JP6777292B2 - PLL circuit and its frequency correction method - Google Patents
PLL circuit and its frequency correction method Download PDFInfo
- Publication number
- JP6777292B2 JP6777292B2 JP2016155552A JP2016155552A JP6777292B2 JP 6777292 B2 JP6777292 B2 JP 6777292B2 JP 2016155552 A JP2016155552 A JP 2016155552A JP 2016155552 A JP2016155552 A JP 2016155552A JP 6777292 B2 JP6777292 B2 JP 6777292B2
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- vco
- divider
- signal
- run
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Manipulation Of Pulses (AREA)
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
Description
本発明は、無線通信機の60GHz帯のローカル信号の生成に好適なPLL(Phase Locked Loop)回路及びその周波数補正方法に関する。 The present invention relates to a PLL (Phase Locked Loop) circuit suitable for generating a local signal in the 60 GHz band of a wireless communication device and a frequency correction method thereof.
ミリ波帯と呼ばれる60GHz帯を使用するような無線通信機を小型、低消費電力で設計する場合は、ダイレクトコンバージョン方式のアーキテクチャが採用されている。ダイレクトコンバージョン方式では、ベースバンド信号帯域を直接60GHz帯にアップコンバートして送信し、あるいは60GHz帯の受信信号を直接ベースバンド帯域にダウンコンバートするが、これらを実現するには、60GHz帯のローカル信号が必要となる。 When designing a wireless communication device that uses a 60 GHz band called a millimeter wave band with a small size and low power consumption, a direct conversion architecture is adopted. In the direct conversion method, the baseband signal band is directly up-converted to the 60 GHz band and transmitted, or the received signal in the 60 GHz band is directly down-converted to the baseband band. To realize these, the local signal in the 60 GHz band is used. Is required.
ローカル信号は、通信に要求されるSNR(信号対雑音比)を満足させるために、高精度、低位相雑音が求められるため、一般的には、電圧制御発振器(以下、VCO:Voltage Controlled Oscllator)、分周器、位相比較器、チャージポンプ回路、ローパスフィルタ(以下、LPF:Low pass filter)をループ接続して構成されるPLL回路を用いて、生成される。 Since local signals are required to have high accuracy and low phase noise in order to satisfy the SNR (signal to noise ratio) required for communication, generally, a voltage controlled oscillator (VCO: Voltage Controlled Oscllator) is used. , A frequency divider, a phase comparator, a charge pump circuit, and a low pass filter (hereinafter, LPF: Low pass filter) are connected in a loop to generate a PLL circuit.
VCOを低位相雑音化するためには、LC発振回路で構成するのが一般的であるが、L(コイル)を用いると、60GHz帯という高周波領域においては、表皮効果から実抵抗が増加し、そのQが劣化してしまう。LC発振回路においては、コンデンサのQに対してコイルのQが小さいため、LC発振回路のQはコイルのQが支配的となる。このため、60GHz帯という高周波領域でLC発振回路を使用すると、位相雑音特性が大きく劣化してしまい、64QAM変調のように多値化するとき大きな問題となる。 In order to reduce the phase noise of the VCO, it is common to configure it with an LC oscillator circuit, but when L (coil) is used, the actual resistance increases due to the skin effect in the high frequency region of the 60 GHz band. The Q deteriorates. In the LC oscillator circuit, the Q of the coil is smaller than the Q of the capacitor, so that the Q of the LC oscillator circuit is dominated by the Q of the coil. Therefore, if the LC oscillator circuit is used in the high frequency region of 60 GHz band, the phase noise characteristic is greatly deteriorated, which becomes a big problem when the value is increased as in 64QAM modulation.
このようなことから、VCOの位相雑音特性が劣化している場合、PLL回路自体を低位相雑音化するには、ループ帯域を高周波側へ広げる必要があるが、ループ帯域幅は位相比較器の周波数より十分低い値にする必要があるため、限界値が存在する。このため、VCOの位相雑音をPLL回路では十分抑圧することができず、64QAM変調のように多値化するとき所望の位相雑音特性を得ることができない。 For this reason, when the phase noise characteristics of the VCO are deteriorated, it is necessary to widen the loop band to the high frequency side in order to reduce the phase noise of the PLL circuit itself, but the loop bandwidth is determined by the phase comparator. There is a limit because it needs to be well below the frequency. Therefore, the phase noise of the VCO cannot be sufficiently suppressed by the PLL circuit, and the desired phase noise characteristic cannot be obtained when the value is increased as in the case of 64QAM modulation.
そこで、これらの問題を解決する手段として、低周波のVCOを使用したPLL回路によって20GHz帯の周波数信号を生成し、その20GHz帯の周波数信号を高周波帯発振の注入同期型VCOに入力して、4逓倍した低位相雑音の60HGz帯の周波数信号を生成し、これをローカル信号として使用することが提案されている(非特許文献1)。これは、64QAM変調のように多値化する場合に好適である。 Therefore, as a means for solving these problems, a frequency signal in the 20 GHz band is generated by a PLL circuit using a low frequency VCO, and the frequency signal in the 20 GHz band is input to the injection synchronous VCO for high frequency band oscillation. It has been proposed to generate a frequency signal in the 60 HGz band of low phase noise multiplied by 4, and use this as a local signal (Non-Patent Document 1). This is suitable for multi-valued cases such as 64QAM modulation.
また、PLL回路の低消費電力化の観点から、分周器として注入同期型分周器(ILFD:Injection Locked Frequency Divider)が採用されることがある。注入同期型分周器は注入信号の立ち上がりエッジによる位相引き込み(プリング現象)を利用するトポロジであり、低位相雑音且つ低消費電力に適した分周器として知られている。 Further, from the viewpoint of reducing the power consumption of the PLL circuit, an injection synchronous frequency divider (ILFD) may be adopted as the frequency divider. The injection synchronous divider is a topology that utilizes phase pulling (pulling phenomenon) due to the rising edge of the injection signal, and is known as a divider suitable for low phase noise and low power consumption.
以上の注入同期型VCOや注入同期型分周器を正常動作させるには、それらのフリーラン周波数を予め所望の周波数に調整する必要があるが、それらのフリーラン発振周波数はウェハプロセス変動や周囲環境変化により変動する。そのため、ウェハプロセス変動や周囲環境変化による周波数変動量を補正する技術が必要となっている。その技術としては、例えば、特許文献1に記載のものがある。 In order for the above injection synchronous VCO and injection synchronous divider to operate normally, it is necessary to adjust their free run frequencies to desired frequencies in advance, but these free run oscillation frequencies are due to wafer process fluctuations and surroundings. It fluctuates due to changes in the environment. Therefore, there is a need for a technique for correcting the amount of frequency fluctuation due to wafer process fluctuations and changes in the surrounding environment. As the technique, for example, there is one described in Patent Document 1.
ところが、ウェハプロセス変動や周囲環境変化に対する補正手段として上記した従来技術を組み合わせると、次のようなPLL回路が構成される。 However, when the above-mentioned conventional techniques are combined as correction means for wafer process fluctuations and changes in the surrounding environment, the following PLL circuit is configured.
すなわち、基準周波数信号と帰還周波数信号との位相を比較する位相比較器と、該位相比較器の比較結果に応じた電圧を出力するチャージポンプ回路と、該チャージポンプ回路の出力電圧から低周波成分を取り出すローパスフィルタと、該ローパスフィルタの出力電圧に応じた周波数で発振するVCOと、該VCOで発振した周波数信号を注入信号として入力して分周する注入同期型分周器と、該注入同期型分周器の出力信号を分周して前記帰還周波数信号とする通常の分周器とでPLLループを形成し、VCOの出力周波数信号を注入同期信号として入力してそのVCOで発振した周波数信号の整数倍の周波数信号を発振する注入同期型VCOを接続し、その注入同期型VCOの出力周波数信号をローカル信号として出力するPLL回路が構成される。 That is, a phase comparator that compares the phases of the reference frequency signal and the feedback frequency signal, a charge pump circuit that outputs a voltage corresponding to the comparison result of the phase comparator, and a low frequency component from the output voltage of the charge pump circuit. A low-pass filter that takes out a low-pass filter, a VCO that oscillates at a frequency corresponding to the output voltage of the low-pass filter, an injection-synchronized frequency divider that inputs a frequency signal oscillated by the VCO as an injection signal and divides the frequency, and the injection synchronization. A PLL loop is formed with a normal frequency divider that divides the output signal of the type divider to obtain the feedback frequency signal, and the output frequency signal of the VCO is input as an injection synchronization signal and the frequency oscillated by the VCO. A PLL circuit is configured in which an injection synchronous VCO that oscillates a frequency signal that is an integral multiple of the signal is connected and the output frequency signal of the injection synchronous VCO is output as a local signal.
そして、注入同期型分周器→VCO→分周器注入同期型VCOの順序で、それらのフリーラン周波数補正を行うことが容易に想像できる。 Then, it is easy to imagine that the free-run frequency correction is performed in the order of injection synchronous divider → VCO → frequency divider injection synchronous VCO.
しかしながら、この手法では、図11の(b)に示すように、時間T21で注入同期型分周器のフリーラン周波数補正を行い、時間T22でVCOのフリーラン周波数補正を行い、その後に時間T23でPLL回路のロックアップを待ち、さらに時間T24で注入同期型VCOの注入同期VCOのフリーラン周波数補正を行い、その後に、時間T25で注入同期型VCOのロックアップを待つ必要がある。ロックアップのための時間T23、T25は、時間T21,T22、T24に比べてかなり長い時間である。 However, in this method, as shown in FIG. 11B, the free-run frequency correction of the injection synchronous divider is performed at time T21, the free-run frequency correction of the VCO is performed at time T22, and then the time T23. It is necessary to wait for the lockup of the PLL circuit at, further to perform the free-run frequency correction of the injection synchronous VCO of the injection synchronous VCO at time T24, and then wait for the lockup of the injection synchronous VCO at time T25. The time T23, T25 for lockup is considerably longer than the time T21, T22, T24.
このように、長い時間のかかるロックアップ時間を2重に待つ必要があるので、結果として周波数補正が完了するまでにかかる時間が長くなる。また、この場合は、PLLループのフリーラン周波数補正に対応した補正シーケンスとそのPLLループから外れている注入同期型VCOのフリーラン周波数の補正に対応した補正シーケンスが別個に必要となる。このため、回路規模の増大を招き、結果として消費電力の増大とチップコストの増大を招いてしまう問題がある。 In this way, it is necessary to wait twice for the lockup time, which takes a long time, and as a result, the time required for the frequency correction to be completed becomes long. Further, in this case, a correction sequence corresponding to the free-run frequency correction of the PLL loop and a correction sequence corresponding to the correction of the free-run frequency of the injection-synchronized VCO out of the PLL loop are separately required. Therefore, there is a problem that the circuit scale is increased, and as a result, the power consumption is increased and the chip cost is increased.
本発明の目的は、回路規模の増大を防いで低消費電力化を実現するとともに、フリーラン周波数の補正時間を大幅に短縮でき、最終的なロックアップまでの時間を短縮できるようにしたPLL回路及びその周波数補正方法を提供することである。 An object of the present invention is a PLL circuit that prevents an increase in the circuit scale, realizes low power consumption, can significantly shorten the correction time of the free run frequency, and can shorten the time until the final lockup. And its frequency correction method.
上記目的を達成するために、本願請求項1にかかる発明のPLL回路は、基準周波数信号と帰還周波数信号との位相を比較する位相比較器と、該位相比較器の比較結果に応じた電圧を出力するチャージポンプ回路と、該チャージポンプ回路の出力電圧から低周波成分を取り出すローパスフィルタと、該ローパスフィルタの出力電圧に応じた周波数で発振する第1VCOと、該第1VCOで発振した周波数信号を注入同期信号として入力して前記第1VCOで発振した周波数信号の整数倍の周波数信号を発振する注入同期型の第2VCOと、該第2VCOで発振した周波数信号を注入信号として入力して該注入信号の周波数を前記第1VCOの発振周波数と同じ周波数に分周する注入同期型の第1分周器と、前記第1VCOで発振した周波数信号又は前記第1分周器の出力周波数信号を注入信号として入力して該注入信号の周波数を分周する注入同期型の第2分周器と、前記基準周波数信号を分周する固定の第3分周器とを備え、前記第2分周器の出力周波数信号をそのまま又は第1任意数だけ分周して前記帰還周波数信号とするPLL回路において、前記第3分周器で分周された周波数信号の周波数で決まる所定期間の間、前記第2分周器の出力周波数信号又は前記第2分周器の出力周波数信号を第2任意数だけ分周した周波数信号のパルスをカウントするカウンタと、該カウンタのカウント値に応じて、前記第1VCO、前記第2VCO、前記第1分周器、及び前記第2分周器のフリーラン周波数を個々に補正するシーケンサと、を有し、該シーケンサは、前記第1VCO、前記第2VCO、及び前記第1分周器の出力を前記PLL回路から分離した状態で、前記第2分周器をフリーラン発振させ、そのとき得られる前記カウンタのカウント値に応じて前記第2分周器のフリーラン周波数を補正する第1処理と、該第1処理の後に、前記第1VCO及び前記第2VCOの出力を前記PLL回路から分離し、且つ前記第1分周器をフリーラン発振させた状態で、前記第1分周器の出力周波数信号をフリーラン周波数が補正済の前記第2分周器に注入して、そのとき得られる前記カウンタのカウント値に応じて前記第1分周器のフリーラン周波数を補正する第2処理と、該第2処理の後に、前記第1VCOの出力を前記PLL回路から分離し、且つ前記第1及び第2分周器をそれぞれ補正済のフリーラン周波数で発振させた状態で、前記第2VCOをフリーラン発振させ、そのとき得られる前記カウンタのカウント値に応じて前記第2VCOのフリーラン周波数を補正する第3処理と、該第3処理の後に、前記第1分周器の出力を前記PLL回路から分離し、前記第2分周器を補正済のフリーラン周波数で発振させた状態で、前記第1VCOを固定電圧でフリーラン発振させて、前記第1VCOの出力周波数を前記第2分周器に入力させ、そのとき得られる前記カウンタのカウント値に応じて前記第1VCOのフリーラン周波数を補正する第4処理と、該第4処理の後に、前記PLL回路のロックアップと前記第1VCOの出力周波数信号を注入信号とする前記第2VCOのロックアップとを同時に行う第5処理と、をコンピュータに実行させるプログラムを有することを特徴とする。 In order to achieve the above object, the PLL circuit of the invention according to claim 1 of the present application applies a phase comparator for comparing the phases of the reference frequency signal and the feedback frequency signal and a voltage corresponding to the comparison result of the phase comparator. A charge pump circuit that outputs, a low-pass filter that extracts low-frequency components from the output voltage of the charge pump circuit, a first VCO that oscillates at a frequency corresponding to the output voltage of the low-pass filter, and a frequency signal that oscillates at the first VCO. An injection-synchronized second VCO that inputs as an injection-synchronized signal and oscillates a frequency signal that is an integral multiple of the frequency signal oscillated by the first VCO, and an injection-synchronized second VCO that oscillates at the second VCO as an injection signal and the injection signal. The injection synchronous type first frequency divider that divides the frequency of the first VCO to the same frequency as the oscillation frequency of the first VCO, and the frequency signal oscillated by the first VCO or the output frequency signal of the first frequency divider are used as injection signals. An injection synchronous type second divider that inputs and divides the frequency of the injection signal and a fixed third divider that divides the reference frequency signal are provided, and the output of the second divider is provided. In the PLL circuit that divides the frequency signal as it is or by the first arbitrary number to obtain the feedback frequency signal, the second division is performed for a predetermined period determined by the frequency of the frequency signal divided by the third frequency divider. A counter that counts the pulse of the output frequency signal of the oscillator or the frequency signal obtained by dividing the output frequency signal of the second oscillator by a second arbitrary number, and the first VCO, the first VCO, according to the count value of the counter. It has a second VCO, the first divider, and a sequencer that individually corrects the free-run frequency of the second divider , and the sequencer includes the first VCO, the second VCO, and the first minute. With the output of the peripheral device separated from the PLL circuit, the second frequency divider is oscillated free-run, and the free-run frequency of the second frequency divider is corrected according to the count value of the counter obtained at that time. After the first process and the first process, the outputs of the first VCO and the second VCO are separated from the PLL circuit, and the first frequency divider is oscillated by free run. The output frequency signal of the oscillator is injected into the second frequency divider whose free run frequency has been corrected, and the free run frequency of the first oscillator is corrected according to the count value of the counter obtained at that time. After the second process and the second process, the output of the first VCO is separated from the PLL circuit, and the first and second dividers are oscillated at corrected free-run frequencies, respectively. In this state, the second VCO is oscillated in a free run, and the free run frequency of the second VCO is corrected according to the count value of the counter obtained at that time. After the third process, the first minute The output of the peripheral device is separated from the PLL circuit, the first VCO is oscillated at a fixed voltage in a state where the second frequency divider is oscillated at the corrected free-run frequency, and the output of the first VCO is oscillated. A fourth process of inputting a frequency to the second frequency divider and correcting the free-run frequency of the first VCO according to the count value of the counter obtained at that time, and after the fourth process, of the PLL circuit It is characterized by having a program for causing a computer to execute a fifth process of simultaneously performing lockup and lockup of the second VCO using the output frequency signal of the first VCO as an injection signal .
請求項2にかかる発明のPLL回路の周波数補正方法は、基準周波数信号と帰還周波数信号との位相を比較する位相比較器と、該位相比較器の比較結果に応じた電圧を出力するチャージポンプ回路と、該チャージポンプ回路の出力電圧から低周波成分を取り出すローパスフィルタと、該ローパスフィルタの出力電圧に応じた周波数で発振する第1VCOと、該第1VCOで発振した周波数信号を注入同期信号として入力して前記第1VCOで発振した周波数信号の整数倍の周波数信号を発振する注入同期型の第2VCOと、該第2VCOで発振した周波数信号を注入信号として入力して該注入信号の周波数を前記第1VCOの発振周波数と同じ周波数に分周する注入同期型の第1分周器と、前記第1VCOで発振した周波数信号又は前記第1分周器の出力周波数信号を注入信号として入力して該注入信号の周波数を分周する注入同期型の第2分周器と、前記基準周波数信号を分周する固定の第3分周器とを備え、前記第2分周器の出力周波数信号をそのまま又は第1任意数だけ分周して前記帰還周波数信号とするPLL回路の、前記第1VCO、前記第2VCO、前記第1分周器、及び前記第2分周器のフリーラン周波数を補正するPLL回路の周波数補正方法において、前記第3分周器で分周された周波数信号の周波数で決まる所定期間の間の、前記第2分周器の出力周波数信号又は前記第2分周器の出力周波数信号を第2任意数だけ分周した周波数信号のパルス数に応じて、前記第1VCO、前記第2VCO、前記第1分周器、及び前記第2分周器のフリーラン周波数を個々に補正するものであって、前記第1VCO、前記第2VCO、及び前記第1分周器の出力を前記PLL回路から分離した状態で、前記第2分周器をフリーラン発振させ、そのとき得られる前記パルス数に応じて前記第2分周器のフリーラン周波数を補正する第1処理と、該第1処理の後に、前記第1VCO及び前記第2VCOの出力を前記PLL回路から分離し、且つ前記第1分周器をフリーラン発振させた状態で、前記第1分周器の出力周波数信号をフリーラン周波数が補正済の前記第2分周器に注入して、そのとき得られる前記パルス数に応じて前記第1分周器のフリーラン周波数を補正する第2処理と、該第2処理の後に、前記第1VCOの出力を前記PLL回路から分離し、且つ前記第1及び第2分周器をそれぞれ補正済のフリーラン周波数で発振させた状態で、前記第2VCOをフリーラン発振させ、そのとき得られる前記パルス数に応じて前記第2VCOのフリーラン周波数を補正する第3処理と、該第3処理の後に、前記第1分周器の出力を前記PLL回路から分離し、前記第2分周器を補正済のフリーラン周波数で発振させた状態で、前記第1VCOを固定電圧でフリーラン発振させて、前記第1VCOの出力周波数を前記第2分周器に入力させ、そのとき得られる前記パルス数に応じて前記第1VCOのフリーラン周波数を補正する第4処理と、該第4処理の後に、前記PLL回路のロックアップと前記第1VCOの出力周波数信号を注入信号とする前記第2VCOのロックアップとを同時に行う第5処理と、を有することを特徴とする。
The frequency correction method of the PLL circuit according to
本発明によれば、第1VCO、第2VCO、第1分周器、及び第2分周器のフリーラン周波数を、それらのフリーラン周波数に対応した周波数信号についてのパルスの所定時間内の数によって計測して補正するので、その検出を共用することができ、回路規模の増大化を防ぐことができ、チップコストの低減と低消費電流化に大きく貢献できる。また、第1VCOのロックアップ時に第2VCOのロックアップも同時に行うことができ、補正時間の増大による電力消費を削減することが可能となる。 According to the present invention, the free run frequencies of the first VCO, the second VCO, the first divider, and the second divider are determined by the number of pulses within a predetermined time for the frequency signals corresponding to those free run frequencies. Since the measurement is performed and corrected, the detection can be shared, the increase in the circuit scale can be prevented, and the chip cost can be reduced and the current consumption can be greatly reduced. Further, when the first VCO is locked up, the second VCO can be locked up at the same time, and it is possible to reduce the power consumption due to the increase in the correction time.
<実施例>
図1に本発明のPLL回路の1つの実施例を示す。図1において、1は入力する基準周波数信号f1(36MHz)と帰還周波数信号f9の位相を比較する比較器、2は位相比較器1から出力する位相進み信号又は位相遅れ信号に応じた電圧信号を出力するチャージポンプ回路、3はチャージポンプ回路2から出力する信号から高周波成分を除去するローパスフィルタ、4はローパスフィルタ3の出力電圧に応じた周波数信号f4(20GHz帯)を発振するVCOである。
<Example>
FIG. 1 shows one embodiment of the PLL circuit of the present invention. In FIG. 1, 1 is a comparator that compares the phases of the input reference frequency signal f1 (36 MHz) and the feedback frequency signal f9, and 2 is a voltage signal corresponding to the phase lead signal or phase delay signal output from the phase comparator 1. The output
5はVCOの出力周波数信号f4を増幅するバッファ回路、6はバッファ回路5から出力する周波数信号f4を注入同期信号としてその注入同期信号の所定逓倍数(3倍)の高周波信号f5(60GHz帯)を発振する注入同期型VCOである。本実施例PLL回路では、この注入同期型VCO6の発振周波数信号f5をローカル信号として図示しない送受信機に出力する。 5 is a buffer circuit that amplifies the output frequency signal f4 of the VCO, and 6 is a high frequency signal f5 (60 GHz band) that is a predetermined multiple (3 times) of the injection synchronization signal using the frequency signal f4 output from the buffer circuit 5 as an injection synchronization signal. It is an injection synchronous VCO that oscillates. In the PLL circuit of this embodiment, the oscillation frequency signal f5 of the injection synchronous VCO6 is output as a local signal to a transmitter / receiver (not shown).
7は注入同期型VCO6の出力発振周波数信号f5を増幅するバッファ回路、8はバッファ回路7から出力する周波数信号f5を注入同期信号として入力して3分周した周波数信号f6(20HGz帯)を発振する注入同期型1/3分周器である。 Reference numeral 7 is a buffer circuit that amplifies the output oscillation frequency signal f5 of the injection synchronous VCO6, and 8 is a frequency signal f6 (20 HGz band) that is divided by 3 by inputting the frequency signal f5 output from the buffer circuit 7 as an injection synchronous signal and oscillating. It is an injection synchronous type 1/3 frequency divider.
