[go: up one dir, main page]

JP6765093B2 - Polyimide - Google Patents

Polyimide Download PDF

Info

Publication number
JP6765093B2
JP6765093B2 JP2016101404A JP2016101404A JP6765093B2 JP 6765093 B2 JP6765093 B2 JP 6765093B2 JP 2016101404 A JP2016101404 A JP 2016101404A JP 2016101404 A JP2016101404 A JP 2016101404A JP 6765093 B2 JP6765093 B2 JP 6765093B2
Authority
JP
Japan
Prior art keywords
polyimide
film
represented
formula
polyimide precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016101404A
Other languages
Japanese (ja)
Other versions
JP2017206650A (en
Inventor
長谷川 匡俊
匡俊 長谷川
淳一 石井
淳一 石井
江原 和也
和也 江原
和也 進藤
和也 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Toho University
Original Assignee
Nissan Chemical Corp
Toho University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp, Toho University filed Critical Nissan Chemical Corp
Priority to JP2016101404A priority Critical patent/JP6765093B2/en
Publication of JP2017206650A publication Critical patent/JP2017206650A/en
Application granted granted Critical
Publication of JP6765093B2 publication Critical patent/JP6765093B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

本発明は、ポリイミドに関し、更に詳述すると、ビフェニルテトラカルボン酸二無水物と2種類の剛直なジアミン成分を用いて得られたポリイミドに関する。 The present invention relates to a polyimide and, more specifically, to a polyimide obtained by using a biphenyltetracarboxylic dianhydride and two kinds of rigid diamine components.

現在、各種画像表示装置や太陽電池において、デバイスの軽量化や脆弱性改善を主な目的として、現行の無機ガラス基板(例えば無アルカリガラス基板。以下、単にガラス基板という。)をプラスチック基板に置き換えようとする検討が行われている。
しかし、現在の技術では、ガラス基板と同程度の無色透明性、優れた低熱膨張特性、極めて高い物理的耐熱性(ガラス転移温度)及び化学的耐熱性(熱酸化安定性)を有し、かつガラス基板の欠点である機械的脆弱性を大幅に改善した、理想的なプラスチック基板を得ることは困難である。
Currently, in various image display devices and solar cells, the current inorganic glass substrate (for example, non-alkali glass substrate, hereinafter simply referred to as glass substrate) is replaced with a plastic substrate for the main purpose of reducing the weight of the device and improving the vulnerability. Consideration is being made to try.
However, the current technology has colorless transparency comparable to that of a glass substrate, excellent low thermal expansion characteristics, extremely high physical heat resistance (glass transition temperature) and chemical heat resistance (thermal oxidation stability), and It is difficult to obtain an ideal plastic substrate with significantly improved mechanical fragility, which is a drawback of glass substrates.

全芳香族ポリイミドは現存する有機高分子材料(樹脂)の中では最高ランクの物理的・化学的耐熱性を有するため、エレクトロニクス分野を中心に様々な用途の電気絶縁部材に適用されているが、分子構造由来の電荷移動相互作用により強く着色しているうえに(例えば非特許文献1参照)、低熱膨張特性も必ずしも十分ではない。
従って、全芳香族ポリイミドフィルムをそのまま画像表示装置用プラスチック基板等の光学部材に適用することは困難である。
All-aromatic polyimide has the highest level of physical and chemical heat resistance among existing organic polymer materials (resins), so it is applied to electrical insulation members for various purposes, mainly in the electronics field. In addition to being strongly colored by the charge transfer interaction derived from the molecular structure (see, for example, Non-Patent Document 1), the low thermal expansion property is not always sufficient.
Therefore, it is difficult to apply the total aromatic polyimide film as it is to an optical member such as a plastic substrate for an image display device.

一方、ポリイミドの原料モノマーであるジアミン及びテトラカルボン酸二無水物のいずれか一方、あるいは両方に脂環式モノマーを用いることで、全芳香族ポリイミドに見られる電荷移動相互作用が阻害され、無色透明なポリイミドが得られることが知られている(例えば非特許文献2、3参照)。
しかし、このポリイミドでは、骨格中に耐熱性に劣る脂環構造単位が導入されるため、全芳香族ポリイミドに比べ、物理的・化学的耐熱性が大幅に低下する。しかも、脂環構造導入は、ポリイミド主鎖の直線性の低下も招くため、脂環構造が導入されたポリイミドはしばしば低熱膨張特性を示さない。
このように、従来知られている全芳香族ポリイミド及び脂環構造を有するポリイミドのいずれにおいても、画像表示装置用プラスチック基板に要求される特性を完全に満たすことはできない。
On the other hand, by using an alicyclic monomer for either one or both of diamine and tetracarboxylic dianhydride which are raw material monomers of polyimide, the charge transfer interaction observed in all aromatic polyimides is inhibited and colorless and transparent. It is known that a suitable polyimide can be obtained (see, for example, Non-Patent Documents 2 and 3).
However, in this polyimide, since an alicyclic structural unit having inferior heat resistance is introduced into the skeleton, the physical and chemical heat resistance is significantly lowered as compared with the total aromatic polyimide. Moreover, since the introduction of the alicyclic structure also causes a decrease in the linearity of the polyimide main chain, the polyimide into which the alicyclic structure is introduced often does not exhibit low thermal expansion characteristics.
As described above, neither the conventionally known total aromatic polyimide nor the polyimide having an alicyclic structure completely satisfies the characteristics required for the plastic substrate for an image display device.

有機発光ダイオード(OLED)ディスプレイを製造する際、ガラス基板上に透明電極(ITO電極)や薄膜トランジスタ(例えば、低温多結晶シリコンTFT)を形成するために、高真空下での高温プロセス(400〜600℃)が採用されている。この際、多結晶シリコンTFTはプロセス温度が高いほどその性能が向上することから、TFT作製時の温度をできるだけ高くしたいというデバイス側からの要請がある。 When manufacturing an organic light emitting diode (OLED) display, a high temperature process (400 to 600) under high vacuum is performed to form a transparent electrode (ITO electrode) or a thin film transistor (for example, a low temperature polycrystalline silicon TFT) on a glass substrate. ℃) is adopted. At this time, since the performance of the polycrystalline silicon TFT improves as the process temperature rises, there is a request from the device side to raise the temperature at the time of manufacturing the TFT as much as possible.

この高温プロセスにおいて、基板は少なくとも400〜450℃の温度に晒され、TFTの要求性能によっては更なる高温に晒されることになるが、プラスチック基板では、この高温処理時に基板構成材料から揮発性有機化合物(VOC)が発生し、その不純物で素子が汚染され、素子性能の著しい低下を招くおそれがあるのみならず、高温に晒されることで、熱変形を起こすおそれもある。
また、高温−室温温度サイクルによって繰り返される熱膨張−熱収縮が原因で、フィルム面方向(XY方向)への伸縮のヒステリシス現象や不可逆的に蓄積された残留歪により、素子層のひび割れや位置ずれ等の深刻な問題が生じるおそれもある。
In this high temperature process, the substrate is exposed to a temperature of at least 400-450 ° C., and depending on the required performance of the TFT, it is exposed to a higher temperature. However, in the case of a plastic substrate, volatile organic compounds are formed from the substrate constituent material during this high temperature treatment. A compound (VOC) is generated, and the impurities thereof may contaminate the device, which may cause a significant decrease in device performance, and may also cause thermal deformation when exposed to a high temperature.
In addition, due to the thermal expansion-thermal contraction repeated by the high temperature-room temperature temperature cycle, the element layer is cracked or misaligned due to the hysteresis phenomenon of expansion and contraction in the film surface direction (XY direction) and the irreversibly accumulated residual strain. There is also a risk of serious problems such as.

従って、上記のような高温プロセスに用いられることを想定した場合、プラスチック基板材料には、VOC発生防止可能な熱安定性を確保するためできるだけ高い熱分解温度(Td)を有すること、熱変形防止可能な耐熱性を確保するためプロセス最高温度よりも十分に高いガラス転移温度(Tg)を有すること、熱膨張及び熱収縮を防止して熱寸法安定性を確保するためガラス基板に匹敵する程度の低い線熱膨張係数(CTE)を有することが要求される。
その上で、ガラス基板と同程度の無色透明性、及び優れた膜形成能(膜靱性)を併せ持つ材料が最適であるが、そのような樹脂材料の開発は非常に困難であり、特に、無色透明性と400℃以上の熱酸化安定性の両立は困難を極める。
Therefore, assuming that it is used in the high temperature process as described above, the plastic substrate material should have as high a thermal decomposition temperature (T d ) as possible in order to ensure thermal stability that can prevent VOC generation, and thermal deformation. It has a glass transition temperature (T g ) that is sufficiently higher than the maximum process temperature to ensure preventable heat resistance, and is comparable to a glass substrate to prevent thermal expansion and contraction and ensure thermal dimensional stability. It is required to have a low coefficient of linear thermal expansion (CTE).
On top of that, a material that has the same level of colorless transparency as a glass substrate and excellent film forming ability (film toughness) is optimal, but it is extremely difficult to develop such a resin material, and in particular, it is colorless. It is extremely difficult to achieve both transparency and thermal oxidation stability at 400 ° C or higher.

ところで、従来のOLEDディスプレイでは、発光層からの放出光をガラス基板側に取り出すボトム・エミッション方式が主流であったが、高精細化等の有利性から、最近では光の取り出し方向がボトム・エミッション方式とは反対側のトップ・エミッション方式OLEDディスプレイも採用されている。
この方式では、発光層から放出された光が基板とは反対方向に取り出されるので、放出光が基板を通過することはない。従って、基板自身の着色は重大な問題とはならないため、このプラスチック基板材料に無色透明性は特に要求されない。
このように無色透明性が要求されないトップ・エミッション方式OLEDディスプレイ用基板としては、耐熱樹脂材料である全芳香族ポリイミドが最も有望な候補である。
By the way, in the conventional OLED display, the bottom emission method that extracts the light emitted from the light emitting layer to the glass substrate side has been the mainstream, but recently, due to the advantages such as high definition, the light extraction direction is the bottom emission. A top-emission OLED display on the opposite side of the system is also used.
In this method, the light emitted from the light emitting layer is taken out in the direction opposite to that of the substrate, so that the emitted light does not pass through the substrate. Therefore, since coloring of the substrate itself does not pose a serious problem, colorless transparency is not particularly required for this plastic substrate material.
As a substrate for a top-emission OLED display that does not require colorless transparency, all-aromatic polyimide, which is a heat-resistant resin material, is the most promising candidate.

現在、大規模生産されている全芳香族ポリイミド樹脂の中で最も熱酸化安定性に優れ、かつ低線熱膨張係数を有するポリイミド樹脂として、式[1]で表される分子構造を有するポリイミド樹脂である宇部興産(株)製のUPILEX−Sが知られている。 A polyimide resin having a molecular structure represented by the formula [1] as a polyimide resin having the highest thermal oxidation stability and a low coefficient of linear thermal expansion among all aromatic polyimide resins currently produced on a large scale. UPILEX-S manufactured by Ube Industries, Ltd. is known.

Figure 0006765093
Figure 0006765093

上記[1]式で表される分子構造を有するポリイミドは、かなり低い線熱膨張係数(膜厚、キャスト溶媒の種類、熱イミド化温度等のフィルム製造条件にもよるが、およそ9〜19ppm/Kの範囲)を有しているものの、ガラス基板(無アルカリガラス)の値(4〜5ppm/K)には及ばず、線熱膨張係数の点では改善の余地が残されている(例えば非特許文献4参照)。
ポリイミドの線熱膨張係数を下げるためには、その主鎖構造をできるだけ直線的で剛直にする必要がある。この観点でいえば、式[2]で表される分子構造を有するポリイミドは低熱膨張化に有利な構造を有している。
実際にこのポリイミドの線熱膨張係数は、ガラス基板の値よりも低く、シリコンウエハに匹敵するほど低い線熱膨張係数を示すことが知られている(例えば非特許文献5参照)。
The polyimide having the molecular structure represented by the above formula [1] has a considerably low coefficient of linear thermal expansion (thickness, type of cast solvent, thermal imidization temperature and other film production conditions, but is about 9 to 19 ppm / Although it has a range of K), it does not reach the value (4 to 5 ppm / K) of the glass substrate (non-alkali glass), and there is room for improvement in terms of the coefficient of linear thermal expansion (for example, non-alkali glass). See Patent Document 4).
In order to reduce the coefficient of linear thermal expansion of polyimide, it is necessary to make its main chain structure as straight and rigid as possible. From this point of view, the polyimide having the molecular structure represented by the formula [2] has a structure advantageous for low thermal expansion.
In fact, it is known that the coefficient of linear thermal expansion of this polyimide is lower than the value of the glass substrate and exhibits a coefficient of linear thermal expansion comparable to that of a silicon wafer (see, for example, Non-Patent Document 5).

Figure 0006765093
Figure 0006765093

しかし、上記式[2]で表されるポリイミドでは、高分子鎖同士の絡み合いが殆どないため、ポリイミドフィルムが著しく脆弱化するという重大な問題が生じるのみならず(例えば非特許文献5参照)、式[1]で表されるポリイミドに比べて、熱分解温度が低いため、トップ・エミッション方式OLEDディスプレイ用基板としては適していない。 However, in the polyimide represented by the above formula [2], since the polymer chains are hardly entangled with each other, not only a serious problem that the polyimide film is remarkably weakened arises, but also (see, for example, Non-Patent Document 5). Since the thermal decomposition temperature is lower than that of the polyimide represented by the formula [1], it is not suitable as a substrate for a top emission type OLED display.

また、式[1]のポリイミドと式[2]のポリイミドの共重合体は、式[1]で表されるポリイミドフィルムよりも低い線熱膨張係数を示すが、熱酸化安定性とフィルムの柔軟性が低下するという問題がある。 Further, the copolymer of the polyimide of the formula [1] and the polyimide of the formula [2] exhibits a lower coefficient of linear thermal expansion than the polyimide film represented by the formula [1], but has thermal oxidation stability and flexibility of the film. There is a problem that the sex is reduced.

式[3]で表される汎用ポリイミド(KAPTON(登録商標)−H、東レ・デュポン(株)製)は主鎖中に屈曲性連結基であるエーテル結合を有しているために、式[2]のポリイミドフィルムが有する脆弱性が解消され、極めて強靭なフィルムを与える一方、主鎖の直線性が失われて低熱膨張特性が低下する(例えば非特許文献6参照)。
式[3]のポリイミドに含まれるエーテル基は、各種連結基の中では熱安定性に最も優れているが、空気中での熱酸化安定性や高真空下でのVOC抑制能を極限まで高めるという観点からは、エーテル基であっても連結基はできるだけ排除した方が望ましい。
Since the general-purpose polyimide represented by the formula [3] (KAPTON (registered trademark) -H, manufactured by Toray DuPont Co., Ltd.) has an ether bond which is a flexible linking group in the main chain, the formula [3] The brittleness of the polyimide film of 2] is eliminated to give an extremely tough film, while the linearity of the main chain is lost and the low thermal expansion characteristics are deteriorated (see, for example, Non-Patent Document 6).
The ether group contained in the polyimide of the formula [3] has the best thermal stability among various linking groups, but enhances the thermal oxidation stability in air and the VOC suppression ability under high vacuum to the utmost limit. From this point of view, it is desirable to eliminate the linking group as much as possible even if it is an ether group.

Figure 0006765093
Figure 0006765093

なお、全芳香族ポリイミドは、それ自身溶媒に不溶であるため、前駆体であるポリアミド酸のワニスをガラス基体上に塗布・乾燥後、窒素等の不活性ガス雰囲気中、又は真空中300℃以上の高温で熱処理して熱脱水環化反応(熱イミド化反応)を完結させ、極めて均質で平滑なフィルムを作製することができる。 Since total aromatic polyimide is insoluble in a solvent by itself, a varnish of polyamic acid, which is a precursor, is applied onto a glass substrate and dried, and then in an inert gas atmosphere such as nitrogen or in a vacuum at 300 ° C. or higher. The thermal dehydration cyclization reaction (thermal imidization reaction) can be completed by heat treatment at a high temperature of the above, and an extremely homogeneous and smooth film can be produced.

例えば、下記スキームに示されるように、式[1]で表されるポリイミドの場合、式[4]で表されるテトラカルボン酸二無水物(3,3’,4,4’−ビフェニルテトラカルボン酸二無水物:以下s−BPDAと称する)と式[5]で表されるジアミン(p−フェニレンジアミン:以下PDAと称する)を、N−メチル−2−ピロリドン(以下NMPと称する)等のアミド系溶媒中で等モル重付加反応させて、式[6]で表されるポリアミド酸を含むワニスとし、これを上記のように熱イミド化することでポリイミドフィルムが得られる。 For example, as shown in the scheme below, in the case of the polyimide represented by the formula [1], the tetracarboxylic acid dianhydride represented by the formula [4] (3,3', 4,4'-biphenyltetracarboxylic) Acid dianhydride: s-BPDA (hereinafter referred to as s-BPDA) and diamine represented by the formula [5] (p-phenylenediamine: hereinafter referred to as PDA), such as N-methyl-2-pyrrolidone (hereinafter referred to as NMP), etc. A polyimide film can be obtained by subjecting it to an equimolar addition reaction in an amide solvent to obtain a varnish containing a polyamic acid represented by the formula [6], and then thermally imidizing this as described above.

Figure 0006765093
Figure 0006765093

また、式[2]で表されるポリイミドフィルムは、式[7]で表されるピロメリット酸二無水物(以下PMDAと称する)とPDAから得られる。 The polyimide film represented by the formula [2] is obtained from pyromellitic dianhydride (hereinafter referred to as PMDA) represented by the formula [7] and a PDA.

Figure 0006765093
Figure 0006765093

更に、式[1]と式[2]のポリイミドの共重合体は、テトラカルボン酸二無水物として式[4]のs−BPDAと式[7]のPMDAを併用し、これらのテトラカルボン酸二無水物の総量と実質的に等モルの式[5]で表されるPDAを反応させて容易に得られ、s−BPDAとPMDAのモル比を変えることでポリイミドフィルムの特性を制御することも可能である。 Further, in the polyimide copolymer of the formulas [1] and [2], s-BPDA of the formula [4] and PMDA of the formula [7] are used in combination as a tetracarboxylic dianhydride, and these tetracarboxylic acids are used. (Ii) It is easily obtained by reacting the total amount of anhydride with a PDA represented by a substantially equimolar formula [5], and the characteristics of the polyimide film are controlled by changing the molar ratio of s-BPDA and PMDA. Is also possible.

プラスチック基板を用いてOLEDディスプレイを製造しようとする場合、新たな製造設備の導入を避けるため、できるだけ現行の製造設備及び製造技術を転用することが望ましい。
このような要請により、現行のガラス基板を基体(以下、ガラス基体という)として用い、このガラス基体上にポリイミドフィルム等の耐熱樹脂フィルムを形成後、そのフィルム上にITO透明電極やTFT等を真空プロセスで形成・封止後、最終的にガラス基体を剥離・除去する製造工程がとられることになる。
その際、ガラス基体上にポリイミドフィルムを形成する初期工程をバッチ法ではなく連続プロセスで行うために、できるだけ高温でかつ空気雰囲気中でポリイミドフィルムを形成することが工程簡略化の観点から望ましい。
When manufacturing an OLED display using a plastic substrate, it is desirable to divert the current manufacturing equipment and manufacturing technology as much as possible in order to avoid the introduction of new manufacturing equipment.
In response to such a request, a current glass substrate is used as a substrate (hereinafter referred to as a glass substrate), a heat-resistant resin film such as a polyimide film is formed on the glass substrate, and then an ITO transparent electrode, a TFT, or the like is vacuumed on the film. After forming and sealing in the process, a manufacturing process of finally peeling and removing the glass substrate is taken.
At that time, since the initial step of forming the polyimide film on the glass substrate is performed by a continuous process instead of the batch method, it is desirable to form the polyimide film at a high temperature as much as possible and in an air atmosphere from the viewpoint of process simplification.

ポリイミドフィルムを製造する際の熱イミド化反応は、あまり高温でなければ空気雰囲気中でも可能ではあるが、先に述べた高温プロセスで採用されるような400℃を超える高温で熱イミド化反応を行おうとすると、空気中の酸素によってポリイミドの部分的な熱酸化分解(劣化)反応が起こり、フィルムの密着不良に加えて、フィルムの靱性やフィルム表面の平滑性が損なわれるといった問題が生じることがある。このような場合、フィルムの状態によっては以後のOLEDデバイス組立工程に使用できなくなるおそれがある。 The thermal imidization reaction in the production of the polyimide film can be performed in an air atmosphere if the temperature is not too high, but the thermal imidization reaction is carried out at a high temperature exceeding 400 ° C. as used in the high temperature process described above. Attempt, oxygen in the air causes a partial thermal oxidative decomposition (deterioration) reaction of the polyimide, which may cause problems such as poor adhesion of the film and impaired toughness of the film and smoothness of the film surface. .. In such a case, depending on the state of the film, it may not be usable in the subsequent OLED device assembly process.

上述した共重合法により低熱膨張特性を改善したポリイミドでは、空気中での熱イミド化工程には必ずしも適合しないため、窒素中や真空中でポリイミドフィルムを形成するため新たな設備が必要となり、高コスト化は避けられない。
しかも、窒素中や真空中で熱イミド化して得られた高品質なポリイミドフィルムであっても、当該ポリイミドでは、トップ・エミッション方式OLEDディスプレイ用基板に求められるような、ガラス基板に匹敵する低線熱膨張係数、UPILEX−Sを超える熱分解温度、400℃以上のガラス転移温度及び十分な膜靱性という全ての性能を満足することは困難である。
この問題を解決することができれば、当該技術分野において、特に上記トップ・エミッション方式OLED用基板材料として従来にない、極めて有益な材料となり得るが、そのような材料は知られていない。
Since the polyimide whose low thermal expansion characteristics have been improved by the above-mentioned copolymerization method is not always suitable for the thermal imidization process in air, new equipment is required to form the polyimide film in nitrogen or vacuum, which is expensive. Cost increase is inevitable.
Moreover, even if it is a high-quality polyimide film obtained by thermal imidization in nitrogen or vacuum, the polyimide has a low line comparable to that of a glass substrate, which is required for a substrate for a top emission OLED display. It is difficult to satisfy all the performances of the coefficient of thermal expansion, the thermal decomposition temperature exceeding UPILEX-S, the glass transition temperature of 400 ° C. or higher, and sufficient film toughness.
If this problem can be solved, it can be an extremely useful material that has not been conventionally used as a substrate material for the above-mentioned top emission OLED in the technical field, but such a material is not known.

空気中での高温熱イミド化プロセスに適合する、極めて高い熱酸化安定性を有する材料が得られたならば、OLEDディスプレイのみならず液晶ディスプレイ等の様々な画像表示装置における共通技術である、デバイス完成後、ガラス基体をプラスチック基板から剥離・除去する最終工程において、有益な、耐熱性易剥離層材料へ当該材料を適用することもできる。
ガラス基体上に形成されたポリイミド層は、しばしば密着性が高すぎて最終工程でのガラス基体の剥離・除去が困難になることがある。一方、ポリイミド/ポリイミド界面はガラス/ポリイミド界面に比べて、しばしば密着性に劣る。
この知見に基づいて、当該材料を用い、ガラス基体上に極めて平滑な剥離層を形成しておき、その上にプラスチック基板材料を形成することで、最終工程における剥離工程が著しく改善されることになる。
If a material with extremely high thermal oxidation stability that is compatible with the high-temperature thermal imidization process in air is obtained, it is a common technology not only for OLED displays but also for various image display devices such as liquid crystal displays. After completion, the material can also be applied to a useful, heat-resistant, easily peelable layer material in the final step of peeling and removing the glass substrate from the plastic substrate.
The polyimide layer formed on the glass substrate is often too adhesive and may make it difficult to peel off or remove the glass substrate in the final step. On the other hand, the polyimide / polyimide interface is often inferior in adhesion to the glass / polyimide interface.
Based on this finding, by using the material to form an extremely smooth release layer on the glass substrate and forming the plastic substrate material on it, the release step in the final process is significantly improved. Become.

Prog. Polym. Sci., 26, 259−335 (2001).Prog. Polym. Sci., 26, 259-335 (2001). J. Polym. Sci., Part A, 38, 108−116 (2000).J. Polym. Sci., Part A, 38, 108-116 (2000). Polymer, 55, 4693−4708 (2014).Polymer, 55, 4693-4708 (2014). Macromolecules, 32, 387−396 (1999).Macromolecules, 32, 387-396 (1999). High Perform. Polym., 21, 709−728 (2009).High Perform. Polym., 21, 709-728 (2009). Polym. J., 39, 610−621 (2007).Polym. J., 39, 610-621 (2007).

本発明は、上記事情に鑑みてなされたものであって、トップ・エミッション方式OLEDディスプレイ等の電子デバイスの基板材料として好適に使用し得、デバイスの軽量化や脆弱性改善に寄与し得るポリイミドを提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a polyimide that can be suitably used as a substrate material for electronic devices such as top emission type OLED displays and can contribute to weight reduction and vulnerability improvement of devices. The purpose is to provide.

本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、式(1)及び(2)で表される繰り返し単位を含むポリイミドの共重合体が、極めて高いVOC抑制能、優れた低熱膨張特性、高いガラス転移温度及び十分な膜形成能を有し、トップ・エミッション方式OLEDディスプレイ用基板材料等に好適であることを見出し、本発明を完成するに至った。 As a result of diligent studies to achieve the above object, the present inventors have found that a polyimide copolymer containing a repeating unit represented by the formulas (1) and (2) has an extremely high VOC suppressing ability and is excellent. They have found that they have low thermal expansion characteristics, high glass transition temperature, and sufficient film-forming ability, and are suitable for substrate materials for top-emission OLED displays, etc., and have completed the present invention.

即ち、本発明は以下のポリイミド及びポリイミド前駆体を提供する。
1. 式(1)及び(2)で表される繰り返し単位を含むポリイミド。

Figure 0006765093
2. 前記式(2)で表される繰り返し単位の含有率が1〜50mol%である1のポリイミド。
3. 式(3)及び(4)で表される繰り返し単位を含むポリイミド前駆体。
Figure 0006765093
4. 前記式(4)で表される繰り返し単位の含有率が1〜50mol%である3のポリイミド前駆体。
5. 3又は4のポリイミド前駆体を含むワニス。
6. 1又は2のポリイミドからなり、20ppm/K以下の線熱膨張係数、400℃以上のガラス転移温度又は動的粘弾性測定により400℃まで明瞭なガラス転移が検出されないこと、及び5%重量減少温度が空気雰囲気中で560℃以上であり、更に20%以上の最大破断伸びを有するポリイミドフィルム。
7. 1又は2のポリイミドからなるトップ・エミッション方式有機発光ダイオードディスプレイ用基板。
8. 1又は2のポリイミドからなるトップ・エミッション方式有機発光ダイオードディスプレイ用のガラス基板剥離層。
9. 5のワニスを基体上に塗布し、乾燥後、熱イミド化反応させるポリイミドフィルムの製造方法。
10. 式(5)
Figure 0006765093
で表されるp−フェニレンジアミンと、式(6)
Figure 0006765093
で表されるナフタレンビスイミド基含有ジアミンとを、式(7)
Figure 0006765093
で表されるテトラカルボン酸二無水物と重付加反応させることを特徴とする、式(3)及び(4)で表される繰り返し単位を含むポリイミド前駆体の製造方法。
Figure 0006765093
That is, the present invention provides the following polyimides and polyimide precursors.
1. 1. A polyimide containing a repeating unit represented by the formulas (1) and (2).
Figure 0006765093
2. 1 Polyimide having a content of 1 to 50 mol% of the repeating unit represented by the formula (2).
3. 3. A polyimide precursor containing a repeating unit represented by the formulas (3) and (4).
Figure 0006765093
4. The polyimide precursor of 3 having a content of 1 to 50 mol% of the repeating unit represented by the formula (4).
5. Varnish containing 3 or 4 polyimide precursors.
6. Consisting of 1 or 2 polyimides, no clear glass transition up to 400 ° C detected by linear thermal expansion coefficient of 20 ppm / K or less, glass transition temperature of 400 ° C or higher or dynamic viscoelasticity measurement, and 5% weight loss temperature Is a polyimide film having a maximum breaking elongation of 20% or more at 560 ° C. or higher in an air atmosphere.
7. Top emission organic light emitting diode display substrate made of 1 or 2 polyimides.
8. A glass substrate release layer for a top emission organic light emitting diode display made of 1 or 2 polyimides.
9. A method for producing a polyimide film in which the varnish of No. 5 is applied onto a substrate, dried, and then subjected to a thermal imidization reaction.
10. Equation (5)
Figure 0006765093
P-phenylenediamine represented by and formula (6)
Figure 0006765093
The naphthalene bisimide group-containing diamine represented by the formula (7)
Figure 0006765093
A method for producing a polyimide precursor containing a repeating unit represented by the formulas (3) and (4), which comprises a polyaddition reaction with a tetracarboxylic dianhydride represented by.
Figure 0006765093

本発明のポリイミドは、高い熱安定性、高度な寸法安定性を実現するために必要な、非常に低い線熱膨張係数を有しているだけでなく、高いガラス転移温度及び十分な膜靱性を兼ね備えている。
このような特性を有する本発明のポリイミドは、太陽電池等の光電変換素子の基板材料、OLED等の画像表示装置等の電子デバイスの基板材料、特にトップ・エミッション方式OLEDディスプレイ用の基板材料として好適に使用し得、デバイスの軽量化や脆弱性改善に寄与し得る。
また、当該材料をガラス基体上に塗布して得られる膜は、耐熱性易剥離層として有用であり、現行のガラス基板をプラスチック基板に置き換える上で重要な技術を提供できる。
The polyimide of the present invention not only has a very low coefficient of linear thermal expansion required to achieve high thermal stability and high dimensional stability, but also has a high glass transition temperature and sufficient film toughness. Combined.
The polyimide of the present invention having such characteristics is suitable as a substrate material for a photoelectric conversion element such as a solar cell, a substrate material for an electronic device such as an image display device such as an OLED, and particularly as a substrate material for a top emission type OLED display. It can be used for device weight reduction and vulnerability improvement.
Further, the film obtained by applying the material on the glass substrate is useful as a heat-resistant easily peelable layer, and can provide an important technique for replacing the current glass substrate with a plastic substrate.

実施例1で作製したポリイミド前駆体薄膜の赤外線吸収スペクトルである。It is an infrared absorption spectrum of the polyimide precursor thin film produced in Example 1. 実施例1で作製したポリイミド薄膜の赤外線吸収スペクトルである。It is an infrared absorption spectrum of the polyimide thin film produced in Example 1.

以下、本発明について更に詳細に説明する。
本発明に係るポリイミドは、式(1)及び(2)で表される繰り返し単位を含む、少なくとも2種類のジアミンを用いてなるポリイミドの共重合体である。
Hereinafter, the present invention will be described in more detail.
The polyimide according to the present invention is a copolymer of polyimide using at least two kinds of diamines containing the repeating units represented by the formulas (1) and (2).

Figure 0006765093
Figure 0006765093

本発明のポリイミドは、式(2)からわかるように、1,4,5,8−ナフタルビスイミド構造単位を含有している。
この構造単位では、イミド基が結合角の歪みのない6員環からなるために、5員環イミド基からなる、通常のポリイミド(例えば上記式[1]〜[3])よりも熱的により安定であるため、この構造単位を導入してなるポリイミドは熱安定性が向上する。
As can be seen from the formula (2), the polyimide of the present invention contains 1,4,5,8-naphthalbisimide structural units.
In this structural unit, since the imide group is composed of a 6-membered ring having no bond angle distortion, it is more thermally than a normal polyimide composed of a 5-membered ring imide group (for example, the above formulas [1] to [3]). Since it is stable, the polyimide obtained by introducing this structural unit has improved thermal stability.

また、本発明のポリイミドは、上記式(1)及び(2)からわかるように、直線性の高い剛直な主鎖構造からなり、また、置換基を一切含んでいないため、低線熱膨張特性に優れ、かつ、極めて高い熱酸化安定性を有している。
このような構造を有する本発明のポリイミドは溶媒に不溶であるため、上記ポリイミドのフィルムを形成するためには、アミド系溶媒に可溶なポリイミド前駆体(ポリアミド酸)の溶液(ワニス)を、基体上に塗布・乾燥後、300℃以上に加熱してイミド化させる必要がある。
Further, as can be seen from the above formulas (1) and (2), the polyimide of the present invention has a rigid main chain structure with high linearity and does not contain any substituents, so that it has low linear thermal expansion characteristics. Excellent and has extremely high thermal oxidation stability.
Since the polyimide of the present invention having such a structure is insoluble in a solvent, in order to form the above-mentioned polyimide film, a solution (varnish) of a polyimide precursor (polyamic acid) soluble in an amide solvent is used. After coating and drying on the substrate, it is necessary to heat to 300 ° C. or higher to imidize.

その際、通常の方法によってポリアミド酸を重合する場合、式(7)で表されるテトラカルボン酸二無水物(s−BPDA)と式(8)で表される1,4,5,8−ナフタレンテトラカルボン酸二無水物(以下1,4,5,8−NTDAと称する)、及びこれらのテトラカルボン酸二無水物の総量と実質的に等モルの下記式(5)で表されるPDAをアミド系溶媒中、室温で重付加反応させる。 At that time, when the polyamic acid is polymerized by a usual method, the tetracarboxylic acid dianhydride (s-BPDA) represented by the formula (7) and 1,4,5,8- represented by the formula (8) are used. PDA represented by the following formula (5) in which the total amount of naphthalene tetracarboxylic acid dianhydride (hereinafter referred to as 1,4,5,8-NTDA) and these tetracarboxylic acid dianhydrides is substantially equal to the molar amount. Is subjected to a double addition reaction at room temperature in an amide-based solvent.

Figure 0006765093
Figure 0006765093

しかし、上記式(8)で表される1,4,5,8−NTDAは、室温では如何なる溶媒にも全く不溶であるのに加え、6員環の酸無水物基の安定性が高すぎてジアミンとの重合反応性を殆ど示さない。そのため、1,4,5,8−NTDAを用いて均一なポリアミド酸のワニスを得ることは不可能である。
このように1,4,5,8−NTDAは室温では重合反応性に乏しいが、反応溶液をアミド系溶媒の沸点で還流すれば、その反応性を向上させることができる。
しかし、このような反応溶液の加熱操作により、ポリアミド酸の生成と同時にイミド化が進行して、しばしば生成物の溶解度が急激に低下する。
そのため、本発明のポリイミドのように剛直な構造である場合は、反応初期に沈殿が析出して均一なワニスが得られず、その後の製膜ができない。
However, 1,4,5,8-NTDA represented by the above formula (8) is completely insoluble in any solvent at room temperature, and the stability of the 6-membered ring acid anhydride group is too high. It shows almost no polymerization reactivity with diamine. Therefore, it is impossible to obtain a uniform polyamic acid varnish using 1,4,5,8-NTDA.
As described above, 1,4,5,8-NTDA has poor polymerization reactivity at room temperature, but the reactivity can be improved by refluxing the reaction solution at the boiling point of the amide solvent.
However, such a heating operation of the reaction solution causes imidization to proceed at the same time as the formation of the polyamic acid, and the solubility of the product often drops sharply.
Therefore, in the case of a rigid structure like the polyimide of the present invention, a precipitate is precipitated at the initial stage of the reaction and a uniform varnish cannot be obtained, and subsequent film formation cannot be performed.

沈殿の析出を避けるためには、1,4,5,8−NTDAと共重合するテトラカルボン酸二無水物やジアミンに折れ曲がった構造や嵩高い置換基あるいは分子間力を弱めるフッ素含有置換基を導入しなければならないが、これらの置換基を導入すると、低線熱膨張特性や熱酸化安定性がしばしば損なわれる。
このように、従来法では、1,4,5,8−NTDAを用いてポリイミドの主鎖中に1,4,5,8−ナフタルビスイミド基をたとえ部分的であっても導入することは困難であった。
In order to avoid precipitation of precipitates, tetracarboxylic acid dianhydrides copolymerizing with 1,4,5,8-NTDA, diamines, bent structures, bulky substituents, or fluorine-containing substituents that weaken the intermolecular force are used. Although it must be introduced, the introduction of these substituents often impairs low linear thermal expansion properties and thermal oxidative stability.
Thus, in the conventional method, 1,4,5,8-NTDA can be used to introduce 1,4,5,8-naphthalbisimide groups into the main chain of polyimide, even if only partially. It was difficult.

以上のような問題点を解決する手段として、本発明では下記式(6)で表されるナフタレンビスイミド基含有ジアミンをジアミン成分として採用した。
すなわち、本発明では、式(5)で表されるPDAと、後述の方法で合成できる式(6)で表されるナフタレンビスイミド基含有ジアミンとを、溶媒中、式(7)で表されるs−BPDAと重付加反応させることで、式(3)及び(4)で表される繰り返し単位を含むポリイミド前駆体(ポリアミド酸)の均一なワニスを得ることができ、これを常法にてキャストし、加熱脱水環化反応(熱イミド化)することで本発明のポリイミドフィルムを製造できる。
As a means for solving the above problems, in the present invention, a naphthalene bisimide group-containing diamine represented by the following formula (6) is adopted as a diamine component.
That is, in the present invention, the PDA represented by the formula (5) and the naphthalene bisimide group-containing diamine represented by the formula (6) that can be synthesized by the method described later are represented by the formula (7) in a solvent. By subjecting it to a double addition reaction with s-BPDA, a uniform varnish of a polyimide precursor (polyamic acid) containing the repeating units represented by the formulas (3) and (4) can be obtained, which is commonly used. The polyimide film of the present invention can be produced by casting and performing a heat-dehydration cyclization reaction (thermal imidization).

Figure 0006765093
Figure 0006765093

上記ポリイミド前駆体を製造する方法は特に限定されるものではなく、公知の方法を適用することができる。より具体的には、例えば、式(5)で表されるPDAと、式(6)で表されるナフタレンビスイミド基含有ジアミンを溶媒に溶解し、撹拌しながら式(7)で表されるs−BPDAの粉末を徐々に添加し、0〜100℃、好ましくは20〜60℃で0.5〜100時間、好ましくは5〜72時間撹拌する手法が挙げられる。
この際、式(5)及び(6)のジアミン成分と式(7)で示されるテトラカルボン酸二無水物との物質量(mol)比は、ジアミンの総量1に対して、通常、0.8〜1.1程度であるが、0.9〜1.1が好ましく、0.95〜1.05がより好ましい。
The method for producing the polyimide precursor is not particularly limited, and a known method can be applied. More specifically, for example, a PDA represented by the formula (5) and a naphthalene bisimide group-containing diamine represented by the formula (6) are dissolved in a solvent and represented by the formula (7) with stirring. Examples thereof include a method in which powder of s-BPDA is gradually added and stirred at 0 to 100 ° C., preferably 20 to 60 ° C. for 0.5 to 100 hours, preferably 5 to 72 hours.
At this time, the substance amount (mol) ratio of the diamine components of the formulas (5) and (6) to the tetracarboxylic dianhydride represented by the formula (7) is usually 0, with respect to the total amount of diamine 1. It is about 8 to 1.1, preferably 0.9 to 1.1, and more preferably 0.95 to 1.05.

上記反応において、式(5)で表されるPDAと、式(6)で表されるナフタレンビスイミド基含有ジアミンとの使用比率は、特に限定されるものではないが、式(5)及び(6)で表される各ジアミンの総量(100mol%)中、式(6)で表されるナフタレンビスイミド基含有ジアミンを1〜50mol%用いることが好ましく、5〜25mol%用いることがより好ましく、8〜23mol%用いることがより一層好ましい。 In the above reaction, the ratio of the PDA represented by the formula (5) to the naphthalene bisimide group-containing diamine represented by the formula (6) is not particularly limited, but the formulas (5) and ( Of the total amount (100 mol%) of each diamine represented by 6), it is preferable to use 1 to 50 mol% of the naphthalene bisimide group-containing diamine represented by the formula (6), and more preferably 5 to 25 mol%. It is even more preferable to use 8 to 23 mol%.

また、反応液中の、全モノマー濃度は、5〜50質量%であることが好ましく、10〜40質量%がより好ましい。この範囲で重合を行うことで、モノマー及びポリイミド前駆体の溶解性を十分確保することができ、均一で高重合度のポリイミド前駆体溶液を得ることができる。
なお、ポリイミド前駆体の重合度が増加しすぎて、重合溶液が攪拌しにくくなった場合は、適宜同一の溶媒で希釈してもよい。
The total monomer concentration in the reaction solution is preferably 5 to 50% by mass, more preferably 10 to 40% by mass. By carrying out the polymerization in this range, the solubility of the monomer and the polyimide precursor can be sufficiently ensured, and a uniform and highly polymerizable polyimide precursor solution can be obtained.
If the degree of polymerization of the polyimide precursor increases too much and it becomes difficult to stir the polymerization solution, it may be appropriately diluted with the same solvent.

また、本発明において、ポリイミドフィルムの靭性及びその前駆体を含むワニスのハンドリング性の観点から、本発明のポリイミド前駆体の固有粘度は0.3〜5.0dL/gの範囲内であることが好ましい。 Further, in the present invention, the intrinsic viscosity of the polyimide precursor of the present invention is in the range of 0.3 to 5.0 dL / g from the viewpoint of the toughness of the polyimide film and the handleability of the varnish containing the precursor thereof. preferable.

本発明のポリイミド前駆体を製造する際に用いられるテトラカルボン酸二無水物は、上述のとおりs−BPDAであるが、得られるポリイミド(フィルム)の要求特性を損なわない範囲であれば、s−BPDA以外のテトラカルボン酸二無水物を部分的に使用することができる。
併用可能なテトラカルボン酸二無水物の具体例としては、ピロメリット酸二無水物、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、4,4’−オキシジフタリックアンハイドライド、3,4’−オキシジフタリックアンハイドライド、3,3’−オキシジフタリックアンハイドライド、ハイドロキノン−ジフタリックアンハイドライド、4,4’−ビフェノール−ジフタリックアンハイドライド、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、及び4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸無水物等が挙げられ、これらは単独で用いても、2種以上併用してもよい。これらのテトラカルボン酸二無水物を使用する場合、その含有量はs−BPDAも含めたテトラカルボン酸二無水物量の総量に対して30mol%以下が好ましく、10mol%以下がより好ましいが、使用しないことが最適である。
The tetracarboxylic dianhydride used in producing the polyimide precursor of the present invention is s-BPDA as described above, but as long as the required properties of the obtained polyimide (film) are not impaired, s- Tetracarboxylic dianhydride other than BPDA can be partially used.
Specific examples of the tetracarboxylic dianhydride that can be used in combination include pyromellitic dianhydride, 2,3,3', 4'-biphenyltetracarboxylic dianhydride, 2,2', 3,3'-. Biphenyltetracarboxylic dianhydride, 4,4'-oxydiphthalic dianhydride, 3,4'-oxydiphthalic dianhydride, 3,3'-oxydiphthalic dianhydride, hydroquinone-diphthalic dianhydride, 4, Examples thereof include 4'-biphenol-diphthalic dianhydride, 3,3', 4,4'-benzophenonetetracarboxylic dianhydride, and 4,4'-(hexafluoroisopropyridene) diphthalic acid anhydride. May be used alone or in combination of two or more. When these tetracarboxylic dianhydrides are used, the content thereof is preferably 30 mol% or less, more preferably 10 mol% or less, but not used, based on the total amount of tetracarboxylic dianhydrides including s-BPDA. Is the best.

一方のジアミン成分としては、上述のとおりPDAとナフタレンビスイミド基含有ジアミンの2種類であるが、この場合も、得られるポリイミド(フィルム)の要求特性を損なわない範囲であれば、共重合成分として剛直なジアミン、ベンジジン、4,4”−p−ターフェニレンジアミン及び式(9)で表されるジアミン等の剛直なジアミンを、単独でまたは2種以上組み合わせて用いてもよい。これらジアミンの含有量は、ジアミン総量に対して50mol%以下が好ましく、30mol%以下がより好ましく、10mol%以下がより一層好ましいが、使用しないことが最適である。 On the other hand, there are two types of diamine components, PDA and naphthalene bisimide group-containing diamine as described above, but also in this case, as long as the required characteristics of the obtained polyimide (film) are not impaired, they can be used as copolymerization components. Rigid diamines such as rigid diamines, benzidines, 4,4 "-p-terphenylenediamines and diamines represented by the formula (9) may be used alone or in combination of two or more. The amount is preferably 50 mol% or less, more preferably 30 mol% or less, still more preferably 10 mol% or less, based on the total amount of diamine, but it is optimal not to use it.

Figure 0006765093
Figure 0006765093

更に、得られるポリイミドの要求特性を損なわない範囲で、屈曲構造を有するジアミンを部分的に使用してもよい。
このようなジアミンの具体例としては、m−フェニレンジアミン、o−フェニレンジアミン、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、2,4’−ジアミノジフェニルエーテル、2,2’−ジアミノジフェニルエーテル、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、及び4,4’−ビス(4−アミノフェノキシ)ビフェニル等が挙げられ、これらは単独で用いても、2種以上組み合わせて用いてもよい。これらのジアミンの含有量は、ジアミン総量に対して30mol%以下が好ましいが、10mol%以下がより好ましく、5mol%以下がより一層好ましく、使用しないことが最適である。
なお、本発明のポリイミドフィルムに高い熱酸化安定性を付与することを考慮すると、ポリイミド前駆体の製造に用いられるモノマーは、置換基や連結基を一切含まない芳香族テトラカルボン酸二無水物及び芳香族ジアミンが好適である。
Further, a diamine having a bent structure may be partially used as long as the required characteristics of the obtained polyimide are not impaired.
Specific examples of such diamines include m-phenylenediamine, o-phenylenediamine, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, and 2,4'-diamino. Diphenyl ether, 2,2'-diaminodiphenyl ether, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, and Examples thereof include 4,4'-bis (4-aminophenoxy) biphenyl, which may be used alone or in combination of two or more. The content of these diamines is preferably 30 mol% or less, more preferably 10 mol% or less, still more preferably 5 mol% or less, and most preferably not used, based on the total amount of diamines.
Considering that the polyimide film of the present invention is imparted with high thermal oxidation stability, the monomers used in the production of the polyimide precursor are aromatic tetracarboxylic acid dianhydrides containing no substituents or linking groups. Aromatic diamines are preferred.

以上説明したジアミン成分及びテトラカルボン酸二無水物成分を考慮すると、本発明のポリイミド前駆体において、式(3)及び(4)で表される繰り返し単位の含有量は、50mol%以上が好ましく、70mol%以上がより好ましく、80mol%以上がより一層好ましく、90mol%以上が更に好ましく、100mol%が最適である。
また、特に、式(4)で表される繰り返し単位の含有率は1〜50mol%が好ましく、5〜25mol%がより好ましく、8〜23mol%がより一層好ましい。
同様に、本発明のポリイミドにおいて、式(1)及び(2)で表される繰り返し単位の含有量は、50mol%以上が好ましく、70mol%以上がより好ましく、80mol%以上がより一層好ましく、90mol%以上が更に好ましく、100mol%が最適である。
また、特に、式(2)で表される繰り返し単位の含有率は1〜50mol%が好ましく、5〜25mol%がより好ましく、8〜23mol%がより一層好ましい。
Considering the diamine component and the tetracarboxylic dianhydride component described above, the content of the repeating unit represented by the formulas (3) and (4) in the polyimide precursor of the present invention is preferably 50 mol% or more. 70 mol% or more is more preferable, 80 mol% or more is further preferable, 90 mol% or more is further preferable, and 100 mol% is optimal.
Further, in particular, the content of the repeating unit represented by the formula (4) is preferably 1 to 50 mol%, more preferably 5 to 25 mol%, and even more preferably 8 to 23 mol%.
Similarly, in the polyimide of the present invention, the content of the repeating unit represented by the formulas (1) and (2) is preferably 50 mol% or more, more preferably 70 mol% or more, further preferably 80 mol% or more, and 90 mol. % Or more is more preferable, and 100 mol% is optimal.
Further, in particular, the content of the repeating unit represented by the formula (2) is preferably 1 to 50 mol%, more preferably 5 to 25 mol%, and even more preferably 8 to 23 mol%.

本発明のポリイミド前駆体を製造する際の溶媒としては、原料モノマーと生成するポリイミド前駆体が溶解する限り、その構造に制限はなく、例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、3−メトキシN,N−ジメチルプロパンアミド、3−n−ブトキシN,N−ジメチルプロパンアミド、3−sec−ブトキシN,N−ジメチルプロパンアミド、3−t−ブトキシN,N−ジメチルプロパンアミド、1,3−ジメチル−2−イミダゾリジノン等のアミド系溶媒;γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、γ−カプロラクトン、ε−カプロラクトン、α−メチル−γ−ブチロラクトン等の環状エステル溶媒;エチレンカーボネート、プロピレンカーボネート等のカーボネート溶媒;トリエチレングリコール等のグリコール系溶媒;m−クレゾール、p−クレゾール、3−クロロフェノール、4−クロロフェノール等のフェノール系溶媒;アセトフェノン、スルホラン、ジメチルスルホキシド等の非プロトン性溶媒等が挙げられる。
更に、原料モノマー及び生成するポリイミド前駆体の溶解性を妨げない範囲で、フェノール、o−クレゾール、酢酸ブチル、酢酸エチル、酢酸イソブチル、プロピレングリコールメチルアセテート、テトラヒドロフラン、ジエチレングリコールジメチルエーテル、メチルイソブチルケトン、ジイソブチルケトン、シクロへキサノン、メチルエチルケトン、アセトン、ブタノール、エタノール、キシレン、トルエン及びクロルベンゼン等の一般的な溶媒を併用してもよい。
The solvent used for producing the polyimide precursor of the present invention is not limited in its structure as long as the raw material monomer and the produced polyimide precursor are dissolved. For example, N, N-dimethylformamide, N, N-dimethylacetamide. , N-Methyl-2-pyrrolidone, 3-methoxyN, N-dimethylpropanamide, 3-n-butoxy N, N-dimethylpropanamide, 3-sec-butoxy N, N-dimethylpropanamide, 3-t- Amide solvents such as butoxy N, N-dimethylpropanamide, 1,3-dimethyl-2-imidazolidinone; γ-butyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, ε-caprolactone, α- Cyclic ester solvent such as methyl-γ-butyrolactone; carbonate solvent such as ethylene carbonate and propylene carbonate; glycol solvent such as triethylene glycol; phenol such as m-cresol, p-cresol, 3-chlorophenol and 4-chlorophenol. System solvent: An aproton solvent such as acetophenone, sulfolane, dimethylsulfoxide and the like can be mentioned.
Further, phenol, o-cresol, butyl acetate, ethyl acetate, isobutyl acetate, propylene glycol methyl acetate, tetrahydrofuran, diethylene glycol dimethyl ether, methyl isobutyl ketone, diisobutyl ketone, as long as the solubility of the raw material monomer and the produced polyimide precursor is not hindered. , Cyclohexanone, methyl ethyl ketone, acetone, butanol, ethanol, xylene, toluene and common solvents such as chlorobenzene may be used in combination.

上記製法によって得られたポリイミド前駆体の重合溶液(ワニス)は、ポリイミド(フィルム)を製造するためにそのまま用いてもよく、また、重合溶液を大量の水やメタノール等の貧溶媒と混合して析出する固体を濾過し、これを乾燥し、粉末として単離し、これを再度溶媒に溶解させた溶液(ワニス)を本発明のポリイミド(フィルム)を製造するために用いてもよい。 The polymerization solution (varnish) of the polyimide precursor obtained by the above production method may be used as it is for producing the polyimide (film), or the polymerization solution is mixed with a large amount of water or a poor solvent such as methanol. A solution (crocodile) in which the precipitated solid is filtered, dried, isolated as a powder, and dissolved in a solvent again may be used for producing the polyimide (film) of the present invention.

本発明のポリイミドフィルム(耐熱性フィルム)は、上記の方法で得られたポリイミド前駆体を含むワニスを、ガラス、銅、アルミニウム、ステンレス、シリコン等の基体上に流延し、オーブン中、40〜180℃、好ましくは50〜150℃で加熱乾燥して得られたポリイミド前駆体フィルムを、基体ごと、真空中、窒素等の不活性ガス中、又は空気中、200〜450℃、好ましくは250〜430℃で加熱して得ることができる。
この際、加熱温度はイミド化反応を完結するという観点から200℃以上が好ましく、生成したポリイミドフィルムの熱分解を抑制するという観点から450℃以下が好ましい。イミド化温度が400℃以下であれば空気中で行っても、差し支えない。
In the polyimide film (heat resistant film) of the present invention, a varnish containing a polyimide precursor obtained by the above method is cast on a substrate such as glass, copper, aluminum, stainless steel, silicon, etc., and in an oven, 40 to 40 to The polyimide precursor film obtained by heating and drying at 180 ° C., preferably 50 to 150 ° C., together with the substrate, in vacuum, in an inert gas such as nitrogen, or in air, 200 to 450 ° C., preferably 250 to 250 to It can be obtained by heating at 430 ° C.
At this time, the heating temperature is preferably 200 ° C. or higher from the viewpoint of completing the imidization reaction, and preferably 450 ° C. or lower from the viewpoint of suppressing thermal decomposition of the produced polyimide film. If the imidization temperature is 400 ° C. or lower, it may be carried out in air.

また、イミド化反応は、上記の熱処理に代えて、ポリイミド前駆体フィルムをピリジンやトリエチルアミン等の3級アミン存在下、無水酢酸等の脱水環化試薬を含有する溶液に浸漬して行うこともできる。
更に、上記脱水環化試薬をあらかじめポリイミド前駆体ワニス中に室温で投入・撹拌し、それを上記基体上に流延・乾燥することで、部分的にイミド化したポリイミド前駆体フィルムを作製することもでき、これを更に上記の条件で熱処理することでポリイミドフィルムとすることもできる。
Further, instead of the above heat treatment, the imidization reaction can be carried out by immersing the polyimide precursor film in a solution containing a dehydration cyclization reagent such as acetic anhydride in the presence of a tertiary amine such as pyridine or triethylamine. ..
Further, the dehydration cyclization reagent is previously put into a polyimide precursor varnish at room temperature, stirred, and then cast and dried on the substrate to prepare a partially imidized polyimide precursor film. It can also be made into a polyimide film by further heat-treating it under the above conditions.

本発明のポリイミド前駆体のワニスを金属箔、例えば、銅箔上に塗付・乾燥後、上記の条件によりイミド化することで、金属層とポリイミド樹脂層の積層体を得ることができる。更に、塩化第二鉄水溶液等のエッチング液を用いて金属層を所望する回路状にエッチングすることで、無接着剤型フレキシブルプリント基板を製造することもできる。 A laminate of a metal layer and a polyimide resin layer can be obtained by applying and drying the varnish of the polyimide precursor of the present invention on a metal foil, for example, a copper foil, and then imidizing it under the above conditions. Further, an adhesive-free flexible printed circuit board can be manufactured by etching the metal layer into a desired circuit shape using an etching solution such as an aqueous solution of ferric chloride.

本発明のポリイミドフィルムの厚さは、特に限定されるものではなく、使用目的に応じて適宜設定することができる。
例えば、太陽電池等の光電変換デバイス用基板、OLEDディスプレイや液晶ディスプレイ等の画像表示デバイス用プラスチック基板、ガラス基板剥離層、フレキシブル回路基板として用いる場合であれば、1〜100μm程度が好適である。
The thickness of the polyimide film of the present invention is not particularly limited, and can be appropriately set according to the purpose of use.
For example, when it is used as a substrate for a photoelectric conversion device such as a solar cell, a plastic substrate for an image display device such as an OLED display or a liquid crystal display, a glass substrate peeling layer, or a flexible circuit board, it is preferably about 1 to 100 μm.

以下、本発明を実施例により具体的に説明するが、これら実施例に限定されるものではない。なお、以下の例における物性値は、次の方法により測定した。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. The physical property values in the following examples were measured by the following methods.

<赤外線吸収(FT−IR)スペクトル>
フーリエ変換赤外分光光度計(日本分光(株)製、FT−IR4100)を用い、KBrプレート法にてナフタレンビスイミド基含有ジアミンの赤外線吸収スペクトルを測定した。また透過法にてポリイミド前駆体及びポリイミド薄膜(約5μm厚)の赤外線吸収スペクトルを測定した。
1H−NMRスペクトル>
NMR分光装置(日本電子(株)製、ECP400)を用い、重水素化ジメチルスルホキシド中でナフタレンビスイミド基含有ジアミンの1H−NMRスペクトルを測定した。
<示差走査熱量分析(融点及び融解曲線)>
ナフタレンビスイミド基含有ジアミンの融点及び融解曲線は、示差走査熱量分析装置(ネッチ・ジャパン(株)製、DSC3100)を用いて、窒素雰囲気中、昇温速度5℃/分で測定した。
<固有粘度>
0.5質量%のポリイミド前駆体溶液を、オストワルド粘度計を用いて30℃で測定した。
<ガラス転移温度(Tg)>
動的粘弾性測定装置(TA・インスツルメント・ジャパン(株)製、Q800)を用い、周波数0.1Hz、昇温速度5℃/分における損失弾性率曲線のピーク温度からポリイミドフィルム(20μm厚)のガラス転移温度を求めた。Tgが高いほど、より高温域まで急激な軟化が抑制されており、物理的耐熱性が高いことを表す。また、本測定によりTgがあまり明瞭ではなく、あるいは非常にブロードである場合においても、本測定温度範囲内ではフィルムの急激な軟化は実質的に起こらず、物理的耐熱性に優れていることを表す。
<線熱膨張係数:CTE>
熱機械分析装置(ネッチ・ジャパン(株)製、TMA4000)を用いて、熱機械分析により、荷重0.5g/膜厚1μm当たり、昇温速度5℃/分における試験片の伸びより、100〜200℃の範囲での平均値としてポリイミドフィルム(膜厚約20μm)のCTEを求めた。CTE値が0に近いほど熱工程に対する寸法安定性に優れていることを表す。
<5%重量減少温度(Td 5)>
熱重量分析装置(ネッチ・ジャパン(株)製、TG−DTA2000)を用いて、窒素中及び空気中、昇温速度10℃/分での昇温過程において、ポリイミドフィルム(20μm厚)の重量が、初期重量から5%減少した時の温度を測定した。これらの値が高いほど化学的耐熱性(熱安定性)が高く、より高温までVOCの発生が抑制されていることを表す。
<機械的特性:引張弾性率、破断伸び、破断強度>
引張試験機((株)エー・アンド・デイ製、テンシロンUTM−2)を用いて、ポリイミド試験片(30mm長×3mm幅×20μm厚)について引張試験(延伸速度:8mm/分)を実施し、応力−歪曲線の初期の勾配から弾性率を、フィルムが破断した時の伸び率から破断伸び(%)を求めた。破断伸びが高いほどフィルムの靭性が高いことを意味する。
<Infrared absorption (FT-IR) spectrum>
The infrared absorption spectrum of the naphthalene bisimide group-containing diamine was measured by the KBr plate method using a Fourier transform infrared spectrophotometer (FT-IR4100, manufactured by JASCO Corporation). Moreover, the infrared absorption spectrum of the polyimide precursor and the polyimide thin film (thickness of about 5 μm) was measured by the transmission method.
< 1 1 H-NMR spectrum>
A 1 H-NMR spectrum of a naphthalene bisimide group-containing diamine was measured in deuterated dimethyl sulfoxide using an NMR spectrometer (ECP400, manufactured by JEOL Ltd.).
<Differential scanning calorimetry (melting point and melting curve)>
The melting point and melting curve of the naphthalene bisimide group-containing diamine were measured at a heating rate of 5 ° C./min in a nitrogen atmosphere using a differential scanning calorimeter (DSC3100, manufactured by Netch Japan Co., Ltd.).
<Intrinsic viscosity>
A 0.5 mass% polyimide precursor solution was measured at 30 ° C. using an Ostwald viscometer.
<Glass transition temperature (T g )>
Using a dynamic viscoelasticity measuring device (TA, Instrument Japan Co., Ltd., Q800), a polyimide film (20 μm thickness) was used from the peak temperature of the loss elastic modulus curve at a frequency of 0.1 Hz and a heating rate of 5 ° C./min. ) Was determined. The higher the T g , the more the rapid softening is suppressed up to the higher temperature range, and the higher the physical heat resistance. In addition, even when T g is not very clear or very broad in this measurement, the film does not substantially soften within the measurement temperature range, and it has excellent physical heat resistance. Represents.
<Coefficient of linear thermal expansion: CTE>
Thermomechanical analysis using a thermomechanical analyzer (TMA4000, manufactured by Netch Japan Co., Ltd.) shows that the elongation of the test piece at a heating rate of 5 ° C./min per load of 0.5 g / film thickness of 1 μm is 100 to 100. The CTE of the polyimide film (film thickness of about 20 μm) was determined as an average value in the range of 200 ° C. The closer the CTE value is to 0, the better the dimensional stability with respect to the thermal process.
<5% weight loss temperature (T d 5 )>
Using a thermogravimetric analyzer (TG-DTA2000, manufactured by Netch Japan Co., Ltd.), the weight of the polyimide film (20 μm thickness) was increased in the heating process in nitrogen and air at a heating rate of 10 ° C./min. The temperature was measured when the weight was reduced by 5% from the initial weight. The higher these values are, the higher the chemical heat resistance (thermal stability) is, and it means that the generation of VOC is suppressed up to a higher temperature.
<Mechanical properties: Tensile modulus, elongation at break, strength at break>
A tensile test (stretching speed: 8 mm / min) was performed on a polyimide test piece (30 mm length x 3 mm width x 20 μm thickness) using a tensile tester (A & D Co., Ltd., Tensilon UTM-2). The elastic modulus was obtained from the initial gradient of the stress-strain curve, and the elongation at break (%) was obtained from the elongation at break of the film. The higher the elongation at break, the higher the toughness of the film.

[1]ジアミンの合成
[合成例1]ナフタレンビスイミド基含有ジアミンの合成
3つ口フラスコ中、1,4,5,8−NTDA(10mmol)をよく脱水したN−メチル−2−ピロリドン(NMP)45mLに分散させ、これをA分散液とした。次にPDA(100mmol)をNMP20mLに溶解し、これをB液とした。A分散液をB液に撹拌しながら徐々に添加し、室温で12時間撹拌を続け、均一な反応溶液を得た。続いてこれを200℃で7時間還流後、室温まで冷却し、析出した沈殿物をまずNMPで、次いでメタノールで十分に洗浄して過剰量のPDAを完全に除去し、最後に200℃で12時間真空乾燥し、収率87%で融点497℃の赤色粉末を得た。この生成物について以下に示す分析結果を得た。これらの分析結果より、この生成物は目的とする上記式(6)で表されるナフタレンビスイミド基含有ジアミンであることが確認された。
[1] Synthesis of diamine [Synthesis example 1] Synthesis of naphthalene bisimide group-containing diamine N-methyl-2-pyrrolidone (NMP) obtained by thoroughly dehydrating 1,4,5,8-NTDA (10 mmol) in a three-necked flask. ) Dispersed in 45 mL, and this was used as A dispersion. Next, PDA (100 mmol) was dissolved in 20 mL of NMP, and this was used as solution B. The dispersion A was gradually added to the solution B with stirring, and stirring was continued at room temperature for 12 hours to obtain a uniform reaction solution. Subsequently, the mixture was refluxed at 200 ° C. for 7 hours, cooled to room temperature, and the precipitated precipitate was washed thoroughly with NMP and then with methanol to completely remove the excess amount of PDA, and finally at 200 ° C. for 12 Vacuum drying for hours gave a red powder with a yield of 87% and a melting point of 497 ° C. The analysis results shown below were obtained for this product. From these analysis results, it was confirmed that this product was the target naphthalene bisimide group-containing diamine represented by the above formula (6).

FT−IRスペクトル(KBr、cm-1):3411、3320、3221(N−H伸縮)、3068(芳香族C−H伸縮)、1704、1657(6員環イミド基C=O伸縮)、1515(1,4−フェニレン基)
1H−NMRスペクトル(400MHz,DMSO−d6,δ,ppm):8.68(s,4H,ナフタレン基上のプロトン)、7.02(d,4H,J=8.6Hz,末端アニリンの3,5−プロトン)、6.67(d,4H,J=8.6Hz,末端アニリンの2,6−プロトン)、5.31(s,4H,アミン)
元素分析(分子量448.44):推定値C;69.64%、H;3.60%、N;12.49%、分析値C;69.18%、H;3.98%、N;12.44%。
FT-IR spectrum (KBr, cm -1 ): 3411, 3320, 3221 (NH expansion and contraction), 3068 (aromatic CH expansion and contraction), 1704, 1657 (6-membered ring imide group C = O expansion and contraction), 1515 (1,4-phenylene group)
1 1 H-NMR spectrum (400 MHz, DMSO-d 6 , δ, ppm): 8.68 (s, 4H, proton on naphthalene group), 7.02 (d, 4H, J = 8.6 Hz, terminal aniline) 3,5-proton), 6.67 (d, 4H, J = 8.6Hz, 2,6-proton of terminal aniline), 5.31 (s, 4H, amine)
Elemental analysis (molecular weight 448.44): Estimated value C; 69.64%, H; 3.60%, N; 12.49%, Analytical value C; 69.18%, H; 3.98%, N; 12.44%.

[2]ポリイミド前駆体の製造、イミド化及びポリイミドフィルムの特性評価
[実施例1]
よく乾燥した反応容器中に、p−フェニレンジアミン(PDA)2.7mmol及び合成例1で得られたナフタレンビスイミド基含有ジアミン0.3mmolを入れ、モレキュラーシーブス4Aで十分に脱水したNMP(5.1mL)を加えて撹拌した。このジアミン仕込比により、ジアミン総量に対するナフタレンビスイミド基含有ジアミン含有率10mol%の共重合体となる。このジアミン溶液をホットプレート上で温めて、溶け残ったナフタレンビスイミド基含有ジアミンを溶解させて室温に戻した後、この溶液に3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(s−BPDA)粉末3mmolを徐々に加えた。溶質濃度20質量%から重合を開始し、徐々に溶媒を追加して最終的には溶質濃度12.3質量%まで希釈し、室温で72時間撹拌して均一で粘稠なポリイミド前駆体溶液(ワニス)を得た。
NMP中、30℃、0.5質量%の濃度でオストワルド粘度計にて測定したポリイミド前駆体の還元粘度は2.23dL/gであった。図1に得られたポリイミド前駆体の薄膜の赤外線吸収スペクトルを示す。2623cm-1にブロードな吸収帯(水素結合性COOH基O−H伸縮)、1712cm-1に水素結合性COOH基C=O伸縮振動バンド、1659cm-1にアミド基C=O伸縮振動バンド、1515cm-1に1,4−フェニレン基伸縮振動バンドが観測され、モノマー由来のアミノ基N−H伸縮振動バンドやテトラカルボン酸二無水物の酸無水物基C=O伸縮振動バンドが見られないことから、目的とするポリイミド前駆体の生成が確認された。
[2] Production of polyimide precursor, imidization and characterization of polyimide film [Example 1]
2.7 mmol of p-phenylenediamine (PDA) and 0.3 mmol of the naphthalene bisimide group-containing diamine obtained in Synthesis Example 1 were placed in a well-dried reaction vessel, and NMP (5.) was sufficiently dehydrated with Molecular Sieves 4A. 1 mL) was added and stirred. According to this diamine charging ratio, a copolymer having a naphthalene bisimide group-containing diamine content of 10 mol% with respect to the total amount of diamine is obtained. This diamine solution is warmed on a hot plate to dissolve the undissolved naphthalene bisimide group-containing diamine and the temperature is returned to room temperature, and then 3,3', 4,4'-biphenyltetracarboxylic dianhydride is added to this solution. 3 mmol of (s-BPDA) powder was added slowly. Polymerization is started from a solute concentration of 20% by mass, a solvent is gradually added, and finally the solute concentration is diluted to 12.3% by mass, and the mixture is stirred at room temperature for 72 hours to obtain a uniform and viscous polyimide precursor solution ( I got a varnish).
The reduced viscosity of the polyimide precursor measured with an Ostwald viscometer at a concentration of 0.5% by mass at 30 ° C. in NMP was 2.23 dL / g. FIG. 1 shows the infrared absorption spectrum of the thin film of the polyimide precursor obtained. 2623 cm -1 with broad absorption band (hydrogen-bonding COOH group O-H expansion and contraction), 1712 cm -1 with hydrogen-bonding COOH group C = O expansion and contraction vibration band, 1659 cm -1 with amide group C = O expansion and contraction vibration band, 1515 cm A 1,4-phenylene group expansion and contraction vibration band was observed in -1, and an amino group NH expansion and contraction vibration band derived from the monomer and an acid anhydride group C = O expansion and contraction vibration band of tetracarboxylic acid dianhydride were not observed. From this, it was confirmed that the desired polyimide precursor was produced.

このポリイミド前駆体溶液をガラス基板に塗布し、熱風乾燥器中80℃で3時間乾燥してポリイミド前駆体フィルムを作製した。これをガラス基板ごと真空中250℃で1時間、更に350℃で1時間熱イミド化を行った後、残留応力を除去するために基板から剥がして更に真空中400℃で1時間熱処理を行い、膜厚約20μmの柔軟なポリイミドフィルムを得た。図2に同一条件で別途作製されたポリイミド薄膜(約5μm厚)の赤外線吸収スペクトルを示す。3070cm-1に芳香族C−H伸縮振動帯、1773、1715cm-1にイミド基C=O伸縮振動帯、1515cm-1に1,4−フェニレン基伸縮振動帯、1357cm-1にイミド基N−C(芳香族)伸縮振動帯、738cm-1にイミド環変角振動帯が観測され、ポリイミド前駆体に由来するCOOH基やアミド基に基づく吸収帯が見られないことから、イミド化反応は完結しており、目的とするポリイミドの生成が確認された。 This polyimide precursor solution was applied to a glass substrate and dried in a hot air dryer at 80 ° C. for 3 hours to prepare a polyimide precursor film. This was thermally imidized together with the glass substrate at 250 ° C. for 1 hour in vacuum and then at 350 ° C. for 1 hour, then peeled off from the substrate and further heat-treated at 400 ° C. for 1 hour in vacuum to remove residual stress. A flexible polyimide film having a thickness of about 20 μm was obtained. FIG. 2 shows an infrared absorption spectrum of a polyimide thin film (about 5 μm thick) separately prepared under the same conditions. 3070 cm -1 is aromatic CH telescopic vibration band, 1773, 1715 cm -1 is imide group C = O telescopic vibration band, 1515 cm -1 is 1,4-phenylene group telescopic vibration band, 1357 cm -1 is imide group N- The imidization reaction is complete because an imide ring-angled vibration zone is observed in the C (aromatic) expansion and contraction vibration zone, 738 cm -1 , and no absorption band based on the COOH group or amide group derived from the polyimide precursor is observed. It was confirmed that the desired polyimide was produced.

得られたポリイミドフィルムについて動的粘弾性測定(室温〜500℃)を実施したところ、316℃に非常にブロードな損失弾性率ピークが見られたが、これよりガラス転移温度を決定することは困難であった。また、線熱膨張係数は12.8ppm/Kと非常に低く、得られたフィルムが優れた低熱膨張特性を有していることが確認された。これは本発明のポリイミドの主鎖構造が極めて剛直で直線性が高いことに由来するものであり、熱イミド化工程においてポリイミド主鎖がフィルム面に対して平行な方向に著しく配向したことによるものと考えられる。また、5%重量減少温度(Td 5)は窒素中で592℃、空気中で571℃であり、極めて高い熱安定性を有していることが確認された。特に空気中でのTd 5は類を見ないほど高い値であり、この結果は本発明のポリイミドが抜群の熱酸化安定性を有していることを示している。また、得られたフィルムの機械的特性を評価した結果、平均引張弾性率(ヤング率)6.95GPa、平均破断伸び19.9%、最大破断伸び41.4%であり、十分な膜靱性も保持していることが確認された。 When the obtained polyimide film was subjected to dynamic viscoelasticity measurement (room temperature to 500 ° C.), a very broad loss elastic modulus peak was observed at 316 ° C., but it was difficult to determine the glass transition temperature from this. Met. Further, the coefficient of linear thermal expansion was very low at 12.8 ppm / K, and it was confirmed that the obtained film had excellent low thermal expansion characteristics. This is because the main chain structure of the polyimide of the present invention is extremely rigid and highly linear, and the polyimide main chain is remarkably oriented in the direction parallel to the film surface in the thermal imidization step. it is conceivable that. The 5% weight loss temperature (T d 5 ) was 592 ° C. in nitrogen and 571 ° C. in air, confirming that it had extremely high thermal stability. In particular, T d 5 in air is an unprecedentedly high value, and this result indicates that the polyimide of the present invention has outstanding thermal oxidation stability. Further, as a result of evaluating the mechanical properties of the obtained film, the average tensile elastic modulus (Young's modulus) was 6.95 GPa, the average breaking elongation was 19.9%, and the maximum breaking elongation was 41.4%, and sufficient film toughness was also obtained. It was confirmed that it was retained.

[実施例2]
ジアミン仕込比をPDA2.4mmol及び合成例1で得られたナフタレンビスイミド基含有ジアミン0.6mmol(ナフタレンビスイミド基含有ジアミン含有率20mol%)に変更した以外は、実施例1に記載の方法に従って重合し、均一で粘稠なポリイミド前駆体溶液(ワニス)を得た。このポリイミド前駆体の還元粘度1.73dL/gであった。このワニスを実施例1に記載した条件に従って製膜、熱イミド化してポリイミドフィルムを得た。動的粘弾性測定では、321℃に非常にブロードな損失弾性率ピークが見られたが、これよりガラス転移温度を決定することは困難であった。また、CTEは16.4ppm/Kであり、低熱膨張特性が確認された。Td 5は窒素中で589℃、空気中で561℃であり、極めて高い熱安定性を保持していた。平均引張弾性率は6.29GPa、平均破断伸び26.1%、最大破断伸び46.3%であった。
以上より、実施例2のポリイミドフィルムでは、実施例1のポリイミドフィルムよりも膜靱性が更に改善されていることから、ナフタレンビスイミド基含有ジアミンの含有率の増加は、ポリイミドフィルムの膜靱性の改善に寄与することがわかった。
[Example 2]
According to the method described in Example 1, except that the diamine charging ratio was changed to 2.4 mmol of PDA and 0.6 mmol of naphthalene bisimide group-containing diamine obtained in Synthesis Example 1 (naphthalene bisimide group-containing diamine content 20 mol%). Polymerization was carried out to obtain a uniform and viscous polyimide precursor solution (varnish). The reduced viscosity of this polyimide precursor was 1.73 dL / g. This varnish was film-formed and thermally imidized according to the conditions described in Example 1 to obtain a polyimide film. In the dynamic viscoelasticity measurement, a very broad loss elastic modulus peak was observed at 321 ° C., but it was difficult to determine the glass transition temperature from this. The CTE was 16.4 ppm / K, and low thermal expansion characteristics were confirmed. T d 5 was 589 ° C. in nitrogen and 561 ° C. in air, and maintained extremely high thermal stability. The average tensile modulus was 6.29 GPa, the average breaking elongation was 26.1%, and the maximum breaking elongation was 46.3%.
From the above, since the polyimide film of Example 2 has further improved film toughness as compared with the polyimide film of Example 1, an increase in the content of the naphthalene bisimide group-containing diamine improves the film toughness of the polyimide film. It was found to contribute to.

[比較例1]
テトラカルボン酸二無水物成分としてピロメリット酸二無水物(PMDA)、ジアミン成分としてPDAを用い、実施例1に記載した方法及び製造条件に準じて重合、製膜、熱イミド化してポリイミドフィルムを作製し、物性を評価した。このポリイミドフィルムは極めて低いCTE(2.8ppm/K)を示したが、非常に脆弱であり破断伸びは実質的に0%であった。また、このフィルムはハゼ折りすると容易に破断した。これは、このポリイミド系の棒状主鎖構造に由来するもので、ポリマー鎖同士の絡み合いが殆どないためである。また、Td 5は窒素中で576℃、空気中で551℃であり、熱安定性は高いといえるが、実施例1及び2のポリイミドフィルムには劣っていた。これは、このポリイミドフィルムがテトラカルボン酸二無水物としてPMDAを用いているためである。
[Comparative Example 1]
Using pyromellitic dianhydride (PMDA) as the tetracarboxylic dianhydride component and PDA as the diamine component, the polyimide film is polymerized, film-formed, and thermally imidized according to the method and production conditions described in Example 1. It was prepared and its physical properties were evaluated. Although this polyimide film showed extremely low CTE (2.8 ppm / K), it was very fragile and the elongation at break was substantially 0%. In addition, this film was easily broken when folded with a goby. This is because it is derived from this polyimide-based rod-shaped main chain structure, and there is almost no entanglement between the polymer chains. Further, T d 5 was 576 ° C. in nitrogen and 551 ° C. in air, and although it can be said that the thermal stability was high, it was inferior to the polyimide films of Examples 1 and 2. This is because this polyimide film uses PMDA as a tetracarboxylic dianhydride.

[比較例2]
テトラカルボン酸二無水物成分としてPMDA、ジアミン成分として4,4’−オキシジアニリン(ODA)を用い、実施例1に記載した方法及び製造条件に準じて重合、製膜、熱イミド化してポリイミドフィルムを作製し、物性を評価した。このポリイミドフィルムは極めて高いガラス転移温度(409℃)を示し、最大破断伸び85%と優れた靱性を有していたが、CTEは42.8ppm/Kであり、低熱膨張特性を示さなかった。また、Td 5は窒素中で567℃、空気中で552℃であり、熱安定性は高いといえるが、実施例1及び2のポリイミドフィルムには明らかに劣っており、窒素中のTd 5の値は比較例1に記載のポリイミドよりも劣っていた。これは、このポリイミドフィルムがテトラカルボン酸二無水物としてPMDAと、ジアミンとしてエーテル結合(連結基)を含むODAを用いているためである。
[Comparative Example 2]
Using PMDA as the tetracarboxylic dianhydride component and 4,4'-oxydianiline (ODA) as the diamine component, the polyimide was polymerized, formed into a film, and thermally imidized according to the method and production conditions described in Example 1. A film was prepared and its physical properties were evaluated. This polyimide film showed an extremely high glass transition temperature (409 ° C.) and had excellent toughness with a maximum elongation at break of 85%, but had a CTE of 42.8 ppm / K and did not exhibit low thermal expansion characteristics. Further, T d 5 is 567 ° C. in nitrogen, 552 ° C. in air, thermal stability can be said to be high, and clearly inferior to the polyimide films of Examples 1 and 2, T d in nitrogen The value of 5 was inferior to that of the polyimide described in Comparative Example 1. This is because this polyimide film uses PMDA as a tetracarboxylic dianhydride and ODA containing an ether bond (linking group) as a diamine.

[比較例3]
テトラカルボン酸二無水物成分としてBPDA、ジアミン成分としてPDAを用い、実施例1に記載した方法及び製造条件に準じて重合、製膜、熱イミド化してポリイミドフィルムを作製し、物性を評価した。動的粘弾性測定では、309℃に非常にブロードな損失弾性率ピークが見られたが、これよりガラス転移温度を決定することは困難であった。このポリイミドフィルムのCTEは19.4ppm/Kと、低熱膨張特性ではあるが、実施例1及び2に記載のポリイミドフィルムの値に比べると劣っていた。また、Td 5は窒素中で589℃であり、実施例1及び2に記載のポリイミドフィルムの値と同等であった。しかし、熱酸化安定性を反映する空気中でのTd 5は551℃であることから、実施例1及び2のポリイミドフィルムの値と比べると、このポリイミドフィルムは熱酸化安定性にやや劣っていた。
[Comparative Example 3]
Using BPDA as the tetracarboxylic dianhydride component and PDA as the diamine component, a polyimide film was prepared by polymerization, film formation, and thermal imidization according to the method and production conditions described in Example 1, and the physical properties were evaluated. In the dynamic viscoelasticity measurement, a very broad loss elastic modulus peak was observed at 309 ° C., but it was difficult to determine the glass transition temperature from this. The CTE of this polyimide film was 19.4 ppm / K, which was a low thermal expansion characteristic, but was inferior to the values of the polyimide films described in Examples 1 and 2. Further, T d 5 was 589 ° C. in nitrogen, which was equivalent to the value of the polyimide film described in Examples 1 and 2. However, since T d 5 in the air, which reflects the thermal oxidation stability, is 551 ° C., this polyimide film is slightly inferior in thermal oxidation stability to the values of the polyimide films of Examples 1 and 2. It was.

Claims (7)

式(3)及び(4)で表される繰り返し単位を含むポリイミド前駆体。
Figure 0006765093
A polyimide precursor containing a repeating unit represented by the formulas (3) and (4).
Figure 0006765093
前記式(4)で表される繰り返し単位の含有率が1〜50mol%である請求項1記載のポリイミド前駆体。 The polyimide precursor according to claim 1, wherein the content of the repeating unit represented by the formula (4) is 1 to 50 mol%. 請求項1又は2記載のポリイミド前駆体を含むワニス。 A varnish containing the polyimide precursor according to claim 1 or 2. 請求項1又は2記載のポリイミド前駆体から得られるポリイミドからなるトップ・エミッション方式有機発光ダイオードディスプレイ用基板。 A substrate for a top emission organic light emitting diode display made of a polyimide obtained from the polyimide precursor according to claim 1 or 2. 請求項1又は2記載のポリイミド前駆体から得られるポリイミドからなるトップ・エミッション方式有機発光ダイオードディスプレイ用のガラス基板剥離層。 A glass substrate release layer for a top emission organic light emitting diode display made of polyimide obtained from the polyimide precursor according to claim 1 or 2. 請求項3記載のワニスを基体上に塗布し、乾燥後、熱イミド化反応させるポリイミドフィルムの製造方法。 A method for producing a polyimide film, wherein the varnish according to claim 3 is applied onto a substrate, dried, and then subjected to a thermal imidization reaction. 式(5)
Figure 0006765093
で表されるp−フェニレンジアミンと、式(6)
Figure 0006765093
で表されるナフタレンビスイミド基含有ジアミンとを、式(7)
Figure 0006765093
で表されるテトラカルボン酸二無水物と重付加反応させることを特徴とする、式(3)及び(4)で表される繰り返し単位を含むポリイミド前駆体の製造方法。
Figure 0006765093
Equation (5)
Figure 0006765093
P-phenylenediamine represented by and formula (6)
Figure 0006765093
The naphthalene bisimide group-containing diamine represented by the formula (7)
Figure 0006765093
A method for producing a polyimide precursor containing a repeating unit represented by the formulas (3) and (4), which comprises a polyaddition reaction with a tetracarboxylic dianhydride represented by.
Figure 0006765093
JP2016101404A 2016-05-20 2016-05-20 Polyimide Active JP6765093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016101404A JP6765093B2 (en) 2016-05-20 2016-05-20 Polyimide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016101404A JP6765093B2 (en) 2016-05-20 2016-05-20 Polyimide

Publications (2)

Publication Number Publication Date
JP2017206650A JP2017206650A (en) 2017-11-24
JP6765093B2 true JP6765093B2 (en) 2020-10-07

Family

ID=60416309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016101404A Active JP6765093B2 (en) 2016-05-20 2016-05-20 Polyimide

Country Status (1)

Country Link
JP (1) JP6765093B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111303004B (en) * 2020-02-27 2023-09-29 云南大学 Imide monomer as amino end cap, organic hybridization film and preparation method thereof

Also Published As

Publication number Publication date
JP2017206650A (en) 2017-11-24

Similar Documents

Publication Publication Date Title
US10526451B2 (en) Polyamide-imide precursor, polyamide-imide film, and display device comprising same
KR102422752B1 (en) Novel tetracarboxylic dianhydride and polyimide and polyimide copolymer obtained from acid dianhydride
JP6293457B2 (en) Polyimide and heat resistant film
CN107250213A (en) Polyamidoimide precursor, polyamidoimide film and the display device including the film
JP6693676B2 (en) Polyimide and polyimide film
US20180134848A1 (en) Polyimide resin and film using same
JP2009286854A (en) Polyesterimide precursor and polyesterimide
JP6304494B2 (en) Polyimide and heat-resistant material
JP4699321B2 (en) Ester group-containing polyimide, precursor thereof, and production method thereof
CN115380058B (en) Imide-amic acid copolymer, process for producing the same, varnish, and polyimide film
CN111770949B (en) Polyimide, polyimide solution composition, polyimide film, and substrate
JP6768234B2 (en) Polyimide and polyimide film
JP2019137828A (en) Polyimide, varnish and polyimide film
WO2009116500A1 (en) Polyimide material, polyimide film, method for producing the polyimide material and method for producing the polyimide film
CN114867767B (en) Polyimide resin, polyimide varnish and polyimide film
JP7593325B2 (en) Polyimide resin composition, polyimide varnish and polyimide film
JP6765093B2 (en) Polyimide
JP2008303372A (en) Polyimide precursor having asymmetric structure, polyimide, and production method thereof
CN114854011B (en) Polyamide acid solution, polyimide film and preparation method thereof
JP2011148901A (en) Phosphorus-containing diamine and phosphorus-containing polyimide obtained therefrom
CN115380059B (en) Imide-amic acid copolymer and its production method, varnish and polyimide film
JP2010235859A (en) Polyimide material, film and composition, and method for producing the same
CN115038737B (en) Polyimide resin, polyimide varnish and polyimide film
CN111936554B (en) Polyimide resin, polyimide varnish and polyimide film
TW202402885A (en) Method for producing polymer, varnish, and method for producing varnish

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20160615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160615

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200618

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200907

R150 Certificate of patent or registration of utility model

Ref document number: 6765093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250