以下、図を参照して本形態のエンジン搭載自立型飛行装置の構成を説明する。以下の説明では、同一の構成を有する部位には同一の符号を付し、繰り返しの説明は省略する。尚、以下の説明では上下前後左右の各方向を用いるが、これらの各方向は説明の便宜のためである。また、以下の説明では、エンジン搭載自立型飛行装置を自立型飛行装置10と称する。エンジン搭載自立型飛行装置は、ドローンとも称される。
図1を参照して本実施形態にかかる自立型飛行装置10の概略的構成を説明する。図1(A)は自立型飛行装置10を全体的に示す斜視図であり、図1(B)は自立型飛行装置10の上面図である。
図1(A)を参照して、自立型飛行装置10は、所謂ハイブリット型の自立型飛行装置である。即ち、メインロータ14A等は駆動的にエンジン30と接続される一方、サブロータ15A等は発電機16A等を介してエンジン30から電気エネルギが供給される。以下の説明では、メインロータ14A等を単にメインロータ14と称し、サブロータ15A等を単にサブロータ15と称する場合もある。ここで、紙面上に於ける左右方向が、エンジン30を構成する各エンジン部が整列する第1方向であり、紙面上に於ける前後方向が第2方向である。
自立型飛行装置10は、フレーム11と、フレーム11の略中央部分に配設されたエンジン30と、エンジン30により駆動される発電機16A等と、発電機16A等から発生する電力より回転するサブロータ15と、エンジン30と駆動的に接続されることで回転するメインロータ14とを主要に有している。
フレーム11は、エンジン30、発電機16A、各種配線および制御基板(ここでは不図示)等を支持するように枠状に形成されている。フレーム11としては、フレーム状に成型された金属または樹脂が採用される。フレーム11の下端部分には、自立型飛行装置10が接地する際に地面に接触するスキッド18が形成されている。フレーム11は、メインロータ14を支持するメインフレーム12A等、およびサブロータ15を支持するサブフレーム13A等を含む。メインフレーム12A等およびサブフレーム13A等の構成は後述する。
エンジン30、各種配線および制御基板(ここでは不図示)等は、ケーシング17に収納されている。ケーシング17は、例えば、所定形状に成形された合成樹脂板材からなり、フレーム11の中心部に固定されている。ここで、ケーシング17およびそれに内蔵される部材を本体部19と称する。
エンジン30の上方には、発電機16A、16Bが配設されている。発電機16A、16Bは、エンジン30により回転されることで発電する。発電機16A、16Bから発生した電力は、サブロータ15A等を回転させるモータ21等に供給される。また、その電力は、サブロータ15A等の回転を制御する演算制御装置等にも供給される。
メインフレーム12A、12Bは、本体部19から、左右方向に直線的に延びている。メインフレーム12A、12Bは、棒状に成型された金属または合成樹脂から成る。左方に向かって延びるメインフレーム12Aの左方側端部には、メインロータ14Aが回転可能な状態で配設されている。メインロータ14Aには図示しないプーリが接続しており、メインロータ14A側のプーリとエンジン30側の図示しないプーリとの間にベルト20Aが掛け渡されている。一方、右方に向かって延びるメインフレーム12Bの右方側端部には、メインロータ14Bが回転可能な状態で配設されている。メインロータ14Bには図示しないプーリが接続しており、メインロータ14B側のプーリとエンジン30側の図示しないプーリとの間にベルト20Bが掛け渡されている。かかる構成によりメインロータ14はエンジン30と駆動的に接続される。よって、エンジン30から発生した動力でメインロータ14は直接的に回転するので、シリーズ型のものよりも、エンジン30からメインロータ14にエネルギが伝達する際のエネルギ損失を小さくすることができる。
メインロータ14は、自立型飛行装置10を空中に浮遊させるための上昇力を発生させる機能を有する。一方、サブロータ15は、主に、自立型飛行装置10の姿勢制御を担う。例えば、サブロータ15は、自立型飛行装置10がホバリングを行っている際に、自立型飛行装置10の位置姿勢を一定に保つべく適宜回転する。また、サブロータ15は、自立型飛行装置10が移動する際に、自立型飛行装置10を傾斜させるべく回転する。また、メインロータ14Aとメインロータ14Bとは逆方向に回転する。
サブフレーム13A等は、前後方向に延びており、上記したメインフレーム12A等と同様に、棒状に成形された金属または合成樹脂から成る。サブフレーム13A等は、メインフレーム12A等の途中部分から延伸している。サブフレーム13Aの前端部にはサブロータ15Aが配設され、サブロータ15Aはその下方に配設されたモータ21Aで回転されている。サブフレーム13Bの前端部にはサブロータ15Bが配設され、サブロータ15Bはその下方に配設されたモータ21Bで回転されている。サブフレーム13Cの後端部にはサブロータ15Cが配設され、サブロータ15Cはその下方に配設されたモータ21Cで回転されている。サブフレーム13Dの後端部にはサブロータ15Dが配設され、サブロータ15Dはその下方に配設されたモータ21Dで回転されている。モータ21A、21B、21C、21Dには、発電機16A、16Bが発電した電力が供給される。サブフレーム13A等の内部には、電力をモータ21Aに供給するための配線が引き回されている。
図1(B)を参照して、メインフレーム12Aの長さL10(本体部19の中心からメインフレーム12Aの左端までの長さ)は、メインロータ14Aの一つの羽根よりも長くされている。このようにすることで、回転するメインロータ14Aが本体部19に接触してしまうことを防止している。更に、メインフレーム12Aの長さL10は、メインロータ14Aがサブロータ15A、15Cと接触することが無いように、充分に長く設定されている。メインフレーム12Bの長さは、メインフレーム12Aと同等である。
サブフレーム13Dの長さL20は、サブロータ15Dが本体部19に接触しないように、サブロータ15Dの1つの羽根の長さよりも長くされている。また、サブフレーム13Dの長さL20(本体部19の中心からサブフレーム13Dの後端までの長さ)は、メインロータ14Bと接触しないような長さとされている。ここで、他のサブロータ15A、15B、15Cの長さは、サブロータ15Dと同様である。また、他のサブフレーム13A等の長さも、サブフレーム13Dと同等である。また、メインフレーム12Aの長さL10は、サブフレーム13Dの長さL20よりも、充分に長い。
上記したメインロータ14およびサブロータ15は、本体部19の中心を左右方向に沿って通過する左右方向対称線に対して線対称に配置されている。また、上記したメインロータ14およびサブロータ15は、本体部19の中心を前後方向に沿って通過する前後方向対称線に対して線対称に配置されている。このように、メインロータ14およびサブロータ15を、対称的に配置することで、自立型飛行装置10を空中に於ける自立型飛行装置10の位置姿勢を安定化することができる。
上記した構成の自立型飛行装置10が飛行する際には、メインロータ14等とサブロータ15A等が同時に回転する。メインロータ14等が回転することで発生する推力により自立型飛行装置10が空中に浮遊し、サブロータ15A等が個別に回転することで空中に於ける自立型飛行装置10の位置姿勢が制御される。自立型飛行装置10が移動する際には、メインロータ14等を所定速度で回転させつつ、サブロータ15A等の回転速度を変更することで、自立型飛行装置10を傾斜させる姿勢制御を実行する。係る姿勢制御に関しては後述する。
図2のブロック図を参照して、自立型飛行装置10の接続構成を説明する。自立型飛行装置10は、その空中に於ける位置姿勢を制御するための演算制御装置31を有している。演算制御装置31は、CPU、RAM、ROM等から成り、ここでは図示しない各種センサ、カメラ、操作装置からの指示に基づいて、サブロータ15A等を駆動するモータ21A等の回転を制御している。ここで、操作装置とは、自立型飛行装置10と無線的または有線的に接続され、使用者が自立型飛行装置10の位置、高度、移動方向、移動速度等を操作することを可能とする所謂コントローラである。
自立型飛行装置10では、上記したように、エンジン30が発生する駆動エネルギで、メインロータ14およびサブロータ15を回転させることで、空中に浮遊すると共に所定方向に向かって移動することができる。また、空中に於ける位置姿勢の制御は、サブロータ15を回転させるモータ21A等の回転速度を制御することで行っている。
モータ21A等はエンジン30をエネルギ源としている。エンジン30とモータ21A等との間には、発電機16A等、インバータ32(電力変換器)、キャパシタモジュール34、ドライバ24A等と、が介在している。かかる構成により、エンジン30から発生する駆動力は電力に変換され、この電力によりモータ21A等が所定の回転速度で回転することで、自立型飛行装置10の位置姿勢の制御および移動が行われる。
エンジン30は、後述するようにガソリン等を燃料とするレシプロ型のものであり、その駆動力で発電機16A、16Bを駆動する。ここで、上記したように、エンジン30は、メインロータ14も駆動している。エンジン30は、演算制御装置31により制御されている。
発電機16A、16Bから発生した交流の電力はインバータ32に供給される。インバータ32では、先ずコンバータ回路で交流電力を直流電力に変換した後に、インバータ回路で直流電力を所定の周波数の交流電力に変換している。インバータ32から出力される電力の一部は、ホバリング時に、キャパシタモジュール34に蓄電される。キャパシタモジュール34に蓄電された電力は、自立型飛行装置10が位置姿勢を変更する際に、モータ21A等に供給される。キャパシタモジュール34は、蓄電池等と比較すると、短時間で大電流を負荷に供給することができることから、モータ21A等の回転速度を瞬時に速くすることができ、自立型飛行装置10を高速に変位させることができる。
また、インバータ32から出力される電力の一部は、余剰電力消費回路33にも供給される。余剰電力消費回路33は、インバータ32が変換する電力のうち、モータ21A等で用いられない部分を消費するための回路である。余剰電力消費回路33を備えることで、エンジン30やインバータ32が安定して動作することができる。インバータ32の挙動は演算制御装置31で制御されている。
ドライバ24A、24B、24C、24Dは、インバータ32から発生する電力を用いて、それぞれ、モータ21A、21B、21C、21Dに流す電流量、その回転方向、回転するタイミング等を制御している。ドライバ24A、24B、24C、24Dの挙動は、演算制御装置31で制御されている。
上記した構成の自立型飛行装置10では、空中の一定箇所に留まるホバリング状態と、所定位置に向かって移動している移動状態とで、電力の供給系統が異なる。
具体的には、ホバリング状態では、発電機16A、16B、インバータ32、ドライバ24A等、モータ21A等の順番で、電力が供給される。そして、演算制御装置31は、自立型飛行装置10が地面に対して平行な状態を保ちつつ、一定箇所に留まるように、各種センサからの出力に基づいて、ドライバ24A等を制御することで、モータ21Aを所定の回転数で回転させる。このようにすることで、図1に示したサブロータ15A等が所定の速度で回転するようになり、自立型飛行装置10は安定的にホバリングできる。
一方、自立型飛行装置10を移動させる移動状態では、先ず、演算制御装置31は、コントローラを介したユーザの指示等に基づいて、キャパシタモジュール34に蓄電された電力をドライバ24A等に供給する。よって、ドライバ24等には、インバータ32から供給される電力に加えて、キャパシタモジュール34からも電力が供給される。例えば、図1を参照して、自立型飛行装置10を前方に向かって移動させる際には、演算制御装置31は、ドライバ24A等を制御することで、供給される電力をサブロータ15C、15Dを駆動するモータ21C、21Dに供給し、サブロータ15C、15Dの回転速度を、サブロータ15A、15Bの回転速度よりも早くする。
そのようにすると、自立型飛行装置10を右方から見た場合、自立型飛行装置10は反時計回りに若干回転するように傾斜する。このように傾斜した状態で、メインロータ14A、14Bを回転させると、メインロータ14A、14Bが発生する揚力と自立型飛行装置10に作用する重力との合力が前方に向かって作用する。よって、自立型飛行装置10は前方に向かって移動するようになる。
自立型飛行装置10が所定の箇所まで移動したら、演算制御装置31は、キャパシタモジュール34からドライバ24A等への給電を停止し、ドライバ24A等を介して各モータ21A等を略均等の速度で回転させる。このようにすることで、自立型飛行装置10は再びホバリングを行う。
上記のように、本実施の形態に係る自立型飛行装置10は、エンジン30の駆動力で回転するメインロータ14等と、エンジン30で駆動されるモータ21等で回転するサブロータ15A等を有する所謂ハイブリット型のものである。よって、上記したシリーズ型のものと比較すると、自立型飛行装置10では、エネルギ消費改善率を約50%とすることができる。
次に、図3から図5を参照して、上記した構成を有する自立型飛行装置10に搭載されるエンジン30の構成を説明する。本実施形態の自立型飛行装置10では、エンジン30から大きな振動が発生すると、自立型飛行装置10の空中に於ける位置姿勢を精密に制御することができないため、エンジン30として無振動型または低振動型のものを採用している。
図3を参照して、エンジン30の一形態を説明する。図3(A)はエンジン30を前方から見た断面図であり、図3(B)はエンジン30を上方から見た断面図である。ここに示すエンジン30は、左右方向に対向配置された2つのエンジン部(第1エンジン部40、第2エンジン部41)を有する。
図3(A)および図3(B)を参照して、エンジン30は、紙面上に於いて左方に配置された第1エンジン部40と、右方側に配置された第2エンジン部41とを有している。
第1エンジン部40は、左右方向に往復運動する第1ピストン43と、第1ピストン43の往復運動を回転運動に変換する第1クランクシャフト42と、第1ピストン43と第1クランクシャフト42とを回転可能に連結する第1コネクティングロッド44と、を有している。
第2エンジン部41は、左右方向に往復運動する第2ピストン46と、第2ピストン46の往復運動を回転運動に変換する第2クランクシャフト45と、第2ピストン46と第2クランクシャフト45とを回転可能に連結する第2コネクティングロッド47と、を有している。
第1クランクシャフト42の上端側には、プーリ22および発電機16Aが接続されている。また、第2クランクシャフト45の上端側には、プーリ23および発電機16Bが接続されている。
第1エンジン部40の第1ピストン43と、第2エンジン部41の第2ピストン46で、燃焼室48を共有している。換言すると、第1ピストン43と第2ピストン46とは、連通する一つのシリンダの内部を往復運動する。よって、第1エンジン部40および第1ピストン43が中心部に向かって同時にストロークすることで、ストローク量を少なくしつつ、燃焼室48における混合ガスの高膨張比をとることができる。
また、ここでは図示していないが、エンジン30には、燃焼室48から連通する容積空間が形成されており、この容積空間に点火プラグが配置されている。また、燃焼室48には、ここでは図示しない吸気口および排気口が形成されており、ガソリンなどの燃料を含む混合気が吸気口から燃焼室48に導入され、燃焼後の排気ガスが排気口を経由して燃焼室から外部に排気される。
図3(A)を参照して、上記した構成のエンジン30は、次のように動作する。先ず、吸込行程では、第1ピストン43および第2ピストン46がシリンダ49の内部で中央部から外側に向かって移動することで、燃料と空気との混合物である混合気をシリンダ49の内部に導入する。次に、圧縮行程では、回転する第1クランクシャフト42および第2クランクシャフト45の慣性により、第1ピストン43および第2ピストン46が中央部に向かって押し出され、シリンダ49の内部で混合気が圧縮される。次に、燃焼行程では、図示しない点火プラグが燃焼室48で点火することで、シリンダ49の内部で混合気が燃焼し、これにより第1ピストン43および第2ピストン46が下死点である外側の端部まで押し出される。その後、排気行程では、回転する第1クランクシャフト42および第2クランクシャフト45の慣性により第1ピストン43および第2ピストン46が内側に押し出され、シリンダ49の内部に存在する燃焼後のガスは、外部に排出される。
本形態のエンジン30では、一つのシリンダ49の内部で往復運動する2つの第1ピストン43および第2ピストン46で、ストロークを分割することができるので、通常のガソリンエンジンと比較して、混合ガスの圧縮比を大きくすることができる。また、シリンダ49の内部で第1ピストン43および第2ピストン46が対向するので、一般的なエンジンで必要とされるシリンダヘッドが不要と成り、エンジン30の構成が簡素であり且つ軽量とされている。また、エンジン30を構成している各部材、即ち、第1ピストン43および第2ピストン46、第1クランクシャフト42および第2クランクシャフト45等が対向して配置され、かつ対向するように動作している。このことから、エンジン30の各部材から発生する振動が相殺され、エンジン30全体から外部に発生する振動を少なくすることができる。よって、本形態では、上記した構造のエンジン30を搭載することで、自立型飛行装置10の小型化、軽量化および低振動化を達成することができる。特に、低振動化により、姿勢制御、モータ出力制御などの演算制御装置やGPSセンサ等の精密機器への悪影響を防止することが出来る。また、自立型飛行装置10が輸送する配送荷物が振動で損傷してしまうことを防止することができる。
図4を参照して、エンジン30の他の形態を説明する。図4(A)はエンジン30を前方から見た側面図であり、図4(B)はエンジン30の上面図である。
図4(A)および図4(B)を参照して、ここでは、エンジン30は、左側の第1エンジン部60と、右側の第2エンジン部61とから成り、各々のエンジン部で個別にシリンダが形成されている。かかる事項が図3に示したエンジン30とは異なる。
第1エンジン部60は、第1シリンダ71と、第1シリンダ71の内部で往復運動する第1ピストン70と、第1ピストン70の往復運動を回転運動に変換する第1クランクシャフト80と、第1ピストン70と第1クランクシャフト80とを運動可能に連結する第1コネクティングロッド75と、第1吸気バルブ64と、第1排気バルブ62とを有する。
第2エンジン部61は、第2シリンダ73と、第2シリンダ73の内部で往復運動する第2ピストン72と、第2ピストン72の往復運動を回転運動に変換する第2クランクシャフト81と、第2ピストン72と第2クランクシャフト81とを運動可能に連結する第2コネクティングロッド76と、第2吸気バルブ65と、第2排気バルブ63とを有する。
ここで、上記した第1エンジン部60と第2エンジン部61とは、鋳造により一体的に形成されたエンジンブロックに収納されても良いし、第1エンジン部60と第2エンジン部61とは個別にエンジンブロックに収納されても良い。
エンジン30では、第1エンジン部60および第2エンジン部61を構成する主要な構成部品が、左右方向に沿って配置されている。具体的には、第1エンジン部60の第1シリンダ71、第1ピストン70、第1クランクシャフト80および第1コネクティングロッド75が、左右方向に沿って配置されている。更に、第2エンジン部61の第2シリンダ73、第2ピストン72、第2クランクシャフト81および第2コネクティングロッド76も、左右方向に沿って配置されている。このように、各エンジン部の各構成要素を左右方向に沿って配置することで、各エンジン部が動作することで発生する振動が相殺され、制振効果を向上することができる。
更に、第1エンジン部60と第2エンジン部61とは、左右方向に於いて対称的に配置されている。かかる構成によっても、各エンジン部が動作することで発生する振動が互いに相殺され、制振効果を向上することができる。
図4(A)および図4(B)を参照して、第1エンジン部60には、上記した第1吸気バルブ64および第2吸気バルブ65の動作を制御するバルブ駆動機構を有している。
このバルブ駆動機構は、クランクプーリ82と、カムプーリ85と、クランクプーリ82とカムプーリ85とに掛け渡されたタイミングベルト74と、を有している。クランクプーリ82は、第1クランクシャフト80の外部に導出する部分に接続している。カムプーリ85は、第1吸気バルブ64に接してその進退運動を制御する第1吸気カム84と、第2吸気バルブ65に接してその進退運動を制御する第2吸気カム87と共に、カムシャフト86に接続している。第1吸気カム84と第2吸気カム87とは、第1吸気カム84が第1吸気バルブ64を押圧するタイミングと、第2吸気カム87が第2吸気バルブ65を押圧するタイミングが同時となるように、位相差をもってカムシャフト86に接続されている。
図4(A)を参照して、第1エンジン部60の第1クランクシャフト80の上端側にはプーリ22および発電機16Aが接続され、第2エンジン部61の第2クランクシャフト81の上端側にはプーリ23および発電機16Bが接続されている。
第1排気バルブ62および第2排気バルブ63を駆動する機構は、クランクプーリ83と、カムプーリ67と、クランクプーリ82とカムプーリ85とに掛け渡されたタイミングベルト77と、を有している。クランクプーリ83は、第2クランクシャフト81の外部に導出する部分に接続している。カムプーリ67は、第1排気バルブ62に接してその進退運動を制御する第1排気カム78と、第2排気バルブ63に接してその進退運動を制御する第2排気カム79と共に、カムシャフト66に接続している。第1排気カム78および第2排気カム79は、第1排気カム78が第1排気バルブ62を押圧するタイミングと、第2排気カム79が第2排気バルブ63を押圧するタイミングが同時となるように、位相差をもってカムシャフト66に接続されている。
図4(A)に示すように、第1排気カム78等が取り付けられるカムシャフト66には、反転ギア68が接続している。また、ここでは図示しないが、カムシャフト86(図4(B))にも反転ギアが接続している。そして、カムシャフト66の反転ギア68と、カムシャフト86の反転ギアとは歯合している。かかる構成により、第1クランクシャフト80の回転方向と、第2クランクシャフト81の回転方向を逆とするクランクシャフト反転同期機構が構成されている。
図4に示したエンジン30の動作は、基本的には、図3に示した場合と同様である。即ち、第1ピストン70と第2ピストン72とは、同時に左右方向内側に向かって移動することで圧縮行程等を実行し、更に、同時に左右方向外側に向かって移動することで燃焼行程等を実行する。また、上記のように構成することで、吸気および排気経路である流路88および流路89が簡素化され、吸気および排気を効率的に行うことができる。
図5を参照して、本実施形態に係る自立型飛行装置10に採用されるエンジン30の他の形態を説明する。ここに示すエンジン30は一つのピストン104を有し、クランクシャフト100およびバランサシャフト107から駆動力を取り出している。
具体的には、エンジン30は、シリンダ105と、シリンダ105の内部で往復運動するピストン104と、ピストン104の往復運動を回転運動に変換するクランクシャフト100と、ピストン104とクランクシャフト100とを回転可能に連結するコネクティングロッド103と、を有している。クランクシャフト100の上端側にはクランクギア102、プーリ22、発電機16Aが取り付けられている。また、クランクシャフト100にはバランスマス101が取り付けられている。バランスマス101を取り付けることで、クランクシャフト100が回転することで発生する一次慣性力を減少させることが出来る。
バランサシャフト107は、クランクシャフト100の右方側に配設されている。バランサシャフト107は、所謂偏心シャフトである。バランサシャフト107が、クランクシャフト100と共に回転することで、クランクシャフト100の回転に伴い発生する振動を低減することが出来る。バランサシャフト107の上端側には、バランサギア109、フライホイル110、プーリ23、および発電機16Bが取り付けられている。
バランサシャフト107には、バランスマス106が取り付けられている。クランクシャフト100に形成されるバランスマス101と、バランサシャフト107に形成されるバランスマス106との位置関係は対称的とされている。具体的には、バランスマス101とバランスマス106との位置関係は、クランクシャフト100の回転中心とバランサシャフト107の回転中心との中央に垂直に規定された対称線111に対して線対称となっている。
バランスマス106は、バランサシャフト107のみに形成してもよいが、ここでは、バランサシャフト107およびバランサギア109にバランスマス106を形成している。また、バランスマス106も含めたバランサシャフト107周りの慣性モーメントと、バランスマス101を含めたクランクシャフト100周りの慣性モーメントとを、同一または略同一としている。このようにすることで、エンジン30が運転することで発生する振動を更に小さくすることができる。
ここで、バランサシャフト107にフライホイル110を形成することもできる。この場合、フライホイル110を含めたバランサシャフト107周りの慣性モーメントと、クランクシャフト100の慣性モーメントとを、同一にすることで、制振効果を更に大きくすることができる。
図6から図8を参照して、移動のために自立型飛行装置10を傾斜させた際の出力配分比に関して説明する。図6はシミュレーションするために用いた座標系を説明するための図である。図7(A)は10度傾斜させた場合の自立型飛行装置10を示す側面図であり、図7(B)はその場合の出力パワーの経時変化を示すグラフである。図8(A)は35度傾斜させた場合の自立型飛行装置10を示す側面図であり、図8(B)はその場合の出力パワーの経時変化を示すグラフである。
先ず、図6を参照して、自立型飛行装置10の出力をシミュレーションするために用いた運動方程式について説明する。図6(A)は空間固定座標系を示すグラフであり、図6(B)は機体固定座標系を示すグラフである。
図6(A)のように空間固定座標系をとり、図6(B)のように機体固定座標系をとった場合、この2つの固定座標系の関係は、以下の数1で記述することができる。ここで、φ、θ、ψは、ロール、ピッチ、スピンを表すオイラー角である。
また、自立型飛行装置10の重心{XG、YG、ZG}Tの並進運動は、空間固定座標系において以下の数2で記述される。ここで、mは自立型飛行装置10の機体重量であり、gは重力加速度であり、Tはメインロータ14A等とサブロータ15A等が発生する推力である。
更に、自立型飛行装置10の重心周りの回転運動は、機体固定座標系に於いて以下の数3で記述される。ここで、IXX、IYY、IZZは各軸周りの機体慣性モーメントであり、{W1、W2、W3}Tは角速度ベクトルであり、{τφ、τθ、τψ}Tは姿勢制御ロータが作る各軸周りのトルクを表す。
上記の方程式に基づき自立型飛行装置10の運動をシミュレーションし、以下の結果を得た。
このシミュレーションでは、ホバリング時と姿勢制御時とで、パワー配分比の相違を検証した。ここで、姿勢制御時とは、自立型飛行装置10を空中で移動させるために、自立型飛行装置10を例えば10度傾斜させるときである。また、パワー配分比とは、メインロータ14A等が回転することで発生するパワーと、サブロータ15A等が回転することで発生するパワーとの比率である。
自立型飛行装置10がホバリングしている際には、メインロータ14A等が装置本体を浮上させる推力を発生させる一方、サブロータ15A等は装置本体を所定箇所に留まらせると共に水平状態を維持するために回転する。よって、メインロータ14等の出力は、サブロータ15A等の出力よりも遙かに大きい。例えば、メインロータ14等が出力するパワーは3.04Wであり、サブロータ15A等が出力するパワーは0.34Wである。メインロータ14等とサブロータ15A等との出力配分比は、例えば90%:10%としている。
メインロータ14等とエンジン30の出力軸とは駆動的に接続されているため、エンジン30からメインロータ14等にエネルギが伝達される経路に於けるエネルギ損失は非常に小さい。即ち、エンジン30からメインロータ14等にエネルギが伝達される経路のエネルギ効率は非常に高い。一方、サブロータ15A等は、図2等に示したように、発電機16A等、インバータ32、モータ21A等を介して、エンジン30からエネルギが供給されるので、この経路のエネルギ効率は例えば70%と低い。よって、ホバリング時に於いて、メインロータ14等の出力配分比を大きくすることで、エンジン30から発生されるエネルギを効果的に用いて自立型飛行装置10を浮遊させることができる。
一方、姿勢制御時に於いては、自立型飛行装置10を傾斜させるべく、サブロータ15A等を高速に回転させる。よって、ホバリング時と比較すると、サブロータ15A等に供給されるエネルギの比率が大きくなる。また、自立型飛行装置10を傾斜する角度が大きくなるほど、サブロータ15A等を高速に回転させる必要があるので、サブロータ15A等に供給されるエネルギの比率が大きくなる。
図7を参照して、姿勢制御時に於いて、自立型飛行装置10を10度傾斜させた場合を説明する。図7(A)は自立型飛行装置10が10度傾斜している状態を示す側面図であり、図7(B)は各ロータが発生させるパワーの経時変化を示すグラフである。ここで、パワーとは各ロータが回転することで発生している推力のことである。
図7(A)を参照して、姿勢制御時には、演算制御装置31が、サブロータ15C、15Dを、サブロータ15A、15Bよりも高速に回転させることで、自立型飛行装置10の後方部分に作用する揚力を、その前方部分に作用する揚力よりも大きくし、自立型飛行装置10を反時計回りに傾斜させる。ここでは、自立型飛行装置10の傾斜角θが10度となるように、サブロータ15A等を回転させている。
図7(B)に示すグラフの横軸は時間であり、縦軸は各ロータから発生するパワーである。ここで、一点鎖線はサブロータ15A等のパワーを示し、点線はメインロータ14等のパワーを示し、実線はサブロータ15A等のパワーとメインロータ14等のパワーとの合計値を示している。
この図を参照して、時間T1では、サブロータ15C、15Dを、サブロータ15A、15Bよりも高速に回転させることで、サブロータ15A等のパワーが最大値(約0.5kW)を示している。このようにすることで、上記したように、自立型飛行装置10の傾斜角度を10度とする。この状態で、サブロータ15C、15Dの回転速度を、サブロータ15A、15Bと同等程度とすることで、メインロータ14等の推力により、自立型飛行装置10は前方に向かって移動する。また、本実施形態では、図2に示したキャパシタモジュール34から供給される電力で、サブロータ15C、15Dの回転数を即座に高速化することができる。
また、時間T2では、自立型飛行装置10が所定の速度に到達したので、自立型飛行装置10を水平状態とするべく、サブロータ15A、15Bの回転数を、サブロータ15C、15Dよりも高速にする。この際にも、サブロータ15A等のパワーは比較的大きくなるが、時間T1のパワーと比較すると小さい。
時間T1から時間T2までの間は、自立型飛行装置10を傾斜させて加速度を発生させており、時間T2で自立型飛行装置10を水平状態とすることで加速度をゼロとする。時間T2以降は、自立型飛行装置10は一定の速度で移動する。
自立型飛行装置10の姿勢制御時に於いて、メインロータ14等の出力は基本的には変動せず、約3kwである。また、この時、エンジン30の回転数は、一定でも良いし、必要に応じて高速にしても良い。
上記のように自立型飛行装置10を10度傾斜させた場合、サブロータ15A等の最大パワーは約0.6kwであり、メインロータ14等のパワーは約3.0kwである。よって、メインロータ14等とサブロータ15A等との出力配分比は86%:14%となる。
図8を参照して、自立型飛行装置10を35度傾斜させた場合を説明する。図8(A)は35度傾斜した自立型飛行装置10を示す側面図であり、図8(B)はこの場合のパワーの経時変化を示すグラフである。ここで、自立型飛行装置10を移動させるべく傾斜させる制御方法は図7に示した場合と同様である。自立型飛行装置10の傾斜角θをこのように大きくすることで、より高速に自立型飛行装置10を移動させることができる。
図8(B)を参照して、自立型飛行装置10を35度傾斜させる場合は、サブロータ15C、15Dを更に高速に回転させる必要がある。よって、時間T3のサブロータ15A等の最大値は約1.3kwとなる。また、時間T4では、自立型飛行装置10を水平状態とするべく、サブロータ15A等のパワーは再度大きくなる。ここで、時間T3から時間T4までの間は、自立型飛行装置10を傾斜させて加速度を発生させており、時間T4で自立型飛行装置10を水平状態とすることで加速度をゼロとする。時間T4以降は、自立型飛行装置10は一定の速度で移動する。ここでは、自立型飛行装置10を大きく傾斜させているため、自立型飛行装置10に作用する加速度を大きくし、自立型飛行装置10を高速に移動させることができる。
上記のように、自立型飛行装置10の姿勢制御時に於いて、メインロータ14等の出力は基本的には変動せず、約3kwである。また、この時、エンジン30の回転数は、一定で良い。
よって、自立型飛行装置10を35度傾斜させることで移動させた場合、メインロータ14等とサブロータ15A等との出力配分比は、例えば70%:30%となる。即ち、自立型飛行装置10を10度傾斜させる場合と比較すると、サブロータ15A等の出力が大きくなる。
本実施形態では、自立型飛行装置10の姿勢変更を行う際には、ホバリング時と比較して、サブロータ15A等の出力配分比を大きくしている。このようにすることで、メインロータ14等の推力で自立型飛行装置10を浮遊させた状態のまま、サブロータ15A等を高速に回転させることで、即座に自立型飛行装置10を傾斜させて移動させることができる。
また、自立型飛行装置10の姿勢変更を行う際に、サブロータ15A等の出力が最大となる際の、サブロータ15A等への出力配分比を10%以上30%以下とすることが好ましい。この出力配分比を10%以上とすることで、サブロータが十分な回転力を得られ、空中で自立型飛行装置10を好適に傾斜させて移動することができる。また、出力配分比を30%以下とすることで、自立型飛行装置10の空中に於ける姿勢を安定化することができる。
一般に、マルチローター式の自立型飛行装置の姿勢制御の為には、100msecオーダーの出力応答が要求されるところ、エンジン駆動型の自立型飛行装置では出力応答の速度が十分ではないので正確な姿勢制御を行うことは簡単ではなかった。一方、本実施形態に係る自立型飛行装置10では、サブロータ15A等を回転させるモータ21A等の回転数を電子的に制御することで自立型飛行装置10の姿勢制御を行っているため、100msecオーダーの出力応答が可能になり、自立型飛行装置10の姿勢制御を正確に行うことができる。
以上、本発明の実施形態を示したが、本発明は、上記実施形態に限定されるものではない。
図2を参照して、自立型飛行装置10に蓄電池を備えても良い。即ち、発電機16A等から発生する電力の一部を蓄電池に充電し、適宜、蓄電池から放電される電力でモータ21A等を回転するようにしても良い。
図1を参照して、エンジン30の駆動力はベルト20A等を経由してメインロータ14等に伝達されたが、ギア列等の他の動力伝達手段によりエンジン30の駆動力をメインロータ14等に伝達するようにしても良い。