9はVCO4から出力する周波数信号f4又は注入同期型1/3分周器8から出力する周波数信号f6を注入同期信号として入力して4分周した周波数信号f7(5HGz帯)を発振する注入同期型1/4分周器、10は注入同期型1/4分周器9から出力する周波数信号f7を5分周した周波数f8信号(1HGz帯)にする固定の1/5分周器、11は1/5分周器10から出力する周波数信号f8を基準周波数信号f1(36MHz)になるよう分周して位相比較器1の前記した帰還周波数信号f9とする可変分周器である。
Reference numeral 9 denotes an injection synchronization in which the frequency signal f4 output from the
12は基準周波数信号f1(36MH)を128分周して周波数信号f2(281.25kHz)にする1/128分周器、13は1/128分周器12から出力する周波数信号f2を1/2分周してデューティ比が50%の周波数信号f3を生成する1/2分周器、14は1/2分周器13から出力する周波数信号f3のパルス幅(周波数f3の周期の1/2、つまり周波数f2の周期)の期間に1/5分周器10から入力する周波数信号f8のパルス数をカウントするカウンタである。
1/2分周器13は、図2(a)に示すように、DFF回路131とインバータ132で構成されている。前段の1/128分周器12によって基準周波数信号f1(=36MHz)を128分周した周波数信号f2(=281.25kHz)が得られ、その周期T1は1/f2(≒3.555μsec)である。この周波数信号f2が1/2分周器13において2分周されることにより、デューティ比が50%の周波数信号f3となる。この周波数信号f3のパルス幅T1は、図2(b)に示すように、周波数信号f2の周期に対応したパルス幅信号となり、カウンタ14にイネーブル信号として入力する。カウンタ14はこの周期T1の期間に1/5分周器10から入力する周波数信号f8のパルス数をカウントする。
As shown in FIG. 2A, the 1/2
周期T1の期間にカウンタ14に入力する周波数f8のパルス数P1は、
P1=(1/f2)/(1/f8)
=(128/f1)/(1/f8)
=128×(f8/f1) (1)
で求まるので、VCO4の発振周波数f4を20.16HGzとした場合の周波数f8の期待値を1.008GHzとすると、
P1=128×(1.008×109)/(36×106 )
=3584
となる。つまり、1/2分周器10から出力する周波数信号f8の期待(目標)周波数が1.008GHzのときのカウントP1は3584となり、これが期待カウント値P0となる。
The number of pulses P1 of the frequency f8 input to the counter 14 during the period T1 is
P1 = (1 / f2) / (1 / f8)
= (128 / f1) / (1 / f8)
= 128 × (f8 / f1) (1)
Therefore, assuming that the expected value of the frequency f8 is 1.08 GHz when the oscillation frequency f4 of VCO4 is 20.16 HGz,
P1 = 128 × (1.08 × 10 9 ) / (36 × 10 6 )
= 3584
Will be. That is, when the expected (target) frequency of the frequency signal f8 output from the 1/2
そして、カウント値が1だけ増えてP1=3585となったときの周波数信号f8’は、式(1)から、
f8’=P1×f1×(1/128) (2)
=3585×36×106 /128=1.00828125GHz
となる。つまり、カウンタ14の1カウントは281.25kHzを示すことになり、カウンタ14は281.25kHzの分解能を有することになる。これを誤差で表せば、1カウント当たりの周波数f8の検出誤差E1は、
E1={(f8’−f8)/f8}×100(%)
=0.0279(%)
となり、きわめて高精度で周波数f8を検出することができる。VCO4の発振周波数f4は20.16GHz帯であるので、その周波数f4の1カウント当たりの検出誤差E2は、
E2=20.16GHz×0.000279=5.62MHz
となる。
Then, the frequency signal f8'when the count value is increased by 1 to P1 = 3585 is obtained from the equation (1).
f8'= P1 x f1 x (1/128) (2)
= 3585 × 36 × 10 6 /128=1.00828125GHz
Will be. That is, one count of the counter 14 indicates 281.25 kHz, and the counter 14 has a resolution of 281.25 kHz. Expressing this as an error, the detection error E1 of the frequency f8 per count is
E1 = {(f8'-f8) / f8} x 100 (%)
= 0.0279 (%)
Therefore, the frequency f8 can be detected with extremely high accuracy. Since the oscillation frequency f4 of VCO4 is in the 20.16 GHz band, the detection error E2 per count of the frequency f4 is
E2 = 20.16GHz x 0.000279 = 5.62MHz
Will be.
15はシーケンサであり、フリーラン周波数補正時にカウンタ14が時間T1だけ周波数f8のパルスをカウントしたカウント値P1と期待カウント値P0との差分を求めて、現在の補正対象となっているVCO4、注入同期型VCO6、注入同期型1/3分周器8、又は注入同期型1/4分周器9に、フリーラン周波数の補正信号を出力する。また、その補正処理のために、スイッチSW1〜SW4のON/OFF、バッファ回路5、7、注入同期型1/3分周器8のON/OFFの切替信号を出力する。
図3(a)はシーケンサ16におけるフリーラン周波数補正の機能ブロックであり、カウンタ14のカウント値P1を判定するカウント値判定部151と、得られたカウント値P1に応じてフリーラン周波数の補正信号を出力する制御部152を備える。
FIG. 3A is a function block for free-run frequency correction in the sequencer 16, and is a count
図3(b)は制御部152での補正処理のフローチャートである。フリーラン周波数補正が開始される(S1)と、現在のカウント値P1が図2(c)の時刻t1で判定され(S2)、そのカウント値P1が期待カウント値P0であれば終了する(S3)。しかし、そうでない場合は、得られたカウント値P1と期待カウント値P0との差分(P1−P0)を検出し(S4)、その差分に応じてフリーラン周波数の補正値を出力し(S5)、図2(c)の時刻t1〜t2の期間で補正が行われる。そして、次のカウント期間T1が経過した時刻t3において確認が行われ、P1=P0であれば補正が完了する(S3)。
FIG. 3B is a flowchart of the correction process in the
フリーラン周波数の補正を行う際、後記する図5、図7の分周回路ではバイアス切替方式を採用しているので、差分(P1−P0)に応じてバイアス電圧を調整して行う。また、後記する図9、図10のVCOではキャパシタバンク切替方式を採用しているので、キャパシタバンク回路のステップ周波数をFs(MHz)とすると、
α・(P1−P0)/(Fs×100) (3)
の計算式からその整数部を算出して、得られた整数値に応じた補正を行う。なお、αはVCO4とPLL回路との関係で決まる定数である。例えば、α=1125、Fs=55MHz、P1=3600の例では、式(3)は、
[1125/(55×100)]×(3600−3584)=3(小数点以下切下)
となり、キャパシタバンクを現在のステップから3段切り替えることになる。このようにして、ほとんどの補正処理は最長でも時刻t3の時点で完了する。つまり、補正に要する時間は、通常では最長3×T1(≒10.665μsec)となる。ただし、補正はP1=P0になるまで行われるので、3×T1を超える場合もあり得る。
When correcting the free-run frequency, since the bias switching method is adopted in the frequency dividing circuits of FIGS. 5 and 7 described later, the bias voltage is adjusted according to the difference (P1-P0). Further, since the VCO of FIGS. 9 and 10 described later adopts the capacitor bank switching method, assuming that the step frequency of the capacitor bank circuit is Fs (MHz),
α ・ (P1-P0) / (Fs × 100) (3)
The integer part is calculated from the formula of, and correction is performed according to the obtained integer value. In addition, α is a constant determined by the relationship between VCO4 and the PLL circuit. For example, in the example of α = 1125, Fs = 55 MHz, P1 = 3600, the equation (3) is
[1125 / (55 × 100)] × (3600-3584) = 3 (decimal point)
Therefore, the capacitor bank is switched from the current step by 3 steps. In this way, most of the correction processes are completed at the time t3 at the longest. That is, the time required for correction is usually a maximum of 3 × T1 (≈10.665 μsec). However, since the correction is performed until P1 = P0, it may exceed 3 × T1.
そして、VCO4の周波数f4、注入同期型VCO6の周波数f5、注入同期型1/3分周器8の周波数f6、注入同期型1/3分周器9の周波数f7は、注入同期型1/4分周器9の周波数信号f8となったときに、同じ周波数帯であり、この周波数帯の周波数がカウンタ14に入力するので、カウンタ14を利用したこの図3に示す補正処理は、VCO4、注入同期型VCO6、注入同期型1/3分周器8、及び注入同期型1/4分周器9のフリーラン周波数の補正に共通に使用される。 The frequency f4 of the VCO4, the frequency f5 of the injection synchronous VCO6, the frequency f6 of the injection synchronous 1/3 divider 8, and the frequency f7 of the injection synchronous 1/3 divider 9 are the injection synchronous 1/4. When the frequency signal f8 of the frequency divider 9 is reached, it is in the same frequency band, and the frequency of this frequency band is input to the counter 14. Therefore, the correction process shown in FIG. 3 using the counter 14 is VCO4, injection. It is commonly used to correct the free-run frequency of the synchronous VCO 6, the injection synchronous 1/3 divider 8, and the injection synchronous 1/4 divider 9.
図4はシーケンサ15によって、注入同期型1/4分周器9→注入同期型1/3分周器8→注入同期型VCO6→VCO4の順序で、それらのフリーラン周波数の補正処理を行うプログラムのフローチャートである。このプログラムの各処理は、コンピュータによって実行される。
FIG. 4 shows a program in which the
<注入同期型1/4分周器9のフリーラン周波数の補正(第1処理)>
補正処理が開始される(S11)と、まず注入同期型1/4分周器9のフリーラン周波数の補正が行われる。このときは、スイッチSW1〜SW4のすべてをOFFに設定し、且つバッファ回路5の動作をOFFさせて(S12)、VCO4、注入同期型VCO6、及び注入同期型1/3分周器8の出力をPLL回路から分離した状態で、注入同期型1/4分周器9をフリーラン発振させる(S13)。そして、その注入同期型1/4分周器9の出力周波数信号を1/5分周器10で5分周して周波数信号f8としてカウンタ14に入力させる。
<Correction of free-run frequency of injection synchronous 1/4 divider 9 (first process)>
When the correction process is started (S11), the free-run frequency of the injection synchronous 1/4 divider 9 is first corrected. At this time, all the switches SW1 to SW4 are set to OFF, and the operation of the buffer circuit 5 is turned OFF (S12), and the outputs of the VCO4, the injection synchronous VCO6, and the injection synchronous 1/3 divider 8 are output. Is separated from the PLL circuit, and the injection synchronous 1/4 divider 9 is oscillated by free run (S13). Then, the output frequency signal of the injection synchronous 1/4 divider 9 is divided by 5 by the 1/5
そして、カウンタ14で期間T1の内に得られたカウント値P1をシーケンサ15において図3で説明したように判定し、周波数信号f8(注入同期型1/4分周器9のフリーラン周波数の1/5)が期待周波数であるときのカウント値P0と比較し、P1がP0になるように、注入同期型1/4分周器9の発振周波数を補正信号で補正する(S14、S15)。
Then, the counter 14 determines the count value P1 obtained during the period T1 in the
図5に注入同期型1/4分周器9の回路構成を示す。M1〜M14はNMOSトランジスタ、R1,R2はバイアス抵抗、R3〜R10は負荷抵抗である。VDDは高電位電源電圧、VSSは低電位電源電圧、VB1,VB2はバイアス電圧である。この注入同期型1/4分周器9は差動型であるので、注入周波数信号f6と発振(出力)周波数信号f7は差動信号となっている。 FIG. 5 shows the circuit configuration of the injection synchronous 1/4 divider 9. M1 to M14 are NMOS transistors, R1 and R2 are bias resistors, and R3 to R10 are load resistors. VDD is a high-potential power supply voltage, VSS is a low-potential power supply voltage, and VB1 and VB2 are bias voltages. Since the injection synchronous type 1/4 divider 9 is a differential type, the injection frequency signal f6 and the oscillation (output) frequency signal f7 are differential signals.
ここでは、図6(a)に示すように、バイアス電圧VB1、VB2を制御することで、注入同期型1/4分周器9の発振フリーラン周波数を変化させる。そして、図6(b)に示すように、出力周波数f7(実際にはカウンタ14に入力する周波数信号f8)が期待周波数になるロック範囲に入るように、そのフリーラン周波数を補正する。 Here, as shown in FIG. 6A, the oscillation free-run frequency of the injection synchronous 1/4 divider 9 is changed by controlling the bias voltages VB1 and VB2. Then, as shown in FIG. 6B, the free-run frequency is corrected so that the output frequency f7 (actually, the frequency signal f8 input to the counter 14) falls within the lock range at which the expected frequency is reached.
このように補正することにより、実際の使用時に前段回路から入力する周波数信号f6の周波数がロック範囲に入るようにすれば、出力周波数f7が入力周波数f6の1/4の周波数になる。 By making such a correction, if the frequency of the frequency signal f6 input from the pre-stage circuit during actual use is within the lock range, the output frequency f7 becomes 1/4 of the input frequency f6.
<注入同期型1/3分周器9のフリーラン周波数の補正(第2処理)>
図4に戻って、注入同期型1/4分周器9のフリーラン周波数の補正が完了すると、注入同期型1/3分周器9のフリーラン周波数の補正が行われる。このときは、スイッチSW1〜SW3をOFFに設定し、スイッチSW4をONに設定する。且つバッファ回路7も動作をOFFさせて(S16)、VCO4、注入同期型VCO6の出力をPLL回路から分離した状態で、注入同期型1/3分周器8をフリーラン発振させる(S17)。そして、その注入同期型1/3分周器9の出力周波数信号を、フリーラン周波数補正済の注入同期型1/4分周器9で4分周し、さらに1/5分周器10で5分周して、周波数信号f8としてカウンタ14に入力さる。
<Correction of free-run frequency of injection synchronous 1/3 divider 9 (second processing)>
Returning to FIG. 4, when the correction of the free run frequency of the injection synchronous 1/4 divider 9 is completed, the free run frequency of the injection synchronous 1/3 divider 9 is corrected. At this time, switches SW1 to SW3 are set to OFF, and switches SW4 are set to ON. The operation of the buffer circuit 7 is also turned off (S16), and the injection synchronous 1/3 divider 8 is oscillated free-run (S17) with the outputs of the VCO4 and the injection synchronous VCO6 separated from the PLL circuit. Then, the output frequency signal of the injection synchronous 1/3 divider 9 is divided by the injection synchronous 1/4 divider 9 with the free run frequency corrected, and further divided by the 1/5
そして、カウンタ14で期間T1の内に得られたカウント値P1をシーケンサ15において図3で説明したように判定し、周波数信号f8(注入同期型1/4分周器9のフリーラン周波数の1/5)が期待周波数であるときのカウント値P0と比較し、P1がP0になるように、注入同期型1/4分周器9の発振周波数を補正信号で補正する(S18、S19)。
Then, the counter 14 determines the count value P1 obtained during the period T1 in the
図7に注入同期型1/3分周器8の回路構成を示す。M21〜M34はNMOSトランジスタ、R21,R22はバイアス抵抗、L1〜L8は負荷である。ここでは、高周波を扱うので、負荷として抵抗ではなくコイルL1〜L8を使用している。VB3,VB4はバイアス電圧である。この注入同期型1/3分周器8は差動型であるので、注入周波数信号f5と発振周波数信号f6は差動信号となっている。 FIG. 7 shows the circuit configuration of the injection synchronous 1/3 divider 8. M21 to M34 are NMOS transistors, R21 and R22 are bias resistors, and L1 to L8 are loads. Here, since high frequencies are handled, coils L1 to L8 are used as loads instead of resistors. VB3 and VB4 are bias voltages. Since the injection synchronous type 1/3 divider 8 is a differential type, the injection frequency signal f5 and the oscillation frequency signal f6 are differential signals.
ここでは、図8(a)に示すように、バイアス電圧VB3、VB4を制御することで、注入同期型1/3分周器8の発振フリーラン周波数を変化させる。そして、図8(b)に示すように、出力周波数f6(実際にはカウンタ14に入力する周波数信号f8)が所定の周波数になるロック範囲に入るように、そのフリーラン周波数を補正する。 Here, as shown in FIG. 8A, the oscillation free-run frequency of the injection synchronous 1/3 divider 8 is changed by controlling the bias voltages VB3 and VB4. Then, as shown in FIG. 8B, the free-run frequency is corrected so that the output frequency f6 (actually, the frequency signal f8 input to the counter 14) falls within the lock range where the frequency becomes a predetermined frequency.
このように補正することにより、実際の使用時に前段回路から入力する周波数信号f6の周波数がロック範囲に入るようにすれば、出力周波数f6が入力周波数f5の1/3の周波数になる。 By making such a correction, if the frequency of the frequency signal f6 input from the pre-stage circuit during actual use is within the lock range, the output frequency f6 becomes 1/3 of the input frequency f5.
<注入同期型VCO6のフリーラン周波数の補正(第3処理)>
図4に戻って、注入同期型1/3分周器8のフリーラン周波数の補正が完了すると、注入同期型VCO6のフリーラン周波数の補正が行われる。このときは、スイッチSW1,SW2をOFFに設定し、スイッチSW3,SW4をONに設定し、且つバッファ回路7を動作をONさせて(S20)、VCO6をPLL回路から分離した(バッファ回路5はステップS12でOFFになっている。)状態で、注入同期型VCO8をフリーラン発振させる(S21)。そして、その注入同期型VCO6の発振周波数信号を、フリーラン周波数補正済の注入同期型1/3分周器8で3分周し、フリーラン周波数補正済の注入同期型1/4分周器9で4分周し、さらに1/5分周器10で5分周して、周波数信号f8としてカウンタ14に入力させる。
<Correction of free run frequency of injection synchronous VCO6 (third processing)>
Returning to FIG. 4, when the correction of the free run frequency of the injection synchronous type 1/3 divider 8 is completed, the free run frequency of the injection synchronous type VCO 6 is corrected. At this time, the switches SW1 and SW2 are set to OFF, the switches SW3 and SW4 are set to ON, and the operation of the buffer circuit 7 is turned ON (S20) to separate the VCO 6 from the PLL circuit (the buffer circuit 5 is In the state of (turned off in step S12), the injection synchronous VCO8 is oscillated by free run (S21). Then, the oscillation frequency signal of the injection synchronous VCO6 is divided by 3 by the injection synchronous 1/3 divider 8 with the free run frequency correction, and the injection synchronous 1/4 divider with the free run frequency correction is used. The frequency signal f8 is divided by 4 and then divided by 5 with the 1/5
そして、カウンタ14で期間T1の内に得られたカウント値P1をシーケンサ15において図3で説明したように判定し、周波数信号f8(注入同期型1/4分周器9のフリーラン周波数の1/4)が期待周波数であるときのカウント値P0と比較し、P1がP0になるように、注入同期型1/4分周器9の発振周波数を補正信号で補正する(S22、S23)。
Then, the counter 14 determines the count value P1 obtained during the period T1 in the
図9に注入同期型VCO6の回路構成を示す。M41〜M52はNMOSトランジスタ、R41は制御電圧VC1を入力させる入力抵抗、R42〜R49はバイアス抵抗、L9〜L10はタンク回路用コイル、VD1〜VD4は制御電圧VC1によって容量が変化する可変容量ダイオード、C1〜C10はカップリングキャパシタである。また、61は発振周波数帯切替用キャパシタバンク回路であり、n個(nは任意の整数)のキャパシタC111〜C11n、n個のキャパシタC12〜C12n、n個のスイッチSW51〜SW5nで構成されている。62も発振周波数帯切替用キャパシタバンク回路であり、n個のキャパシタC311〜C31n、n個のキャパシタC42〜C42n、n個のスイッチSW61〜SW6nで構成されている。VB5,VB6はバイアス電圧である。この注入同期型VCO6は差動型であるので、入力周波数信号f4と出力周波数f5は差動信号となっている。また、送受信機に出力するローカル信号は、直交信号I,Qとして出力される。この直交信号I,Qも差動信号である。
FIG. 9 shows the circuit configuration of the injection synchronous VCO6. M41 to M52 are MOSFET transistors, R41 is an input resistor that inputs the control voltage VC1, R42 to R49 are bias resistors, L9 to L10 are tank circuit coils, and VD1 to VD4 are variable capacitor diodes whose capacitance changes depending on the control voltage VC1. C1 to C10 are coupling capacitors.
ここでは、制御電圧VC1を固定した状態で、発振周波数帯切替用キャパシタバンク回路61、62のキャパシタを切り替えることにより注入同期型VCO6のフリーラン周波数を変化させる。フリーラン周波数の微調整は、前記した制御電圧VC1によって行う。
Here, the free-run frequency of the injection-synchronized VCO6 is changed by switching the capacitors of the oscillation frequency band switching
このように補正することによって、実際の使用時に前段回路から周波数信号f4が注入されることにより、発振周波数f5が注入周波数信号の周波数f4の3逓倍の周波数になる。 By correcting in this way, the frequency signal f4 is injected from the pre-stage circuit during actual use, so that the oscillation frequency f5 becomes a frequency that is three times the frequency f4 of the injection frequency signal.
<VCO4のフリーラン周波数の補正(第4処理)>
図4に戻って、注入同期型VCO6のフリーラン周波数の補正が完了すると、VCO4のフリーラン周波数の補正が行われる。このときは、スイッチSW3,SW4をOFFに設定し、且つバッファ回路7の動作をOFFさせるとともに注入同期型1/3分周器8の動作をOFFにして(S24)、注入同期型VCO6の出力をPLL回路から分離し、さらにバッファ回路5の動作をONにした状態で(S25)、フリーラン周波数の補正済の注入同期型VCO6のロックアップを開始する(S26)。
<Correction of free-run frequency of VCO4 (4th processing)>
Returning to FIG. 4, when the correction of the free-run frequency of the injection-synchronized VCO 6 is completed, the free-run frequency of the
そして、位相比較器1の比較論理を固定するとともにチャージポンプ回路2の出力インピーダンスを高インピーダンスにし(S27)、スイッチSW1をONしてVDD/2の電圧をローパスフィルタ3に入力して(S28)、VCO4を固定の制御電圧VDD/2でフリーラン発振させる(S29)と、VCO4がほぼ中間周波数で発振する。そのVCO4の発振周波数信号を、ONしているスイッチSW2を経由してフリーラン周波数補正済の注入同期型1/4分周器9で4分周し、さらに1/5分周器10で5分周して、周波数信号f8としてカウンタ14に入力させる。
Then, the comparison logic of the phase comparator 1 is fixed, the output impedance of the
そして、カウンタ14で期間T1の内に得られたカウント値P1をシーケンサ15において図3で説明したように判定し、周波数信号f8(注入同期型1/4分周器9のフリーラン周波数の1/4)が期待周波数であるときのカウント値P0と比較し、P1がP0になるように、VCO4の発振周波数を補正信号で補正する(S30、S31)。VCO4のフリーラン周波数が目標の周波数になった後は、PLL回路のロックアップが開始される(S32)。
Then, the counter 14 determines the count value P1 obtained within the period T1 in the
図10にVCO4の回路構成を示す。M61〜M63はNMOSトランジスタ、R50は制御電圧VC2を入力させる入力抵抗、L11はタンク回路用コイル、VD5、VD6は制御電圧VC2によって容量が変化する可変容量ダイオード、C15、C16はカップリングキャパシタである。また、41は発振周波数帯切替用キャパシタバンク回路であり、n個のキャパシタC171〜C17n、n個のキャパシタC181〜C18n、n個のスイッチSW71〜SW7nで構成されている。VB7はバイアス電圧である。このVCO4は差動型であるので、発振周波数信号f4は差動信号となっている。
FIG. 10 shows the circuit configuration of VCO4. M61 to M63 are NMOS transistors, R50 is an input resistor that inputs the control voltage VC2, L11 is a coil for a tank circuit, VD5 and VD6 are variable capacitance diodes whose capacitance changes according to the control voltage VC2, and C15 and C16 are coupling capacitors. ..
ここでは、制御電圧VC2を固定しておいて、発振周波数帯切替用キャパシタバンク回路41のキャパシタをスイッチSW71〜SW7nで切り替えることによりVCO4の発振フリーラン周波数を変化させる。このように補正することにより、実際の使用時に制御電圧VC2に応じた既定の発振周波数f5の信号が発振される。
Here, the control voltage VC2 is fixed, and the oscillation free-run frequency of the
<ロックアップ動作(第5処理)>
注入同期型VCO6のフリーラン周波数の補正が完了した後は、その注入同期型VCO6は補正済の周波数でフリーラン発振を開始しており、その後、VCO4のフリーラン周波数の補正が完了するとPLL回路のロックアップ(S32)が開始するが、このとき注入同期型VCO6もVCO4の発振周波数でロックアップされる。つまり、VCO4と注入同期型VCO6のロックアップが同時に行われる。
<Lockup operation (fifth process)>
After the correction of the free-run frequency of the injection-synchronized VCO6 is completed, the injection-synchronized VCO6 starts free-run oscillation at the corrected frequency, and after that, when the correction of the free-run frequency of the VCO4 is completed, the PLL circuit Lockup (S32) starts, and at this time, the injection-synchronized VCO6 is also locked up at the oscillation frequency of VCO4. That is, the VCO4 and the injection-synchronized VCO6 are locked up at the same time.
上述したように、本実施例では、注入同期型1/4分周器9→注入同期型1/3分周器8→注入同期型VCO8→VCO4の順序でフリーラン周波数の補正を行うので、VCO4のフリーラン周波数の補正が完了してから、PLLロックアップと注入同期型VCO8のロックアップを同時に行うことができる。 As described above, in this embodiment, the free-run frequency is corrected in the order of injection synchronous 1/4 divider 9 → injection synchronous 1/3 divider 8 → injection synchronous VCO8 → VCO4. After the correction of the free-run frequency of the VCO4 is completed, the PLL lockup and the lockup of the injection-synchronized VCO8 can be performed at the same time.
すなわち、図11(a)に示すように、注入同期型1/4分周器9→注入同期型1/3分周器8→注入同期型VCO6→VCO4の順序でそれぞれのフリーラン周波数補正を行う時間T11〜T14は、図2(b)を用いて前述したように、通常では最大でもそれぞれ3×T1(≒10.665μsec)であるが、注入同期型VCO6、VCO4のロックアップ時間はそれらよりも数倍近く長く(例えば、ループ帯域を100kHzとしたときは40μsec)かかる。本実施例のシーケンスでは、このロックアップ時間T15を共通化できるので、補正開始からロック完了までにかかる時間を短く(10.662μsec×4+40μsec=82.648μsec)することができる。 That is, as shown in FIG. 11A, each free-run frequency correction is performed in the order of injection synchronous 1/4 divider 9 → injection synchronous 1/3 divider 8 → injection synchronous VCO6 → VCO4. As described above with reference to FIG. 2B, the times T11 to T14 to be performed are usually at most 3 × T1 (≈10.665 μsec), respectively, but the lockup times of the injection-synchronized VCO6 and VCO4 are those. It takes nearly several times longer than (for example, 40 μsec when the loop band is 100 kHz). In the sequence of this embodiment, since the lockup time T15 can be shared, the time required from the start of correction to the completion of lock can be shortened (10.662 μsec × 4 + 40 μsec = 82.648 μsec).
注入同期型1/3分周器8を使用しないでPLL回路を構成した場合のフリーラン周波数の補正は、図11(b)を用いて前述したように、注入同期型分周器のフリーラン周波数補正→VCOのフリーラン周波数補正→PLLロックアップ→注入同期型VCOのフリーラン周波数補正→注入同期型VCOのロックアップの順序で行わなければならない。このため、PLLロックアップと注入同期型VCOのロックアップを時間T23、T25で個別に行う必要があるので、補正開始からロック完了までの時間が、本実施例の場合よりも長く(10.662μsec×3+40μsec×2=111.989μsec)かかる。 When the PLL circuit is configured without using the injection synchronous 1/3 divider 8, the free run frequency is corrected by the free run of the injection synchronous divider as described above with reference to FIG. 11B. Frequency correction-> VCO free-run frequency correction-> PLL lockup-> injection synchronous VCO free-run frequency correction-> injection synchronous VCO lockup must be performed in this order. Therefore, since it is necessary to separately perform the PLL lockup and the lockup of the injection synchronous VCO at the times T23 and T25, the time from the start of correction to the completion of the lock is longer than that in the case of this embodiment (10.662 μsec). × 3 + 40 μsec × 2 = 111.989 μsec).
1:位相比較器、2:チャージポンプ回路、3:ローパスフィルタ、4:VCO、5:バッファ回路、6:注入同期型VCO、7:バッファ回路、8:注入同期型1/3分周器、9:注入同期型1/4分周器、10:1/5分周器、11:可変分周器、12:1/128分周器、13:1/2分周器、131:DFF回路、132:インバータ、14:カウンタ、15:シーケンサ 1: Phase counter, 2: Charge pump circuit, 3: Low pass filter, 4: VCO, 5: Buffer circuit, 6: Injection synchronous VCO, 7: Buffer circuit, 8: Injection synchronous 1/3 divider, 9: Injection synchronous 1/4 divider, 10: 1/5 divider, 11: Variable divider, 12: 1/128 divider, 13: 1/2 divider, 131: DFF circuit , 132: Inverter, 14: Counter, 15: Sequencer
Claims (2)
前記第3分周器で分周された周波数信号の周波数で決まる所定期間の間、前記第2分周器の出力周波数信号又は前記第2分周器の出力周波数信号を第2任意数だけ分周した周波数信号のパルスをカウントするカウンタと、
該カウンタのカウント値に応じて、前記第1VCO、前記第2VCO、前記第1分周器、及び前記第2分周器のフリーラン周波数を個々に補正するシーケンサと、を有し、
該シーケンサは、前記第1VCO、前記第2VCO、及び前記第1分周器の出力を前記PLL回路から分離した状態で、前記第2分周器をフリーラン発振させ、そのとき得られる前記カウンタのカウント値に応じて前記第2分周器のフリーラン周波数を補正する第1処理と、
該第1処理の後に、前記第1VCO及び前記第2VCOの出力を前記PLL回路から分離し、且つ前記第1分周器をフリーラン発振させた状態で、前記第1分周器の出力周波数信号をフリーラン周波数が補正済の前記第2分周器に注入して、そのとき得られる前記カウンタのカウント値に応じて前記第1分周器のフリーラン周波数を補正する第2処理と、
該第2処理の後に、前記第1VCOの出力を前記PLL回路から分離し、且つ前記第1及び第2分周器をそれぞれ補正済のフリーラン周波数で発振させた状態で、前記第2VCOをフリーラン発振させ、そのとき得られる前記カウンタのカウント値に応じて前記第2VCOのフリーラン周波数を補正する第3処理と、
該第3処理の後に、前記第1分周器の出力を前記PLL回路から分離し、前記第2分周器を補正済のフリーラン周波数で発振させた状態で、前記第1VCOを固定電圧でフリーラン発振させて、前記第1VCOの出力周波数を前記第2分周器に入力させ、そのとき得られる前記カウンタのカウント値に応じて前記第1VCOのフリーラン周波数を補正する第4処理と、
該第4処理の後に、前記PLL回路のロックアップと前記第1VCOの出力周波数信号を注入信号とする前記第2VCOのロックアップとを同時に行う第5処理と、をコンピュータに実行させるプログラムを有することを特徴とするPLL回路。 A phase comparator that compares the phase of the reference frequency signal and the feedback frequency signal, a charge pump circuit that outputs a voltage according to the comparison result of the phase comparator, and a low frequency component extracted from the output voltage of the charge pump circuit. A low-pass filter, a first VCO that oscillates at a frequency corresponding to the output voltage of the low-pass filter, and a frequency signal oscillated by the first VCO are input as injection synchronization signals, and the frequency is an integral multiple of the frequency signal oscillated by the first VCO. An injection synchronous type second VCO that oscillates a signal and an injection synchronous type that inputs a frequency signal oscillated by the second VCO as an injection signal and divides the frequency of the injection signal into the same frequency as the oscillation frequency of the first VCO. An injection-synchronized second frequency divider that divides the frequency of the injection signal by inputting the frequency signal oscillated by the first VCO or the output frequency signal of the first frequency divider as an injection signal. A device and a fixed third frequency divider that divides the reference frequency signal are provided, and the output frequency signal of the second frequency divider is divided as it is or by a first arbitrary number to obtain the feedback frequency signal. In the PLL circuit
The output frequency signal of the second divider or the output frequency signal of the second divider is divided by a second arbitrary number during a predetermined period determined by the frequency of the frequency signal divided by the third divider. A counter that counts the pulses of the frequency signal that goes around,
It has a sequencer that individually corrects the first VCO, the second VCO, the first frequency divider, and the free run frequency of the second frequency divider according to the count value of the counter .
The sequencer causes the second divider to oscillate free-run in a state where the outputs of the first VCO, the second VCO, and the first divider are separated from the PLL circuit, and the counter obtained at that time. The first process of correcting the free-run frequency of the second frequency divider according to the count value, and
After the first processing, the output frequency signal of the first divider is separated from the output of the first VCO and the second VCO from the PLL circuit, and the first divider is oscillated free-run. Is injected into the second divider whose free run frequency has been corrected, and the second process of correcting the free run frequency of the first divider according to the count value of the counter obtained at that time, and
After the second processing, the output of the first VCO is separated from the PLL circuit, and the first and second dividers are oscillated at the corrected free run frequencies, and the second VCO is freed. The third process of oscillating the run and correcting the free run frequency of the second VCO according to the count value of the counter obtained at that time,
After the third process, the output of the first frequency divider is separated from the PLL circuit, and the first VCO is oscillated at a corrected free-run frequency at a fixed voltage. A fourth process in which free-run oscillation is performed to input the output frequency of the first VCO to the second frequency divider, and the free-run frequency of the first VCO is corrected according to the count value of the counter obtained at that time.
After the fourth process, to have a program for executing a fifth process for performing said lock-up of the 2VCO to injection signal output frequency signal of the first 1VCO a lock-up of the PLL circuit at the same time, to a computer A PLL circuit characterized by.
前記第3分周器で分周された周波数信号の周波数で決まる所定期間の間の、前記第2分周器の出力周波数信号又は前記第2分周器の出力周波数信号を第2任意数だけ分周した周波数信号のパルス数に応じて、前記第1VCO、前記第2VCO、前記第1分周器、及び前記第2分周器のフリーラン周波数を個々に補正するものであって、Only a second arbitrary number of the output frequency signal of the second divider or the output frequency signal of the second divider during a predetermined period determined by the frequency of the frequency signal divided by the third divider. The free-run frequencies of the first VCO, the second VCO, the first frequency divider, and the second frequency divider are individually corrected according to the number of pulses of the divided frequency signal.
前記第1VCO、前記第2VCO、及び前記第1分周器の出力を前記PLL回路から分離した状態で、前記第2分周器をフリーラン発振させ、そのとき得られる前記パルス数に応じて前記第2分周器のフリーラン周波数を補正する第1処理と、With the outputs of the first VCO, the second VCO, and the first divider separated from the PLL circuit, the second divider is oscillated free-run, and the number of pulses obtained at that time is increased. The first process to correct the free-run frequency of the second frequency divider, and
該第1処理の後に、前記第1VCO及び前記第2VCOの出力を前記PLL回路から分離し、且つ前記第1分周器をフリーラン発振させた状態で、前記第1分周器の出力周波数信号をフリーラン周波数が補正済の前記第2分周器に注入して、そのとき得られる前記パルス数に応じて前記第1分周器のフリーラン周波数を補正する第2処理と、After the first processing, the output frequency signal of the first divider is separated from the output of the first VCO and the second VCO from the PLL circuit, and the first divider is oscillated free-run. Is injected into the second divider whose free run frequency has been corrected, and the second process of correcting the free run frequency of the first divider according to the number of pulses obtained at that time, and
該第2処理の後に、前記第1VCOの出力を前記PLL回路から分離し、且つ前記第1及び第2分周器をそれぞれ補正済のフリーラン周波数で発振させた状態で、前記第2VCOをフリーラン発振させ、そのとき得られる前記パルス数に応じて前記第2VCOのフリーラン周波数を補正する第3処理と、After the second processing, the output of the first VCO is separated from the PLL circuit, and the first and second dividers are oscillated at corrected free-run frequencies, and the second VCO is freed. A third process of oscillating a run and correcting the free run frequency of the second VCO according to the number of pulses obtained at that time.
該第3処理の後に、前記第1分周器の出力を前記PLL回路から分離し、前記第2分周器を補正済のフリーラン周波数で発振させた状態で、前記第1VCOを固定電圧でフリーラン発振させて、前記第1VCOの出力周波数を前記第2分周器に入力させ、そのとき得られる前記パルス数に応じて前記第1VCOのフリーラン周波数を補正する第4処理と、After the third process, the output of the first frequency divider is separated from the PLL circuit, and the first VCO is oscillated at a corrected free-run frequency at a fixed voltage. A fourth process in which free-run oscillation is performed to input the output frequency of the first VCO to the second frequency divider, and the free-run frequency of the first VCO is corrected according to the number of pulses obtained at that time.
該第4処理の後に、前記PLL回路のロックアップと前記第1VCOの出力周波数信号を注入信号とする前記第2VCOのロックアップとを同時に行う第5処理と、を有することを特徴とするPLL回路の周波数補正方法。The PLL circuit is characterized by having, after the fourth process, a fifth process of simultaneously performing the lockup of the PLL circuit and the lockup of the second VCO using the output frequency signal of the first VCO as an injection signal. Frequency correction method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016155552A JP6777292B2 (en) | 2016-08-08 | 2016-08-08 | PLL circuit and its frequency correction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016155552A JP6777292B2 (en) | 2016-08-08 | 2016-08-08 | PLL circuit and its frequency correction method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018026620A JP2018026620A (en) | 2018-02-15 |
JP6777292B2 true JP6777292B2 (en) | 2020-10-28 |
Family
ID=61194304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016155552A Active JP6777292B2 (en) | 2016-08-08 | 2016-08-08 | PLL circuit and its frequency correction method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6777292B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020198996A1 (en) * | 2019-03-29 | 2020-10-08 | 华为技术有限公司 | Signal processing device and signal processing method |
CN110581709B (en) * | 2019-08-30 | 2021-01-12 | 浙江大学 | A Zero-Delay Phase-Locked Loop Frequency Synthesizer Based on Multilevel Synchronization |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6247212A (en) * | 1985-08-27 | 1987-02-28 | Hitachi Denshi Ltd | Synthesizer device |
JPH01277025A (en) * | 1988-04-28 | 1989-11-07 | Nippon Telegr & Teleph Corp <Ntt> | Phase locked oscillating circuit |
US8362848B2 (en) * | 2011-04-07 | 2013-01-29 | Qualcomm Incorporated | Supply-regulated VCO architecture |
US9191056B2 (en) * | 2012-03-21 | 2015-11-17 | Panasonic Corporation | PLL circuit, calibration method, and wireless communication apparatus |
JP6252888B2 (en) * | 2013-04-19 | 2017-12-27 | パナソニックIpマネジメント株式会社 | PLL circuit, calibration method, and wireless communication apparatus |
JP2015089000A (en) * | 2013-10-31 | 2015-05-07 | 株式会社半導体理工学研究センター | Phase-locked loop |
JP2015099970A (en) * | 2013-11-18 | 2015-05-28 | 三菱電機株式会社 | Injection-locked oscillator |
-
2016
- 2016-08-08 JP JP2016155552A patent/JP6777292B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018026620A (en) | 2018-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2479121C2 (en) | Quadrature frequency divider with division by three | |
US11258409B2 (en) | High voltage switch with fast turn-off | |
US9160461B2 (en) | Systems and methods for minimizing spurs through duty cycle adjustment | |
JP6252888B2 (en) | PLL circuit, calibration method, and wireless communication apparatus | |
JP5876368B2 (en) | Phase-locked loop circuit having a voltage controlled oscillator with improved bandwidth | |
JP6777292B2 (en) | PLL circuit and its frequency correction method | |
US9257996B2 (en) | Oscillator circuits and methods to compensate frequency pulling | |
US9654119B2 (en) | Phase locked loop and operating method thereof | |
US20140376683A1 (en) | Dynamic divider having interlocking circuit | |
JP4057791B2 (en) | PLL circuit and wireless communication terminal device | |
US12184234B2 (en) | Semiconductor device | |
JP6312197B2 (en) | Clock generation circuit | |
US10944360B2 (en) | Local oscillator | |
JP5719541B2 (en) | Receiver circuit for radio clock | |
US9614535B2 (en) | PLL circuit, method, and electronic apparatus | |
WO2008018276A1 (en) | Voltage controlled oscillator, frequency synthesizer and oscillating frequency control method | |
JP6615406B2 (en) | IQ signal source | |
US20120038402A1 (en) | Clock generation circuit and electronic apparatus | |
JPH09238072A (en) | Digital pll circuit | |
US10637521B1 (en) | 25% duty cycle clock generator having a divider with an inverter ring arrangement | |
US20050266816A1 (en) | PLL synthesizer | |
JP2005191858A (en) | Oscillator | |
JPH1013227A (en) | PLL frequency synthesizer | |
JPS63111726A (en) | Pll circuit | |
JP2016122890A (en) | Local oscillation circuit and heterodyne receiver using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190801 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20200220 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200515 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200602 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200722 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200908 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200929 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6777292 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |