JP6774824B2 - Decoding device, hologram reproduction device, and decoding method - Google Patents
Decoding device, hologram reproduction device, and decoding method Download PDFInfo
- Publication number
- JP6774824B2 JP6774824B2 JP2016175893A JP2016175893A JP6774824B2 JP 6774824 B2 JP6774824 B2 JP 6774824B2 JP 2016175893 A JP2016175893 A JP 2016175893A JP 2016175893 A JP2016175893 A JP 2016175893A JP 6774824 B2 JP6774824 B2 JP 6774824B2
- Authority
- JP
- Japan
- Prior art keywords
- bit
- nbit
- data
- rbit
- likelihood
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 59
- 238000012937 correction Methods 0.000 claims description 30
- 238000012545 processing Methods 0.000 claims description 18
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 238000004364 calculation method Methods 0.000 description 28
- 238000005259 measurement Methods 0.000 description 18
- 230000003287 optical effect Effects 0.000 description 11
- 238000004891 communication Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000000605 extraction Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000007689 inspection Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Landscapes
- Signal Processing For Digital Recording And Reproducing (AREA)
- Optical Recording Or Reproduction (AREA)
- Error Detection And Correction (AREA)
Description
本発明は、復号装置、ホログラム再生装置、及び復号方法に関し、特に、誤り訂正符号化され、n:r変調された信号を復号する復号装置、ホログラム再生装置、及び復号方法に関する。なお、本発明をホログラム再生装置の例に基づいて説明するが、本発明の復号装置及び復号方法は、ホログラム再生装置に限定されるものではない。 The present invention relates to a decoding device, a hologram reproduction device, and a decoding method, and more particularly to a decoding device, a hologram reproduction device, and a decoding method for decoding an error-correcting coded and n: r-modulated signal. Although the present invention will be described with reference to an example of a hologram reproduction device, the decoding device and the decoding method of the present invention are not limited to the hologram reproduction device.
近年、大容量のデータを効率的に記録することができる媒体として、ホログラム光メモリー媒体(ホログラム記録媒体)が注目されている。ホログラフィックメモリーは、画像や音声、コンピューター等の大容量メモリーとしての利用が期待されている。 In recent years, a hologram optical memory medium (hologram recording medium) has attracted attention as a medium capable of efficiently recording a large amount of data. Holographic memory is expected to be used as a large-capacity memory for images, sounds, computers, etc.
ホログラフィックメモリー記録システムでは、一般に、デジタルデータを担持した物体光を参照光とともにホログラム記録媒体に同時に照射し、ホログラム記録媒体中に形成される干渉縞を光記録媒体に書き込むことによって、該デジタルデータを記録する。一方、デジタルデータが記録されたホログラム記録媒体に参照光を照射すると、ホログラム記録媒体中に書き込まれた干渉縞により光の回折を生じて、上記物体光が担持していたデジタルデータを再生することができる。現在用いられているホログラフィックメモリー記録システムの一例について図5及び図6を参照しながら簡単に説明する。 In a holographic memory recording system, generally, an object light carrying digital data is simultaneously irradiated to a hologram recording medium together with reference light, and interference fringes formed in the hologram recording medium are written to the optical recording medium to write the digital data. To record. On the other hand, when the hologram recording medium on which the digital data is recorded is irradiated with the reference light, the interference fringes written in the hologram recording medium cause the light to be diffracted, and the digital data carried by the object light is reproduced. Can be done. An example of the holographic memory recording system currently used will be briefly described with reference to FIGS. 5 and 6.
まず、記録時から説明する。図5は、ホログラフィックメモリー記録システム100の記録時の光学配置と光路(太い一点鎖線)の一例を示す図である。なお、記録時に使用されない光学要素は、細い二点鎖線で描かれている。
First, it will be described from the time of recording. FIG. 5 is a diagram showing an example of the optical arrangement and the optical path (thick alternate long and short dash line) at the time of recording of the holographic
レーザ光源101から出力され、シャッタ102を通過したレーザ光(ここではS偏光(縦偏光))が1/2波長板103によって45度偏光に偏光面を回転させられた後、PBS(偏光ビームスプリッタ)104にてP偏光およびS偏光とに分けられる。P偏光はPBS104を透過後、シャッタ105を通過する。その後、拡大レンズ106により拡大された後、PBS107を透過し、反射型液晶素子等からなるSLM(空間光変調素子)108上に照射される。この照射された光は、SLM108の素子面に映出された白と黒のビットパターンによる2次元画像のデジタルデータを担持されるとともに、S偏光に変換されて(実際には、白表示とされた素子からの光がS偏光に変換される)反射され、物体光としてPBS107に戻る。このSLM108から戻った物体光は、PBS107により反射され、FT(フーリエ変換)レンズ109を通過後、空間フィルタ110でナイキスト周波数分を透過し、それ以上の周波数成分をカットし、再度、FT(フーリエ変換)レンズ111、FT(フーリエ変換)レンズ112を介してホログラム記録媒体113上に照射される。
The laser beam (here, S-polarized light (longitudinal polarized light)) output from the
一方、PBS104によって反射されたS偏光は1/2波長板117を通過するが、ここでは、1/2波長板117とビームの偏光軸を合わせておき、ビームの偏光面は回転させない。次にPBS116に入射し、ここで、反射され、ミラー120、ガルバノミラー121と反射され、リレーレンズ122を通過後、ホログラム記録媒体113上に照射される。このようにしてホログラム記録媒体113上に照射された参照光と物体光はいずれもS偏光とされているので、このホログラム記録媒体113上で干渉して干渉縞が形成され、該干渉縞がホログラム記録媒体113に書き込まれることになる。
On the other hand, the S-polarized light reflected by the
次に再生時について図6を用いて説明する。図6は、ホログラフィックメモリー記録システム100の再生時の光学配置と光路(太い一点鎖線)の一例を示す図である。なお、再生時に使用されない光学要素は、細い二点鎖線で描かれている。
Next, the time of reproduction will be described with reference to FIG. FIG. 6 is a diagram showing an example of the optical arrangement and the optical path (thick alternate long and short dash line) during reproduction of the holographic
PBS104までは記録時と同様であるが、透過したP偏光はシャッタ105で止められる。一方、反射されたS偏光は1/2波長板117の軸を45度の設定値へ変更して偏光面を90度回転され、P偏光となる。このP偏光はPBS116を通過後、ガルバノミラー115によって反射され、リレーレンズ114を通過後ホログラム記録媒体113に入射する。ホログラム記録媒体113に書かれた干渉縞によって回折された信号光はFTレンズ112、FTレンズ111、空間フィルタ110、FTレンズ109、と通過後、PBS107を通過して2次元撮像素子118で撮像され、演算装置119で処理することにより、デジタルデータが復元されることになる。
Up to PBS 104 is the same as at the time of recording, but the transmitted P-polarized light is stopped by the
このようなホログラフィックメモリー記録システムにおいて、FTレンズを通過する光は一種のローパスフィルタの効果を受け、信号再生する2次元撮像素子118では、点像が大きく広がり、また、近隣の点像が近い場合はその点像同士が接合してしまう再生像となる。また、レーザ光源101から出射する光を拡大レンズ106でSLM108の大きさまで大きくするので、SLM108の中心部が明るく、周辺部がやや暗い再生像となる。
In such a holographic memory recording system, the light passing through the FT lens is affected by a kind of low-pass filter, and in the two-
この場合の閾値判定においては、輝度分布に応じて周辺部と中心部で閾値を変化させなければならない。しかしながら、輝度分布は記録条件、再生条件など種々の依存性があるので、一概には決定できない。そこで、記録コードとして、ある一定の範囲中で白と黒との判定を行う差分コードが提案されている(特許文献1)。この手法をとることにより、ある一定の範囲内での白と黒との判別により、データを再生できる特徴がある。 In the threshold value determination in this case, the threshold value must be changed between the peripheral portion and the central portion according to the luminance distribution. However, since the brightness distribution has various dependences such as recording conditions and reproduction conditions, it cannot be unconditionally determined. Therefore, as a recording code, a difference code for determining white and black within a certain range has been proposed (Patent Document 1). By adopting this method, there is a feature that data can be reproduced by distinguishing between white and black within a certain range.
一方、ホログラフィックメモリー記録システムでは、輝度むらの他にも光学系、記録媒体からのノイズ、多重した記録ページからの漏洩などさまざまなノイズも加わる。このため、上述の差分コードのみで、そのまま誤りなく記録再生することは困難なため、通常誤り訂正コードを付加する。 On the other hand, in a holographic memory recording system, in addition to uneven brightness, various noises such as noise from an optical system and a recording medium and leakage from multiple recording pages are added. Therefore, since it is difficult to record and reproduce the difference code as it is without any error using only the above-mentioned difference code, an error correction code is usually added.
誤り訂正コードには大きく分けて、ブロック符号と畳み込み符号とに分かれる。近年、ブロック符号では、LDPC(Low Density Parity Check)が、畳み込み符号では、ターボ符号がシャノン限界に迫る誤り訂正能力を示すことで、よく使われている。 The error correction code is roughly divided into a block code and a convolutional code. In recent years, LDPC (Low Density Parity Check) is often used for block codes, and turbo codes are often used for convolutional codes because they show error correction capability approaching the Shannon limit.
このうち、ターボ符号は復号処理が複雑でレイテンシが比較的大きいところから、記録装置の誤り訂正といった点から考えると、適当ではない。一方、LDPCは線形時間復号である、並列実装に適している、などの点から、衛星放送、無線LANや無線インターネットをはじめとしてさまざまなところで使われている。ホログラフィックメモリー記録システムでも同様に、誤り訂正としてLDPCの使用が有望である(特許文献2)。 Of these, the turbo code is not suitable from the viewpoint of error correction of the recording device because the decoding process is complicated and the latency is relatively large. On the other hand, LDPC is used in various places such as satellite broadcasting, wireless LAN, and wireless Internet because it is linear time decoding and suitable for parallel mounting. Similarly, in a holographic memory recording system, the use of LDPC as an error correction is promising (Patent Document 2).
ここで、LDPC符号化/復号化の概要について説明する。 Here, the outline of LDPC coding / decoding will be described.
LDPCにおいては、符号化の対象とするビットが、一般に「情報ビット」と呼ばれる。また、LDPCの符号化を行うにあたっては、予め「検査行列」(Hと表記される)が定められる。符号化においては、先ず、入力された情報ビット列と上記検査行列Hとに基づき、「検査ビット列」(パリティ)が生成される。検査ビットが付加されたデータ単位、すなわち「情報ビット+検査ビット」の単位が、LDPC符号化/復号化の最小単位である「1LDPCブロック」となる。このようにLDPC符号化されたデータ(LDPC符号列)が、通信路に対して送出され、或いは記録媒体に対して記録される。 In LDPC, the bit to be encoded is generally called an "information bit". Further, in performing the coding of the LDPC, an "inspection matrix" (denoted as H) is determined in advance. In the coding, first, a "check bit string" (parity) is generated based on the input information bit string and the check matrix H. The data unit to which the inspection bit is added, that is, the unit of "information bit + inspection bit" is the "1LDPC block" which is the minimum unit of LDPC coding / decoding. The LDPC-encoded data (LDPC code string) is transmitted to the communication path or recorded on the recording medium.
LDPC符号の復号化では、先ず、受信信号(又は読出し信号)から、LDPC符号列を構成する各ビットの「対数尤度比」(Log Likelihood Ratio:LLR)を計算する。この「対数尤度比」は、各ビットの値(「0」又は「1」)の尤度を表す情報として用いられるものであり、以下では「LLR」と略称する。 In decoding the LDPC code, first, the "log-likelihood ratio" (LLR) of each bit constituting the LDPC code string is calculated from the received signal (or read signal). This "logarithmic likelihood ratio" is used as information representing the likelihood of the value of each bit ("0" or "1"), and is abbreviated as "LLR" below.
ここで、送信信号をXn(Xnは、+1又は−1)、受信信号をYnとしたときの、LLR(λnとおく)の求め方について説明する。通信路の条件付き確率P(Yn|Xn)より、LLRは次式(1)で計算できる。 Here, a method of obtaining LLR (set as λn) when the transmission signal is Xn (Xn is +1 or -1) and the reception signal is Yn will be described. From the conditional probability P (Yn | Xn) of the communication path, LLR can be calculated by the following equation (1).
一般的なAWGN(加法白色ガウス雑音)通信路を想定した場合のLDPC符号化・復号化のモデルの場合、通信路の条件付き確率は、次式(2)とおくことができる。但し、σ2はガウス雑音の分散であり、bは+1と−1の値をとる。 In the case of the LDPC coding / decoding model assuming a general AWGN (additive white Gaussian noise) communication path, the conditional probability of the communication path can be set to the following equation (2). However, σ 2 is the variance of Gaussian noise, and b takes the values of +1 and -1.
ここで、(1)式に、(2)式を代入すると、LLR(λn)は、次式(3)となる。 Here, by substituting the equation (2) into the equation (1), the LLR (λn) becomes the following equation (3).
ビットごとのLLRについてはλ(n)と表記する。受信信号からビットごとのLLR(λ(n))を計算し、これらλ(n)と、予め定められた検査行列(H)とに基づき、LDPC復号アルゴリズムにより、LDPCブロックごとに情報ビットの各ビット値を推定するのがLDPC復号化である。 The LLR for each bit is expressed as λ (n). The LLR (λ (n)) for each bit is calculated from the received signal, and based on these λ (n) and the predetermined check matrix (H), each of the information bits for each LDPC block is calculated by the LDPC decoding algorithm. LDPC decoding estimates the bit value.
LDPC復号アルゴリズムは、いわゆるMAP(Maximum A posteriori Possibility)復号法を基礎としたものとなる。MAP復号法では、符号語Xを送信したとき受信語Yが受信される確率を表す条件付き確率を計算し、該条件付き確率Pを最大とする「0」又は「1」のシンボルをその推定値とする。但し、すべての符号語について事後確率P(Yn|Xn)の値を加算することでビットごとの事後確率を計算する手順を、定義に従ってそのまま実行するとした場合、計算量は膨大なものとなるので、この計算量を削減するためのLDPC復号アルゴリズムとして、例えばsum-productアルゴリズムが提案されている。このsum-productアルゴリズムは、MAP復号法の近似アルゴリズムといえる。次に、sum-productアルゴリズムについて説明する。 The LDPC decoding algorithm is based on the so-called MAP (Maximum A posteriori Possibility) decoding method. In the MAP decoding method, a conditional probability representing the probability that the received word Y is received when the code word X is transmitted is calculated, and the symbol of "0" or "1" that maximizes the conditional probability P is estimated. Use as a value. However, if the procedure for calculating the posterior probability for each bit by adding the value of the posterior probability P (Yn | Xn) for all the code words is executed as it is according to the definition, the amount of calculation will be enormous. As an LDPC decoding algorithm for reducing this amount of calculation, for example, a sum-product algorithm has been proposed. This sum-product algorithm can be said to be an approximation algorithm of the MAP decoding method. Next, the sum-product algorithm will be described.
図7は、sum-productアルゴリズムによるLDPC復号処理の内容を簡略的に説明するための復号処理の内容を示すフローチャートである(非特許文献2)。 FIG. 7 is a flowchart showing the contents of the decoding process for simply explaining the contents of the LDPC decoding process by the sum-product algorithm (Non-Patent Document 2).
フローチャートの概要は、まず、ステップ1(S1)として、チェックノードmから変数ノードnへのメッセージαmnを求める処理を行い、次いで、ステップ2(S2)として、求められたαmnと対数尤度比λnに基づいて、変数ノードnからチェックノードmへのメッセージβnmを求める処理を行う。その後、ステップ3(S3)として、後述する対数事後確率比の近似値Lnを求め、この値に基づいて推定ビットを決定する。 As for the outline of the flowchart, first, as step 1 (S1), a process of obtaining a message αmn from the check node m to the variable node n is performed, and then, as step 2 (S2), the obtained αmn and the log-likelihood ratio λn Based on the above, the process of obtaining the message β nm from the variable node n to the check node m is performed. After that, as step 3 (S3), an approximate value Ln of the logarithmic posterior probability ratio described later is obtained, and the estimation bit is determined based on this value.
その後、ステップ4(S4)として、得られた推定ビットに基づいてパリティ検査を行い、推定ビットがパリティ検査を満たす場合は、ステップ5(S5)で、これを正しい推定ビットとして出力し、満たさない場合は、ステップ1に戻って処理を繰り返す。 After that, as step 4 (S4), a parity check is performed based on the obtained estimated bits, and if the estimated bits satisfy the parity check, this is output as a correct estimated bit in step 5 (S5) and is not satisfied. In that case, the process returns to step 1 and the process is repeated.
フローチャートの各式において、「A(m)」は、チェックノードmに接続する変数ノード集合を表し、「A(m)\n」は、集合A(m)からnを取り去って得られる差集合を表す。同様に、「B(n)」は変数ノードnに接続するチェックノード集合を表し、「B(n)\m」は集合B(n)からmを取り去って得られる差集合を表す。また、関数f(x)は、図中にも示されるように、次式(4)で定義される関数であり、f・fが恒等写像となる性質がある。 In each equation of the flowchart, "A (m)" represents a set of variable nodes connected to the check node m, and "A (m) \ n" is a set of differences obtained by removing n from the set A (m). Represents. Similarly, "B (n)" represents a set of check nodes connected to the variable node n, and "B (n) \ m" represents a set of differences obtained by removing m from the set B (n). Further, as shown in the figure, the function f (x) is a function defined by the following equation (4), and has the property that f and f are conformal maps.
関数sign(x)は、xが正のとき+1、負のとき−1、0のとき0を値としてとる符号関数である。なお、復号処理においては、「変数ノードnからチェックノードmへのメッセージβnm」の初期値は「0」として計算を開始する。 The function sign (x) is a sign function that takes +1 when x is positive, -1 when x is negative, and 0 when x is 0. In the decoding process, the initial value of "message β nm from the variable node n to the check node m" is set to "0" and the calculation is started.
ステップ3(S3)の推定ビット決定処理で計算しているLnは、事後確率Pに関連した「対数事後確率比」と呼ばれる量の近似値である。このLnの絶対値が推定の信頼性を表し、その値が大であるほど推定の信頼性が高いことを表す。このLnの値が正であれば、推定ビットの値として「0」を決定する(0(Ln>0))。また、Lnの値が負であれば推定ビットの値として「1」を決定する(1(Ln<0))。 Ln calculated in the estimation bit determination process of step 3 (S3) is an approximate value of a quantity called “logarithmic posterior probability ratio” related to posterior probability P. The absolute value of Ln represents the reliability of the estimation, and the larger the value, the higher the reliability of the estimation. If the value of Ln is positive, "0" is determined as the value of the estimated bit (0 (Ln> 0)). If the value of Ln is negative, "1" is determined as the value of the estimated bit (1 (Ln <0)).
ステップ4(S4)のパリティ検査処理において、予め定められた検査行列Hが用いられる。推定ビット系列がパリティ検査条件を満たす場合は、推定ビット系列を送信(記録)した情報ビット系列の推定値として出力する(S5)。 In the parity check process of step 4 (S4), a predetermined check matrix H is used. When the estimated bit sequence satisfies the parity check condition, the estimated bit sequence is output as an estimated value of the transmitted (recorded) information bit sequence (S5).
このようにして、sum-productアルゴリズムによる復号処理では、チェックノード処理・変数ノード処理・推定ビット決定処理を1ラウンドの処理として、推定ビット系列がパリティ検査条件を満たすまで、この処理を繰り返す。なお、このようなsum-productアルゴリズムを始めとしたLDPC復号アルゴリズムの詳細は文献(非特許文献1・非特許文献2・非特許文献3等)に説明されている。
In this way, in the decoding process by the sum-product algorithm, the check node process, the variable node process, and the estimated bit determination process are treated as one round process, and this process is repeated until the estimated bit sequence satisfies the parity check condition. The details of the LDPC decoding algorithm including such a sum-product algorithm are described in documents (
ところで、一般的な信号は時系列の1次元信号であるため、尤度計算には、受信信号の振幅値を式(3)にあてはめて、計算すれば良い。一方、ホログラム記録では、上述のように、輝度むら等の対策のために、差分コードを使用することがある。このような場合には、受信信号を式(3)に直接あてはめることができない。 By the way, since a general signal is a time-series one-dimensional signal, the likelihood calculation may be performed by applying the amplitude value of the received signal to the equation (3). On the other hand, in hologram recording, as described above, a difference code may be used as a countermeasure against luminance unevenness and the like. In such a case, the received signal cannot be directly applied to the equation (3).
そこで、差分コードを用いたときの尤度計算の一例について説明する。ホログラム記録では、2×2の4bitに対し、中から1つのbitのみ白とし、そのほかを黒とする、つまり2bitの情報を4bit使って記録再生することが試みられている。以下、nbitの情報を、rbitを使って表現する変調方法を「n:r変調」と呼ぶことにする。上記の2bitの情報を4bit使って記録再生する方法は、「2:4変調」である。n:r変調は、例えば、nbitの情報を、r箇所内における所定数のビット配置によってrbitとして表現する等の方法で実現でき、信号を2次元データに変換するときや、信号の直流成分を除去するとき等に利用される。 Therefore, an example of likelihood calculation when a difference code is used will be described. In hologram recording, it is attempted to record and reproduce 2 × 2 4 bits by using only one bit as white and the other as black, that is, using 4 bits of 2 bit information. Hereinafter, a modulation method in which nbit information is expressed using rbit will be referred to as "n: r modulation". The method of recording and reproducing the above 2-bit information using 4 bits is "2: 4 modulation". The n: r modulation can be realized by, for example, expressing the nbit information as an rbit by arranging a predetermined number of bits in the r location, and when converting the signal into two-dimensional data or by converting the DC component of the signal. It is used when removing.
ここで、2:4変調を利用する場合は、rbit(4bit)の各要素の測定値をr1〜r4として、次式(5)で2bitの受信語を求めることができる。 Here, when 2: 4 modulation is used, the received word of 2 bits can be obtained by the following equation (5), where the measured values of each element of rbit (4 bits) are r1 to r4.
各受信語Yn(再生信号)は、ノイズがない場合に1となり、ノイズがある場合には1を平均値とする正規分布となるから、(2)式に相当する条件付き確率は、次の(6)〜(9)式となる。 Since each received word Yn (reproduced signal) has a normal distribution with 1 as the average value when there is no noise and 1 as the average value when there is noise, the conditional probabilities corresponding to Eq. (2) are as follows. Equations (6) to (9) are obtained.
これから、元の2bitについて、第1bitのLLRは次式(10)で、第2bitのLLRは次式(11)で求められる。 From this, with respect to the original 2 bits, the LLR of the 1st bit is obtained by the following equation (10), and the LLR of the 2nd bit is obtained by the following equation (11).
このLLRを使用して、LDPCの誤り訂正復号を行うことができる(特許文献2)。 Using this LLR, error correction and decoding of LDPC can be performed (Patent Document 2).
また、他にも、9bit情報を16bitで表現する9:16変調において、LDPCの尤度の計算方法が提案されている(特許文献3)。このように、n:r変調された信号に対して、各ビットの尤度を求め、誤り訂正復号する方法が、幾つか提案されている。 In addition, a method for calculating the likelihood of LDPC has been proposed in 9:16 modulation in which 9-bit information is expressed in 16-bit (Patent Document 3). As described above, several methods have been proposed in which the likelihood of each bit is obtained for the n: r-modulated signal and error correction / decoding is performed.
しかしながら、特許文献2の4bitの2次元データの測定値から元の2bitのLLRを求め、このLLRを使用してLDPCの誤り訂正を行う方法は、符号長を長くするとその計算量が増大するという課題があった。また、特許文献3の9:16変調において、LDPCの尤度を計算する方法は、並べ替えを何度も行い、また、最小値の検出などさまざまな計算を必要としているので、汎用性に欠けるとともに、符号長が大きくなった場合には、適用が難しいといった課題があった。このように、n:r変調されたデータの測定値から、各ビットについて尤度(LLR)を決定するためには、その決定方法が複雑だったり、計算量が多くて、時間がかかるといった課題があった。
However, in the method of obtaining the original 2-bit LLR from the measured value of the 4-bit two-dimensional data of
従って、上記のような問題点に鑑みてなされた本発明の目的は、n:r変調されたデータの測定値に基づいて、nbitデータの尤度(LLR)を四則演算のみで簡略に、且つ、正確に決定することができる復号装置及び復号方法を提供することにある。 Therefore, an object of the present invention made in view of the above problems is to simply perform the likelihood (LLR) of nbit data based on the measured values of n: r-modulated data by only four arithmetic operations. , To provide a decoding device and a decoding method that can be determined accurately.
また、本発明の他の目的は、ホログラフィックメモリーにおいて、ホログラム記録での尤度(LLR)計算を少ない計算量で簡単、かつ高速に行うことができ、記録システムの誤り率を低下させることができるホログラム再生装置を提供することにある。 Another object of the present invention is to reduce the error rate of the recording system by making it possible to easily and quickly perform the likelihood (LLR) calculation in hologram recording with a small amount of calculation in a holographic memory. The purpose is to provide a hologram reproducing device capable of performing the same.
上記課題を解決するために本発明に係る復号装置は、nbitの情報をrbit(n<r)使って表現するn:r変調されている入力信号を、rbitのブロックにブロック化するブロック抽出部と、ブロック化されたrbitの入力信号から、硬判定を行いnbitのデータを出力する硬判定部と、硬判定されたnbitのデータに基づいて、尤度を算出するビットを1とし他のビットを硬判定されたデータとした第1nbitと、尤度を算出するビットを0とし他のビットを硬判定されたデータとした第2nbitを作成し、前記第1nbitに対応するrbit変換データと前記第2nbitに対応するrbit変換データとの差分と、rbitの前記入力信号とのビットごとの積の平均値に基づいて、前記ビットの尤度を算出するLLR判定部と、を備えたことを特徴とする。 In order to solve the above problems, the decoding device according to the present invention is a block extraction unit that blocks an n: r-modulated input signal that expresses nbit information using rbit (n <r) into rbit blocks. The hard judgment unit that performs hard judgment and outputs nbit data from the blocked rbit input signal, and the other bits with 1 being the bit that calculates the likelihood based on the hard judgment nbit data. A first nbit in which the data is determined to be rigid and a second nbit in which the bit for calculating the likelihood is set to 0 and the other bits are determined to be rigid are created, and the rbit conversion data corresponding to the first nbit and the first nbit are created. and the difference between the RBIT conversion data corresponding to 2Nbit, and characterized in that based on the average value of the product for each bit of the input signal of the RBIT, equipped with a LLR determination unit for calculating the likelihood of the bit To do.
また、前記復号装置は、入力信号がnbitの信号に対して誤り訂正符号化処理がなされており、さらに、前記LLR判定部で算出された尤度に基づいて、nbitの誤り訂正復号処理を行う誤り訂正復号部を備えることが望ましい。 Further, the decoding device performs error correction coding processing on a signal whose input signal is nbit, and further performs error correction / decoding processing of nbit based on the likelihood calculated by the LLR determination unit. It is desirable to have an error correction decoding unit.
また、前記復号装置は、前記誤り訂正符号化が、LDPC符号化であることが望ましい。 Further, in the decoding device, it is desirable that the error correction coding is LDPC coding.
また、前記復号装置は、前記LLR判定部は、入力信号の前記ブロック内の最大値と最小値に基づいて、前記ブロック内の入力信号データを−1から+1までの値に変換する規格化処理を行い、前記差分と前記規格化処理された入力信号とのビットごとの積の平均値を求めることを含むことが望ましい。 Further, in the decoding device, the LLR determination unit converts the input signal data in the block into a value from -1 to +1 based on the maximum value and the minimum value of the input signal in the block. It is desirable to include obtaining the average value of the product of the difference and the standardized input signal for each bit.
上記課題を解決するために本発明に係るホログラム再生装置は、前記復号装置を備え、n:r変調信号が2次元コードで記録されており、前記2次元コードの読出し信号を前記入力信号とすることを特徴とする。 In order to solve the above problems, the hologram reproduction device according to the present invention includes the decoding device, the n: r modulation signal is recorded with a two-dimensional code, and the read signal of the two-dimensional code is used as the input signal. It is characterized by that.
上記課題を解決するために本発明に係る復号方法は、nbitの情報をrbit(n<r)使って表現するn:r変調されている入力信号から、rbitを抽出する工程と、前記rbitの入力信号から、硬判定を行いnbitのデータを出力する工程と、硬判定されたnbitのデータに基づいて、尤度を算出するビットを1とし他のビットを硬判定されたデータとした第1nbitと、尤度を算出するビットを0とし他のビットを硬判定されたデータとした第2nbitを作成し、前記第1nbitに対応するrbit変換データと前記第2nbitに対応するrbit変換データとの差分と、rbitの入力信号とのビットごとの積の平均値に基づいて、前記ビットの尤度を算出する工程と、を含むことを特徴とする。
In order to solve the above problems, the decoding method according to the present invention includes a step of extracting rbit from an n: r-modulated input signal expressing nbit information using rbit (n <r) , and a step of extracting rbit. The first nbit, in which the bit for calculating the likelihood is set to 1 and the other bits are set as the hard-determined data based on the process of performing the hard determination and outputting the nbit data from the input signal and the hard-determined nbit data . A second nbit is created in which the bit for calculating the likelihood is set to 0 and the other bits are hard-determined data, and the difference between the rbit conversion data corresponding to the first nbit and the rbit conversion data corresponding to the second nbit. It is characterized by including a step of calculating the likelihood of the bit based on the average value of the product of each bit with the input signal of rbit.
また、前記復号方法は、算出された尤度に基づいて、nbitの誤り訂正復号処理を行う工程を含むことが望ましい。 Further, it is desirable that the decoding method includes a step of performing an nbit error correction decoding process based on the calculated likelihood.
本発明における復号装置及び復号方法によれば、n:r変調信号に基づいて、nbitデータの尤度(LLR)を四則演算のみで簡略に、且つ、正確に決定することができる。また、本発明のホログラム再生装置によれば、ホログラム記録での尤度(LLR)計算量を少なくし、高速に行うことができ、記録システムの誤り率を低下させることができる。 According to the decoding device and the decoding method in the present invention, the likelihood (LLR) of nbit data can be simply and accurately determined only by four arithmetic operations based on the n: r modulated signal. Further, according to the hologram reproduction apparatus of the present invention, the amount of likelihood (LLR) calculation in hologram recording can be reduced, the calculation can be performed at high speed, and the error rate of the recording system can be reduced.
以下、本発明の実施の形態について、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(実施の形態)
図1は、本発明の実施の形態としての復号装置の一例のブロック図である。
(Embodiment)
FIG. 1 is a block diagram of an example of a decoding device as an embodiment of the present invention.
復号装置10は、ブロック抽出部11と、硬判定部12と、LLR算出部13と、誤り訂正復号部14を含んでおり、n:r変調信号が入力され、誤り訂正復号されたnbitデータが出力される。ここで、入力されるn:r変調信号は、nbit信号の段階で(rbitへの変換前に)、誤り訂正符号化(例えば、LDPC符号化)されているのが望ましい。このn:r変調信号は、図6のホログラム再生装置においては、2次元撮像素子118で撮像(読取)された測定データを用いることができる。なお、n:r変調信号は、通信回線から受信した受信信号の測定データ(振幅値)であっても良い。
The
ブロック抽出部11は、n:r変調信号(n:r変調された入力信号)を、rbitのブロック(元のnbitに対応するrbit単位)にブロック化し、抽出されたブロックを硬判定部12に出力する。例えば、図5、図6のホログラフィックメモリー記憶システムにおいて、5:9変調が用いられた場合、3×3のピクセルからなる9bitのデータ単位が1ブロックとなる。
The block extraction unit 11 blocks the n: r-modulated signal (n: r-modulated input signal) into rbit blocks (rbit units corresponding to the original nbits), and the extracted blocks are used in the
硬判定部12は、ブロック抽出部11から入力されたrbitの入力信号データに基づいて、nbitの硬判定を行い、判定結果をLLR算出部13に出力する。例えば、入力信号の強度に基づいて、rbitのパターンを判定し、これに対応するnbitを硬判定結果として出力する。
The
LLR算出部13は、硬判定部12から入力されたnbitのデータの各ビットについて、尤度の情報としてLLRを算出し、誤り訂正復号部14に出力する。LLRの算出は、硬判定されたnbitの変換データのうちLLR算出対象のビットを1とした第1nbitと、LLR算出対象のビットを0とした第2nbitを作成し、それぞれのrbit変換データの差分をとり、それに入力信号(rbitの測定データ)をビットごとに乗算した値の平均値に基づいて、尤度(LLR)を算出するものである。詳細は、後述の手順に従う。
The
誤り訂正復号部14は、LLR算出部13から入力されたnbit信号のLLRに基づいて、入力信号の誤り訂正符号化に対応した誤り訂正復号を行う。例えば、誤り訂正符号化がLDPC符号化であれば、前述したLDPC復号処理を行う。誤り訂正復号処理により推定ビットを決定し、この得られた推定ビットをLLR算出部13に出力して、再度尤度(LLR)算出を行なう。繰り返し処理の結果、パリティ検査を満足する推定ビットが得られると、誤り訂正復号されたnbitデータとして、復号装置10から出力される。
The error correction /
なお、図6のホログラム再生装置においては、復号装置10は、演算装置119により実現することができる。
In the hologram reproduction device of FIG. 6, the
次に、復号装置10の尤度決定方法(LLR算出手順)について、図2のフローチャートと、図3に示す受信(読出)信号の例に基づいて、説明する。
Next, the likelihood determination method (LLR calculation procedure) of the
n:r変調の一例として、5:9変調を用いて説明する。ホログラフィックメモリー記録システムにおいては、5:9変調は、5bitのデータを9bit(3×3)のピクセルにして、その9個のピクセルのうち、2個を白とし、そのほかを黒とする変調符号である。9個のピクセルから2個を白とするので、その選択数は次式(12)のとおり、36通りである。 As an example of n: r modulation, 5: 9 modulation will be described. In a holographic memory recording system, 5: 9 modulation is a modulation code in which 5 bits of data are converted into 9 bits (3 × 3) pixels, 2 of the 9 pixels are white, and the others are black. Is. Since 2 out of 9 pixels are white, the number of selections is 36 as shown in the following equation (12).
5bitのデータは25=32となるので、36通りの中から32通りを選択することにより、5:9変調の対応ができる。なお、選択する際に、読み取り時に誤りの多い、符号間干渉が大きいパターンは避けることが望ましい。 Since the data of 5 bits is 25 = 32, 5: 9 modulation can be supported by selecting 32 ways from 36 ways. When selecting, it is desirable to avoid patterns with many errors during reading and large intersymbol interference.
ホログラムの記録再生時には、再生された3×3のピクセル中で白である2個のピクセルを識別して、そのピクセルの配置により、5bitを復号することになる。つまり、最終的には5bitのデータのLLRを、再生(測定)データから尤度として決定することができれば、5:9変調前の5bitでのLDPC復号を行えば良いことになる。 At the time of recording and reproducing the hologram, two white pixels are identified among the reproduced 3 × 3 pixels, and 5 bits are decoded by the arrangement of the pixels. That is, if the LLR of the 5-bit data can be finally determined as the likelihood from the reproduced (measured) data, the LDPC decoding at the 5-bit before the 5: 9 modulation may be performed.
図2のフローチャートのステップ1(S1)において、ブロック化されたrbitの測定データ読み込む。ここでは、図3(1)のブロック化された9bitの入力信号データ(a1〜a9)を読み込む。各ビットのデータは、例えば、ホログラフィックメモリー記録システムにおいて、撮像素子で取得した8bit階調の測定データの場合、0〜255の階調信号となる。 In step 1 (S1) of the flowchart of FIG. 2, the measurement data of the blocked rbit is read. Here, the blocked 9- bit input signal data (a 1 to a 9 ) of FIG. 3 (1) is read. The data of each bit is, for example, a gradation signal of 0 to 255 in the case of 8-bit gradation measurement data acquired by an image sensor in a holographic memory recording system.
次に、ステップ2(S2)において、rbitの入力信号からnbitへ変換(nbitの硬判定)を行う。ここでは、(1)の9bitの測定データ(a1〜a9)を白黒(1,0)のデータパターンに対応させて、どのような5bitに対応するか硬判定する。この場合、例えば、測定データを輝度の高いデータから順に並べ、上位2つの輝度を白と判定し、その位置から、硬判定結果求める。図3の例では、(1)の9bitの測定データのうち、輝度の最も高いデータ(例えばa6)と次に輝度の高いデータ(例えばa7)を白[1]とし、他のデータを黒[0]に対応させて、「000001100」の9bitデータを得て(図3(4)のデータに相当)、この9bitデータに対応する5bitデータである図3(2)の「10011」を、硬判定結果として導出している。この、ステップ1(S1)とステップ2(S2)は、図1の硬判定部12の処理に対応する。
Next, in step 2 (S2), conversion from the rbit input signal to nbit (nbit hardness determination) is performed. Here, the 9- bit measurement data (a 1 to a 9 ) of (1) is made to correspond to the black-and-white (1,0) data pattern, and what kind of 5-bit corresponds to is hard-determined. In this case, for example, the measurement data are arranged in order from the data having the highest brightness, the top two brightnesses are determined to be white, and the hardness determination result is obtained from that position. In the example of FIG. 3, of the measurement data 9bit of (1), the next highest luminance data and the highest data of the luminance (e.g., a 6) (e.g., a 7) a white [1], other data Obtain 9-bit data of "000001100" (corresponding to the data of FIG. 3 (4)) corresponding to black [0], and obtain "10011" of FIG. 3 (2) which is 5-bit data corresponding to this 9-bit data. , Derived as a hard judgment result. The steps 1 (S1) and 2 (S2) correspond to the processing of the
次に、ステップ3(S3)として、k=1とおく。このkは、上位からk番目のビットの尤度の情報(LLR)を求める処理であることを意味する。 Next, as step 3 (S3), k = 1. This k means that it is a process of obtaining the likelihood information (LLR) of the kth bit from the upper order.
ステップ4(S4)として、まず、ステップ2(S2)で得られたnbitについて、上位からkビット目の判定結果を1としたnbit(第1nbit)を作成する。例えば、硬判定結果の上位1bit(k=1)の尤度(LLR)を求める場合、上位1bitのみを「1」とし、他のbitは硬判定の結果のままとしたnbit(第1nbit)を作成する。図3の例では、硬判定結果(「10011」)の1ビット目は1であるから、第1nbitは(2)となり、硬判定結果のnbitと一致する。次に、ステップ2(S2)で得られたnbitについて、上位からkビット目の判定結果を0としたnbit(第2nbit)を作成する。例えば、上位1bit(k=1)の尤度(LLR)を求める処理では、上位1bitのみを「0」とし、他のbitは硬判定の結果のままとしたnbit(第2nbit)を作成する。図3の例では、図3(2)の5bitデータ「10011」の上位1bit(左端のbit)を「0」として(反転させて)、「00011」の第2nbit(3)を作成する。(2)と(3)の太枠で囲われた部分が、尤度(LLR)を求めるビットである。 As step 4 (S4), first, for the nbit obtained in step 2 (S2), an nbit (first nbit) is created in which the determination result of the kth bit from the upper order is 1. For example, when obtaining the likelihood (LLR) of the upper 1 bit (k = 1) of the hard judgment result, only the upper 1 bit is set to "1", and the other bits are the nbits (1st nbit) which are left as the hard judgment result. create. In the example of FIG. 3, since the first bit of the hard determination result (“10011”) is 1, the first nbit is (2), which matches the nbit of the hard determination result. Next, with respect to the nbit obtained in step 2 (S2), an nbit (second nbit) in which the determination result of the kth bit from the upper order is 0 is created. For example, in the process of obtaining the likelihood (LLR) of the upper 1 bit (k = 1), only the upper 1 bit is set to "0", and the other bits are created as nbits (second nbits) in which the result of the hardness determination is left as it is. In the example of FIG. 3, the upper 1 bit (leftmost bit) of the 5 bit data “10011” of FIG. 3 (2) is set to “0” (inverted), and the second nbit (3) of “00011” is created. The portion surrounded by the thick frame of (2) and (3) is a bit for obtaining the likelihood (LLR).
ステップ5(S5)として、ステップ4(S4)で得られた第1nbitのrbitへの変換データと、第2nbitのrbitへの変換データとのビットごとの差分を算出する。すなわち、ステップ4(S4)で得られた第1nbit(=硬判定結果)の「10011」より、その5bitに割り当てられている9bit(図3の(4)「000001100」)を求める。また、同様に、得られた第2nbit(「00011」)より、第2nbitの5bitに割り当てられている9bit(図3の(5)「100010000」)を求める。そして、尤度判定bit(上位1bit)が「1」である第1nbitに割り当てられている9bitのビット列(4)と、尤度判定bitが「0」である第2nbitに割り当てられている9bitのビット列(5)との差をとる。すなわち、9bitの各ビットごとに((4)−(5))を求めて、(6)のデータ列「−1000−11100」を得る。ビット列(4)とビット列(5)とが不一致の部分(ここでは、枠で囲んだ1,5,6,7番目のbit)が、(6)のデータ列で1又は−1となり、他のビットは0となる。5:9変調の場合は、9bitの内、データ1であるのは2bitであるから、不一致のbit数は最大4bitにすぎない。なお、差分を求める演算として(4)−(5)を行うか、(5)−(4)を行うかについては、次の規格化処理において、測定データの最大値を「−1」に対応させるか「+1」に対応させるかによっても変わり得るので、固定されたものではない。
As step 5 (S5), the bit-by-bit difference between the conversion data of the first nbit to the rbit obtained in step 4 (S4) and the conversion data of the second nbit to the rbit is calculated. That is, from the first nbit (= hardness determination result) “10011” obtained in step 4 (S4), the 9 bits ((4) “000001100” in FIG. 3) assigned to the 5 bits are obtained. Similarly, from the obtained second nbit (“00011”), 9 bits ((5) “100010000” in FIG. 3) assigned to the 5 bits of the second nbit are obtained. Then, the 9-bit bit string (4) assigned to the first nbit whose likelihood determination bit (upper 1 bit) is "1" and the 9 bits assigned to the second nbit whose likelihood determination bit is "0". Take the difference from the bit string (5). That is, ((4)-(5)) is obtained for each bit of 9 bits to obtain the data string "-1000-11100" of (6). The part where the bit string (4) and the bit string (5) do not match (here, the 1, 5, 6 and 7th bits surrounded by a frame) becomes 1 or -1 in the data string of (6), and the other The bit is 0. In the case of 5: 9 modulation, out of 9 bits,
ステップ6(S6)として、rbitの測定データを規格化する。例えば、図3(1)の9bitの測定データ(a1〜a9)を、次式(13)により、9個のデータ中で最大値(max(a1,…,a9))と最小値(min(a1,…,a9))に基づいて、−1から1に規格化し、図3(7)の規格化データ(a1’〜a9’)を得る。例えば、撮像素子で得られた測定データが、最小15、最大200の諧調データであった場合、185諧調に分布するデータを−1から1に規格化して対応させる。 As step 6 (S6), the measurement data of rbit is standardized. For example, the 9- bit measurement data (a 1 to a 9 ) in FIG. 3 (1) is set to the maximum value (max (a 1 , ..., a 9 )) and the minimum value among the nine data by the following equation (13). value (min (a 1, ..., a 9)) based on, normalized from -1 to 1, to obtain a normalized data in Fig. 3 (7) (a 1 ' ~a 9'). For example, when the measurement data obtained by the image sensor is a minimum of 15 gradation data and a maximum of 200 gradation data, the data distributed in 185 gradations is standardized from -1 to 1 to correspond.
なお、測定データ(a1〜a9)の最大・最小を、−1から+1に対応させるか、或いは、+1から−1に対応させるかは、ステップ5の演算として(4)−(5)を行うか、(5)−(4)を行うかにも関連しており、適切なLLRとなるよう適宜設定する。また、入力信号が例えば通信路を経て伝送された受信信号のように、測定データ(a1〜a9)が−1から1に分散している場合は、特に、規格化処理を行う必要はない。 Whether the maximum / minimum of the measurement data (a 1 to a 9 ) corresponds to -1 to +1 or +1 to -1 is determined by step 5 (4)-(5). It is also related to whether to perform (5)-(4), and appropriately set so as to obtain an appropriate LLR. Further, when the measurement data (a 1 to a 9 ) is dispersed from -1 to 1, such as a received signal transmitted through a communication path as an input signal, it is necessary to perform standardization processing. Absent.
ステップ7(S7)として、ステップ5(S5)で得られた差分データと、rbitの測定データ(必要に応じて、S6で規格化されたrbitデータ)とを、ビットごとに乗算する(積を求める)。なお、乗算するといっても、差分データは1又は−1であるから、乗算は実質的に測定データの正負の符号の操作だけであり、計算量は少ない。そして、乗算結果の全体の平均値を求める。例えば、図3の例では、差分データと規格化された測定データの積として、(−a1’−a5’+a6’+a7’)が求まり、これを差分の生じたビットの数(ここでは、4)で割って、全体の平均値を求める。そして、この平均値を、図3(8)のように受信信号Ynとみなす。 As step 7 (S7), the difference data obtained in step 5 (S5) and the rbit measurement data (if necessary, the rbit data standardized in S6) are multiplied bit by bit (product). Ask). It should be noted that even if multiplication is performed, since the difference data is 1 or -1, the multiplication is substantially only the operation of the positive and negative signs of the measurement data, and the amount of calculation is small. Then, the average value of the entire multiplication result is obtained. For example, in the example of FIG. 3, as the product of the difference data and the normalized measurement data, (- a 1 '-a 5 ' + a 6 '+ a 7') is Motomari, the number of bits which occurs in the difference ( Here, divide by 4) to obtain the overall average value. Then, this average value is regarded as the received signal Yn as shown in FIG. 3 (8).
ステップ8(S8)として、ステップ7(S7)の算出結果を受信信号Ynとしてk番目のビットの尤度としてのLLRを算出する。すなわち、前述の式(3)のYnに図3(8)のYn(平均値)を代入する。このとき、雑音σ2は、実測値として求めても、推定値として適当な値を入力しても良い。得られた結果を上位1bit(k=1)の対数尤度比(LLR)とする。 In step 8 (S8), the calculation result of step 7 (S7) is used as the received signal Yn to calculate the LLR as the likelihood of the kth bit. That is, Yn (mean value) in FIG. 3 (8) is substituted for Yn in the above equation (3). At this time, the noise σ 2 may be obtained as an actually measured value or an appropriate value may be input as an estimated value. The obtained result is defined as the log-likelihood ratio (LLR) of the upper 1 bit (k = 1).
その後、ステップ9(S9)として、k=nであるか否かを判定する。判定結果Yes(k=n)であれば終了し、No(k<n)であれば、ステップ10(S10)に進む。 Then, in step 9 (S9), it is determined whether or not k = n. If the determination result is Yes (k = n), the process ends, and if No (k <n), the process proceeds to step 10 (S10).
ステップ10(S10)では、kに1を加えて、ステップ4(S4)から、再び処理を行う。すなわち、上記ステップでは5bit中の最上位の1bitの説明をしたが、次の処理ではk=2として、5bit中の2番目のbitの尤度を求める。2番目のbitの尤度(LLR)を計算する場合には、同様に、硬判定結果のnbitのデータに基づいて、2番目のbit(k=2)を「1」とした第1nbit(図3の例では「11011」)と、2番目のbitを「0」とした第2nbit(図3の例では「10011」)を作成して、同様の計算を行う。 In step 10 (S10), 1 is added to k, and the process is performed again from step 4 (S4). That is, in the above step, the most significant 1 bit in 5 bits has been described, but in the next process, k = 2 and the likelihood of the second bit in 5 bits is obtained. When calculating the likelihood (LLR) of the second bit, similarly, based on the nbit data of the hardness determination result, the second bit (k = 2) is set to "1" and the first nbit (FIG. In the example of 3, "11011") and the second bit ("10011" in the example of FIG. 3) in which the second bit is "0" are created, and the same calculation is performed.
ステップ3からステップ10の処理は、図1のLLR算出部13の処理に相当する。
The processing of
このような演算処理をすることにより、測定データから一挙にビット列の尤度(LLR)決定、さらにはビット決定をすることができる。この計算では、差分、かけ算、平均値という、ごく基本的な四則演算しか行っていないため、非常に高速かつ、正確な尤度(LLR)を計算することができる。 By performing such arithmetic processing, the likelihood (LLR) of the bit string can be determined at once from the measurement data, and further, the bit can be determined. In this calculation, only the very basic four arithmetic operations of difference, multiplication, and mean value are performed, so that the likelihood (LLR) can be calculated very quickly and accurately.
なお、図3の説明において、(2)は硬判定結果としているが、LLR算出部13と誤り訂正復号部14との間で行われるLDPCの繰り返し計算の中では、推定ビットとして置き換える。
In the description of FIG. 3, (2) is a rigid determination result, but it is replaced with an estimation bit in the iterative calculation of LDPC performed between the
(検証結果)
図4には、本発明の尤度決定方法で導出された尤度(LLR)を使用して、誤り訂正をした結果を示している。横軸が図7に示すチェックノード処理・変数ノード処理・推定ビット決定処理からなる1ラウンドの処理の繰り返し回数であり、縦軸がデータの誤り率(Error rate)である。あらかじめ、既知のデータを記録して、その既知データより、繰り返しごとに誤り率を測定している。誤り訂正処理前の誤り率は0.045であり、繰り返し計算を行うことにより、誤り率が減少してゆき、16回で誤り0となっていることが分かる。つまり、本尤度(LLR)定義を用いて、LDPC誤り訂正が効果的に動作していることが分かる。
(inspection result)
FIG. 4 shows the result of error correction using the likelihood (LLR) derived by the likelihood determination method of the present invention. The horizontal axis is the number of repetitions of one round of processing including the check node processing, the variable node processing, and the estimated bit determination processing shown in FIG. 7, and the vertical axis is the data error rate. Known data is recorded in advance, and the error rate is measured for each repetition from the known data. The error rate before the error correction process is 0.045, and it can be seen that the error rate decreases by repeating the calculation, and the error becomes 0 after 16 times. That is, it can be seen that LDPC error correction is working effectively using this likelihood (LLR) definition.
上述の実施形態は代表的な例として説明したが、本発明の趣旨及び範囲内で、多くの変更及び置換ができることは当業者に明らかである。したがって、本発明は、上述の実施形態によって制限するものと解するべきではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。例えば、実施形態に記載の複数の構成ブロックを1つに組み合わせたり、あるいは1つの構成ブロックを分割したりすることが可能である。 Although the above embodiments have been described as typical examples, it will be apparent to those skilled in the art that many modifications and substitutions can be made within the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited by the above embodiments, and various modifications and modifications can be made without departing from the scope of claims. For example, it is possible to combine the plurality of constituent blocks described in the embodiment into one, or to divide one constituent block into one.
101 レーザ光源
102 シャッタ
103 1/2波長板
104 PBS(偏光ビームスプリッタ)
105 シャッタ
106 拡大レンズ
107 PBS(偏光ビームスプリッタ)
108 SLM(空間光変調素子)
109 FTレンズ
110 空間フィルタ
111 FTレンズ
112 FTレンズ
113 ホログラム記録媒体
114 リレーレンズ
115 ガルバノミラー
116 PBS
117 1/2波長板
118 2次元撮像素子
119 演算装置
120 ミラー
121 ガルバノミラー
122 リレーレンズ
101 Laser
105
108 SLM (Spatial Light Modulation Element)
109
117 1/2
Claims (7)
ブロック化されたrbitの入力信号から、硬判定を行いnbitのデータを出力する硬判定部と、
硬判定されたnbitのデータに基づいて、尤度を算出するビットを1とし他のビットを硬判定されたデータとした第1nbitと、尤度を算出するビットを0とし他のビットを硬判定されたデータとした第2nbitを作成し、前記第1nbitに対応するrbit変換データと前記第2nbitに対応するrbit変換データとの差分と、rbitの前記入力信号とのビットごとの積の平均値に基づいて、前記ビットの尤度を算出するLLR判定部と、
を備えた復号装置。 A block extractor that blocks n: r-modulated input signals into blocks of rbit, which expresses nbit information using rbit (n <r) .
A hard judgment unit that performs hard judgment and outputs nbit data from the blocked rbit input signal,
Based on the data of the hard-determined nbit, the bit for calculating the likelihood is set to 1 and the other bits are set as the hard-determined data for the first nbit, and the bit for calculating the likelihood is set to 0 and the other bits are hard-determined. create a first 2Nbit that the data, the difference between the RBIT conversion data corresponding to the first corresponding to 1Nbit RBIT converted data and said second 2Nbit, the average value of the product for each bit of the input signal of the RBIT Based on the LLR determination unit that calculates the likelihood of the bit,
Decoding device equipped with.
n:r変調信号が2次元コードで記録されており、前記2次元コードの読出し信号を前記入力信号とする、ホログラム再生装置。 A hologram reproducing device including the decoding device according to any one of claims 1 to 4.
A hologram reproduction device in which an n: r modulation signal is recorded with a two-dimensional code, and the read signal of the two-dimensional code is used as the input signal.
前記rbitの入力信号から、硬判定を行いnbitのデータを出力する工程と、
硬判定されたnbitのデータに基づいて、尤度を算出するビットを1とし他のビットを硬判定されたデータとした第1nbitと、尤度を算出するビットを0とし他のビットを硬判定されたデータとした第2nbitを作成し、前記第1nbitに対応するrbit変換データと前記第2nbitに対応するrbit変換データとの差分と、rbitの入力信号とのビットごとの積の平均値に基づいて、前記ビットの尤度を算出する工程と、
を含む復号方法。 The process of extracting rbit from the n: r-modulated input signal, which expresses nbit information using rbit (n <r) , and
From the input signal of the rbit, the process of determining the hardness and outputting the nbit data ,
Based on the data of the hard-determined nbit, the bit for calculating the likelihood is set to 1 and the other bits are set as the hard-determined data for the first nbit, and the bit for calculating the likelihood is set to 0 and the other bits are hard-determined. A second nbit is created as the data, and the difference between the rbit conversion data corresponding to the first nbit and the rbit conversion data corresponding to the second nbit is based on the average value of the bit-by-bit product of the input signal of the rbit. The step of calculating the likelihood of the bit and
Decryption method including.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016175893A JP6774824B2 (en) | 2016-09-08 | 2016-09-08 | Decoding device, hologram reproduction device, and decoding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016175893A JP6774824B2 (en) | 2016-09-08 | 2016-09-08 | Decoding device, hologram reproduction device, and decoding method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018041525A JP2018041525A (en) | 2018-03-15 |
JP6774824B2 true JP6774824B2 (en) | 2020-10-28 |
Family
ID=61626348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016175893A Active JP6774824B2 (en) | 2016-09-08 | 2016-09-08 | Decoding device, hologram reproduction device, and decoding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6774824B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7079154B2 (en) * | 2018-06-07 | 2022-06-01 | 日本放送協会 | Encoding device, decoding device, and hologram recording / playback device |
JP7189742B2 (en) * | 2018-11-19 | 2022-12-14 | 日本放送協会 | Decoding device, hologram reproducing device, and decoding method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3209493B2 (en) * | 1996-01-23 | 2001-09-17 | 日本電信電話株式会社 | Two-dimensional encoding method for hologram recording |
JP4050726B2 (en) * | 2004-06-23 | 2008-02-20 | 株式会社東芝 | Decoding device |
JP2007272973A (en) * | 2006-03-30 | 2007-10-18 | Sharp Corp | Decoder, reproducing device, decoding method and program, and computer readable medium with decoding program recorded thereon |
KR20080027990A (en) * | 2006-09-25 | 2008-03-31 | 주식회사 대우일렉트로닉스 | Holographic Optical Information Recording Device and Recording Method |
JP5219699B2 (en) * | 2007-08-30 | 2013-06-26 | パナソニック株式会社 | Encoding device and decoding device |
JP2010186503A (en) * | 2009-02-10 | 2010-08-26 | Sony Corp | Reproducing device, reproducing method |
-
2016
- 2016-09-08 JP JP2016175893A patent/JP6774824B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018041525A (en) | 2018-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2005302079A (en) | Hologram medium recording/reproducing device and hologram medium reproducing device | |
EP1865605A1 (en) | Method and device for decoding low-density parity check code and optical information reproducing apparatus using the same | |
JP6774824B2 (en) | Decoding device, hologram reproduction device, and decoding method | |
US6807137B2 (en) | Encoding method and apparatus therefor, and optical-disk recording method and apparatus therefor | |
CN101794589B (en) | Hologram reconstruction device | |
JP3909508B2 (en) | Digital information reproducing device | |
JP4885799B2 (en) | Signal evaluation apparatus, signal evaluation method, signal evaluation program, and computer-readable recording medium | |
JP7212543B2 (en) | Decoding device, hologram reproducing device, and decoding method | |
US20080205238A1 (en) | Recording/reproducing method, recording/reproducing apparatus and holographic information storage medium | |
JP6985843B2 (en) | Modulation code creation method, hologram recording / playback method, and hologram recording / playback device | |
JP7079154B2 (en) | Encoding device, decoding device, and hologram recording / playback device | |
JP7008448B2 (en) | Hologram recording / playback device | |
JP7189742B2 (en) | Decoding device, hologram reproducing device, and decoding method | |
US20050240856A1 (en) | Hologram recording and reproducing apparatus and hologram reproducing apparatus | |
WO2009084845A2 (en) | Method for detecting pattern of over-sampling image and an optical information processing apparatus and method using the same | |
JP5023916B2 (en) | Hologram decoding apparatus and hologram decoding method | |
JP4509882B2 (en) | Viterbi decoding device, Viterbi decoding method, Viterbi decoding program, and computer-readable recording medium recording Viterbi decoding program | |
JP2009048727A (en) | Viterbi decoding device, viterbi decoding method, program, and computer readable recording medium recorded with program | |
KR100728819B1 (en) | Optical information processing device, method of calculating probability value for decoding optical information and decoding method of optical information using same | |
JP2007188617A (en) | Viterbi decoding device, method, and program, reproduction system, and recording medium | |
KR101632207B1 (en) | Holograpic data signal detection method, appratus and data decoding apparatus | |
KR100555976B1 (en) | Non-Balanced Dual Weight Coding / Decoding Method for Recording / Playback of Holographic Data in HDDS System | |
JP4285450B2 (en) | Optical information reproducing method, optical information reproducing apparatus, and optical information reproducing program | |
JP6088146B2 (en) | Interleave number calculation device and program thereof, and hologram recording device | |
KR20210060017A (en) | Binary phase hologram apparatus and method for generating binary phase holograms without image degradation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190731 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200311 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200407 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200528 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200908 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201005 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6774824 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |