[go: up one dir, main page]

JP6774167B2 - Carbon dioxide-containing gas and heat supply equipment and supply method to crop production facilities - Google Patents

Carbon dioxide-containing gas and heat supply equipment and supply method to crop production facilities Download PDF

Info

Publication number
JP6774167B2
JP6774167B2 JP2015071015A JP2015071015A JP6774167B2 JP 6774167 B2 JP6774167 B2 JP 6774167B2 JP 2015071015 A JP2015071015 A JP 2015071015A JP 2015071015 A JP2015071015 A JP 2015071015A JP 6774167 B2 JP6774167 B2 JP 6774167B2
Authority
JP
Japan
Prior art keywords
exhaust gas
gas
combustion exhaust
ethylene
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015071015A
Other languages
Japanese (ja)
Other versions
JP2016036334A (en
Inventor
戸村 啓二
啓二 戸村
平山 敦
敦 平山
高須 展夫
展夫 高須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2015071015A priority Critical patent/JP6774167B2/en
Publication of JP2016036334A publication Critical patent/JP2016036334A/en
Application granted granted Critical
Publication of JP6774167B2 publication Critical patent/JP6774167B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2

Landscapes

  • Cultivation Of Plants (AREA)
  • Greenhouses (AREA)
  • Treating Waste Gases (AREA)
  • Chimneys And Flues (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、植物工場や作物栽培ハウス等の作物生産用施設に燃焼炉からの燃焼排ガスを供給して、燃焼排ガスに含まれる二酸化炭素を作物に施用することにより、作物の収率及び品質の向上を可能とするとともに、燃焼排ガスの燃焼熱を回収し、作物生産用施設に熱供給する作物生産用施設への二酸化炭素含有ガスと熱の供給装置及び供給方法に関する。 The present invention supplies the combustion exhaust gas from a combustion furnace to a crop production facility such as a plant factory or a crop cultivation house, and applies carbon dioxide contained in the combustion exhaust gas to the crop to improve the yield and quality of the crop. The present invention relates to a carbon dioxide-containing gas and heat supply device and a supply method to a crop production facility, which enables improvement and recovers combustion heat of combustion exhaust gas and supplies heat to the crop production facility.

植物工場や作物栽培ハウス等の作物生産用施設では、温度管理のため重油や灯油を燃焼させて得た熱を温水や温風として供給している。また、作物の光合成を促進し、作物の生育促進、収率及び品質の向上のため、作物生産用施設内の二酸化炭素濃度を高める二酸化炭素施用技術があり、重油や灯油を燃焼させた燃焼排ガス中の二酸化炭素を作物生産用施設内に供給し、光合成を促進するようにしている。 In crop production facilities such as plant factories and crop cultivation houses, heat obtained by burning heavy oil or kerosene is supplied as hot water or hot air for temperature control. In addition, in order to promote photosynthesis of crops, promote growth of crops, improve yield and quality, there is a carbon dioxide application technology that raises the concentration of carbon dioxide in the facility for crop production, and combustion exhaust gas obtained by burning heavy oil or kerosene. The carbon dioxide inside is supplied to the plant production facility to promote photosynthesis.

例えば特許文献1には、作物生産用施設を温度管理し、また作物生産用施設に肥料としての二酸化炭素を供給するために、重油や灯油の燃焼によって得られた熱を温風として作物生産用施設に供給するとともに、燃焼排ガス中の二酸化炭素をタンクに貯留し、タンクに貯留した二酸化炭素を作物生産用施設に供給する二酸化炭素供給システムが開示されている。ボイラの燃焼排ガスには、作物の成長に悪影響を及ぼす硫黄酸化物及び窒素酸化物が含まれる。このため、特許文献1に記載の二酸化炭素供給システムでは、燃焼排ガスを水溜中にバブリングさせ、硫黄酸化物を除去し、高活性炭素繊維による触媒機能により窒素酸化物を除去している(段落0013〜段落0015参照)。 For example, in Patent Document 1, in order to control the temperature of a crop production facility and supply carbon dioxide as a fertilizer to the crop production facility, the heat obtained by burning heavy oil or kerosene is used as warm air for crop production. A carbon dioxide supply system that supplies carbon dioxide in combustion exhaust gas to a facility and stores the carbon dioxide stored in the tank to a crop production facility is disclosed. Boiler flue gas contains sulfur oxides and nitrogen oxides that adversely affect crop growth. Therefore, in the carbon dioxide supply system described in Patent Document 1, combustion exhaust gas is bubbled in a water reservoir to remove sulfur oxides, and nitrogen oxides are removed by a catalytic function of highly active carbon fibers (paragraph 0013). -See paragraph 0015).

他方、二酸化炭素の排出抑制による温暖化防止、資源の有効利用、廃棄物の減量化を目的として、バイオマスの利活用が要望されている。バイオマスを燃料として使用することができれば、化石燃料の燃焼により排出される二酸化炭素をなくすことができるので、さらなる温暖化防止対策につながる。 On the other hand, utilization of biomass is required for the purpose of preventing climate change by suppressing carbon dioxide emissions, effectively using resources, and reducing the amount of waste. If biomass can be used as fuel, carbon dioxide emitted by burning fossil fuels can be eliminated, leading to further measures to prevent climate change.

特許文献2には、木質系バイオマスを炭化ガス化処理し、分解ガスを燃焼することによって得られた熱を利用して発電するとともに、分解ガスを燃焼することによって得られた二酸化炭素含有ガスを作物生産用施設に供給し、作物の成長を促進する二酸化炭素供給システムが開示されている(段落0019〜段落0023参照)。 Patent Document 2 describes carbon dioxide-containing gas obtained by carbonizing woody biomass and burning the decomposition gas to generate power while using the heat obtained by burning the decomposition gas. A carbon dioxide supply system that supplies crop production facilities and promotes crop growth is disclosed (see paragraphs 0019 to 0023).

特許文献3には、バイオマスを立型炉で燃焼し、バイオマスを燃焼することによって得られた熱を作物生産用施設に供給するとともに、バイオマスを燃焼することによって得られた二酸化炭素含有ガスを作物生産用施設に供給する二酸化炭素供給システムが開示されている。バイオマスを燃料として燃焼させた燃焼排ガスには、作物の成長に悪影響を与える硫黄酸化物、窒素酸化物が含まれる。特許文献3に記載の二酸化炭素供給システムでは、燃焼排ガス中の硫黄酸化物、窒素酸化物などの有害成分をスクラバーで予備的に洗い落とし、さらに多孔質吸着剤により吸着除去する燃焼排ガス処理を行い、処理済み燃焼排ガスを作物生産用施設へ供給している(段落0041〜段落0044参照)。 In Patent Document 3, biomass is burned in a vertical furnace, the heat obtained by burning the biomass is supplied to a facility for crop production, and the carbon dioxide-containing gas obtained by burning the biomass is used as a crop. The carbon dioxide supply system that supplies the production facility is disclosed. Combustion exhaust gas burned using biomass as fuel contains sulfur oxides and nitrogen oxides that adversely affect the growth of crops. In the carbon dioxide supply system described in Patent Document 3, harmful components such as sulfur oxides and nitrogen oxides in the combustion exhaust gas are preliminarily washed off with a scrubber, and further, combustion exhaust gas treatment for adsorbing and removing them with a porous adsorbent is performed. The treated flue gas is supplied to the crop production facility (see paragraphs 0041 to 0044).

特開2012−16322号公報Japanese Unexamined Patent Publication No. 2012-16322 特開2006−191876号公報Japanese Unexamined Patent Publication No. 2006-191876 国際公開第2009/038103号International Publication No. 2009/038103

しかし、バイオマスの燃焼排ガスには、硫黄酸化物、窒素酸化物だけでなく、作物の成長に有害なエチレン、作物生産用施設内の作業者に有害な一酸化炭素が含まれる。エチレンは、蕾の脱落や葉や花の生育不良を招いたり、作物が熟すのを促進するため収穫時の作物が熟しすぎて出荷できないという事態を招く。また、一酸化炭素は、作物生産用施設内で働く作業者の中毒を招く。二次燃焼室を備える大規模な焼却炉では、一酸化炭素を十分に除去できるが、小規模の焼却炉では、二次燃焼室を備えないことが多く、一酸化炭素の除去が課題である。 However, biomass combustion exhaust gas contains not only sulfur oxides and nitrogen oxides, but also ethylene, which is harmful to crop growth, and carbon monoxide, which is harmful to workers in crop production facilities. Ethylene causes buds to fall off, leaves and flowers to grow poorly, and promotes crop ripening, resulting in a situation in which the crop at harvest is too ripe to be shipped. Carbon monoxide also causes poisoning of workers working in crop production facilities. Large-scale incinerators equipped with a secondary combustion chamber can sufficiently remove carbon monoxide, but small-scale incinerators often do not have a secondary combustion chamber, and removal of carbon monoxide is an issue. ..

本発明は、以上のような事情に鑑みてなされたものであって、燃料を燃焼した燃焼排ガス中の作物に有害な硫黄酸化物、窒素酸化物、一酸化炭素及びエチレンを除去し、浄化した排ガスを作物生産用施設に植物成長を促進する二酸化炭素含有ガスとして供給することができる作物生産用施設への二酸化炭素含有ガスと熱を供給する供給装置及び供給方法を提供することを目的とするものである。 The present invention has been made in view of the above circumstances, and has been purified by removing sulfur oxides, nitrogen oxides, carbon monoxide and ethylene that are harmful to crops in the exhaust gas produced by burning fuel. An object of the present invention is to provide a supply device and a supply method for supplying carbon dioxide-containing gas and heat to a crop production facility capable of supplying exhaust gas to a crop production facility as a carbon dioxide-containing gas that promotes plant growth. It is a thing.

本発明の一態様は、作物生産用施設へ二酸化炭素含有ガスと熱を供給する供給装置であって、燃料を燃焼する燃焼炉と、前記燃焼炉から排出された燃焼排ガスとの熱交換により熱を得て作物生産用施設へ熱を供給する熱交換器と、燃焼排ガスに重曹粉末を吹込み、燃焼排ガスに含まれる硫黄酸化物との反応生成物を生成させる硫黄酸化物除去装置と、燃焼排ガスに含まれる煤塵を捕集し、前記反応生成物を捕集する集塵装置と、燃焼排ガスにアンモニアガスを吹込み、脱硝触媒により燃焼排ガスに含まれる窒素酸化物を分解する窒素酸化物除去装置と、燃焼排ガスに含まれる一酸化炭素とエチレンを酸化触媒により酸化して除去する一酸化炭素及びエチレン除去装置と、浄化された燃焼排ガスを作物生産用施設へ供給する浄化ガス供給装置と、を備え、燃焼排ガスが流通する上流側から順番に、前記硫黄酸化物除去装置、前記集塵装置、前記窒素酸化物除去装置、前記一酸化炭素及びエチレン除去装置が配置され、前記一酸化炭素及びエチレン除去装置から排出された循環ガスをガス加熱装置によって加熱し、前記一酸化炭素及びエチレン除去装置の上流側にかつ前記窒素酸化物除去装置の下流側に戻し、前記一酸化炭素及びエチレン除去装置の前記酸化触媒に付着したタールミストを除去する二酸化炭素含有ガスと熱の供給装置である。 One aspect of the present invention is a supply device that supplies carbon dioxide-containing gas and heat to a facility for crop production, and heat is generated by heat exchange between a combustion furnace that burns fuel and combustion exhaust gas discharged from the combustion furnace. A heat exchanger that supplies heat to the facility for crop production, a sulfur oxide remover that blows sodium bicarbonate powder into the combustion exhaust gas to generate a reaction product with the sulfur oxide contained in the combustion exhaust gas, and combustion. A dust collector that collects soot and dust contained in the exhaust gas and collects the reaction products, and a nitrogen oxide removal device that blows ammonia gas into the combustion exhaust gas and decomposes the nitrogen oxides contained in the combustion exhaust gas by a denitration catalyst. Equipment, carbon monoxide and ethylene removal equipment that oxidizes and removes carbon monoxide and ethylene contained in combustion exhaust gas with an oxidation catalyst, and purification gas supply equipment that supplies purified combustion exhaust gas to crop production facilities. the provided, in order from the upstream side of the combustion exhaust gas flows, said sulfur oxide removal device, the dust collection unit, the nitrogen oxide removal device, the carbon monoxide and ethylene removal device is arranged, the carbon monoxide and The circulating gas discharged from the ethylene removing device is heated by a gas heating device and returned to the upstream side of the carbon monoxide and ethylene removing device and the downstream side of the nitrogen oxide removing device, and the carbon monoxide and ethylene removing device. It is a carbon dioxide-containing gas and heat supply device that removes tar mist adhering to the oxidation catalyst .

本発明の他の態様は、作物生産用施設へ二酸化炭素含有ガスと熱を供給する供給方法であって、燃焼炉で燃料を燃焼する工程と、前記燃焼炉から排出された燃焼排ガスとの熱交換により熱を得て作物生産用施設へ熱を供給する工程と、燃焼排ガスに重曹粉末を吹込み、燃焼排ガスに含まれる硫黄酸化物との反応生成物を生成させる硫黄酸化物を除去する硫黄酸化物除去工程と、燃焼排ガスに含まれる煤塵を捕集し、前記反応生成物を捕集する集塵工程と、燃焼排ガスにアンモニアガスを吹込み、脱硝触媒により燃焼排ガスに含まれる窒素酸化物を分解する窒素酸化物除去工程と、燃焼排ガスに含まれる一酸化炭素とエチレンを酸化触媒により酸化して除去する一酸化炭素及びエチレン除去工程と、浄化された燃焼排ガスを作物生産用施設へ供給する浄化ガス供給工程と、を備え、燃焼排ガスが流通する上流側から順番に、前記硫黄酸化物除去工程、前記集塵工程、前記窒素酸化物除去工程、前記一酸化炭素及びエチレン除去工程を実施し、前記一酸化炭素及びエチレン除去工程において排出された循環ガスをガス加熱装置によって加熱し、前記一酸化炭素及びエチレン除去工程の上流側にかつ前記窒素酸化物除去工程の下流側に戻し、前記一酸化炭素及びエチレン除去工程で用いた前記酸化触媒に付着したタールミストを除去する二酸化炭素含有ガスと熱の供給方法である。 Another aspect of the present invention is a method of supplying carbon dioxide-containing gas and heat to a facility for crop production, in which heat between a step of burning fuel in a combustion furnace and combustion exhaust gas discharged from the combustion furnace is used. The process of obtaining heat by exchange and supplying heat to the facility for crop production, and the process of blowing sodium bicarbonate powder into the combustion exhaust gas to remove the sulfur oxide that produces a reaction product with the sulfur oxide contained in the combustion exhaust gas. The oxide removal step, the dust collection step of collecting soot and dust contained in the combustion exhaust gas and collecting the reaction product, and the nitrogen oxide contained in the combustion exhaust gas by blowing ammonia gas into the combustion exhaust gas and using a denitration catalyst. A carbon monoxide and ethylene removal process that oxidizes and removes carbon monoxide and ethylene contained in combustion exhaust gas with an oxidation catalyst, and supplies purified combustion exhaust gas to a facility for crop production. The purification gas supply step is provided, and the sulfur oxide removal step, the dust collection step, the nitrogen oxide removal step, and the carbon monoxide and ethylene removal steps are carried out in order from the upstream side through which the combustion exhaust gas flows. Then, the circulating gas discharged in the carbon monoxide and ethylene removal step is heated by a gas heating device and returned to the upstream side of the carbon monoxide and ethylene removal step and the downstream side of the nitrogen oxide removal step. It is a method of supplying carbon dioxide-containing gas and heat for removing tar mist adhering to the oxidation catalyst used in the step of removing carbon monoxide and ethylene.

本発明によれば、燃焼排ガス中の硫黄酸化物、窒素酸化物、一酸化炭素、エチレンを効率よく除去できる。作物の成長に悪影響を与えることが無い燃焼排ガスを供給して、作物の成長促進に有効となる二酸化炭素を植物に与えることができる。また、燃焼排ガスから熱回収して、作物生産用施設内の温度管理に用いることができる。さらに、一酸化炭素及びエチレン除去装置の酸化触媒の触媒活性を回復させることができる。 According to the present invention, sulfur oxides, nitrogen oxides, carbon monoxide, and ethylene in combustion exhaust gas can be efficiently removed. By supplying combustion exhaust gas that does not adversely affect the growth of crops, it is possible to provide plants with carbon dioxide that is effective in promoting the growth of crops. In addition, heat can be recovered from the combustion exhaust gas and used for temperature control in a crop production facility. Furthermore, the catalytic activity of the oxidation catalyst of the carbon monoxide and ethylene removing device can be restored.

本発明の第一の実施形態の二酸化炭素含有ガスと熱の供給装置の模式図Schematic diagram of the carbon dioxide-containing gas and heat supply device according to the first embodiment of the present invention. 図1の供給装置に制御系統を付加したものを示す模式図Schematic diagram showing the supply device of FIG. 1 with a control system added. 本発明の第二の実施形態の二酸化炭素含有ガスと熱の供給装置の模式図Schematic diagram of the carbon dioxide-containing gas and heat supply device according to the second embodiment of the present invention.

以下、図1に基づいて、本発明の第一の実施形態の二酸化炭素含有ガスと熱の供給装置(以下、単に供給装置という)を詳細に説明する。供給装置は、植物工場や作物栽培ハウス等の作物生産用施設11に二酸化炭素含有ガスと熱を供給するもので、上流側から順番に燃焼炉1、熱交換器2、硫黄酸化物除去装置3、集塵装置4、窒素酸化物除去装置5、一酸化炭素及びエチレン除去装置8、及び浄化ガス供給装置9を備える。以下に、各構成要素を順番に説明する。 Hereinafter, the carbon dioxide-containing gas and heat supply device (hereinafter, simply referred to as a supply device) according to the first embodiment of the present invention will be described in detail with reference to FIG. The supply device supplies carbon dioxide-containing gas and heat to the crop production facility 11 such as a plant factory or a crop cultivation house, and the combustion furnace 1, the heat exchanger 2, and the sulfur oxide removing device 3 are in order from the upstream side. , A dust collecting device 4, a nitrogen oxide removing device 5, a carbon monoxide and ethylene removing device 8, and a purifying gas supply device 9. Hereinafter, each component will be described in order.

(燃焼炉)
燃焼炉1は、バイオマスの供給を受け、バイオマスを燃焼して排ガスを排出する。バイオマスには、木質系バイオマス(例えば木質チップ、木屑、間伐材、製材廃材、建築廃材等)が用いられる。典型的な燃焼炉1は、火格子式燃焼炉であり、火格子を有する燃焼室と、火格子上にバイオマスを供給するための供給口と、燃焼室に燃焼空気を供給する送風機と、を備える。火格子上のバイオマスに燃焼空気を供給して燃焼する火格子式燃焼炉は、燃焼効率が高く好ましいが、炉形式はこれに限定されるものではない。
(Combustion furnace)
The combustion furnace 1 receives the supply of biomass, burns the biomass, and emits exhaust gas. As the biomass, wood-based biomass (for example, wood chips, wood chips, thinned wood, lumber waste, construction waste, etc.) is used. A typical combustion furnace 1 is a grate type combustion furnace, and has a combustion chamber having a grate, a supply port for supplying biomass on the grate, and a blower for supplying combustion air to the combustion chamber. Be prepared. A grate-type combustion furnace that supplies combustion air to the biomass on the grate and burns it is preferable because of its high combustion efficiency, but the furnace type is not limited to this.

(熱交換器)
熱交換器2は、燃焼炉1の燃焼排ガス(以下、単に排ガスという)と水との熱交換により水を加熱して温水を得て、暖房、温度管理のための熱を作物生産用施設11に供給する。熱交換器2と作物生産用施設11とは、温水配管12で接続され温水が供給される。熱交換器2で得られた温水を別に設ける蓄熱槽に貯留することにより、作物生産用施設11の熱需要により効果的に対応して熱を供給することができる。例えば、昼間に得られ貯留された温水(蓄熱された温熱)を、熱需要の大きい夜間に使用するようにするなど、柔軟な対応が可能となる。
(Heat exchanger)
The heat exchanger 2 heats water by heat exchange between the combustion exhaust gas of the combustion furnace 1 (hereinafter, simply referred to as exhaust gas) and water to obtain hot water, and heats for heating and temperature control is used in the crop production facility 11. Supply to. The heat exchanger 2 and the crop production facility 11 are connected by a hot water pipe 12 to supply hot water. By storing the hot water obtained in the heat exchanger 2 in a heat storage tank separately provided, it is possible to supply heat more effectively in response to the heat demand of the crop production facility 11. For example, hot water obtained and stored in the daytime (heat stored) can be used at night when heat demand is high, and flexible measures can be taken.

熱交換器2は、排ガスと水との熱交換により水蒸気を得て、水蒸気を作物生産用施設11へ供給してもよいし、水蒸気を蒸気タービンに送り、蒸気タービンにより発電し、電気エネルギーを作物生産用施設11へ供給してもよい。また、燃焼炉1と熱交換器2とを一体化した燃焼ボイラを用いてもよいし、燃焼炉1と熱交換器2が別体のものを用いてもよい。 The heat exchanger 2 may obtain steam by heat exchange between exhaust gas and water and supply the steam to the crop production facility 11, or send the steam to a steam turbine to generate electricity by the steam turbine to generate electric energy. It may be supplied to the crop production facility 11. Further, a combustion boiler in which the combustion furnace 1 and the heat exchanger 2 are integrated may be used, or a combustion furnace 1 and a heat exchanger 2 may be separated from each other.

燃焼炉1の排ガスには、作物又は作業者に有害な硫黄酸化物、窒素酸化物、一酸化炭素、エチレンが含まれる。硫黄酸化物(SO)、窒素酸化物(NO)は、大気汚染の原因物質であり、植物の生育に悪影響を及ぼし、作物生産用施設11で働く作業者にとって有害である。一酸化炭素(CO)は、作業者に一酸化炭素中毒をもたらす。エチレンは、作物の生育不良や作物の熟しすぎを招く。このため、これらの有害物は、以下の硫黄酸化物除去装置3、窒素酸化物除去装置5、一酸化炭素及びエチレン除去装置8によって除去される。 The exhaust gas from the combustion furnace 1 contains sulfur oxides, nitrogen oxides, carbon monoxide, and ethylene that are harmful to crops or workers. Sulfur oxides (SO x ) and nitrogen oxides (NO x ) are causative substances of air pollution, adversely affect the growth of plants, and are harmful to workers working in the crop production facility 11. Carbon monoxide (CO) causes carbon monoxide poisoning to workers. Ethylene causes poor growth of crops and overripe crops. Therefore, these harmful substances are removed by the following sulfur oxide removing device 3, nitrogen oxide removing device 5, carbon monoxide and ethylene removing device 8.

(硫黄酸化物除去装置)
硫黄酸化物除去装置3は、熱交換器2で熱回収された排ガスに重曹(炭酸水素ナトリウム)粉末を吹き込む重曹吹込み装置を備える。重曹吹込み装置は、重曹を貯留する重曹貯留槽と、重曹貯留槽から重曹粉末を切り出す切出し装置と、切り出された重曹粉末を圧縮空気とともに排ガス中に吹き込むノズルと、を備える。ノズルは、熱交換器2の下流側かつ集塵装置4の上流側のダクト13に配置される。
(Sulfur oxide remover)
The sulfur oxide removing device 3 includes a baking soda blowing device that blows baking soda (sodium hydrogen carbonate) powder into the exhaust gas heat recovered by the heat exchanger 2. The baking soda blowing device includes a baking soda storage tank for storing baking soda, a cutting device for cutting out baking soda powder from the baking soda storage tank, and a nozzle for blowing the cut out baking soda powder into exhaust gas together with compressed air. The nozzle is arranged in the duct 13 on the downstream side of the heat exchanger 2 and on the upstream side of the dust collector 4.

排ガスに吹き込まれた重曹粉末は、硫黄酸化物(SO)と反応して、反応生成物として硫酸ナトリウム(Na2SO4)を生成する。硫黄酸化物(SOx)と重曹粉末(NaHCO3)との反応式は、式1のとおりである。
(式1)
2NaHCO3+SO2+1/2O2→Na2SO4+H2O+2CO2
The baking soda powder blown into the exhaust gas reacts with sulfur oxides (SO x ) to produce sodium sulfate (Na 2 SO 4 ) as a reaction product. The reaction formula of sulfur oxide (SOx) and baking soda powder (NaHCO 3 ) is as shown in Formula 1.
(Equation 1)
2NaHCO 3 + SO 2 + 1 / 2O 2 → Na 2 SO 4 + H 2 O + 2CO 2

反応生成物粒子(Na2SO4)は、粉塵とともに集塵装置4により捕集され、排ガスから硫黄酸化物が除去される。硫黄酸化物を重曹粉末との反応により除去する際の温度は、反応効率を高くするため、170〜200℃とすることが好ましい。排ガス温度をこの範囲とするように熱交換器2による熱交換を制御する。 The reaction product particles (Na 2 SO 4 ) are collected together with the dust by the dust collector 4, and the sulfur oxides are removed from the exhaust gas. The temperature at which the sulfur oxide is removed by the reaction with the baking soda powder is preferably 170 to 200 ° C. in order to increase the reaction efficiency. The heat exchange by the heat exchanger 2 is controlled so that the exhaust gas temperature is within this range.

(集塵装置)
集塵装置4は、排ガスに含まれる粉塵を捕集するとともに、重曹粉末と硫黄酸化物(SO)との反応生成物粒子を捕集する。バグフィルタ等の濾過式集塵装置を用いることが、粉塵と硫黄酸化物の反応生成物粒子を捕集する効率が高く好ましい。バグフィルタのフィルタ表面に付着した未反応の重曹粉末が、硫黄酸化物と反応することも行われる。
(Dust collector)
The dust collector 4 collects dust contained in the exhaust gas and also collects reaction product particles of baking soda powder and sulfur oxide (SO x ). It is preferable to use a filtration type dust collector such as a bag filter because the efficiency of collecting the reaction product particles of dust and sulfur oxide is high. Unreacted baking soda powder adhering to the filter surface of the bag filter also reacts with sulfur oxides.

(窒素酸化物除去装置)
窒素酸化物除去装置5は、集塵装置4で粉塵が除去された排ガスにアンモニアガスを吹き込むアンモニア供給装置6と、脱硝触媒を収容した脱硝触媒装置7と、を備える。脱硝触媒装置7は、窒素酸化物(NO)をアンモニアとの反応によりNとHOとに分解し窒素酸化物を除去する。アンモニア(NH3)と窒素酸化物(NO)との反応式は、式2のとおりである。
(式2)
4NO+4NH3+O2→4N2+6H2
NO+NO2+2NH3→2N2+3H2
(Nitrogen oxide remover)
The nitrogen oxide removing device 5 includes an ammonia supply device 6 for blowing ammonia gas into the exhaust gas from which dust has been removed by the dust collecting device 4, and a denitration catalyst device 7 containing a denitration catalyst. The denitration catalyst device 7 decomposes nitrogen oxides (NO x ) into N 2 and H 2 O by reaction with ammonia to remove nitrogen oxides. The reaction formula between ammonia (NH 3 ) and nitrogen oxide (NO x ) is as shown in Formula 2.
(Equation 2)
4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O
NO + NO 2 + 2NH 3 → 2N 2 + 3H 2 O

脱硝触媒は限定されないが、TiOを担体とし、V、WO等を活性体とするものが好ましく、触媒形状は圧力損失の少ないハニカム状や板状の並行流型を用いることが好ましい。窒素酸化物をアンモニアガスと脱硝触媒により除去する際の温度は特に限定されないが、硫黄酸化物除去を行う温度である170〜200℃の温度範囲で運転することが再加熱を行う必要がないため好ましい。この温度範囲で好適な脱硝触媒を用いるようにする。 The denitration catalyst is not limited, but a catalyst using TiO 2 as a carrier and V 2 O 2 , WO 3, etc. as an active agent is preferable, and the catalyst shape may be a honeycomb-shaped or plate-shaped parallel flow type having a small pressure loss. preferable. The temperature at which nitrogen oxides are removed by ammonia gas and a denitration catalyst is not particularly limited, but operating in the temperature range of 170 to 200 ° C., which is the temperature at which sulfur oxides are removed, does not require reheating. preferable. A suitable denitration catalyst should be used in this temperature range.

(一酸化炭素及びエチレン除去装置)
一酸化炭素及びエチレン除去装置8は、窒素酸化物除去装置5で窒素酸化物が除去された排ガスを、酸化触媒を収容した酸化触媒装置に導入し、触媒の作用により一酸化炭素とエチレンを酸化し、作物又は作業者に無害なCO、H2O等の物質にする。酸化に使用される酸素は、排ガスに含まれる酸素である。燃焼炉1には燃焼空気が吹き込まれるので、排ガスには十分な酸素が存在する。酸化触媒は限定されないが、担体に白金やロジウムを担持させた触媒を用いることが好ましい。一酸化炭素及びエチレンを酸化触媒により酸化して除去する際の温度は特に限定されないが、硫黄酸化物除去を行う温度である170〜200℃の温度範囲で運転することが再加熱を行う必要がないため好ましい。この温度範囲で好適な酸化触媒を用いるようにする。
(Carbon monoxide and ethylene remover)
The carbon monoxide and ethylene removal device 8 introduces the exhaust gas from which nitrogen oxides have been removed by the nitrogen oxide removal device 5 into an oxidation catalyst device containing an oxidation catalyst, and oxidizes carbon monoxide and ethylene by the action of the catalyst. Then, make it a substance such as CO 2 , H 2 O that is harmless to crops or workers. The oxygen used for oxidation is oxygen contained in the exhaust gas. Since the combustion air is blown into the combustion furnace 1, sufficient oxygen is present in the exhaust gas. The oxidation catalyst is not limited, but it is preferable to use a catalyst in which platinum or rhodium is supported on the carrier. The temperature at which carbon monoxide and ethylene are oxidized and removed by an oxidation catalyst is not particularly limited, but it is necessary to perform reheating by operating in the temperature range of 170 to 200 ° C., which is the temperature at which sulfur oxides are removed. It is preferable because it does not exist. Use a suitable oxidation catalyst in this temperature range.

窒素酸化物除去装置5と一酸化炭素及びエチレン除去装置8との配置は、図1に示す順でも逆の順でもよい。すなわち、一酸化炭素及びエチレン除去装置8を上流側に配置し、窒素酸化物除去装置5を下流側に配置することもできる。 The arrangement of the nitrogen oxide removing device 5 and the carbon monoxide and ethylene removing device 8 may be in the order shown in FIG. 1 or in the reverse order. That is, the carbon monoxide and ethylene removing device 8 can be arranged on the upstream side, and the nitrogen oxide removing device 5 can be arranged on the downstream side.

集塵装置4の下流側に窒素酸化物除去装置5と一酸化炭素及びエチレン除去装置8とを設置することにより、バイオマスの燃焼排ガスに含まれる脱硝触媒や酸化触媒に対する被毒成分を集塵装置4で予め除去できる。 By installing the nitrogen oxide removing device 5 and the carbon monoxide and ethylene removing device 8 on the downstream side of the dust collecting device 4, the denitration catalyst and the poisonous component for the oxidation catalyst contained in the combustion exhaust gas of biomass are collected. It can be removed in advance in 4.

(浄化ガス供給装置)
浄化ガス供給装置9は、上記の除去装置3,4,5,8によって浄化された燃焼排ガスを作物生産用施設11へ供給する。浄化ガス供給装置9は、熱交換器10を備える。一酸化炭素及びエチレン除去装置8で一酸化炭素及びエチレンが除去された排ガスは、熱交換器10で例えば100〜130℃まで冷却され、さらに空気で希釈され、例えば30〜50℃まで冷却され、作物生産用施設11へ二酸化炭素含有ガスとして供給される。二酸化炭素含有ガスを常温に近い温度にすることで、作物生産用施設11内の作物に悪影響を与えないようにする。熱交換器10は、浄化ガスと水との熱交換により水を加熱して温水を得て、暖房、温度管理のための熱を作物生産用施設11に供給するようにしてもよい。
(Purification gas supply device)
The purified gas supply device 9 supplies the combustion exhaust gas purified by the removal devices 3, 4, 5, and 8 to the crop production facility 11. The purification gas supply device 9 includes a heat exchanger 10. The exhaust gas from which carbon monoxide and ethylene have been removed by the carbon monoxide and ethylene removing device 8 is cooled by the heat exchanger 10 to, for example, 100 to 130 ° C., further diluted with air, and cooled to, for example, 30 to 50 ° C. It is supplied as carbon dioxide-containing gas to the crop production facility 11. By setting the temperature of the carbon dioxide-containing gas to a temperature close to room temperature, the crops in the crop production facility 11 are not adversely affected. The heat exchanger 10 may heat water by heat exchange between purified gas and water to obtain hot water, and supply heat for heating and temperature control to the crop production facility 11.

上記の各構成要素の装置を備える供給装置により、燃焼排ガス中の作物又は作業者に有害な硫黄酸化物、窒素酸化物、一酸化炭素、エチレンを効率よく除去でき、作物の成長に悪影響を与えることが無い燃焼排ガスを作物生産用施設11に供給して、作物の成長促進に有効となる二酸化炭素を植物に与えることができ、さらに、燃焼排ガスから熱回収して、作物生産用施設内11に熱を供給することができる。 A supply device equipped with a device for each of the above components can efficiently remove sulfur oxides, nitrogen oxides, carbon monoxide, and ethylene that are harmful to the crop or workers in the combustion exhaust gas, which adversely affects the growth of the crop. It is possible to supply carbon dioxide, which is effective in promoting the growth of crops, to plants by supplying the combustion exhaust gas that has never been used to the crop production facility 11, and further, heat is recovered from the combustion exhaust gas, and the inside of the crop production facility 11 Can supply heat to.

また、作物生産用施設11と供給装置の運転を制御する制御システムを設けて、作物生産用施設11の二酸化炭素需要や熱需要に応じて、供給装置の起動及び停止や、運転時の燃料燃焼量を制御するようにしてもよい。例えば、制御システムは、作物生産用施設11内の二酸化炭素や熱がより多く必要であると判断された場合に、供給装置を起動し、あるいは燃料燃焼量を増大し、需要に対応するように制御する。 In addition, a control system for controlling the operation of the crop production facility 11 and the supply device is provided to start and stop the supply device and burn fuel during operation according to the carbon dioxide demand and heat demand of the crop production facility 11. The amount may be controlled. For example, the control system may activate the supply device or increase the amount of fuel burned to meet the demand when it is determined that more carbon dioxide or heat is needed in the crop production facility 11. Control.

図2は、排ガスに含まれる有害物の濃度を抑制するための制御系統を付加した供給装置の構成図を示す。燃焼炉1、熱交換器2、硫黄酸化物除去装置3、集塵装置4、窒素酸化物除去装置5、一酸化炭素及びエチレン除去装置8、及び浄化ガス供給装置9の構成は、図1に示すものと同一であるので、同一の符号を附してその説明を省略する。 FIG. 2 shows a configuration diagram of a supply device to which a control system for suppressing the concentration of harmful substances contained in exhaust gas is added. The configurations of the combustion furnace 1, the heat exchanger 2, the sulfur oxide removing device 3, the dust collecting device 4, the nitrogen oxide removing device 5, the carbon monoxide and ethylene removing device 8, and the purification gas supply device 9 are shown in FIG. Since it is the same as the one shown, the same reference numerals are given and the description thereof will be omitted.

一酸化炭素及びエチレン除去装置8の下流側には、浄化ガスの成分濃度を測定するガス成分濃度計21が配置される。制御装置22は、ガス成分濃度計21の硫黄酸化物の測定値に基づいて、硫黄酸化物除去装置3の重曹供給量を制御する。例えば、制御装置22は、ガス成分濃度計21の硫黄酸化物の測定値が所定の許容範囲値よりも高い場合には、重曹供給量を増大させ、低い場合には、重曹供給量を減少させる。 A gas component concentration meter 21 for measuring the component concentration of the purified gas is arranged on the downstream side of the carbon monoxide and ethylene removal device 8. The control device 22 controls the amount of baking soda supplied by the sulfur oxide removing device 3 based on the measured value of the sulfur oxide of the gas component concentration meter 21. For example, the control device 22 increases the baking soda supply amount when the measured value of the sulfur oxide of the gas component concentration meter 21 is higher than a predetermined allowable range value, and decreases the baking soda supply amount when it is low. ..

制御装置22は、ガス成分濃度計21の窒素酸化物の測定値に基づいて、窒素酸化物除去装置5のアンモニアガス供給量を制御する。例えば、制御装置22は、ガス成分濃度計21の窒素酸化物の測定値が所定の許容範囲値よりも高い場合には、アンモニアガス供給量を増大させ、低い場合には、アンモニアガス供給量を減少させる。 The control device 22 controls the amount of ammonia gas supplied by the nitrogen oxide removing device 5 based on the measured value of the nitrogen oxide of the gas component concentration meter 21. For example, the control device 22 increases the amount of ammonia gas supplied when the measured value of nitrogen oxides of the gas component concentration meter 21 is higher than a predetermined allowable range value, and increases the amount of ammonia gas supplied when the measured value is lower than a predetermined allowable range value. Reduce.

一酸化炭素及びエチレン除去装置8から排出された浄化ガスを熱交換器10に送るダクトには、分岐して浄化ガスの一部を一酸化炭素及びエチレン除去装置8の上流側に戻す循環流路23が設けられ、戻す循環ガス量を調整する調整弁24が配置される。浄化ガスの一部を一酸化炭素及びエチレン除去装置8の上流側に戻すことにより、浄化ガスに残存する一酸化炭素及びエチレンを再度酸化触媒と接触させ、一酸化炭素とエチレンをより低濃度にまで除去する。制御装置22は、ガス成分濃度計21の一酸化炭素及びエチレンの測定値に基づいて、調整弁24の開度を調整し循環ガス量を制御する。例えば、制御装置22は、ガス成分濃度計21の一酸化炭素及びエチレン除去装置8の測定値が一定時間以上にわたって所定の閾値以上の場合には、循環ガス量を増大させる。また、制御装置22は、ガス成分濃度計21の一酸化炭素及びエチレンの測定値に基づいて、一酸化炭素及びエチレン除去装置8の酸化触媒の交換時期を判定する。例えば、制御装置22は、ガス成分濃度計21の一酸化炭素及びエチレン除去装置8の測定値が一定時間以上にわたって所定の閾値以上の場合には、酸化触媒の交換を促す警報を表示する。 The duct that sends the purified gas discharged from the carbon monoxide and ethylene removal device 8 to the heat exchanger 10 is a circulation flow path that branches and returns a part of the purified gas to the upstream side of the carbon monoxide and ethylene removal device 8. 23 is provided, and a regulating valve 24 for adjusting the amount of circulating gas to be returned is arranged. By returning a part of the purification gas to the upstream side of the carbon monoxide and ethylene removal device 8, the carbon monoxide and ethylene remaining in the purification gas are brought into contact with the oxidation catalyst again, and the concentration of carbon monoxide and ethylene is lowered. Remove up to. The control device 22 adjusts the opening degree of the adjusting valve 24 based on the measured values of carbon monoxide and ethylene of the gas component concentration meter 21, and controls the amount of circulating gas. For example, the control device 22 increases the amount of circulating gas when the measured values of the carbon monoxide and ethylene removal device 8 of the gas component concentration meter 21 are equal to or higher than a predetermined threshold value for a certain period of time or longer. Further, the control device 22 determines the replacement time of the oxidation catalyst of the carbon monoxide and ethylene removal device 8 based on the measured values of carbon monoxide and ethylene of the gas component concentration meter 21. For example, the control device 22 displays an alarm prompting the replacement of the oxidation catalyst when the measured values of the carbon monoxide and ethylene removal device 8 of the gas component concentration meter 21 are equal to or higher than a predetermined threshold value for a certain period of time or longer.

図2に示す制御系統を付加した供給装置では、一酸化炭素及びエチレン除去装置8の下流側に、浄化ガスの成分濃度を測定するガス成分濃度計21が配置され、制御装置22により制御することとしているが、作物生産用施設11内の各種ガス成分濃度を測定するガス成分濃度計21を配置して計測し制御するようにしてもよい。すなわち、作物生産用施設11内の各種ガス成分濃度の測定値に基づき、硫黄酸化物除去装置3の重曹供給量、窒素酸化物除去装置5のアンモニアガス供給量、浄化ガスの一部を一酸化炭素及びエチレン除去装置8の上流側に戻す循環ガス量を制御して、作物生産用施設11の操業状況に応じて、供給装置のガス浄化機器を制御することも可能である。 In the supply device to which the control system shown in FIG. 2 is added, a gas component concentration meter 21 for measuring the component concentration of the purified gas is arranged on the downstream side of the carbon monoxide and ethylene removal device 8 and controlled by the control device 22. However, a gas component concentration meter 21 for measuring the concentration of various gas components in the crop production facility 11 may be arranged to measure and control the gas component concentration meter 21. That is, based on the measured values of the concentrations of various gas components in the crop production facility 11, the amount of sodium bicarbonate supplied by the sulfur oxide removing device 3, the amount of ammonia gas supplied by the nitrogen oxide removing device 5, and a part of the purified gas are carbon monoxide. It is also possible to control the amount of circulating gas returned to the upstream side of the carbon and ethylene removing device 8 to control the gas purification device of the supply device according to the operating status of the crop production facility 11.

図3は、本発明の第二の実施形態の二酸化炭素含有ガスと熱の供給装置(以下、単に供給装置という)の模式図である。燃焼炉1、熱交換器2、硫黄酸化物除去装置3、集塵装置4、窒素酸化物除去装置5、一酸化炭素及びエチレン除去装置8、浄化ガス供給装置9の構成は、図1に示すものと同一であるので、同一の符号を附してその説明を省略する。 FIG. 3 is a schematic view of a carbon dioxide-containing gas and heat supply device (hereinafter, simply referred to as a supply device) according to the second embodiment of the present invention. The configurations of the combustion furnace 1, the heat exchanger 2, the sulfur oxide removing device 3, the dust collecting device 4, the nitrogen oxide removing device 5, the carbon monoxide and ethylene removing device 8, and the purification gas supply device 9 are shown in FIG. Since it is the same as the one, the same reference numerals are given and the description thereof will be omitted.

第二の実施形態の供給装置では、脱硝触媒装置7の脱硝触媒、並びに一酸化炭素及びエチレン除去装置8の酸化触媒に付着したタールミストを除去して、触媒活性を回復させる触媒活性回復手段を付加している点が、第一の実施形態の供給装置と異なる。この触媒活性回復手段は、循環流路31と、ガス加熱装置32と、を備える。 In the supply device of the second embodiment, the denitration catalyst of the denitration catalyst device 7 and the catalytic activity recovery means for recovering the catalytic activity by removing the tar mist adhering to the carbon monoxide and the oxidation catalyst of the ethylene removal device 8 are provided. The added point is different from the supply device of the first embodiment. The catalytic activity recovery means includes a circulation flow path 31 and a gas heating device 32.

触媒活性回復手段を付加する理由は以下のとおりである。燃焼炉1でのバイオマス燃焼によって発生するタールのほとんどは集塵装置4により除去されるものの、排ガスが集塵装置4から脱硝触媒装置7、一酸化炭素及びエチレン除去装置8に流通するにつれて、排ガス温度がガス状タールの露点以下に低下し、ガス状タールが液化して微量のタールミストが発生する。このタールミストが脱硝触媒装置7の脱硝触媒、並びに一酸化炭素及びエチレン除去装置8の酸化触媒に付着すると、これらの触媒活性が低下する。 The reason for adding the catalytic activity recovery means is as follows. Most of the tar generated by the biomass combustion in the combustion furnace 1 is removed by the dust collector 4, but as the exhaust gas flows from the dust collector 4 to the denitration catalyst device 7, carbon monoxide and ethylene removal device 8, the exhaust gas is exhausted. The temperature drops below the dew point of the gaseous tar, and the gaseous tar liquefies to generate a small amount of tar mist. When this tar mist adheres to the denitration catalyst of the denitration catalyst device 7 and the oxidation catalyst of the carbon monoxide and ethylene removal device 8, these catalytic activities decrease.

触媒に付着したタールミストを除去する方法として、触媒を触媒装置から取り外し、触媒を加熱炉で空焼きすることによってタールを除去することが知られている。しかし、触媒装置から触媒を出し入れするのは煩雑であり、さらに触媒装置を一定期間停止する必要があることから望ましい除去方法とはいえない。 As a method for removing tar mist adhering to the catalyst, it is known that tar is removed by removing the catalyst from the catalyst device and air-baking the catalyst in a heating furnace. However, it is complicated to put the catalyst in and out of the catalyst device, and it is necessary to stop the catalyst device for a certain period of time, so that it cannot be said to be a desirable removal method.

一方、発明者は、上記のように発生する微量のタールミストの形態を詳しく調べた結果、触媒に付着しても比較的除去しやすい形態であることを見出した。そこで、発明者は、触媒を触媒装置から取り外す必要がない触媒活性回復手段を創案した。すなわち、本実施形態においては、一酸化炭素及びエチレン除去装置8から排出された浄化ガスの一部をガス加熱装置32によって加熱し、脱硝触媒装置7の上流側、並びに一酸化炭素及びエチレン除去装置8の上流側に戻し、脱硝触媒装置7の脱硝触媒、並びに一酸化炭素及びエチレン除去装置8の酸化触媒を加熱する。これにより、脱硝触媒及び酸化触媒に付着したタールミストを揮発・除去し、これらの触媒活性を回復させる。 On the other hand, as a result of investigating the morphology of the trace amount of tar mist generated as described above in detail, the inventor has found that the morphology is relatively easy to remove even if it adheres to the catalyst. Therefore, the inventor has devised a catalyst activity recovery means that does not require the catalyst to be removed from the catalyst device. That is, in the present embodiment, a part of the purification gas discharged from the carbon monoxide and ethylene removing device 8 is heated by the gas heating device 32, and the upstream side of the denitration catalyst device 7 and the carbon monoxide and ethylene removing device Returning to the upstream side of 8, the denitration catalyst of the denitration catalyst device 7 and the oxidation catalyst of the carbon monoxide and ethylene removal device 8 are heated. As a result, tar mist adhering to the denitration catalyst and the oxidation catalyst is volatilized and removed, and the catalytic activity of these is restored.

具体的には、一酸化炭素及びエチレン除去装置8から排出された浄化ガスを熱交換器10に送るダクトを分岐して、浄化ガスの一部を脱硝触媒装置7の上流側、並びに一酸化炭素及びエチレン除去装置8の上流側に戻す循環流路31を設ける。そして、循環流路31に浄化ガスの一部(以下、循環ガスという)を加熱するガス加熱装置32を配設する。ガス加熱装置32により加熱された循環ガスにより、脱硝触媒装置7の脱硝触媒、並びに一酸化炭素及びエチレン除去装置8の酸化触媒を加熱し、これにより、脱硝触媒及び酸化触媒に付着したタールミストを揮発・除去する。 Specifically, the duct that sends the purified gas discharged from the carbon monoxide and the ethylene removing device 8 to the heat exchanger 10 is branched, and a part of the purified gas is transferred to the upstream side of the denitration catalyst device 7 and carbon monoxide. And a circulation flow path 31 for returning to the upstream side of the ethylene removing device 8 is provided. Then, a gas heating device 32 for heating a part of the purified gas (hereinafter referred to as circulating gas) is arranged in the circulation flow path 31. The circulating gas heated by the gas heating device 32 heats the denitration catalyst of the denitration catalyst device 7 and the oxidation catalyst of the carbon monoxide and ethylene removal device 8, thereby removing tar mist adhering to the denitration catalyst and the oxidation catalyst. Volatilize and remove.

ガス加熱装置32としては、電気ヒーター式ガス加熱装置が好ましい。ガス加熱装置として電気ヒーター式ガス加熱装置を用いる場合には、触媒から揮発して循環ガスに含まれるタールを燃焼するために反応用空気を必要に応じて供給し、タールを燃焼する。 As the gas heating device 32, an electric heater type gas heating device is preferable. When an electric heater type gas heating device is used as the gas heating device, reaction air is supplied as needed to burn the tar contained in the circulating gas by volatilizing from the catalyst, and the tar is burned.

脱硝触媒及び酸化触媒を昇温する温度は、160〜500℃の温度範囲とすることが好ましく、180〜300℃の温度範囲とすることがさらに好ましい。付着したタールミストを揮発・除去するために、脱硝触媒及び酸化触媒の温度を、集塵装置4の運転温度以上であって、タールミストの露点より高い温度にする必要があるからである。 The temperature for raising the temperature of the denitration catalyst and the oxidation catalyst is preferably in the temperature range of 160 to 500 ° C, and more preferably in the temperature range of 180 to 300 ° C. This is because in order to volatilize and remove the adhering tar mist, it is necessary to set the temperatures of the denitration catalyst and the oxidation catalyst to a temperature equal to or higher than the operating temperature of the dust collector 4 and higher than the dew point of the tar mist.

脱硝触媒及び/又は酸化触媒の触媒活性の低下が認められた場合に、加熱した循環ガスを戻す運転を行い、触媒活性を回復させる操作を行う。本実施形態によれば、脱硝触媒装置7並びに一酸化炭素及びエチレン除去装置8の運転中でも、各装置を停止させることなく触媒活性回復操作を行うことができる。もちろん各装置の停止中でも触媒活性回復操作を行うことができる。 When a decrease in the catalytic activity of the denitration catalyst and / or the oxidation catalyst is observed, an operation of returning the heated circulating gas is performed to restore the catalytic activity. According to the present embodiment, even during the operation of the denitration catalyst device 7 and the carbon monoxide and ethylene removal device 8, the catalytic activity recovery operation can be performed without stopping each device. Of course, the catalytic activity recovery operation can be performed even when each device is stopped.

(実施例)
以下に本発明の実施例を比較例と比較しつつ説明する。燃焼炉から排出される排ガスを作物生産用施設に供給する際に、作物の生育に悪影響を及ぼさないような排ガス中の成分の許容上限濃度を以下の表1に示すように定めた。

Figure 0006774167
(Example)
Examples of the present invention will be described below in comparison with Comparative Examples. When the exhaust gas discharged from the combustion furnace is supplied to the crop production facility, the allowable upper limit concentration of the components in the exhaust gas that does not adversely affect the growth of the crop is set as shown in Table 1 below.
Figure 0006774167

比較例Comparative example

木質チップを燃焼炉で燃焼させる実験を実施した。木質チップは水分30%、3〜10cmの寸法であり、燃焼炉に供給量120kg/hrで供給し燃焼した。 An experiment was conducted in which wood chips were burned in a combustion furnace. The wood chips had a water content of 30% and a size of 3 to 10 cm, and were supplied to a combustion furnace at a supply amount of 120 kg / hr and burned.

排ガスは、燃焼炉と一体となった熱交換器に送られ、約180℃まで冷却されるとともに、水との熱交換により約85℃の温水を得た。 排ガス発生量はおよそ1200Nm3/hrであり、温水として得られる熱量はおよそ280KWであった。 The exhaust gas was sent to a heat exchanger integrated with the combustion furnace, cooled to about 180 ° C., and hot water of about 85 ° C. was obtained by heat exchange with water. The amount of exhaust gas generated was about 1200 Nm 3 / hr, and the amount of heat obtained as hot water was about 280 KW.

冷却された排ガスを、サイクロン式集塵機で除塵した。 The cooled exhaust gas was removed with a cyclone type dust collector.

除塵された排ガス中の成分測定結果を以下の表2に示す。

Figure 0006774167
The results of component measurement in the dust-removed exhaust gas are shown in Table 2 below.
Figure 0006774167

表2のとおり、排ガスに含まれる硫黄酸化物、窒素酸化物、およびエチレンの濃度は、いずれも作物生産用施設に供給できる許容上限濃度以上であり、このまま供給すると作物の成長に悪影響を与える。 As shown in Table 2, the concentrations of sulfur oxides, nitrogen oxides, and ethylene contained in the exhaust gas are all equal to or higher than the allowable upper limit concentration that can be supplied to the crop production facility, and if they are supplied as they are, the growth of crops will be adversely affected.

比較例と同様にして木質チップを燃焼させ、サイクロン式集塵機で除塵された排ガスについてさらに下記の処理を実施した。 The wood chips were burned in the same manner as in the comparative example, and the exhaust gas removed by the cyclone type dust collector was further subjected to the following treatment.

サイクロン式集塵機で除塵された約180℃の排ガスに重曹粉末を供給量40g/hrで供給混合し、反応生成物と煤塵をバグフィルタで除塵した。 次いで、排ガスにアンモニアガスを供給量1L/minで供給混合し、脱硝触媒装置に空間速度(SV値)を4100/hrで供給した。 脱硝触媒としてバナジウム、タングステンを含む触媒を用いた。さらに排ガスを酸化触媒装置に空間速度(SV値)を22000/hrで供給した。 酸化触媒として白金を含む触媒を用いた。 Baking soda powder was supplied and mixed with the exhaust gas at about 180 ° C. removed by a cyclone type dust collector at a supply amount of 40 g / hr, and the reaction product and soot dust were removed by a bag filter. Next, ammonia gas was supplied and mixed with the exhaust gas at a supply amount of 1 L / min, and the space velocity (SV value) was supplied to the denitration catalyst device at 4100 / hr. A catalyst containing vanadium and tungsten was used as the denitration catalyst. Further, the exhaust gas was supplied to the oxidation catalyst device at a space velocity (SV value) of 22000 / hr. A catalyst containing platinum was used as the oxidation catalyst.

上記処理後の排ガス中の成分測定結果を表3に示す。

Figure 0006774167
Table 3 shows the component measurement results in the exhaust gas after the above treatment.
Figure 0006774167

表3のように、硫黄酸化物、窒素酸化物、およびエチレンのいずれも作物生産用施設に供給できる許容上限濃度以下に低減しており、作物の成長に悪影響を与えることなく、作物の成長促進に有効となる二酸化炭素を作物に与えることができる。一酸化炭素の濃度も作業者に悪影響を与えることのない25ppm以下に低減した。浄化処理後の排ガスを希釈して作物生産用施設に供給すれば、作物にも作業者にも悪影響を与えることのない二酸化炭素含有ガスを供給できる。 As shown in Table 3, all of sulfur oxides, nitrogen oxides, and ethylene have been reduced to below the permissible upper limit concentration that can be supplied to crop production facilities, and crop growth is promoted without adversely affecting crop growth. It is possible to provide crops with carbon dioxide that is effective for crops. The concentration of carbon monoxide was also reduced to 25 ppm or less, which does not adversely affect the operator. By diluting the exhaust gas after purification treatment and supplying it to the crop production facility, it is possible to supply carbon dioxide-containing gas that does not adversely affect the crops and workers.

1…燃焼炉
2…熱交換器
3…硫黄酸化物除去装置
4…集塵装置
5…窒素酸化物除去装置
6…アンモニア供給装置
7…脱硝触媒装置
8…一酸化炭素及びエチレン除去装置
9…浄化ガス供給装置
10…熱交換器
12…温水配管
13…ダクト
21…ガス成分濃度計
22…制御装置
23…循環流路
24…調整弁
31…循環流路
32…ガス加熱装置
1 ... Combustion furnace 2 ... Heat exchanger 3 ... Sulfur oxide removing device 4 ... Dust collecting device 5 ... Nitrogen oxide removing device 6 ... Ammonia supply device 7 ... Denitration catalyst device 8 ... Carbon monoxide and ethylene removing device 9 ... Purification Gas supply device 10 ... Heat exchanger 12 ... Hot water pipe 13 ... Duct 21 ... Gas component concentration meter 22 ... Control device 23 ... Circulation flow path 24 ... Adjustment valve 31 ... Circulation flow path 32 ... Gas heating device

Claims (4)

作物生産用施設へ二酸化炭素含有ガスと熱を供給する供給装置であって、
燃料を燃焼する燃焼炉と、
前記燃焼炉から排出された燃焼排ガスとの熱交換により熱を得て作物生産用施設へ熱を供給する熱交換器と、
燃焼排ガスに重曹粉末を吹込み、燃焼排ガスに含まれる硫黄酸化物との反応生成物を生成させる硫黄酸化物除去装置と、
燃焼排ガスに含まれる煤塵を捕集し、前記反応生成物を捕集する集塵装置と、
燃焼排ガスにアンモニアガスを吹込み、脱硝触媒により燃焼排ガスに含まれる窒素酸化物を分解する窒素酸化物除去装置と、
燃焼排ガスに含まれる一酸化炭素とエチレンを酸化触媒により酸化して除去する一酸化炭素及びエチレン除去装置と、
浄化された燃焼排ガスを作物生産用施設へ供給する浄化ガス供給装置と、を備え、
燃焼排ガスが流通する上流側から順番に、前記硫黄酸化物除去装置、前記集塵装置、前記窒素酸化物除去装置、前記一酸化炭素及びエチレン除去装置が配置され、
前記一酸化炭素及びエチレン除去装置から排出された循環ガスをガス加熱装置によって加熱し、前記一酸化炭素及びエチレン除去装置の上流側にかつ前記窒素酸化物除去装置の下流側に戻し、前記一酸化炭素及びエチレン除去装置の前記酸化触媒に付着したタールミストを除去する二酸化炭素含有ガスと熱の供給装置。
A supply device that supplies carbon dioxide-containing gas and heat to crop production facilities.
A combustion furnace that burns fuel and
A heat exchanger that obtains heat by heat exchange with the combustion exhaust gas discharged from the combustion furnace and supplies heat to the facility for crop production.
A sulfur oxide removing device that blows sodium bicarbonate powder into the combustion exhaust gas to generate a reaction product with the sulfur oxide contained in the combustion exhaust gas.
A dust collector that collects soot and dust contained in combustion exhaust gas and collects the reaction products.
A nitrogen oxide remover that blows ammonia gas into the combustion exhaust gas and decomposes the nitrogen oxides contained in the combustion exhaust gas with a denitration catalyst.
A carbon monoxide and ethylene removal device that oxidizes and removes carbon monoxide and ethylene contained in combustion exhaust gas with an oxidation catalyst.
Equipped with a purified gas supply device that supplies purified combustion exhaust gas to crop production facilities,
The sulfur oxide removing device, the dust collecting device, the nitrogen oxide removing device, the carbon monoxide and the ethylene removing device are arranged in order from the upstream side where the combustion exhaust gas flows.
The circulating gas discharged from the carbon monoxide and ethylene removing device is heated by a gas heating device and returned to the upstream side of the carbon monoxide and ethylene removing device and the downstream side of the nitrogen oxide removing device, and the monoxide is oxidized. A carbon dioxide-containing gas and heat supply device that removes tar mist adhering to the oxidation catalyst of the carbon and ethylene removing device.
前記浄化ガス供給装置が、浄化ガスを冷却する熱交換器を備えることを特徴とする請求項1に記載の二酸化炭素含有ガスと熱の供給装置。 The carbon dioxide-containing gas and heat supply device according to claim 1, wherein the purified gas supply device includes a heat exchanger for cooling the purified gas. 作物生産用施設へ二酸化炭素含有ガスと熱を供給する供給方法であって、
燃焼炉で燃料を燃焼する工程と、
前記燃焼炉から排出された燃焼排ガスとの熱交換により熱を得て作物生産用施設へ熱を供給する工程と、
燃焼排ガスに重曹粉末を吹込み、燃焼排ガスに含まれる硫黄酸化物との反応生成物を生成させる硫黄酸化物を除去する硫黄酸化物除去工程と、
燃焼排ガスに含まれる煤塵を捕集し、前記反応生成物を捕集する集塵工程と、
燃焼排ガスにアンモニアガスを吹込み、脱硝触媒により燃焼排ガスに含まれる窒素酸化物を分解する窒素酸化物除去工程と、
燃焼排ガスに含まれる一酸化炭素とエチレンを酸化触媒により酸化して除去する一酸化炭素及びエチレン除去工程と、
浄化された燃焼排ガスを作物生産用施設へ供給する浄化ガス供給工程と、を備え、
燃焼排ガスが流通する上流側から順番に、前記硫黄酸化物除去工程、前記集塵工程、前記窒素酸化物除去工程、前記一酸化炭素及びエチレン除去工程を実施し、
前記一酸化炭素及びエチレン除去工程において排出された循環ガスをガス加熱装置によって加熱し、前記一酸化炭素及びエチレン除去工程の上流側にかつ前記窒素酸化物除去工程の下流側に戻し、前記一酸化炭素及びエチレン除去工程で用いた前記酸化触媒に付着したタールミストを除去する二酸化炭素含有ガスと熱の供給方法。
A supply method that supplies carbon dioxide-containing gas and heat to crop production facilities.
The process of burning fuel in a combustion furnace and
The process of obtaining heat by heat exchange with the combustion exhaust gas discharged from the combustion furnace and supplying heat to the crop production facility, and
A sulfur oxide removal step in which sulfur oxide powder is blown into the combustion exhaust gas to remove the sulfur oxide that produces a reaction product with the sulfur oxide contained in the combustion exhaust gas.
A dust collection process that collects soot and dust contained in combustion exhaust gas and collects the reaction products.
A nitrogen oxide removal step in which ammonia gas is blown into the combustion exhaust gas and the nitrogen oxides contained in the combustion exhaust gas are decomposed by a denitration catalyst.
Carbon monoxide and ethylene removal steps that oxidize and remove carbon monoxide and ethylene contained in combustion exhaust gas with an oxidation catalyst,
It is equipped with a purified gas supply process that supplies purified combustion exhaust gas to crop production facilities.
The sulfur oxide removing step, the dust collecting step, the nitrogen oxide removing step, and the carbon monoxide and ethylene removing steps are carried out in order from the upstream side where the combustion exhaust gas flows.
The circulating gas discharged in the carbon monoxide and ethylene removal step is heated by a gas heating device and returned to the upstream side of the carbon monoxide and ethylene removal step and the downstream side of the nitrogen oxide removal step , and the monoxide is oxidized. A method for supplying carbon dioxide-containing gas and heat for removing tar mist adhering to the oxidation catalyst used in the carbon and ethylene removal step .
前記浄化ガス供給工程が、浄化ガスを冷却する熱交換工程を有することを特徴とする請求項3に記載の二酸化炭素含有ガスと熱の供給方法。 The method for supplying carbon dioxide-containing gas and heat according to claim 3, wherein the purified gas supply step includes a heat exchange step for cooling the purified gas.
JP2015071015A 2014-08-07 2015-03-31 Carbon dioxide-containing gas and heat supply equipment and supply method to crop production facilities Active JP6774167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015071015A JP6774167B2 (en) 2014-08-07 2015-03-31 Carbon dioxide-containing gas and heat supply equipment and supply method to crop production facilities

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014161077 2014-08-07
JP2014161077 2014-08-07
JP2015071015A JP6774167B2 (en) 2014-08-07 2015-03-31 Carbon dioxide-containing gas and heat supply equipment and supply method to crop production facilities

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019025132A Division JP6766908B2 (en) 2014-08-07 2019-02-15 Supply device and method of carbon dioxide-containing gas and heat to crop production facilities

Publications (2)

Publication Number Publication Date
JP2016036334A JP2016036334A (en) 2016-03-22
JP6774167B2 true JP6774167B2 (en) 2020-10-21

Family

ID=55528012

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015071015A Active JP6774167B2 (en) 2014-08-07 2015-03-31 Carbon dioxide-containing gas and heat supply equipment and supply method to crop production facilities
JP2019025132A Active JP6766908B2 (en) 2014-08-07 2019-02-15 Supply device and method of carbon dioxide-containing gas and heat to crop production facilities

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019025132A Active JP6766908B2 (en) 2014-08-07 2019-02-15 Supply device and method of carbon dioxide-containing gas and heat to crop production facilities

Country Status (1)

Country Link
JP (2) JP6774167B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6586199B1 (en) * 2018-06-25 2019-10-02 株式会社タクマ Exhaust gas treatment system
CN109059027B (en) * 2018-08-27 2020-12-01 山东电力工程咨询院有限公司 System and method for cooling high-temperature biomass gas and utilizing waste heat
CN109601201A (en) * 2018-11-23 2019-04-12 兖矿集团有限公司 A kind of system and its processing method applying carbon dioxide to greenhouse using normal-pressure hot-water boiler
JP7043465B2 (en) * 2019-08-16 2022-03-29 株式会社タクマ Exhaust gas treatment system
AU2024240122A1 (en) * 2023-03-21 2025-03-06 Cenagen Pty Ltd Waste processing method and system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62266121A (en) * 1986-05-12 1987-11-18 Asahi Glass Co Ltd Apparatus for treating waste gas of painting drying gas
JPS6312326A (en) * 1986-07-01 1988-01-19 Asahi Glass Co Ltd Exhaust gas treating apparatus for painting dryer furnace
JPH0742604U (en) * 1993-12-31 1995-08-11 智 川合 CO2 supply and heating system in the house
JP3025591U (en) * 1995-08-17 1996-06-21 智 川合 CO2 supply and heating system in the house
JP2004057145A (en) * 2002-07-31 2004-02-26 Miyoujiyou Cement Kk Composite plant for vegetable cultivation
JP2005218327A (en) * 2004-02-04 2005-08-18 Mec Engineering Service Co Ltd Plant-growing system comprising supplying exhaust gas
JP4922010B2 (en) * 2007-02-22 2012-04-25 大阪瓦斯株式会社 CO2 supply device for plant growth using exhaust gas
JP2008253877A (en) * 2007-03-30 2008-10-23 Mitsui Eng & Shipbuild Co Ltd Exhaust gas-treating device and method
JP5121637B2 (en) * 2008-09-04 2013-01-16 株式会社タクマ Denitration catalyst regeneration method, denitration catalyst regeneration apparatus, and exhaust gas treatment apparatus using the same

Also Published As

Publication number Publication date
JP6766908B2 (en) 2020-10-14
JP2016036334A (en) 2016-03-22
JP2019107007A (en) 2019-07-04

Similar Documents

Publication Publication Date Title
JP6766908B2 (en) Supply device and method of carbon dioxide-containing gas and heat to crop production facilities
CN105169942B (en) Flue gas of glass melting furnace dust-removal and desulfurizing denitration coprocessing system and processing method and application
CN103900391B (en) Selective sintering machine flue gas heat exchange denitration system and method thereof
US9851101B2 (en) Boiler system and power plant including the same
JP5035722B2 (en) Regeneration of NT-SCR-catalyst
JP5961514B2 (en) Fly ash circulation type exhaust gas treatment method
CN102294171B (en) Flue gas purifying system
JP5121637B2 (en) Denitration catalyst regeneration method, denitration catalyst regeneration apparatus, and exhaust gas treatment apparatus using the same
JP2013074887A (en) Carbon dioxide feeder to horticultural facility utilizing carbon dioxide in flue gas
CN102350340A (en) Composite smoke denitration catalyst capable of oxidizing zero-valence mercury
WO2011142376A1 (en) Emission gas processing system with carbon dioxide chemical absorption device
CN108465371A (en) One kind being based on minimum discharge fume treatment running gear and processing method
CN103691267A (en) Low-temperature synchronous denitration and desulfurization equipment and process for flue gas
JP4936002B2 (en) Exhaust gas treatment method and exhaust gas treatment apparatus
JP5073264B2 (en) Greenhouse cultivation system
CN202136916U (en) Flue gas purification system
JP6520557B2 (en) Exhaust gas purification apparatus and method, and apparatus for supplying carbon dioxide-containing gas and heat to a plant for crop production
CN105797555A (en) Method for selective denitration through non-catalytic reduction method in glass melting furnace heat storage chamber
CN104399370A (en) Lower temperature flue gas SCR (Selective Catalytic Reduction) denitration system and process
JP7316146B2 (en) Dilute sulfuric acid production apparatus and dilute sulfuric acid production method
JP6764644B2 (en) Exhaust gas supply system and exhaust gas supply method
CN108499344A (en) A kind of biomass flue gas dust-removal and desulfurizing denitrating system
JP2010036157A (en) Exhaust gas treatment device, exhaust gas treatment system and in-exhaust gas mercury oxidizing performance control system
CN102895856A (en) Waste incineration flue gas purification equipment and purification process thereof
JP7043465B2 (en) Exhaust gas treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191031

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20191031

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191108

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20191112

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200131

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200204

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200421

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200609

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20200616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200714

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20200825

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20200929

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201002

R150 Certificate of patent or registration of utility model

Ref document number: 6774167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350