JP6768134B2 - Substrate processing equipment and semiconductor equipment manufacturing methods and programs - Google Patents
Substrate processing equipment and semiconductor equipment manufacturing methods and programs Download PDFInfo
- Publication number
- JP6768134B2 JP6768134B2 JP2019202852A JP2019202852A JP6768134B2 JP 6768134 B2 JP6768134 B2 JP 6768134B2 JP 2019202852 A JP2019202852 A JP 2019202852A JP 2019202852 A JP2019202852 A JP 2019202852A JP 6768134 B2 JP6768134 B2 JP 6768134B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- processing chamber
- unit
- blocking
- gas supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Chemical Vapour Deposition (AREA)
Description
本発明は、基板処理装置、炉口部および半導体装置の製造方法並びにプログラムに関する。 The present invention relates to a method and a program for manufacturing a substrate processing apparatus, a furnace mouth portion and a semiconductor apparatus.
基板処理装置の一例としての半導体製造装置には、縦型装置があることが知られている。昨今、この種の半導体製造装置は、多様な成膜を可能にする為に開閉弁(バルブ)の個数も多く、ガス供給系も2系統以上の場合が多い。従来、図4に示すように、炉口部に最も近い開閉弁から炉口部までの配管は、フレキシブル配管を含む配管となっていた。装置のレイアウトにもよるが、この配管の長さは、500〜3000mm程度であった。 It is known that a semiconductor manufacturing apparatus as an example of a substrate processing apparatus includes a vertical apparatus. In recent years, this type of semiconductor manufacturing apparatus has a large number of on-off valves (valves) in order to enable various film formations, and often has two or more gas supply systems. Conventionally, as shown in FIG. 4, the pipe from the on-off valve closest to the hearth to the hearth has been a pipe including a flexible pipe. Although it depends on the layout of the device, the length of this pipe was about 500 to 3000 mm.
この開閉弁までのフレキシブル配管を含む配管内に付着した副生成物が起因とされるパーティクルが反応室内に放出され基板上に付着することでデバイス特性に影響を与えることが知られている。そこで、この問題を防止する手段として、成膜ガスを供給していない配管に、N2ガスを成膜ガスの供給と同時に流す方法が、実施されている。ところが、このN2ガス(以後、カウンターN2ガスという場合がある)を供給することにより成膜ガス濃度が、反応室内で不均一となり、基板処理において膜厚均一性が悪化してしまう。 It is known that particles caused by by-products adhering to the piping including the flexible piping up to the on-off valve are released into the reaction chamber and adhere to the substrate, which affects the device characteristics. Therefore, as a means for preventing this problem, a method of flowing N2 gas at the same time as the supply of the film-forming gas is implemented in the piping to which the film-forming gas is not supplied. However, by supplying this N2 gas (hereinafter, may be referred to as counter N2 gas), the film thickness gas concentration becomes non-uniform in the reaction chamber, and the film thickness uniformity deteriorates in the substrate treatment.
ここで、カウンターN2ガスを不要にする構成として、ガス供給系内の処理炉に近い配管に開閉弁を設置することが考えられるが、弁設置スペース制限、弁耐熱温度制限等の原因で実現できていない。一方、特許文献1及び特許文献2のように、開閉弁が炉口部の近くの配管に設けられる構成が図示されている。但し、これら先行技術文献には、カウンターN2ガスを不要にする構成については言及されていない。
Here, as a configuration that eliminates the need for counter N2 gas, it is conceivable to install an on-off valve in the piping near the processing furnace in the gas supply system, but this can be realized due to valve installation space limitation, valve heat resistance temperature limitation, etc. Not. On the other hand, as in
本発明の目的は、上記問題点を解決するために、炉口部の近傍に開閉弁を設ける構成を提供することである。 An object of the present invention is to provide a configuration in which an on-off valve is provided in the vicinity of the furnace mouth portion in order to solve the above problems.
本発明の一態様によれば、処理室に設けられる第1供給部に第1のガスを供給する第1ガス供給系と、処理室に設けられる第2供給部に第2のガスを供給する第2ガス供給系と、処理室に直結して設けられ、前記第1ガス供給系から前記第1供給部への第1のガスの供給を遮断する第1遮断部と、処理室に直結して設けられ、前記第2ガス供給系から前記第2供給部への第2のガスの供給を遮断する第2遮断部と、前記第1遮断部を開放し前記第1のガスを前記処理室に供給する間、前記第2ガス供給系から前記第2供給部への前記第2のガスの供給を前記第2遮断部で遮断し、前記第2遮断部を開放し前記第1のガスを前記処理室に供給する間、前記第1ガス供給系から前記第1供給部への前記第1のガスの供給を前記第1遮断部で遮断するように少なくとも前記第1遮断部と前記第2遮断部とを制御する制御部と、を備える構成が提供される。 According to one aspect of the present invention, the first gas supply system for supplying the first gas to the first supply unit provided in the treatment chamber and the second gas to be supplied to the second supply unit provided in the treatment chamber. The second gas supply system is directly connected to the treatment chamber, and the first cutoff unit that cuts off the supply of the first gas from the first gas supply system to the first supply unit is directly connected to the treatment chamber. A second cutoff unit that cuts off the supply of the second gas from the second gas supply system to the second supply part, and the first cutoff part that is opened to allow the first gas to be used in the processing chamber. The supply of the second gas from the second gas supply system to the second supply unit is cut off by the second cutoff unit, the second cutoff part is opened, and the first gas is released. At least the first blocking section and the second blocking section so as to shut off the supply of the first gas from the first gas supply system to the first supply section by the first blocking section while supplying to the processing chamber. A configuration is provided that includes a control unit that controls the cutoff unit .
本発明によれば、炉口部の近傍に開閉弁が取り付けられた構成を提供することができる。 According to the present invention, it is possible to provide a configuration in which an on-off valve is attached in the vicinity of the furnace mouth portion.
[図1]本発明の実施形態で好適に用いられる基板処理装置の概略構成図であり、処理炉部分の縦断面図である。
[図2]本発明の実施形態で好適に用いられる基板処理装置の一部の概略構成図であり、反応管の横断面図である。
[図3]本発明の実施形態で好適に用いられる基板処理装置のコントローラの概略構成図である。
[図4]従来の炉口部近傍の配管構成図である。
[図5]本発明の実施形態に好適に用いられる遮断部とガス供給管とノズルとの関係を示す模式図である。
[図6]本発明の実施形態に好適に用いられる遮断部とガス供給管とノズルとの関係を示す模式図である。
[図7]本発明の実施形態に好適に用いられる炉口部の外観図である。
[図8]本発明の実施形態に好適に用いられる炉口部の外観図である。
[図9]本発明の実施形態に好適に用いられる遮断弁の図示例である。
[図10]本発明の実施形態に好適に用いられる遮断弁の構成を示す図示例である。
[図11]本発明の実施形態に好適に用いられる遮断弁を動作させて処理ガスを供給する基板処理フローを示す図である。
[図12]本発明の実施形態に好適に用いられる遮断弁を動作させて処理ガスを供給して基板処理した結果を示す図である。
[図13]本発明の実施形態に好適に用いられる成膜シーケンスにおける遮断弁の有無比較を示す図示例である。
FIG. 1 is a schematic configuration diagram of a substrate processing apparatus preferably used in an embodiment of the present invention, and is a vertical sectional view of a processing furnace portion.
FIG. 2 is a schematic configuration diagram of a part of a substrate processing apparatus preferably used in the embodiment of the present invention, and is a cross-sectional view of a reaction tube.
FIG. 3 is a schematic configuration diagram of a controller of a substrate processing apparatus preferably used in the embodiment of the present invention.
[Fig. 4] Fig. 4 is a piping configuration diagram near the conventional furnace mouth.
FIG. 5 is a schematic view showing a relationship between a shutoff portion, a gas supply pipe, and a nozzle preferably used in the embodiment of the present invention.
FIG. 6 is a schematic view showing a relationship between a shutoff portion, a gas supply pipe, and a nozzle preferably used in the embodiment of the present invention.
FIG. 7 is an external view of a furnace mouth portion preferably used in the embodiment of the present invention.
FIG. 8 is an external view of a hearth portion preferably used in the embodiment of the present invention.
FIG. 9 is an illustrated example of a shutoff valve preferably used in the embodiment of the present invention.
FIG. 10 is an illustrated example showing a configuration of a shutoff valve preferably used in the embodiment of the present invention.
FIG. 11 is a diagram showing a substrate processing flow for supplying processing gas by operating a shutoff valve preferably used in the embodiment of the present invention.
FIG. 12 is a diagram showing a result of substrate processing by operating a shutoff valve preferably used in the embodiment of the present invention and supplying processing gas.
FIG. 13 is a illustrated example showing a comparison of the presence or absence of a shutoff valve in a film formation sequence preferably used in the embodiment of the present invention.
<本発明の一実施形態>
本発明の一実施形態における基板処理装置は、半導体装置の製造に使用される半導体製造装置の一例として構成されているものである。具体的には、反応管と該反応管の下部に設けられる炉口部で少なくとも構成される処理室と、炉口部に設けられ、炉口部から反応管内まで立上ったノズルと、ノズルの上流側に設けられる処理ガス供給系と、該処理ガス供給系とノズルの境界に設けられるよう構成されている遮断部と、遮断部を処理ガス供給系と連動させてノズルから処理室内にガスを供給するよう、処理ガス供給系及び遮断部をそれぞれ制御するコントローラと、を少なくとも有する構成である。
<One Embodiment of the present invention>
The substrate processing apparatus according to the embodiment of the present invention is configured as an example of the semiconductor manufacturing apparatus used for manufacturing the semiconductor apparatus. Specifically, a processing chamber composed of at least a reaction tube and a furnace port provided at the bottom of the reaction tube, a nozzle provided at the furnace port and rising from the furnace port to the inside of the reaction tube, and a nozzle. The processing gas supply system provided on the upstream side of the processing gas supply system, the cutoff portion configured to be provided at the boundary between the treatment gas supply system and the nozzle, and the cutoff portion linked with the treatment gas supply system to gas from the nozzle into the treatment chamber. It is configured to have at least a controller for controlling the processing gas supply system and the shutoff unit so as to supply the gas.
また、炉口部は、炉口部の内壁から反応管内まで立上ったノズルに接続される遮断部が、炉口部の外壁との間に配管を設けないよう取付けられるよう構成されている。このように、処理炉のほぼ真下(炉口部近傍)に遮断部が取り付けられるので、冷却機構を備え、遮断弁を冷却できるようにするのが好ましい。また、炉口部の熱こもり対策として、特に局所的な排気が可能な炉口ユニットを設けるのが好ましい。尚、これら冷却機構及び炉口ユニットについては後述する。 Further, the furnace mouth portion is configured so that a blocking portion connected to a nozzle rising from the inner wall of the furnace mouth portion to the inside of the reaction tube is attached so as not to provide a pipe between the inner wall of the furnace mouth portion and the outer wall of the furnace mouth portion. .. In this way, since the shutoff portion is attached almost directly below the processing furnace (near the furnace mouth portion), it is preferable to provide a cooling mechanism so that the shutoff valve can be cooled. Further, as a measure against heat buildup in the hearth portion, it is particularly preferable to provide a hearth unit capable of local exhaust. The cooling mechanism and the hearth unit will be described later.
ここで、本実施形態において、炉口部と遮断弁とを一体とした(例えば、炉口部と遮断弁との間にフレキシブル配管を含む配管を設けない)構造のことを単に炉口部と呼ぶ場合がある。 Here, in the present embodiment, the structure in which the furnace mouth portion and the shutoff valve are integrated (for example, a pipe including a flexible pipe is not provided between the furnace mouth portion and the shutoff valve) is simply referred to as the furnace mouth portion. May be called.
以下、本発明の実施形態について、図1、図2等を用いて説明する。先ず、図1に示すように、処理炉202は加熱部(加熱機構)としてのヒータ207を有する。ヒータ207は円筒形状であり、図示しないがヒータ素線と断熱材を含むような構成である。ヒータ207の下部は、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられる。また、ヒータ207は、処理ガスを熱で活性化(励起)させる活性化機構(励起部)としても機能する。
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1, 2, and the like. First, as shown in FIG. 1, the
ヒータ207の内側には、ヒータ207と同心円状に反応容器(処理容器)を構成する単管構造の反応管203が配設されている。反応管203は、例えば石英(SiO2)または炭化シリコン(SiC)等の耐熱性材料から形成されている。反応管203は、下端部が開放され、上端部が平坦状の壁体で閉塞された有天井の形状で形成されている。反応管の上端部(以後、天井部ともいう)は、強度の確保という観点から厚く構成されている。反応管203の側壁は、円筒形状に形成された円筒部と、円筒部の外壁に設けられたガス供給エリア222とガス排気エリア224とを備えている。ガス供給エリア222とガス排気エリア224を含む反応管203の内部には、処理室201が形成されている。処理室201は、基板としてのウエハ200を処理可能に構成されている。また、処理室201は、ウエハ200を水平姿勢で垂直方向に多段に整列した状態で保持可能なボート217を収容可能に構成されている。そして、ヒータ207は反応管203を囲繞するように配置されており、反応管203(若しくは処理室201)内のボート217に載置された複数枚のウエハ200を所定の温度に加熱することができる。
Inside the
ガス供給エリア222は、凸部が円筒部の一側壁の外側に突出するように形成されている。ガス供給エリア222の外壁は、反応管203の円筒部の外壁の一部としての一側壁の外側に円筒部の外径よりも大きく、円筒部と同心円状に形成されている。ガス供給エリア222は、下端部が開放され、上端部が平坦状の壁体で閉塞された有天井の形状で構成されている。ガス供給エリア222には、その長さ方向(上下方向)に沿って後述するノズル部340a〜340cが収容され、ガス供給エリア222と円筒部との間の境界を構成する境界壁254にはガス供給スリット235が形成されている。境界壁254は円筒部の一側壁であって、その外側面は、ガス供給エリア222に面する側面部分を構成する。以後、例えば、ノズル部340a〜340cの総称を、ノズル部340と記載する場合があり、また、他の番号についても総称は同様に記載する場合がある。
The
ガス排気エリア224は、凸部が円筒部のガス供給エリア222が形成された一側壁に対向する他側壁の外側に突出するように形成されている。ガス排気エリア224は、ガス供給エリア222との間に処理室201のウエハ200が収容される領域を挟むように配置されている。ガス排気エリア224の外壁は、円筒部の外壁の一部としての他側壁の外側に円筒部の外径よりも大きく、円筒部と同心円状に形成されている。ガス排気エリア224は、下端部と上端部が平坦状の壁体で閉塞された有天井の形状で構成されている。ガス排気エリア224と円筒部との間の境界を構成する壁体である境界壁252にはガス排気スリット236が形成されている。境界壁252は円筒部の一部であって、その外側面は、ガス排気エリア224に面する側面部分を構成する。
The
反応管203の下端側は、炉口部としての円筒体状のマニホールド226によって支持されている。マニホールド226は、例えばニッケル合金やステンレス等の金属で形成されるか、若しくは石英(SiO2)または炭化シリコン(SiC)等の耐熱性材料で形成されている。マニホールド226の上端部にはフランジが形成されており、このフランジ上に反応管203の下端部を設置して支持する。このフランジと反応管203の下端部との間にはOリング等の気密部材220を介在させて反応管203内を気密状態にしている。
The lower end side of the
マニホールド226の下端の開口部には、シールキャップ219がOリング等の気密部材220を介して気密に取り付けられており、反応管203の下端の開口部側、すなわちマニホールド226の開口部を気密に塞ぐようになっている。シールキャップ219は、例えばニッケル合金やステンレス等の金属で形成され、円盤状に形成されている。
A
シールキャップ219上にはボート217を支持するボート支持台218が設けられている。ボート支持台218は、例えば石英や炭化珪素等の耐熱性材料で構成され断熱部として機能すると共にボート217を支持する支持体となっている。ボート217はボート支持台218に固定された底板とその上方に配置された天板とを有しており、底板と天板との間に複数本の支柱が架設された構成を有している。ボート217は例えば石英や炭化珪素等の耐熱性材料で構成されている。
A boat support 218 that supports the
シールキャップ219の処理室201と反対側にはボート217を回転させるボート回転機構267が設けられている。ボート回転機構267の回転軸はシールキャップを貫通してボート支持台218に接続されており、ボート回転機構267によって、ボート支持台218を介してボート217を回転させることでウエハ200を回転させる。シールキャップ219は反応管203の外部に設けられた昇降機構としてのボートエレベータ115によって垂直方向に昇降され、これによりボート217を処理室201内に対し搬入搬出することが可能となっている。
A
マニホールド226には、ノズル部340を支持するノズル支持部350が、L字状に屈曲されてマニホールド226を貫通するようにして設置されている。ここでは、3本のノズル支持部350a〜350cが設置されている。ノズル支持部350は、例えばニッケル合金やステンレス等の材料から形成される。ノズル支持部350の反応管203側の一端には反応管203内へガスを供給するガス供給管310が遮断弁としての遮断部101を介してそれぞれ接続されている。
A
また、ノズル支持部350a〜350cの他端にはノズル部340a〜340cがそれぞれ接続されている。ノズル部340は、例えば石英またはSiC等の耐熱性材料から形成される。また、ノズル支持部350とノズル部340でノズルが構成され、このノズルとガス供給管310の境界に設けられている遮断弁101がマニホールド226の近傍に固定されている。更に、ノズル形状は、ノズル部340とノズル支持部350が一体化した構成であっても構わない。
Further, nozzle portions 340a to 340c are connected to the other ends of the nozzle support portions 350a to 350c, respectively. The
ノズル部340はガス供給エリア222内の下部より上部に、その長さ方向(上下方向)に沿って設けられている。ノズル部340a、340cは、I字型のロングノズルとしてそれぞれ構成されている。ノズル部340a、340cの側面には、ガスを供給するガス供給孔234a、234cがそれぞれ設けられている。ガス供給孔234a、234cは、それぞれ反応管203の中心を向くように開口している。ノズル部340bは、I字型の短管ノズル(ショートノズル)として構成されている。ノズル部340bは開口部234bを有し、ノズル部340bの先端は開放されている。ガス供給エリア222には、3本のノズル部340a〜340cが設けられており、処理室
201内へ複数種類のガスを供給することができるように構成されている。また、ノズル部340の形状は、例えば、I字型ではなくL字型であってもよく、形状に限定されない。
The
以上の処理炉202では、バッチ処理される複数枚のウエハ200がボート217に対し多段に積載された状態において、ボート217がボート支持台218で支持されながら処理室201に挿入され、ヒータ207が処理室201に挿入されたウエハ200を所定の温度に加熱するようになっている。
In the
ガス供給管310aには、上流方向から順に、第1処理ガスを供給する第1処理ガス供給源、流量制御器(流量制御部)であるマスフローコントローラ(MFC)320aおよび開閉弁であるバルブ330aがそれぞれ設けられている。また、遮断弁101aは、ガス供給管310aとノズル支持部350aとの間の境界に設けられており、マニホールド226の外側に近接した状態で設けられている。例えば、マニホールド226と遮断弁101aの間にフレキシブル配管を設けることなく、マニホールド226と遮断弁101aが一体的に取り付けられる。更に、後述する排気部102aが遮断弁101aと隣接するように取り付けられてもよい。
The
ガス供給管310bには、上流方向から順に、第2処理ガスを供給する第2処理ガス供給源、流量制御器(流量制御部)であるマスフローコントローラ(MFC)320bおよび開閉弁であるバルブ330bがそれぞれ設けられている。また、遮断弁101bは、ガス供給管310bとノズル支持部350bとの間の境界に設けられており、マニホールド226の外側に近接した状態で設けられている。例えば、マニホールド226と遮断弁101bの間にフレキシブル配管を設けることなく、マニホールド226と遮断弁101bが一体的に取り付けられる。更に、後述する排気部102bが遮断弁101bと隣接するように取り付けられてもよい。
The
ガス供給管310cには、上流方向から順に、第3処理ガスを供給する第3処理ガス供給源、流量制御器(流量制御部)であるマスフローコントローラ(MFC)320cおよび開閉弁であるバルブ330cがそれぞれ設けられている。また、遮断弁101cは、ガス供給管310cとノズル支持部350cとの間の境界に設けられており、マニホールド226の外側に近接した状態で設けられている。例えば、マニホールド226と遮断弁101cの間にフレキシブル配管を設けることなく、マニホールド226と遮断弁101cが一体的に取り付けられる。更に、後述する排気部102cが遮断弁101cと隣接するように取り付けられてもよい。
The
ガス供給管310a〜310cのバルブ330a〜330cよりも下流側に、不活性ガスを供給するガス供給管310d〜310fがそれぞれ接続されている。ガス供給管310d〜310fには、上流方向から順に、流量制御器(流量制御部)であるMFC320d〜320fおよび開閉弁であるバルブ330d〜330fがそれぞれ設けられている。
Gas supply pipes 310d to 310f for supplying the inert gas are connected to the downstream side of the
主に、ガス供給管310a、MFC320a、バルブ330aにより第1処理ガス供給系が構成される。また、第1処理ガス供給源、ノズル支持部350a、ノズル部340a、遮断弁101aを第1処理ガス供給系に含めて考え、第1処理ガス供給系は、ガス供給管310a、MFC320a、バルブ330aにより構成される第1配管部と、少なくとも第1遮断部101aを含む第1境界部と、ノズル支持部350aとノズル部340aで少なくとも構成される第1ノズルとを含む構成としても良い。例えば、本実施形態において、第1処理ガス供給系は第1処理ガスとして反応ガスが供給されるよう構成されている。
The first processing gas supply system is mainly composed of the
主に、ガス供給管310b、MFC320b、バルブ330bにより第2処理ガス供給系が構成される。また、第2処理ガス供給源、ノズル支持部350b、ノズル部340b、遮断弁101bを第2処理ガス供給系に含めて考え、第2処理ガス供給系は、ガス供給管310b、MFC320b、バルブ330bにより構成される第2配管部と、少なくとも第2遮断部101bを含む第2境界部と、ノズル支持部350bとノズル部340bで少なくとも構成される第2ノズルとを含む構成としても良い。但し、ノズル部340bは先端が開放されたショートノズルであるため、ノズル支持部350bとノズル部340bが一体となった形状が好ましい。例えば、本実施形態において、第2処理ガス供給系は第2処理ガスとして原料ガスが供給されるよう構成されている。
The second processing gas supply system is mainly composed of the
主に、ガス供給管310c、MFC320c、バルブ330cにより第3処理ガス供給系が構成される。また、第3処理ガス供給源、ノズル支持部350c、ノズル部340c、遮断弁101cを第3処理ガス供給系に含めて考え、第3処理ガス供給系は、ガス供給管310c、MFC320c、バルブ330cにより構成される第3配管部と、少なくとも第3遮断部101cを含む第3境界部と、ノズル支持部350cとノズル部340cで少なくとも構成される第3ノズルとを含む構成としても良い。例えば、本実施形態において、第3処理ガス供給系は第3処理ガスとして反応ガス若しくは基板処理に寄与しない不活性ガスが供給されるよう構成されている。尚、これら処理ガス供給系の構成、及び遮断弁101の詳細は後述する。
The third processing gas supply system is mainly composed of the
なお、本明細書において、処理ガスという言葉を用いた場合は、第1処理ガスのみを含む場合、第2処理ガスのみを含む場合、第3処理ガスのみを含む場合、もしくはそれら全てを含む場合がある。また、処理ガス供給系という言葉を用いた場合は、第1処理ガス供給系のみを含む場合、第2処理ガス供給系のみを含む場合、第3処理ガス供給系のみを含む場合、もしくはそれら全てを含む場合がある。 In the present specification, when the term treatment gas is used, it includes only the first treatment gas, contains only the second treatment gas, contains only the third treatment gas, or includes all of them. There is. When the term treatment gas supply system is used, it includes only the first treatment gas supply system, includes only the second treatment gas supply system, includes only the third treatment gas supply system, or all of them. May include.
ガス排気エリア224の下部には排気口230が設けられている。排気口230は排気管232に接続されている。排気管232には処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245および圧力調整器(圧力調整部)としてのAPC(Auto PressureController)バルブ244を介して真空排気装置としての真空ポンプ246が接続されており、処理室201内の圧力が所定の圧力(真空度)となるよう排気するように構成されている。なお、APCバルブ244は、弁を開閉して処理室201内の真空排気・真空排気停止ができ、更に弁開度を調節してコンダクタンスを調整して処理室201内の圧力調整をできるよう
になっている開閉弁である。主に、排気管232、APCバルブ244、圧力センサ245により排気系が構成される。なお、真空ポンプ246も排気系に含めてもよい。
An
このように、後述するコントローラ280は、後述するプロセスレシピを実行して、上述のように(A)搬送系(ボートエレベータ115、ボート回転機構267等)、(B)温度制御系(ヒータ207等)、(C)処理ガス供給系(遮断部101、MFC320、バルブ330等)、(D)ガス排気系(APCバルブ244、圧力センサ245等)を制御するように構成されている。
In this way, the
また、図2に示すように、反応管203の外側に温度検出器としての温度センサ1(以後、熱電対ともいう)が設置されている。温度センサ1により検出された温度情報に基づきヒータ207への供給電力が調整され、処理室201の温度が所望の温度分布となるように構成されている。
Further, as shown in FIG. 2, a temperature sensor 1 (hereinafter, also referred to as a thermocouple) as a temperature detector is installed outside the
また、図2に示すように熱電対1が、反応管203の外側に保護部材としてのカバー2より取り付けられている。カバー2は、石英部材で構成されている。本実施形態において、熱電対1が、処理室201の外側に取り付けられ、加熱部としてのヒータ207と対向するよう設けられる。例えば、熱電対1は、反応管203とカバー2により固定されている。
Further, as shown in FIG. 2, the
図2では、熱電対1が1本しか図示されていないが、熱電対1は複数本設けてもよい。また、熱電対1と反応管203の間に緩衝部材を設けることが可能である。更に、図2の熱電対1は反応管の側壁に設けられているが、熱電対1は反応管203の天井部に設けてもよい。
Although only one
次に、図5及び図6は、本実施形態における処理ガス供給系を説明するための模式図である。この図5及び図6は、ガス供給管310と境界部(遮断弁101)とノズルとの間の関係の説明をより分かり易くするため、図1における処理ガス供給系を2系統にして表したものである。そして、コントローラ280は、後述するプロセスレシピを実行して、(C)処理ガス供給系(遮断部101、排気部102、切替部103等)を制御するように構成されている。また、この切替部(切替弁)の上流側は、処理ガス供給源、MFC320、バルブ330等を含む処理ガス供給系が設けられているが、図5及び図6には省略されている。
Next, FIGS. 5 and 6 are schematic views for explaining the processing gas supply system in the present embodiment. 5 and 6 show the processing gas supply system in FIG. 1 as two systems in order to make the explanation of the relationship between the
尚、ガスボックス内で最も炉口部に近いバルブ(切替弁)は、基板処理に寄与するガスとクリーニングガスとを切り替えるバルブである。この切替部(切替弁)の上流側は、図示しない処理ガス供給系及び図示しないクリーニングガス供給系が設けられている。 The valve (switching valve) closest to the furnace opening in the gas box is a valve that switches between gas that contributes to substrate processing and cleaning gas. A processing gas supply system (not shown) and a cleaning gas supply system (not shown) are provided on the upstream side of the switching unit (switching valve).
本実施形態におけるガス供給システムは、炉口部226から反応管203内まで立上ったノズルと、少なくとも遮断部101を含む境界部と、基板処理に寄与するガスとクリーニングガスとを切り替える切替用のバルブ(切替弁)103で構成される切替部が設けられるガス供給管310と、を含み、更に、境界部は、ガス供給管310に接続され、切替部と遮断部101との間のガス供給管310を含む供給配管を排気する後述する排気部102を設けるのが好ましい。
The gas supply system in the present embodiment is for switching between a nozzle rising from the
好適には、炉口部226から反応管内まで立上ったノズル(第1ノズル及び第2ノズル)と、ノズル(第1ノズル)の上流側に設けられるガス供給管310aを有する処理ガス供給系(第1ガス供給系)と、ノズル(第2ノズル)の上流側に設けられるガス供給管310bを有する処理ガス供給系(第2ガス供給系)と、第1ノズルと第1ガス供給系の境界に設けられるよう構成されている遮断部101a(第1遮断部)と、第2ノズルと第2ガス供給系の境界に設けられるよう構成されている101b(第2遮断部)と、第1遮断部を第1ガス供給系と連動させて反応管内に第1のガスとして反応ガスを供給し、及び第2遮断部を第2ガス供給系と連動させて反応管内に第2のガスとして原料ガスを供給するよう構成されている。これら第1ガス供給系、第1遮断部、第2ガス供給系、第2遮断部は、図5及び図6でコントローラ280により制御するよう構成されている。
Preferably, a processing gas supply system having a nozzle (first nozzle and second nozzle) rising from the
このような構成であるので、遮断弁101(境界部)を設け、遮断弁101aは開、遮断弁101bは閉とすることで、ガス供給管310aより第1ノズルを介して第1処理ガス供給時、ガス供給管310bと反応管203内を遮断し、第1処理ガスのガス供給管310bへの逆拡散を抑制することができる一方、遮断弁101bは開、遮断弁101aは閉とすることで、ガス供給管310bより第2ノズルを介して第2処理ガス供給時、ガス供給管310aと反応管203内を遮断し、第1処理ガスのガス供給管310aへの逆拡散を抑制することができる。
With such a configuration, a shutoff valve 101 (boundary portion) is provided, the
特に、本実施形態のように第2処理ガスとして原料ガスを使用する場合、遮断弁101bを開放させて第2ノズルから原料ガスを反応管203内に供給している間、遮断弁101aは閉とすることでガス供給管310aと反応管203内を遮断し、原料ガスのガス供給管310aへの逆拡散を完全に抑制することができるので、ガス供給配管310で発生する副生成物に起因するパーティクルを低減することができる。
In particular, when the raw material gas is used as the second processing gas as in the present embodiment, the
また、図5に長鎖線で示されているように、この炉口部226を囲むように、炉口部226の局所排気を実施するための炉口ボックスを設けてもよい。炉口ボックスは、炉口部226のガスリーク及び熱こもり対策に利用される。炉口ボックス内は、50℃〜200℃の高温雰囲気となる。一般的に、弁の耐熱温度が150℃程度のため、耐熱仕様の弁(耐熱温度250〜300℃)を用いることが考えられる。但し、耐熱仕様の弁の動作寿命が著しく低下し、交換頻度が短くなることが考えられる。この対策として、遮断部101への冷却機構を追加することで、弁の耐熱温度を超える場合においても炉口ボックス内へ弁を配置可能である。
Further, as shown by a long chain line in FIG. 5, a furnace opening box for performing local exhaust of the
また、冷却の方法としては、後述する図9に示すように、冷却水を用いた放熱方法(例えば、冷却ブロックで遮断弁101覆った形態)が考えられる。尚、弁の耐熱温度以下にすることができればよいため、その冷却方法は何でも構わない。
Further, as a cooling method, as shown in FIG. 9 described later, a heat dissipation method using cooling water (for example, a form in which the
更に、反応管203内のガスを排出する排気系を備え、制御部280は、反応管203内の基板に対する反応ガス又は原料ガスの供給が終了すると、第1遮断部及び第2遮断部を閉塞させて、反応管203内から未反応の原料ガス又は反応ガスを排出するよう排気系を制御するよう構成されている。反対に、制御部280は、第1遮断部及び第2遮断部を開放させた状態で、反応管203内に供給する不活性ガスの流量を変化させてサイクルパージするよう、第1ガス供給系、第1遮断部、第2ガス供給系、第2遮断部、排気系を制御するよう構成されている。
Further, an exhaust system for discharging the gas in the
また、図5に示すように、切替部と境界部との間のガス供給管310は、形状を曲げることが可能なフレキシブル配管を含む構成となっている。ここで、フレキシブル配管は、ガス供給管310に設けられ、例えば、蛇腹状であってもよい。そして、遮断部101は、炉口部226の側壁に一体型(若しくは直結)にて設置されている。
Further, as shown in FIG. 5, the
また、図5では炉口ボックス内にフレキシブル配管が設けられている。但し、フレキシブル配管は、この形態によらず、切替部が設けられるガスボックスと遮断部101が設けられる炉口ボックスの間の配管に設けられる。ガスボックスと炉口ボックスとの間の配管の引き回しでは、現地(例えば、半導体工場)にて接続されるため、装置レイアウト、工場内の設備、装置の設置環境等により大きく左右され、配管(例えば、金属製)と配管(例えば、金属製)との間を調整する必要がある。この調整は、金属製の配管では不可能であり、配管形状を変形することが可能なフレキシブル配管が必須である。
Further, in FIG. 5, a flexible pipe is provided in the furnace opening box. However, regardless of this form, the flexible pipe is provided in the pipe between the gas box provided with the switching portion and the furnace port box provided with the
従来、図4に示すように炉口部226と切替部との間に設置された配管は、フレキシブル配管を含む構成であったが、本実施形態において、炉口部226と遮断部101との間に設置された配管は、フレキシブル配管を含まない。尚、図6でも遮断部101の上流側にガス供給管310が設けられているが、ガス供給管310内に設けられているフレキシブル配管は省略されている。
Conventionally, as shown in FIG. 4, the pipe installed between the
図6は、図5に示すガス供給システムの遮断部101に隣接するように排気部102を更に設けた構成を示す模式図である。言い換えると、排気部102を除く構成は、図5と同じ構成であるため、排気部102について説明する。図6では、遮断部101の上流側で供給配管を分岐する排気部102が設置され、該排気部102により排気管232へベント配管が接続されるように構成されている。このような構成であるため、反応管203を介することなく、切替部から遮断部101間のフレキシブル配管を含むガス供給管310をサイクルパージすることができる。
FIG. 6 is a schematic view showing a configuration in which an exhaust unit 102 is further provided so as to be adjacent to the
例えば、後述する成膜シーケンス内において、ガス供給管310bより、反応管203内に原料ガスを供給している際にガス供給管310aをサイクルパージ可能とし、よりガス供給管310a内の清浄度を向上させることができる。また、後述する成膜シーケンス終了後の基板搬送工程において反応管203内が大気圧開放状態になっても、ガス供給管310内を個別にサイクルパージすることができ、よりガス供給管310内の清浄度を向上させることができる。
For example, in the film forming sequence described later, the
また、装置構成上マニホールド226部周辺の空間が小さく、遮断部101及び排気部102の設置が困難であるが、境界部と炉口部226を一体型とすることで、省スペースでの配置を実現でき、且つ、メンテナンス性の向上を達成できる。
Further, due to the device configuration, the space around the
次に、図7〜図10を主に用いて、炉口部226の外側に近接して設けられる遮断弁101の構成について詳述する。
Next, the configuration of the
本実施の形態における炉口部226と遮断部101との間の構成は、図7のように炉口部226と遮断弁101が直結した構成(外観で配管が含まれることが分かる構成)であるか、図8のように炉口部226と遮断弁101a(101b)が一体型の構成(外観では配管を設けていない構成)であるか、どちらでも構わない。また、図7及び図8は、遮断部101が付加された炉口部226を示す図でもある。
The configuration between the
図示されていないが、排気部102が遮断部101に隣接された状態で炉口部226に一体的に構成することができる。また、図9に示すように、遮断部101が冷却機構付で構成されていても構わない。
Although not shown, the exhaust portion 102 can be integrally configured with the
また、図4の炉口部226と切替部との間に設置された配管の長さ(配管長)と、本実施の形態における炉口部226と遮断部101との間に設置された配管の長さ(配管長)を比較する。図7の実施例の配管長を100mmと仮定して、その配管長の長さ比が1/5〜1/30程度、更に、図8の実施例においては、図示されていないが接続部を配管に含めると大凡50mmと仮定され、その配管長の長さ比が1/10〜1/60程度である。また、理想の配管長はゼロ(配管を設けない構成)である。
Further, the length of the pipe installed between the
図8において炉口部226に遮断部101が一体的に取り付けられた構成、つまり、炉口部226の側壁に配管を設けないように取り付けられている遮断部101の詳細を図10に示す。尚、図10において遮断部101が、図示していないが同様の構成で複数炉口部226に設けられる。
FIG. 10 shows the details of the configuration in which the
遮断部101は、一端では炉口部226の内側に配置されるノズル(又は、ノズル支持部350)と接続され、他端では炉口部226の外側で配管(本実施形態ではガス供給管と接続される。図10は、遮断部101が開の状態のときの図である。図10に、ガスの流路がガス供給管310から遮断部101内を介してノズル部340まで連通するように構成されている。
At one end, the
また、ガス供給管310への処理ガスの逆拡散の影響を最低限にするには、ノズル支持部350と遮断部101の間に配管を設けないのが理想だが、遮断部101の構成上無理であるため、図10のように遮断部101と炉口部226との間を一体構造にするのが好ましい。
Further, in order to minimize the influence of the back diffusion of the processing gas on the
図3に示すように、制御部(制御手段)であるコントローラ280は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ280には、例えばタッチパネル等として構成された入出力装置122が接続されている。
As shown in FIG. 3, the
記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、基板処理の手順や条件等が記載されたプロセスレシピとしての後述する成膜シーケンス等が、読み出し可能に格納されている。プロセスレシピは、後述する基板処理工程における各手順をコントローラ280に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。本明細書においてプログラムという言葉を用いた場合は、プロセスレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、その両方を含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
The storage device 121c is composed of, for example, a flash memory, an HDD (Hard Disk Drive), or the like. In the storage device 121c, a control program for controlling the operation of the substrate processing apparatus, a film forming sequence described later as a process recipe in which the substrate processing procedure and conditions, and the like are described are readablely stored. The process recipes are combined so that the
I/Oポート121dは、上述のMFC320a〜320f、バルブ330a〜330f、遮断弁101a〜101c、排気弁102a〜102c、圧力センサ245、APCバルブ244、真空ポンプ246、ヒータ207、温度センサ(熱電対)1、ボート回転機構267、ボートエレベータ115等に接続されている。
The I / O ports 121d include the above-mentioned
CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからプロセスレシピを読み出すように構成されている。CPU121aは、読み出した制御プログラムやプロセスレシピの内容に沿うように、MFC320a〜320fによる各種ガスの流量調整動作、バルブ330a〜330fの開閉動作、遮断弁101a〜101cの開閉動作、APCバルブ244の開閉動作および圧力センサ245に基づくAPCバルブ244による圧力調整動作、真空ポンプ246の起動および停止、温度センサ1に基づくヒータ207の温度調整動作、ボート回転機構267によるボート217の回転および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作等を制御するように構成されている。
The CPU 121a is configured to read and execute a control program from the storage device 121c and read a process recipe from the storage device 121c in response to an input of an operation command from the input /
コントローラ280は、外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)123に格納された上述のプログラムを、実行することができる。一方、記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成することができる。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、その両方を含む場合がある。なお、コントローラ280へのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
The
次に、本発明に関わる基板処理装置の動作概要について説明する。なお、基板処理装置は、コントローラ280により制御されるものである。
Next, an outline of the operation of the substrate processing apparatus according to the present invention will be described. The substrate processing apparatus is controlled by the
所定枚数のウエハ200が載置されたボート217が反応管203内に挿入され、シールキャップ219により、反応管203が気密に閉塞される。気密に閉塞された反応管203内では、ウエハ200が加熱されて所定の温度に維持されると共に、処理ガスが反応管203内に供給され、ウエハ200に加熱等の熱処理がなされる。
A
熱処理として、例えば、本実施形態における成膜処理では、プロセスレシピとして図11に示す成膜シーケンスを、処理室201内のウエハ200に対してHCDSガスを供給する工程と、処理室201内からHCDSガス(残留ガス)を除去する工程と、処理室201内のウエハ200に対してNH3ガスを供給する工程と、処理室201内からNH3ガス(残留ガス)を除去する工程と、を非同時に行うサイクルを所定回数(1回以上)行うことで、ウエハ200上にSiN膜を形成する。
As a heat treatment, for example, in the film forming process in the present embodiment, the film forming sequence shown in FIG. 11 as a process recipe is used in a step of supplying HCDS gas to the
また、本明細書において「基板」という言葉を用いた場合、「ウエハ」という言葉を用いた場合と同義である。 Further, when the word "board" is used in this specification, it is synonymous with the case where the word "wafer" is used.
(ウエハチャージおよびボートロード)
複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、ボート217は、ボートエレベータによって処理室201内に搬入(ボートロード)される。このとき、シールキャップ219は、Oリングを介して反応管203の下端を気密に閉塞(シール)した状態となる。
(Wafer charge and boat load)
When a plurality of
(圧力調整および温度調整)
処理室201内、すなわち、ウエハ200が存在する空間が所定の圧力(真空度)となるように、真空ポンプ246によって真空に排気される。この際、処理室201内の圧力は、圧力センサ245で測定され、この測定された圧力情報に基づきAPCバルブ244が、フィードバック制御される。真空ポンプ246は、少なくともウエハ200に対する処理が終了するまでの間は常時作動させた状態を維持する。
(Pressure adjustment and temperature adjustment)
The inside of the
また、処理室201内のウエハ200が所定の温度となるように、ヒータ207によって加熱される。この際、処理室201が所定の温度分布となるように、温度センサが検出した温度情報に基づきヒータ207への通電具合がフィードバック制御される。ヒータ207による処理室201内の加熱は、少なくともウエハ200に対する処理が終了するまでの間は継続して行われる。
Further, the
また、回転機構267によるボート217およびウエハ200の回転を開始する。回転機構267により、ボート217が回転されることで、ウエハ200が回転される。回転機構267によるボート217およびウエハ200の回転は、少なくとも、ウエハ200に対する処理が終了するまでの間は継続して行われる。
Further, the
(成膜処理)
処理室201の温度が予め設定された処理温度に安定すると、以下、次の2つのステップ、すなわち、ステップ1〜2を順次実行する。
(Film film processing)
When the temperature of the
[ステップ1]
このステップでは、処理室201内のウエハ200に対し、原料ガス(HCDSガス)を供給する。このステップ1は、プリパージ工程と、原料ガス供給工程と、原料ガス排気工程と、パージ工程と、を少なくとも含む。以下、それぞれの工程について説明する。
[Step 1]
In this step, the raw material gas (HCDS gas) is supplied to the
(プリパージ工程)
先ず、バルブ330b、330eを開き、ガス供給管310b内へHCDSガスを流す。但し、この工程では、遮断弁101bを閉じ、処理室201へは供給しない。このとき、同時にバルブ330dおよび330fを開き、ガス供給管310aおよび310c内へN2ガスを流す。更に、遮断弁101aおよび101cを開き、N2ガスを、MFCにより流量調整された所定の流量で処理室201内へ供給し、排気管232から排気してもよい。ここで、排気弁102bを遮断弁101bに隣接して設け、排気弁102bを開き、HCDSガスを、ガス供給管310bから排気弁102bを介して排気管232へ排気することができるよう構成するのが好ましい。
(Pre-purge process)
First, the valves 330b and 330e are opened to allow HCDS gas to flow into the
(原料ガス供給工程)
引き続きバルブ330b、330eを開いた状態で、遮断弁101bを開き、処理室201内へHCDSガスを流す。このとき、HCDSガスは、MFCにより流量調整され、ノズル部340bを介して処理室201内へ供給され、排気管232から排気される。一方、遮断弁101a、遮断弁101cは閉じられる。これにより、ガス供給管310a、310cにHCDSガスが逆拡散することを抑制できる。
(Coal gas supply process)
Subsequently, with the valves 330b and 330e open, the
(原料ガス排気工程)
次に、引き続き遮断弁101a及び101cを閉じた状態で遮断弁101bを閉じる。このとき、APCバルブ244は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくは第1の層としてのシリコン(Si)含有層の形成に寄与した後のHCDSガスを処理室201内から排出する。
(Raw material gas exhaust process)
Next, the
そして、この原料ガス供給工程と原料ガス排気工程を順次(本実施例では3回)実行させる。このとき、ウエハ200の最表面上に、第1の層が形成される。尚、原料供給工程と原料排気工程を一サイクルとして複数サイクル実行するのが好ましい。本実施例では、HCDSガスを処理室201内に供給するノズルの先端が開放された短管ノズルで構成されており、ガス濃度分布の均一化を図るため、このようなサイクリックな供給(サイクルフロー)としている。但し、ガスの供給の仕方はノズル形状に応じて適宜設定される。
Then, the raw material gas supply process and the raw material gas exhaust process are sequentially executed (three times in this embodiment). At this time, the first layer is formed on the outermost surface of the
(アフターパージ工程)
第1の層が形成された後、バルブ330bを閉じ、HCDSガスの供給を停止する。このとき、バルブ330d〜330f、及び遮断弁101a〜101cを開き、N2ガスの処理室201内への供給を再開する。N2ガスはパージガスとして作用し、これにより、処理室201内に残留するガスを処理室201内から排出する効果を高めることができる。
(After purging process)
After the first layer is formed, the valve 330b is closed and the supply of HCDS gas is stopped. At this time, the valves 330d to 330f and the
(ガスパージ工程)
アフターパージ工程より引き続き、バルブ330d〜330f及び遮断弁101a〜101cを開いたまま、N2ガスの処理室201内への供給を継続し、所定周期でガス流量を異ならせる。例えば、流量Aと流量B(流量A>流量B)の切替を、予め決められた回数行う。本実施形態では2回行うように制御される。
(Gas purging process)
Continuing from the after-purge step, the supply of N2 gas into the
本実施形態では、反応ガスを供給する前に、確実に処理室201内に残留するガスを処理室201内から排出するガスパージ工程をステップ1に含めるが、成膜シーケンスを図13に示すようステップ1からステップ4に分割してもよい。図13については後述する。
In the present embodiment,
[ステップ2]
ステップ1が終了した後、処理室201内のウエハ200、すなわち、ウエハ200上に形成された第1の層に対して反応ガスとしてNH3ガスを供給する。NH3ガスは熱で活性化されてウエハ200に対して供給されることとなる。
[Step 2]
After the
このステップでは、バルブ330a、330d、101aの開閉制御を、ステップ1におけるバルブ330b、330e、101bの開閉制御と同様の手順で行う。NH3ガスは、MFCにより流量調整され、ノズル部340aを介して処理室201内へ供給され、排気管232から排気される。このとき、ウエハ200に対してNH3ガスが供給されることとなる。ウエハ200に対して供給されたNH3ガスは、ステップ1でウエハ200上に形成された第1の層、すなわちSi含有層の少なくとも一部と反応する。これにより第1の層は、ノンプラズマで熱的に窒化され、SiおよびNを含む第2の層、すなわち、シリコン窒化層(SiN層)へと変化させられる(改質される)。なお、このとき、プラズマ励起させたNH3ガスをウエハ200に対して供給し、第1の層をプラズマ窒化することで、第1の層を第2の層(SiN層)へ変化させるようにしてもよい。
In this step, the opening / closing control of the
第2の層が形成された後、バルブ330a、330dを閉じ、NH3ガスの供給を停止する。そして、ステップ1と同様の処理手順により、処理室201内に残留する未反応もしくは第2の層の形成に寄与した後のNH3ガスや反応副生成物を処理室201内から排出する。
After the second layer is formed, the
(ガスパージ工程)
反応ガスを供給後、確実に処理室201内に残留するガスを処理室201内から排出する工程をステップ2に含める場合がある。
(Gas purging process)
手順はステップ1の時と同様に、バルブ330d〜330f、及び遮断弁101a〜101cを開き、N2ガスの処理室201内への供給を継続し、所定周期で流量を異ならせる。例えば、流量Aと流量B(流量A>流量B)に切替を、予め決められた回数行う。本実施形態では4回行うよう制御される。
The procedure is the same as in
(アフターパージ工程)
所定回数終了後、バルブ330d〜330f、及び遮断弁101a〜101cを開いた状態で、所定流量に調整したN2ガスを、所定時間処理室201内へ供給してパージ工程を終了する。これで成膜シーケンスを終了する。
(After purging process)
After the predetermined number of times is completed, with the valves 330d to 330f and the
(所定回数実施)
上述した2つのステップ(図11に示す成膜シーケンス)を非同時に、すなわち、同期させることなく行うサイクルを所定回数(n回)行うことにより、ウエハ200上に、所定組成および所定膜厚のSiN膜を形成することができる。なお、上述のサイクルは複数回繰り返すのが好ましい。すなわち、上述のサイクルを1回行う際に形成される第2の層(SiN層)の厚さを所定の膜厚よりも小さくし、第2の層(SiN層)を積層することで形成されるSiN膜の膜厚が所定の膜厚になるまで、上述のサイクルを複数回繰り返すのが好ましい。
(Implemented a predetermined number of times)
By performing the above-mentioned two steps (the film forming sequence shown in FIG. 11) non-simultaneously, that is, by performing a predetermined number of cycles (n times) without synchronizing, SiN having a predetermined composition and a predetermined film thickness is performed on the
(パージおよび大気圧復帰)
成膜処理が完了した後、バルブ310eおよび310fを開き、ガス供給管310bおよび310cからN2ガスを処理室201内へ供給し、排気管232から排気する。これにより、処理室201内がパージされ、処理室201内に残留するガスや反応副生成物が処理室201内から除去される(パージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
(Purge and return to atmospheric pressure)
After the film forming process is completed, the valves 310e and 310f are opened, N2 gas is supplied into the
(ボートアンロードおよびウエハディスチャージ)
ボートエレベータ115によりシールキャップ219が下降され、反応管203の下端が開口される。そして、処理済のウエハ200が、ボート217に支持された状態で、反応管203の下端から反応管203の外部に搬出される(ボートアンロード)。処理済のウエハ200は、ボート217より取出される(ウエハディスチャージ)。
(Boat unloading and wafer discharge)
The
本実施の形態によれば、ノズルとガス供給系の境界に設けられている遮断弁101を開閉させながらHCDSガスを反応管203内に供給することができるので、HCDSガスを供給する処理ガス供給系以外の処理ガス供給系に接続される遮断弁101を閉じることにより、HCDSガスが他の処理ガス供給系に拡散されることが無い。従い、ガス供給管310等の配管内の副生成物が起因とされるパーティクルが低減できる。
According to the present embodiment, the HCDS gas can be supplied into the
本実施の形態によれば、HCDSガス以外の処理ガス供給系の遮断弁101を閉じることにより、HCDSガスの逆拡散を抑制できるので、HCDSガスを供給する処理ガス供給系を構成する配管を加熱する範囲を、大幅に縮小させることができる。
According to this embodiment, the back diffusion of the HCDS gas can be suppressed by closing the
更に、HCDSガスを供給する処理ガス供給系以外の処理ガス供給系も同様にHCDSガスが拡散される配管を加熱していたが、ガスによっては配管を加熱する必要が無く、また、配管加熱が必要なガスであっても適切な温度に加熱すればよく、これまでHCDSの液化防止のため高温加熱していた範囲を縮小することができ、ヒータコストの削減につながる。 Further, the processing gas supply system other than the processing gas supply system that supplies the HCDS gas also heats the pipe in which the HCDS gas is diffused, but it is not necessary to heat the pipe depending on the gas, and the pipe heating does not occur. Even if it is a necessary gas, it is sufficient to heat it to an appropriate temperature, and the range of high-temperature heating to prevent liquefaction of HCDS can be reduced, which leads to a reduction in heater cost.
図12は、図1に示す処理ガス供給系(3系統)にて、成膜ガス供給系以外の2系統よりカウンターN2の流量を変化させたN2ガス流量依存性を示す図である。 FIG. 12 is a diagram showing the N2 gas flow rate dependence in which the flow rate of the counter N2 is changed from the two systems other than the film forming gas supply system in the processing gas supply system (3 systems) shown in FIG.
このときの処理条件は、例えば下記のとおりである。
ウエハ200の温度:100〜800℃(好ましくは、400〜750℃、本実施形態では、630℃)
処理室内圧力:5〜4000Pa(好ましくは、10〜1332Pa)
HCDSガス供給流量:1〜2000sccm(好ましくは、50〜500sccm)
NH3ガス供給流量:100〜30000sccm
N2ガス供給流量:1〜50000sccm
SiN膜の膜厚:0.2〜100nm
The processing conditions at this time are as follows, for example.
Processing chamber pressure: 5 to 4000 Pa (preferably 10 to 1332 Pa)
HCDS gas supply flow rate: 1 to 2000 sccm (preferably 50 to 500 sccm)
NH3 gas supply flow rate: 100 to 30,000 sccm
N2 gas supply flow rate: 1 to 50,000 sccm
SiN film thickness: 0.2-100 nm
図12は、カウンターN2の有無及び流量に対して、基板処理領域のTOP、CNT、BTMのそれぞれの位置に配置されたウエハ200の膜厚平均値と面内均一性を比較した表であり、また、カウンターN2の有無及び流量によって面間平均値を比較した表である。
FIG. 12 is a table comparing the average film thickness and the in-plane uniformity of the
図12に示すカウンターN2無しが、本実施の形態に相当する。つまり、本実施の形態によれば、HCDSガスやNH3ガスが供給されている間、これまでカウンターN2を処理室201内に供給していたガス供給系に設けられた遮断弁101を閉としておくことにより、ガス供給管310側にこれらHCDSガスやNH3ガスが逆拡散を防止することができるため、カウンターN2の必要が無い。
The absence of the counter N2 shown in FIG. 12 corresponds to the present embodiment. That is, according to the present embodiment, while the HCDS gas or NH3 gas is being supplied, the
また、カウンターN2が無い場合に、基板処理領域のTOP、CNT、BTMのそれぞれの位置に配置されたウエハ200の膜厚平均値が一番高くなっている。これは、カウンターN2により希釈されなくて済むので処理室内201内のHCDSガスやNH3ガスの濃度が高くなっているためである。
Further, when the counter N2 is not provided, the average film thickness of the
また、カウンターN2が無い場合に、基板処理領域のTOP、CNT、BTMのそれぞれの位置に配置されたウエハ200の面内均一性が一番低い値となっている。これは、カウンターN2の影響をうけることなく、処理室内201内のHCDSガスやNH3ガスがウエハ200表面に均等(若しくは全面)に接触することができるためである。
Further, when there is no counter N2, the in-plane uniformity of the
ここで、TOPは、基板処理領域に配置されたウエハ200のうち最上部に配置されたウエハ200であり、BTMは、基板処理領域に配置されたウエハ200のうち最下部に配置されたウエハ200であり、CNTは、基板処理領域に配置されたウエハ200のうち中心部に配置されたウエハ200である。例えば、ミニバッチ炉(全33Slot)において、Slot1〜Slot4及びSlot30〜33にダミーウエハ(サイドダミーウエハ)が配置されると、TOP:29Slot、CNT:17Slot、BTM:5Slotとなる。
Here, TOP is the
また、面内均一性は、ウエハ200面内の所定箇所の膜厚を計測して平均している。そして、面間均一性は、この面内均一性を更にTOP〜BTMまでのSlotに載置されたウエハ200の枚数分の平均値を求めることで算出している。上記ミニバッチ炉によれば、25Slot分の面内平均値より面間平均値を算出することになる。
The in-plane uniformity is averaged by measuring the film thickness at a predetermined position on the 200 surface of the wafer. Then, the in-plane uniformity is calculated by further obtaining the average value of the in-plane uniformity for the number of
本実施例によれば、カウンターN2の供給を無くすことにより、面内均一性及び面間均一性のいずれにおいても改善することができた。特に、面間均一性は、格段に向上することが分かった。 According to this embodiment, by eliminating the supply of the counter N2, it was possible to improve both the in-plane uniformity and the inter-plane uniformity. In particular, it was found that the inter-plane uniformity was significantly improved.
次に、図13に遮断弁が無い現行の成膜シーケンスと遮断弁を有する実施形態における成膜シーケンスとの比較を示す。明らかに処理ガス供給後のパージ工程(ガス置換工程)において、反応管内のガス置換に要する時間が大幅に向上されている。 Next, FIG. 13 shows a comparison between the current film formation sequence without a shutoff valve and the film formation sequence with an embodiment having a shutoff valve. Obviously, in the purging step (gas replacement step) after supplying the treated gas, the time required for gas replacement in the reaction tube is greatly improved.
図4に示すように炉口部226に一番直近の開閉弁まで配管があり、従来のパージ工程ではこの開閉弁までの配管を排気するようになっていた。よって、この配管まで真空ポンプ246で排気していたため、排気効率が悪くなっており、ガス置換工程に時間を費やす必要があった。一方、本実施形態によれば、遮断部101を閉塞することにより、ノズル部340まで真空ポンプ246で排気するため、現行のシーケンスと比較して格段と排気効率が向上している。特に、図13に示すように処理ガス供給後のサイクルパージ工程の時間を大幅に短縮することができる。
As shown in FIG. 4, the
例えば、図13に示すシーケンス比較では、現行の成膜シーケンスの一サイクルにかかる時間が51secに対して、遮断弁101を有する本実施形態における成膜シーケンスの一サイクルにかかる時間が41secとなっており、一つのサイクルで約20%(10sec)短縮することができる。
For example, in the sequence comparison shown in FIG. 13, the time required for one cycle of the current film forming sequence is 51 sec, whereas the time required for one cycle of the film forming sequence in the present embodiment having the
このように本実施の形態によれば、処理ガス供給後のパージ工程において、遮断弁を閉じることにより反応管内のガス置換効率を大幅に向上させることができる。従い、成膜シーケンスにおけるパージ工程に係る時間を短縮することができる。更に、成膜シーケンスの短縮によりスループット向上が期待できる。 As described above, according to the present embodiment, the gas replacement efficiency in the reaction tube can be significantly improved by closing the shutoff valve in the purging step after supplying the treated gas. Therefore, the time required for the purging step in the film forming sequence can be shortened. Further, the throughput can be expected to be improved by shortening the film formation sequence.
また、本実施の形態によれば、以下に示す一つ又は複数の効果が得られる。 Further, according to the present embodiment, one or a plurality of effects shown below can be obtained.
(a)本実施の形態によれば、マニホールドの外側に遮断弁を設けることで一体化することにより、遮断弁よりも供給ガス配管上流側へのガス逆拡散を抑制できる。 (a) According to the present embodiment, by providing a shutoff valve on the outside of the manifold and integrating the shutoff valve, it is possible to suppress the back diffusion of gas to the upstream side of the supply gas pipe from the shutoff valve.
(b)本実施の形態によれば、遮断弁が炉口部の側壁に近接して設けられるよう構成されているので、他のガス供給管から反応管内に処理ガスが供給されている間、遮断弁を閉塞することによりガス供給管内へ処理ガスの逆拡散を抑制することができる。 (b) According to the present embodiment, since the shutoff valve is provided close to the side wall of the furnace opening portion, while the processing gas is being supplied from another gas supply pipe into the reaction pipe, By closing the shutoff valve, the back diffusion of the processing gas into the gas supply pipe can be suppressed.
(c)本実施の形態によれば、ガス供給管上流側への処理ガスの逆拡散を抑制することにより、例えば、塩化アンモニウム等の副生成物が配管内部に付着することを抑制し、それらに起因するパーティクルを低減できる。 (c) According to the present embodiment, by suppressing the back diffusion of the processing gas to the upstream side of the gas supply pipe, for example, by suppressing the adhesion of by-products such as ammonium chloride to the inside of the pipe, they are suppressed. Particles caused by can be reduced.
(d)本実施の形態によれば、ガス供給管内への処理ガスの逆拡散を抑制できるので、他のガス供給管から反応管内に成膜ガスが供給される際に、逆拡散を抑制するための不活性ガス(本実施形態におけるカウンターN2ガス)を反応管内に供給する必要が無く、不活性ガスの無駄な浪費を抑えられる。 (d) According to the present embodiment, the backdiffusion of the processing gas into the gas supply pipe can be suppressed, so that the backdiffusion is suppressed when the film-forming gas is supplied into the reaction pipe from another gas supply pipe. Therefore, it is not necessary to supply the inert gas (counter N2 gas in the present embodiment) into the reaction tube, and wasteful waste of the inert gas can be suppressed.
(e)本実施の形態によれば、反応室と各ガス供給管の雰囲気を遮断することにより、配管加熱範囲縮小と各々の配管加熱温度の適正化ができる。 (e) According to the present embodiment, by shutting off the atmosphere of the reaction chamber and each gas supply pipe, the pipe heating range can be reduced and the pipe heating temperature can be optimized.
(f)本実施の形態によれば、遮断弁を設けているので、あるガス供給管から供給される気化ガスによる他のガス供給管内への逆拡散を抑制することができる。よって、他のガス供給管に供給されるガスによるものの他のガス供給管自体は加熱の必要が無い場合は、配管の加熱範囲を縮小することができる。 (f) According to the present embodiment, since the shutoff valve is provided, it is possible to suppress the back diffusion of the vaporized gas supplied from one gas supply pipe into another gas supply pipe. Therefore, if it is not necessary to heat the other gas supply pipe itself due to the gas supplied to the other gas supply pipe, the heating range of the pipe can be reduced.
(g)本実施の形態によれば、ガス供給管自体も加熱の必要がある場合、ガス供給管ほど高温で温度均一性の要求値が高くない場合であっても、ガス供給管の温度に設定する必要があったが、遮断弁を追加することにより、ガス供給管ほど高温で温度均一性を良くする必要が無く、安価な比較的低温なヒータや、断熱構造も簡単なヒータを選定することができる。 (g) According to the present embodiment, when the gas supply pipe itself also needs to be heated, the temperature of the gas supply pipe can be adjusted even if the temperature is not as high as that of the gas supply pipe and the required value of temperature uniformity is not high. It was necessary to set it, but by adding a shutoff valve, it is not necessary to improve the temperature uniformity at high temperature as much as the gas supply pipe, and select an inexpensive relatively low temperature heater or a heater with a simple heat insulation structure. be able to.
(h)本実施の形態によれば、カウンターN2の代わりに遮断弁を閉じることにより、結果として膜厚均一性を向上することが出来る。 (H) According to the present embodiment, by closing the shutoff valve instead of the counter N2, the film thickness uniformity can be improved as a result.
(i) 本実施の形態によれば、遮断弁を閉じ、供給ガス配管上流側へのガス逆拡散を抑制することにより、処理室内のガス置換効率を向上し、成膜シーケンス時間を短縮できる。 (i) According to the present embodiment, by closing the shutoff valve and suppressing the gas back diffusion to the upstream side of the supply gas pipe, the gas replacement efficiency in the processing chamber can be improved and the film formation sequence time can be shortened.
本実施形態では、基板処理装置の一種である縦型の半導体製造装置に関して詳述したが、これに限定されることは無く、例えば、横型の半導体製造装置についても本発明は適用できる。 In the present embodiment, the vertical semiconductor manufacturing apparatus, which is a kind of substrate processing apparatus, has been described in detail, but the present invention is not limited to this, and the present invention can be applied to, for example, a horizontal semiconductor manufacturing apparatus.
例えば、上述の実施形態では、原料ガスとしてHCDSガスを用いる例について説明した。しかしながら、本発明は、このような態様に限定されない。例えば、原料ガスとしては、HCDSガスの他、モノクロロシラン(SiH3Cl、略称:MCS)ガス、ジクロロシラン(SiH2Cl2、略称:DCS)ガス、トリクロロシラン(SiHCl3、略称:TCS)ガス、テトラクロロシランすなわちシリコンテトラクロライド(SiCl4、略称:STC)ガス、オクタクロロトリシラン(Si3Cl8、略称:OCTS)ガス等の無機系ハロシラン原料ガスや、トリスジメチルアミノシラン(Si[N(CH3)2]3H、略称:3DMAS)ガス、テトラキスジメチルアミノシラン(Si[N(CH3)2]4、略称:4DMAS)ガス、ビスジエチルアミノシラン(Si[N(C2H5)2]2H2、略称:BDEAS)ガス、ビスターシャリブチルアミノシラン(SiH2[NH(C4H9)]2、略称:BTBAS)ガス等のハロゲン基非含有のアミノ系(アミン系)シラン原料ガスを用いることができる。また、原料ガスとしては、モノシラン(SiH4、略称:MS)ガス、ジシラン(Si2H6、略称:DS)ガス、トリシラン(Si3H8、略称:TS)ガス等のハロゲン基非含有の無機系シラン原料ガスを用いることができる。 For example, in the above-described embodiment, an example in which HCDS gas is used as the raw material gas has been described. However, the present invention is not limited to such aspects. For example, as the raw material gas, in addition to HCDS gas, monochlorosilane (SiH3Cl, abbreviated as MCS) gas, dichlorosilane (SiH2Cl2, abbreviated as DCS) gas, trichlorosilane (SiHCl3, abbreviated as TCS) gas, tetrachlorosilane, that is, silicontetra Inorganic halosilane raw material gas such as chloride (SiCl4, abbreviation: STC) gas, octachlorotrisilane (Si3Cl8, abbreviation: OCTS) gas, and trisdimethylaminosilane (Si [N (CH3) 2] 3H, abbreviation: 3DMAS) gas. , Tetrakissdimethylaminosilane (Si [N (CH3) 2] 4, abbreviation: 4DMAS) gas, bisdiethylaminosilane (Si [N (C2H5) 2] 2H2, abbreviation: BDEAS) gas, Vistashaributylaminosilane (SiH2 [NH () C4H9)] 2, abbreviation: BTBAS) A halogen group-free amino-based (amine-based) silane raw material gas such as gas can be used. Further, as the raw material gas, an inorganic silane raw material gas containing no halogen group such as monosilane (SiH4, abbreviated as MS) gas, disilane (Si2H6, abbreviated as DS) gas, trisilane (Si3H8, abbreviated as TS) gas is used. be able to.
また、例えば、上述の実施形態では、反応ガスとしてNH3ガスを用いる例について説明した。しかしながら、本発明は、このような態様に限定されない。例えば、反応ガスとしては、NH3ガスの他、ジアゼン(N2H2)ガス、ヒドラジン(N2H4)ガス、N3H8ガス等の窒化水素系ガスや、これらの化合物を含むガス等を用いることができる。また、反応ガスとしては、トリエチルアミン((C2H5)3N、略称:TEA)ガス、ジエチルアミン((C2H5)2NH、略称:DEA)ガス、モノエチルアミン(C2H5NH2、略称:MEA)ガス等のエチルアミン系ガスや、トリメチルアミン((CH3)3N、略称:TMA)ガス、ジメチルアミン((CH3)2NH、略称:DMA)ガス、モノメチルアミン(CH3NH2、略称:MMA)ガス等のメチルアミ
ン系ガス等を用いることができる。また、反応ガスとしては、トリメチルヒドラジン((CH3)2N2(CH3)H、略称:TMH)ガス等の有機ヒドラジン系ガス等を用いることができる。
Further, for example, in the above-described embodiment, an example in which NH3 gas is used as the reaction gas has been described. However, the present invention is not limited to such aspects. For example, as the reaction gas, in addition to NH3 gas, hydrogen nitride-based gas such as diimide (N2H2) gas, hydrazine (N2H4) gas, N3H8 gas, and a gas containing these compounds can be used. Examples of the reaction gas include ethylamine-based gases such as triethylamine ((C2H5) 3N, abbreviation: TEA) gas, diethylamine ((C2H5) 2NH, abbreviation: DEA) gas, monoethylamine (C2H5NH2, abbreviation: MEA) gas, and the like. Methylamine-based gas such as trimethylamine ((CH3) 3N, abbreviated as TMA) gas, dimethylamine ((CH3) 2NH, abbreviation: DMA) gas, monomethylamine (CH3NH2, abbreviation: MMA) gas and the like can be used. Further, as the reaction gas, an organic hydrazine-based gas such as trimethylhydrazine ((CH3) 2N2 (CH3) H, abbreviation: TMH) gas can be used.
また、例えば、上述の実施形態では、原料ガスとしてHCDSガスを用い、反応ガスとしてNH3ガスのような窒素(N)含有ガス(窒化ガス)を用い、SiN膜を形成する例について説明した。しかしながら、本発明は、このような態様に限定されない。例えば、これらの他、もしくは、これらに加え、酸素(O2)ガス等の酸素(O)含有ガス(酸化ガス)、プロピレン(C3H6)ガス等の炭素(C)含有ガス、三塩化硼素(BCl3)ガス等の硼素(B)含有ガス等を用い、SiO膜、SiON膜、SiOCN膜、SiOC膜、SiCN膜、SiBN膜、SiBCN膜等を形成することができる。なお、各ガスを流す順番は適宜変更することができる。これらの成膜を行う場合
においても、上述の実施形態と同様な処理条件にて成膜を行うことができ、上述の実施形態と同様の効果が得られる。
Further, for example, in the above-described embodiment, an example in which an HCDS gas is used as a raw material gas and a nitrogen (N) -containing gas (nitriding gas) such as NH3 gas is used as a reaction gas to form a SiN film has been described. However, the present invention is not limited to such aspects. For example, in addition to these, or in addition to these, oxygen (O) -containing gas (oxidation gas) such as oxygen (O2) gas, carbon (C) -containing gas such as propylene (C3H6) gas, boron trichloride (BCl3). A boron (B) -containing gas such as a gas can be used to form a SiO film, a SiON film, a SiOCN film, a SiOC film, a SiCN film, a SiBN film, a SiBCN film, or the like. The order in which each gas flows can be changed as appropriate. Even when these film formations are performed, the film formation can be performed under the same processing conditions as those in the above-described embodiment, and the same effects as those in the above-described embodiment can be obtained.
なお、各ガスを流す順番は適宜変更することができる。これらの成膜を行う場合においても、上述の実施形態と同様な処理条件にて成膜を行うことができ、上述の実施形態と同様の効果が得られる。すなわち、本発明は、半導体元素や金属元素等の所定元素を含む膜を形成する場合に好適に適用することができる。 The order in which each gas flows can be changed as appropriate. Even when these film formations are performed, the film formation can be performed under the same processing conditions as those in the above-described embodiment, and the same effects as those in the above-described embodiment can be obtained. That is, the present invention can be suitably applied to the case of forming a film containing a predetermined element such as a semiconductor element or a metal element.
また、上述の実施形態では、基板上に膜を堆積させる例について説明した。しかしながら、本発明は、このような態様に限定されない。例えば、基板や基板上に形成された膜等に対して、酸化処理、拡散処理、アニール処理、エッチング処理等の処理を行う場合にも、好適に適用可能である。また、上述の実施形態や変形例は、適宜組み合わせて用いることができる。このときの処理条件は、例えば上述の実施形態や変形例と同様な処理条件とすることができる。 Further, in the above-described embodiment, an example of depositing a film on the substrate has been described. However, the present invention is not limited to such aspects. For example, it can be suitably applied to a substrate, a film formed on the substrate, or the like, which is subjected to treatments such as oxidation treatment, diffusion treatment, annealing treatment, and etching treatment. In addition, the above-described embodiments and modifications can be used in combination as appropriate. The processing conditions at this time can be, for example, the same processing conditions as those in the above-described embodiment and modification.
以上、本発明の実施の形態を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。 Although the embodiments of the present invention have been specifically described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist thereof.
本発明は、基板上に膜を形成させる基板処理装置に適用可能である。 The present invention is applicable to a substrate processing apparatus for forming a film on a substrate.
101 遮断弁(遮断部)
102 排気弁(排気部)
200 ウエハ(基板)
203 反応管
226 マニホールド(炉口部)
310 ガス供給管
340 ノズル部
350 ノズル支持部
101 Shutoff valve (shutoff part)
102 Exhaust valve (exhaust part)
200 wafer (board)
203
310
Claims (12)
前記処理室に直結して設けられる第1遮断部を介して第1のガスを供給する第1ガス供給系と、A first gas supply system that supplies a first gas through a first shutoff portion that is directly connected to the processing chamber.
前記処理室に直結して設けられる第2遮断部を介して第2のガスを供給する第2ガス供給系と、A second gas supply system that supplies a second gas via a second shutoff portion that is directly connected to the processing chamber.
前記第1遮断部を開放し前記第1ガス供給系から前記第1のガスを前記処理室内に供給する際に、前記第2ガス供給系から前記処理室内への前記第2のガスの供給を前記第2遮断部で遮断し、When the first cutoff portion is opened and the first gas is supplied from the first gas supply system to the processing chamber, the second gas is supplied from the second gas supply system to the processing chamber. It is blocked by the second blocking section.
前記第2遮断部を開放し前記第2ガス供給系から前記第2のガスを前記処理室内に供給する際に、前記第1ガス供給系から前記処理室内への前記第1のガスの供給を前記第1遮断部で遮断するように、When the second cutoff portion is opened and the second gas is supplied from the second gas supply system to the processing chamber, the supply of the first gas from the first gas supply system to the processing chamber is performed. As if blocking at the first blocking section
少なくとも前記第1ガス供給系と前記第2ガス供給系を制御することが可能なように構成される制御部と、At least a control unit configured to be able to control the first gas supply system and the second gas supply system,
を備える基板処理装置。Substrate processing device.
前記第1ガス切替部および前記第2ガス切替部と前記第1遮断部及び第2ガス遮断部との間の配管内の排気を実施する排気部を備えた請求項1記載の基板処理装置。 Further, it has a first gas switching unit and a second gas switching unit provided on the upstream side of each of the first blocking unit and the second blocking unit, respectively.
The substrate processing apparatus according to claim 1, further comprising an exhaust unit for exhausting air in a pipe between the first gas switching unit and the second gas switching unit and the first cutoff unit and the second gas cutoff unit.
前記冷却部は、前記第1遮断部及び前記第2遮断部のうち少なくとも一方に冷却流体を供給するよう構成されている請求項1記載の基板処理装置。 Further, a cooling unit for cooling at least one of the first blocking unit and the second blocking unit is provided.
The substrate processing apparatus according to claim 1, wherein the cooling unit is configured to supply a cooling fluid to at least one of the first blocking unit and the second blocking unit.
前記排気系は、前記処理室内への前記第1のガス又は前記第2のガスの供給が終了すると、前記処理室内から前記第1のガス又は前記第2のガスを排出するよう構成されている請求項1記載の基板処理装置。 Further, an exhaust system for discharging the gas in the processing chamber,
The exhaust system, when the supply of the first gas or the second gas to the process chamber is terminated, is configured to discharge the first gas or the second gas from the processing chamber The substrate processing apparatus according to claim 1.
前記排気部は、前記第1遮断部及び前記第2遮断部の上流側で供給配管を分岐するよう構成され、前記処理室を迂回して前記排気系に接続されるように構成されている請求項2記載の基板処理装置。 Further, an exhaust system for discharging the gas in the processing chamber,
The exhaust unit is configured to branch the supply pipe on the upstream side of the first cutoff unit and the second cutoff unit, and is configured to bypass the processing chamber and be connected to the exhaust system. Item 2. The substrate processing apparatus according to item 2.
前記第2遮断部を開放して前記処理室内に前記第2のガスを供給する間、前記処理室内への前記第1のガスの供給を前記第1遮断部で遮断する工程と、
を有する半導体装置の製造方法 When by opening the first shut-off portion provided with direct access to the processing chamber to supply the first gas into the processing chamber, the second blocking portion provided with direct access to the processing chamber to the processing chamber The process of shutting off the supply of the second gas of
A step of interrupting the second blocking portions between the open to supply the second gas into the processing chamber, the supply of the first gas into the processing chamber by the first blocking portion,
Manufacturing method of semiconductor device with
前記第2遮断部を開放し前記第2のガスを前記処理室内に供給する間、前記処理室内への前記第1のガスの供給を前記第1遮断部で遮断する手順と、
をコンピュータに実行させて基板処理装置として機能させるプログラム。
While supplying the first gas into the processing chamber by opening the first shut-off portion provided with direct access to the processing chamber, the second blocking portion provided with direct access to the processing chamber to the processing chamber The procedure for shutting off the second gas supply and
A step of blocking said second gas by opening the second shut-off unit while supplying into the processing chamber, the supply of the first gas into the processing chamber by the first blocking portion,
A program that causes a computer to execute and function as a board processing device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019202852A JP6768134B2 (en) | 2019-11-08 | 2019-11-08 | Substrate processing equipment and semiconductor equipment manufacturing methods and programs |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019202852A JP6768134B2 (en) | 2019-11-08 | 2019-11-08 | Substrate processing equipment and semiconductor equipment manufacturing methods and programs |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018522204A Division JP6616895B2 (en) | 2016-06-07 | 2016-06-07 | Substrate processing apparatus, semiconductor device manufacturing method, and program |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020025131A JP2020025131A (en) | 2020-02-13 |
JP6768134B2 true JP6768134B2 (en) | 2020-10-14 |
Family
ID=69618981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019202852A Active JP6768134B2 (en) | 2019-11-08 | 2019-11-08 | Substrate processing equipment and semiconductor equipment manufacturing methods and programs |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6768134B2 (en) |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03142823A (en) * | 1989-10-27 | 1991-06-18 | Fujitsu Ltd | Vapor phase growth equipment |
US5336324A (en) * | 1991-12-04 | 1994-08-09 | Emcore Corporation | Apparatus for depositing a coating on a substrate |
JP4252142B2 (en) * | 1999-01-12 | 2009-04-08 | 東京エレクトロン株式会社 | Gas processing device and purge mechanism of raw material supply system used therefor |
JP3670628B2 (en) * | 2002-06-20 | 2005-07-13 | 株式会社東芝 | Film forming method, film forming apparatus, and semiconductor device manufacturing method |
JP2009503875A (en) * | 2005-07-29 | 2009-01-29 | アヴィザ テクノロジー インコーポレイテッド | Gas manifold valve cluster |
JP4963817B2 (en) * | 2005-09-21 | 2012-06-27 | 株式会社日立国際電気 | Substrate processing equipment |
JP2011187485A (en) * | 2010-03-04 | 2011-09-22 | Hitachi Kokusai Electric Inc | Substrate processing apparatus |
JP6042160B2 (en) * | 2012-10-03 | 2016-12-14 | 東京エレクトロン株式会社 | Film forming method and film forming apparatus |
JP5852147B2 (en) * | 2014-01-23 | 2016-02-03 | 株式会社日立国際電気 | Semiconductor device manufacturing method, substrate processing apparatus, program, and recording medium |
JP2015198185A (en) * | 2014-04-02 | 2015-11-09 | 東京エレクトロン株式会社 | Film forming method and film forming apparatus |
-
2019
- 2019-11-08 JP JP2019202852A patent/JP6768134B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2020025131A (en) | 2020-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6616895B2 (en) | Substrate processing apparatus, semiconductor device manufacturing method, and program | |
JP6806861B2 (en) | Manufacturing methods for temperature sensors, substrate processing equipment, and semiconductor equipment | |
JP6860605B2 (en) | Semiconductor device manufacturing methods, substrate processing devices, and programs | |
JP7114763B1 (en) | Semiconductor device manufacturing method, substrate processing apparatus, program, and substrate processing method | |
US10910214B2 (en) | Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium | |
KR102473880B1 (en) | Cleaning method, semiconductor device manufacturing method, substrate processing device, and program | |
US11515143B2 (en) | Method of manufacturing semiconductor device, substrate processing apparatus, recording medium, and method of processing substrate | |
JP6920262B2 (en) | Semiconductor device manufacturing methods, board processing methods, board processing devices, and programs | |
TW202011479A (en) | Substrate processing device, electrode of substrate processing device, and method of manufacturing semiconductor device | |
US11972934B2 (en) | Method of manufacturing semiconductor device, substrate processing method, substrate processing apparatus, and recording medium | |
JP2019186335A (en) | Substrate processing apparatus and substrate processing method | |
JP6853116B2 (en) | Semiconductor device manufacturing methods, substrate processing devices and programs | |
JP6760833B2 (en) | Semiconductor device manufacturing methods, substrate processing devices, and programs | |
US20220298642A1 (en) | Substrate Processing Apparatus and Method of Manufacturing Semiconductor Device | |
JP6768134B2 (en) | Substrate processing equipment and semiconductor equipment manufacturing methods and programs | |
US20230411149A1 (en) | Method of processing substrate, method of manufacturing semiconductor device, substrate processing apparatus, and recording medium | |
JP6909860B2 (en) | Semiconductor device manufacturing method, substrate processing device and program | |
JP2022087143A (en) | Substrate processing methods, semiconductor device manufacturing methods, substrate processing devices, and programs | |
JPWO2019087445A1 (en) | Semiconductor device manufacturing method, substrate processing apparatus, and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191111 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191111 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200825 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200827 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200918 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6768134 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |