極小値の数で割った値として求めた。
Further, the adhesion layer β of the coating tools 1 to 16 of the present invention or the adhesion layer β in which the periodic composition change of the coating tool of the comparative example is formed is under the condition of an acceleration voltage of 200 kV using a transmission electron microscope. The periodic composition change of Ti and Al was measured by observing a minute region of the close contact layer β and performing line analysis from the longitudinal cross-sectional side using energy dispersive X-ray spectroscopy (EDS).
That is, by observing a minute region using a transmission electron microscope and line analysis from the vertical cross-sectional side using energy dispersive X-ray spectroscopy (EDS), adhesion at the interface with the tool substrate (or lower layer γ) determining a difference DerutaXbeta L between the maximum value and the minimum value of the content Xβ of Al layer beta, also the difference DerutaXbeta H between the maximum value and the minimum value of the content Xβ of Al of the contact layer beta at the interface between the upper layer α The value of (ΔXβ L + ΔXβ H ) / 2 was calculated as the average value ΔXβ of the difference between the adjacent maximum and minimum values of the Al content ratio Xβ.
The composition change cycle was determined by dividing the average layer thickness Lβ avg (μm) of the close contact layer β by the number of minimum values formed in the composition change of the Al content ratio Xβ.
また、本発明被覆工具1〜16の密着層β、上部層α、比較例被覆工具1〜16の密着層β、上部層αについて、電子線後方散乱回折装置を用いて、各層の工具基体表面に垂直な方向の縦断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記断面研磨面の測定範囲内に存在する結晶粒個々に照射し、工具基体と水平方向に長さ100μm、工具基体表面と垂直な方向の断面に沿って各層の層厚以下の距離の測定範囲内の密着層β、上部層αについて0.01μm/stepの間隔で、電子線後方散乱回折像を測定し、個々の結晶粒の結晶構造を解析することで、六方晶構造を有する微粒結晶粒の面積割合を求めた。
また、六方晶構造の微粒結晶粒の平均粒径Rは、粒界を含んだ0.1μm×0.1μmの測定範囲内に存在する粒子について、粒径を測定し、それらの平均値を算出することによって求めた。
なお、粒径は六方晶と同定した各々の結晶粒に対して外接円を作成し、その外接円の直径を求め、その平均値を粒径とした。
表11、表12に、これらの測定結果を示す。
Further, with respect to the adhesion layer β and the upper layer α of the coating tools 1 to 16 of the present invention, and the adhesion layer β and the upper layer α of the coating tools 1 to 16 of the comparative example, the surface of the tool substrate of each layer is used by using an electron backscatter diffraction device. With the vertical cross section in the direction perpendicular to the polished surface as the polished surface, it is set in the lens barrel of a field emission scanning electron microscope, and an electron beam with an acceleration voltage of 15 kV is irradiated on the polished surface at an incident angle of 70 degrees for 1 nA. By irradiating each crystal grain existing within the measurement range of the cross-section polished surface with an electric current, the length is 100 μm in the horizontal direction with the tool substrate, and the distance less than the layer thickness of each layer along the cross section in the direction perpendicular to the surface of the tool substrate. The electron backscatter diffraction image is measured at an interval of 0.01 μm / step for the close contact layer β and the upper layer α within the measurement range of, and the crystal structure of each crystal grain is analyzed to have a hexagonal structure. The area ratio of the fine crystal grains was determined.
Further, the average particle size R of the fine crystal grains having a hexagonal structure measures the particle size of the particles existing in the measurement range of 0.1 μm × 0.1 μm including the grain boundary, and calculates the average value thereof. Asked by doing.
As for the particle size, an circumscribed circle was created for each crystal grain identified as a hexagonal crystal, the diameter of the circumscribed circle was obtained, and the average value was taken as the particle size.
Tables 11 and 12 show the measurement results.
つぎに、本発明被覆工具1〜8、比較例被覆工具1〜8をいずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、以下に示す、鋳鉄の高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験Aを実施し、切刃の逃げ面摩耗幅を測定した。 Next, with the covering tools 1 to 8 of the present invention and the covering tools 1 to 8 of the comparative examples both clamped to the tip of a tool steel cutter having a cutter diameter of 125 mm with a fixing jig, the high-speed interruption of cast iron shown below A dry high-speed face milling cutter, which is a type of cutting, and a center cut cutting process test A were carried out, and the flank wear width of the cutting edge was measured.
切削試験: 乾式高速正面フライス、センターカット切削加工、
カッタ径: 125 mm、
被削材: JIS・FCD700幅100mm、長さ400mmのブロック材、
回転速度: 765 min−1、
切削速度: 300 m/min、
切り込み: 2.0 mm、
一刃送り量: 0.2 mm/刃、
切削時間: 8分、
(通常の切削速度は、200 m/min)
Cutting test: Dry high speed face milling, center cut cutting,
Cutter diameter: 125 mm,
Work material: JIS / FCD700 block material with a width of 100 mm and a length of 400 mm,
Rotation speed: 765 min -1 ,
Cutting speed: 300 m / min,
Notch: 2.0 mm,
Single blade feed amount: 0.2 mm / blade,
Cutting time: 8 minutes,
(Normal cutting speed is 200 m / min)
また、本発明被覆工具9〜16、比較例被覆工具9〜16をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、以下に示す、鋳鉄の乾式高速断続切削試験Bを実施し、いずれも切刃の逃げ面摩耗幅を測定した。
被削材:JIS・FCD700の長さ方向等間隔4本縦溝入り丸棒、
切削速度:300 m/min、
切り込み:2.0 mm、
送り:0.3 mm/rev、
切削時間:5 分、
(通常の切削速度は、200m/min)、
表13、表14に、前記切削試験A、切削試験Bの結果を示す。
Further, in the state where both the covering tools 9 to 16 of the present invention and the covering tools 9 to 16 of the comparative example are screwed to the tip of the tool steel cutting tool with a fixing jig, the dry high-speed intermittent cutting test of cast iron shown below is performed. B was carried out, and the flank wear width of the cutting edge was measured in each case.
Work material: JIS / FCD700 round bar with 4 vertical grooves at equal intervals in the length direction,
Cutting speed: 300 m / min,
Notch: 2.0 mm,
Feed: 0.3 mm / rev,
Cutting time: 5 minutes,
(Normal cutting speed is 200m / min),
Tables 13 and 14 show the results of the cutting test A and the cutting test B.
表13、表14に示される結果から、本発明の被覆工具は、TiAlCN層からなる上部層αおよび密着層βを少なくとも含み、特に、密着層β内にTiとAlの周期的な組成変化が形成されていることにより、切れ刃に断続的・衝撃的高負荷が作用する鋳鉄等の高速断続切削等に供した場合であっても、チッピング、剥離等の異常損傷の発生が抑制され、長期の使用に亘ってすぐれた耐摩耗性を発揮する。 From the results shown in Tables 13 and 14, the coating tool of the present invention contains at least an upper layer α and an adhesion layer β composed of a TiAlCN layer, and in particular, a periodic composition change of Ti and Al is generated in the adhesion layer β. Due to the formation, the occurrence of abnormal damage such as chipping and peeling is suppressed even when the cutting edge is subjected to high-speed intermittent cutting such as cast iron on which an intermittent / shocking high load acts, and for a long period of time. Demonstrates excellent wear resistance over the use of.
これに対して、密着層βが形成されていない比較例被覆工具、あるいは、密着層βが形成されていても、本発明で規定する要件を備えない比較例被覆工具は、鋳鉄等の高速断続切削加工では、チッピング、剥離等の異常損傷の発生等により短時間で寿命に至ることが明らかである。 On the other hand, a comparative example covering tool in which the adhesion layer β is not formed, or a comparative example covering tool in which the adhesion layer β is formed but does not meet the requirements specified in the present invention is a high-speed intermittent connection such as cast iron. It is clear that in the cutting process, the life is reached in a short time due to abnormal damage such as chipping and peeling.
前述のように、本発明の被覆工具は、耐チッピング性、耐剥離性、耐摩耗性のいずれにもすぐれることから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
As described above, since the covering tool of the present invention is excellent in chipping resistance, peeling resistance, and wear resistance, the performance of the cutting device is improved, and the labor saving and energy saving of the cutting process are further reduced. It is sufficient to cope with the cost reduction.
Claims (6)
(a)前記硬質被覆層は、平均層厚が1〜20μmのTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、
(b)前記TiとAlの複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の相を少なくとも含み、
(c)前記TiとAlの複合窒化物または複合炭窒化物層は、硬質被覆層表面側から工具基体表面側に向かって、平均層厚が0.5μm以上の上部層αと、TiとAlの周期的な組成変化が存在する平均層厚が0.1〜5.0μmの密着層βからなる2層を含み、
(d)前記上部層αは、その組成を、
組成式:(Ti1−XαAlXα)(CYαN1−Yα)
で表した場合、AlのTiとAlの合量に占める平均含有割合XαavgおよびCのCとNの合量に占める平均含有割合Yαavg(但し、Xαavg、Yαavgはいずれも原子比)は、それぞれ、0.60≦Xαavg≦0.95、0≦Yαavg≦0.005を満足し、
(e)前記TiとAlの周期的な組成変化が存在する密着層βは、その組成を、
組成式:(Ti1−XβAlXβ)(CYβN1−Yβ)で表し、平均層厚をLβavg(μm)とした場合、TiとAlの周期的な組成変化の周期は1nm以上23nm以下であり、その層厚方向に[Lβavg]+2分割した各区間におけるAlのTiとAlの合量に占める平均含有割合およびCのCとNの合量に占める平均含有割合を求めたとき、各区間のAlのTiとAlの合量に占める平均含有割合XβavgおよびCのCとNの合量に占める平均含有割合Yβavg(但し、Xβavg、Yβavgはいずれも原子比)は、それぞれ、0.10≦Xβavg<0.60、0≦Yβavg≦0.005を満足し、
(f)前記密着層βの平均層厚をLβavg(μm)とし、前記密着層βをその層厚方向に[Lβavg]+2分割し、分割した各区間におけるAlのTiとAlの合量に占める平均含有割合Xβavgを、それぞれ分割した区間毎に求めたとき、工具基体側の区間におけるXβavgに比して、硬質被覆層表面側の区間におけるXβavgが単調増加し、最も工具基体側の区間のXβavgよりも最も硬質被覆層表面側の区間におけるXβavgの方が大きい値であり、かつ、最も硬質被覆層表面側の区間におけるXβ avg の値は0.48以上であることを特徴とする表面被覆切削工具。 In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool substrate composed of either a tungsten carbide-based cemented carbide, a titanium nitride-based cermet, or a cubic boron nitride-based ultrahigh-pressure sintered body.
(A) The hard coating layer contains at least a composite nitride or composite carbonitride layer of Ti and Al having an average layer thickness of 1 to 20 μm.
(B) The Ti and Al composite nitride or composite carbonitride layer contains at least a phase of the composite nitride or composite carbonitride having a NaCl-type face-centered cubic structure.
(C) The Ti and Al composite nitride or composite carbonitride layer has an upper layer α having an average layer thickness of 0.5 μm or more and Ti and Al from the surface side of the hard coating layer toward the surface side of the tool substrate. Containing two layers composed of the adhesion layer β having an average layer thickness of 0.1 to 5.0 μm in which there is a periodic composition change of
(D) The composition of the upper layer α is
Composition formula: (Ti 1-Xα Al Xα ) ( CYα N 1-Yα )
When expressed in an average proportion occupied in the total amount of the average content ratio X [alpha avg and C of C and N occupying the total amount of Ti and Al Al Yα avg (however, Xα avg, Yα avg Any atomic ratio) Satisfy 0.60 ≤ Xα avg ≤ 0.95 and 0 ≤ Yα avg ≤ 0.005, respectively.
(E) The adhesive layer β in which the periodic composition change of Ti and Al exists has the composition.
Composition formula: Expressed as (Ti 1-Xβ Al Xβ ) ( CYβ N 1-Yβ ), and when the average layer thickness is Lβ avg (μm), the period of periodic composition change of Ti and Al is 1 nm or more and 23 nm. When the average content ratio of Al in the total amount of Ti and Al and the average content ratio of C in the total amount of C and N in each section divided into [Lβ avg ] + 2 in the layer thickness direction are calculated as follows. , The average content ratio of Al in the total amount of Ti and Al in each section Xβ avg and the average content ratio of C in the total amount of C and N Yβ avg (however, both Xβ avg and Yβ avg are atomic ratios) , 0.10 ≤ Xβ avg <0.60, 0 ≤ Yβ avg ≤ 0.005, respectively.
(F) The average layer thickness of the close contact layer β is Lβ avg (μm), and the close contact layer β is divided into [Lβ avg ] + 2 in the layer thickness direction, and the total amount of Ti and Al of Al in each divided section. when the average content ratio X? avg, were determined for each section obtained by dividing each occupying the, compared to X? avg in the tool base side of the section, X? avg monotonously increases in the hard coating layer surface side of the section, most tool substrate side of Ri greater value der towards X? avg in the most hard layer surface of the section than X? avg interval, and the value of X? avg in the most hard layer surface of the section 0.48 above der A surface coating cutting tool characterized by the fact that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017011623A JP6781954B2 (en) | 2017-01-25 | 2017-01-25 | Surface coating cutting tool with excellent chipping resistance and peeling resistance with a hard coating layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017011623A JP6781954B2 (en) | 2017-01-25 | 2017-01-25 | Surface coating cutting tool with excellent chipping resistance and peeling resistance with a hard coating layer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018118346A JP2018118346A (en) | 2018-08-02 |
JP6781954B2 true JP6781954B2 (en) | 2020-11-11 |
Family
ID=63044563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017011623A Active JP6781954B2 (en) | 2017-01-25 | 2017-01-25 | Surface coating cutting tool with excellent chipping resistance and peeling resistance with a hard coating layer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6781954B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12162079B2 (en) | 2018-12-27 | 2024-12-10 | Mitsubishi Materials Corporation | Surface-coated cutting tool |
JP7520286B2 (en) * | 2018-12-27 | 2024-07-23 | 三菱マテリアル株式会社 | Surface-coated cutting tools |
JP7125013B2 (en) * | 2019-03-22 | 2022-08-24 | 三菱マテリアル株式会社 | A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance |
JP7511583B2 (en) * | 2019-05-27 | 2024-07-05 | エービー サンドビック コロマント | Coated Cutting Tools |
CN114173972B (en) * | 2019-10-10 | 2024-05-14 | 住友电工硬质合金株式会社 | Cutting tool |
JP7375592B2 (en) * | 2020-02-12 | 2023-11-08 | 三菱マテリアル株式会社 | surface coated cutting tools |
JP7610181B2 (en) | 2021-03-26 | 2025-01-08 | 三菱マテリアル株式会社 | Surface-coated cutting tools |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008018504A (en) * | 2006-07-14 | 2008-01-31 | Mitsubishi Materials Corp | Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material exhibiting excellent chipping resistance in high-speed cutting hard material hard to cut |
DE102008013965A1 (en) * | 2008-03-12 | 2009-09-17 | Kennametal Inc. | Hard material coated body |
JP6044401B2 (en) * | 2012-04-20 | 2016-12-14 | 三菱マテリアル株式会社 | A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting |
JP5920578B2 (en) * | 2012-06-26 | 2016-05-18 | 三菱マテリアル株式会社 | Surface coated cutting tool with excellent wear resistance and fracture resistance |
JP6037113B2 (en) * | 2012-11-13 | 2016-11-30 | 三菱マテリアル株式会社 | A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting |
JP6268530B2 (en) * | 2013-04-01 | 2018-01-31 | 三菱マテリアル株式会社 | Surface coated cutting tool with excellent chipping resistance due to hard coating layer |
JP6478100B2 (en) * | 2015-01-28 | 2019-03-06 | 三菱マテリアル株式会社 | Surface coated cutting tool with excellent chipping resistance due to hard coating layer |
JP6590255B2 (en) * | 2015-03-13 | 2019-10-16 | 三菱マテリアル株式会社 | Surface coated cutting tool with excellent chipping resistance due to hard coating layer |
-
2017
- 2017-01-25 JP JP2017011623A patent/JP6781954B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018118346A (en) | 2018-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6781954B2 (en) | Surface coating cutting tool with excellent chipping resistance and peeling resistance with a hard coating layer | |
JP7063206B2 (en) | Surface coating cutting tool with excellent chipping resistance due to the hard coating layer | |
JP6284034B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
JP6590255B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
JP6657594B2 (en) | Surface coated cutting tool | |
KR20170057434A (en) | Surface-coated cutting tool having excellent chip resistance | |
JP7121234B2 (en) | A surface cutting tool with a hard coating that exhibits excellent chipping resistance | |
WO2016148056A1 (en) | Surface-coated cutting tool with rigid coating layers exhibiting excellent chipping resistance | |
JP2017030076A (en) | Surface-coated cutting tool with hard coated layer exhibiting superior chipping resistance | |
JP2017056497A (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
JP2016165789A (en) | Surface-coated cutting tool allowing hard coated layer to exhibit superior chipping resistance and wear resistance | |
JP7021607B2 (en) | Surface-coated cutting tools with excellent chipping resistance and chipping resistance due to the hard coating layer | |
JP6858346B2 (en) | Surface coating cutting tool with excellent chipping resistance due to the hard coating layer | |
US12162079B2 (en) | Surface-coated cutting tool | |
JP6857298B2 (en) | Surface coating cutting tool with excellent chipping resistance due to the hard coating layer | |
JP6709536B2 (en) | Surface coated cutting tool with excellent hard coating layer and chipping resistance | |
JP2016107397A (en) | Surface coated cutting tool | |
JP7183522B2 (en) | A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance | |
JP6850998B2 (en) | Surface coating cutting tool with a hard coating layer that exhibits excellent wear resistance and chipping resistance | |
JP2019177424A (en) | Surface-coated cutting tool the hard coating layer of which exhibits excellent oxidation resistance and deposition resistance | |
JP6650108B2 (en) | Surface coated cutting tool with excellent chipping and wear resistance | |
JP6796257B2 (en) | Surface coating cutting tool with excellent chipping resistance and peeling resistance with a hard coating layer | |
JP7025727B2 (en) | Surface cutting tool with excellent chipping resistance and wear resistance with a hard coating layer | |
JP6774649B2 (en) | Surface coating cutting tool with excellent chipping resistance and peeling resistance with a hard coating layer | |
JP6761597B2 (en) | Surface coating cutting tool with excellent chipping resistance due to the hard coating layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190925 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200630 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200731 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200907 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200918 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201001 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6781954 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |