JP6764510B2 - Low temperature steel sheet with excellent surface processing quality and its manufacturing method - Google Patents
Low temperature steel sheet with excellent surface processing quality and its manufacturing method Download PDFInfo
- Publication number
- JP6764510B2 JP6764510B2 JP2019142931A JP2019142931A JP6764510B2 JP 6764510 B2 JP6764510 B2 JP 6764510B2 JP 2019142931 A JP2019142931 A JP 2019142931A JP 2019142931 A JP2019142931 A JP 2019142931A JP 6764510 B2 JP6764510 B2 JP 6764510B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- steel sheet
- austenite
- less
- surface processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、表面加工品質に優れた低温用鋼板、及びその製造方法に関する。 The present invention relates to a low temperature steel sheet having excellent surface processing quality and a method for producing the same.
液化天然ガス及び液体窒素などの貯蔵容器、海洋構造物及び極地方構造物に使用される鋼材は、極低温でも十分な靭性と強度を維持する低温用鋼板でなければならない。このような低温用鋼板は、優れた低温靭性と強度を有するだけでなく、熱膨張率と熱伝導率が小さくなければならない。
最近は、低温用鋼板として、ニッケルを完全に排除する代わりに、多量のマンガン及び炭素を添加してオーステナイトを安定化させ、アルミニウムを添加することで、極低温特性に優れた鋼材(特許文献1)、及びマンガンを添加してオーステナイトとイプシロンマルテンサイトの混合組織を得る低温靭性に優れた鋼材(特許文献2)などが報告されている。
オーステナイトを主組織とする低温用鋼板では、多量の炭素とマンガンを添加してオーステナイトを安定化させるが、これにより、オーステナイトの再結晶挙動に影響を与えて、通常の圧延温度区間における部分再結晶及び不均一な結晶粒成長によって特定の少数のオーステナイト結晶粒のみが過度に成長するようになり、微細組織内のオーステナイト結晶粒の大きさが著しく不均一となる。
Steel materials used for storage containers such as liquefied natural gas and liquid nitrogen, marine structures and polar regions structures must be low temperature steel plates that maintain sufficient toughness and strength even at extremely low temperatures. Such a low temperature steel sheet must not only have excellent low temperature toughness and strength, but also have a low coefficient of thermal expansion and thermal conductivity.
Recently, as a steel plate for low temperature, instead of completely eliminating nickel, a large amount of manganese and carbon are added to stabilize austenite, and aluminum is added to make a steel material having excellent extremely low temperature characteristics (Patent Document 1). ), And a steel material having excellent low temperature toughness to obtain a mixed structure of austenite and epsilon martensite by adding manganese (Patent Document 2) has been reported.
In low temperature steel sheets with austenite as the main structure, a large amount of carbon and manganese are added to stabilize austenite, which affects the recrystallization behavior of austenite and partially recrystallizes in the normal rolling temperature section. And non-uniform crystal grain growth causes only a specific small number of austenite crystal grains to grow excessively, resulting in significantly non-uniform size of austenite crystal grains in the microstructure.
通常、炭素とマンガンの含量が高いオーステナイト組織の場合、変形挙動は、一般的な炭素鋼とは異なってスリップと双晶によって行われ、変形初期には主に均一変形であるスリップによって行われるが、その後は不均一変形である双晶が伴って現れる。結晶粒が大きいほど、双晶形成に必要な応力が減少し、変形が小さくても双晶が発生しやすくなる。少数の粗大な結晶粒が微細組織内に存在すると、変形初期に粗大結晶粒で双晶変形が発生して不均一変形を起こすため、材料の表面特性を劣位させ、最終構造物の厚さ不均一をもたらし、特に、低温圧力容器のように均一な鋼材の厚さを確保した内圧抵抗性が求められる構造物では、構造の設計及び使用に大きな問題をもたらす。
したがって、炭素とマンガンの添加によって微細組織をオーステナイト化した鋼材の場合、粗大結晶粒の早期双晶変形による表面ムラを解決することで、経済的かつ構造安定性が確保された低コストの極低温用鋼材の開発への要求が切実になっている。
Normally, in the case of an austenite structure with a high carbon and manganese content, the deformation behavior is performed by slip and twin, unlike general carbon steel, and is mainly performed by slip, which is a uniform deformation at the initial stage of deformation. After that, twins, which are non-uniform deformations, appear. The larger the crystal grains, the less stress is required to form twins, and the smaller the deformation, the easier it is for twins to occur. If a small number of coarse crystal grains are present in the microstructure, twin deformation occurs in the coarse crystal grains at the initial stage of deformation, causing non-uniform deformation, resulting in inferior surface characteristics of the material and inferior thickness of the final structure. It brings about a big problem in the design and use of the structure, especially in the structure which brings the uniformity and requires the internal pressure resistance which secured the uniform thickness of the steel material such as a low temperature pressure vessel.
Therefore, in the case of a steel material whose microstructure is austenitized by adding carbon and manganese, the surface unevenness due to early twinning deformation of coarse crystal grains is solved, and economical and structural stability is ensured at a low cost and extremely low temperature. The demand for the development of steel materials is urgent.
本発明は、表面加工品質に優れた低温用鋼板、及びその製造方法を提供することを目的とする。 An object of the present invention is to provide a low temperature steel sheet having excellent surface processing quality and a method for producing the same.
本発明の表面加工品質に優れた低温用鋼板は、マンガン(Mn):15〜35質量%、炭素(C):23.6C+Mn≧28、及び33.5C−Mn≦23を満たす範囲、銅(Cu):5質量%以下(0質量%は除く)、クロム(Cr):28.5C+4.4Cr≦57(0質量%は除く)の条件を満たす範囲、Ti(チタニウム):0.01〜0.5質量%、N(窒素):0.003〜0.2質量%、残りの鉄(Fe)、及びその他の不可避な不純物からなり、
TiとNは下記関係式1を満たし、0.012〜0.025μmの大きさを有するTiN析出物を1mm2当たり2.7×108〜5.4×108個含み、
微細組織として、オーステナイトを面積分率で95%以上含み、前記微細組織内において200μm以上の大きさを有するオーステナイトの結晶粒の数が単位cm2当たり5個以下であることを特徴とする。
The low temperature steel plate having excellent surface processing quality of the present invention has copper (Mn) in a range satisfying 15 to 35% by mass, carbon (C): 23.6C + Mn ≧ 28, and 33.5C—Mn ≦ 23. Cu): 5% by mass or less (excluding 0% by mass), chromium (Cr): 28.5C + 4.4Cr ≦ 57 (excluding 0% by mass), Ti (titanium): 0.01 to 0 .5% by mass, N (nitrogen): 0.003 to 0.2% by mass, consisting of the remaining iron (Fe), and other unavoidable impurities.
Ti and N satisfy the following relational expression 1 and contain 2.7 × 10 8 to 5.4 × 10 8 TiN precipitates having a size of 0.012 to 0.025 μm per 1 mm 2 .
The microstructure contains austenite in an area fraction of 95% or more, and the number of crystal grains of austenite having a size of 200 μm or more in the microstructure is 5 or less per unit cm 2 .
また、本発明の表面加工品質に優れた低温用鋼板の製造方法は、マンガン(Mn):15〜35質量%、炭素(C):23.6C+Mn≧28、及び33.5C−Mn≦23を満たす範囲、銅(Cu):5質量%以下(0質量%は除く)、クロム(Cr):28.5C+4.4Cr≦57(0質量%は除く)の条件を満たす範囲、Ti(チタニウム):0.01〜0.5質量%、N(窒素):0.003〜0.2質量%、残りの鉄(Fe)、及びその他の不可避な不純物からなり、
前記TiとNは下記関係式1を満たすスラブを準備する段階と、
スラブを1050〜1250℃の温度で加熱する段階と、
加熱されたスラブを熱間圧延して熱延鋼板を製造する段階と、を含み、
前記熱延鋼板は、0.012〜0.025μmの大きさを有するTiN析出物を1mm2当たり2.7×108〜5.4×108個含み、
前記熱延鋼板は、微細組織として、オーステナイトを面積分率で95%以上含み、
前記鋼板の微細組織内において200μm以上の大きさを有するオーステナイトの結晶粒の数が単位cm2当たり5個以下であることを特徴とする。
Further, the method for producing a low-temperature steel plate having excellent surface processing quality of the present invention comprises manganese (Mn): 15 to 35% by mass, carbon (C): 23.6C + Mn ≧ 28, and 33.5C-Mn ≦ 23. Satisfied range, copper (Cu): 5% by mass or less (excluding 0% by mass), chromium (Cr): 28.5C + 4.4Cr ≤ 57 (excluding 0% by mass), Ti (titanium): Consists of 0.01-0.5% by weight, N (nitrogen): 0.003-0.2% by weight, remaining iron (Fe), and other unavoidable impurities.
The Ti and N are at the stage of preparing a slab satisfying the following relational expression 1 and
The stage of heating the slab at a temperature of 1050 to 1250 ° C.
Including the stage of hot-rolling a heated slab to produce a hot-rolled steel sheet,
The hot-rolled steel sheet contains 2.7 × 10 8 to 5.4 × 10 8 TiN precipitates having a size of 0.012 to 0.025 μm per 1 mm 2 .
The hot-rolled steel sheet contains austenite as a fine structure in an area fraction of 95% or more.
It is characterized in that the number of crystal grains of austenite having a size of 200 μm or more in the microstructure of the steel sheet is 5 or less per unit cm 2 .
[関係式1]
1.0≦Ti/N≦4.5
(但し、各数式中のMn、C、Cr、Ti、及びNは各成分含量の質量%を意味する。)
さらに、課題の解決手段は、本発明の特徴を全て列挙したものではない。本発明の様々な特徴と、それによる長所及び効果は、以下の具体的な実施形態を通じてより詳細に理解することができる。
[Relationship formula 1]
1.0 ≤ Ti / N ≤ 4.5
(However, Mn, C, Cr, Ti, and N in each formula mean mass% of each component content.)
Furthermore, the means for solving the problem does not list all the features of the present invention. The various features of the present invention and their advantages and effects can be understood in more detail through the following specific embodiments.
本発明によると、粒度が均一なオーステナイト組織を有するため、加工後にも表面品質に優れた低温用鋼板、及びその製造方法を提供できる効果がある。 According to the present invention, since it has an austenite structure having a uniform particle size, it is possible to provide a low-temperature steel plate having excellent surface quality even after processing and a method for producing the same.
本願の発明者らは、炭素及びマンガンを多量に含有したオーステナイト組織の鋼材に対して、通常の圧延温度領域でオーステナイト組織の部分再結晶及び結晶粒成長が起こり、非理想的に粗大なオーステナイトが生成することがあり、一般的に双晶形成に必要な臨界応力はスリップの場合より高いが、上記の原因で結晶粒が大きい場合には、双晶形成に必要な応力が減少し、変形初期に双晶変形が発生し、不連続変形によって表面品質の劣化が起こるという問題点があることを認知し、これらを解決するために鋭意研究した。
その結果、オーステナイト結晶粒の過度な粗大化を抑制するために、Ti添加によりTi系析出物を適切に析出させることで、微細なオーステナイトが均一に分布する低温用鋼材が得られることを確認し、本発明の完成に至った。
以下、本発明の一側面による表面品質に優れた低温用鋼板について詳細に説明する。
The inventors of the present application have found that austenite structure containing a large amount of carbon and manganese causes partial recrystallization and crystal grain growth of the austenite structure in a normal rolling temperature region, resulting in non-ideally coarse austenite. In general, the critical stress required for twinning is higher than that for slipping, but when the crystal grains are large due to the above reasons, the stress required for twinning decreases and the initial deformation We recognized that there is a problem that twinning deformation occurs in the surface and the surface quality deteriorates due to the discontinuous deformation, and we have been diligently researching to solve these problems.
As a result, it was confirmed that a low-temperature steel material in which fine austenite is uniformly distributed can be obtained by appropriately precipitating Ti-based precipitates by adding Ti in order to suppress excessive coarsening of austenite crystal grains. , The present invention has been completed.
Hereinafter, a low-temperature steel plate having excellent surface quality according to one aspect of the present invention will be described in detail.
本発明による表面品質に優れた低温用鋼板は、マンガン(Mn):15〜35質量%、炭素(C):23.6C+Mn≧28、及び33.5C−Mn≦23を満たす範囲、銅(Cu):5質量%以下(0質量%は除く)、クロム(Cr):28.5C+4.4Cr≦57(0質量%は除く)の条件を満たす範囲、Ti(チタニウム):0.01〜0.5質量%、N(窒素):0.003〜0.2質量%、残りの鉄(Fe)、及びその他の不可避な不純物からなり、TiとNは下記関係式1を満たす。
[関係式1]
1.0≦Ti/N≦4.5
(但し、各数式中のMn、C、Cr、Ti及びNは各成分含量の質量%を意味する。)
先ず、本発明の一側面による表面品質に優れた低温用鋼板の合金組成を挙げて詳細に説明する。以下、各合金元素の単位は質量%である。
The low-temperature steel plate having excellent surface quality according to the present invention is copper (Cu) in a range satisfying manganese (Mn): 15 to 35% by mass, carbon (C): 23.6C + Mn ≧ 28, and 33.5C−Mn ≦ 23. ): 5% by mass or less (excluding 0% by mass), chromium (Cr): 28.5C + 4.4Cr ≤ 57 (excluding 0% by mass), Ti (titanium): 0.01 to 0. It is composed of 5% by mass, N (nitrogen): 0.003 to 0.2% by mass, the remaining iron (Fe), and other unavoidable impurities, and Ti and N satisfy the following relational expression 1.
[Relationship formula 1]
1.0 ≤ Ti / N ≤ 4.5
(However, Mn, C, Cr, Ti and N in each formula mean mass% of each component content.)
First, the alloy composition of the low-temperature steel sheet having excellent surface quality according to one aspect of the present invention will be described in detail. Hereinafter, the unit of each alloy element is mass%.
マンガン(Mn):15〜35%
マンガンは、本発明においてオーステナイトを安定化させる役割を果たす元素である。本発明において、極低温でのオーステナイト相を安定化させるためには、15%以上含まれることが好ましい。即ち、マンガンの含量が15%未満では、炭素含量が小さいと、準安定相であるイプシロンマルテンサイトが形成され、極低温での加工誘起変態によってアルファマルテンサイトに変態しやすくなるため、靭性を確保することができず、これを防止するために、炭素含量を増加させてオーステナイトの安定化を図ろうとすると、かえって炭化物が析出して物性が急激に劣化するため好ましくない。そのため、マンガンの含量は、15%以上とすることが好ましい。これに対して、マンガンの含量が35%を超えると、鋼材の腐食速度の低下をもたらし、含量の増加によって経済性が減少するという問題点がある。そのため、マンガンの含量は、15〜35%に限定することが好ましい。
Manganese (Mn): 15-35%
Manganese is an element that plays a role in stabilizing austenite in the present invention. In the present invention, in order to stabilize the austenite phase at extremely low temperatures, it is preferably contained in an amount of 15% or more. That is, when the manganese content is less than 15% and the carbon content is small, epsilon martensite, which is a metastable phase, is formed and easily transformed into alpha martensite by processing-induced transformation at an extremely low temperature, thus ensuring toughness. If an attempt is made to stabilize austenite by increasing the carbon content in order to prevent this, carbides are deposited and the physical properties are rapidly deteriorated, which is not preferable. Therefore, the manganese content is preferably 15% or more. On the other hand, if the manganese content exceeds 35%, there is a problem that the corrosion rate of the steel material is lowered and the economic efficiency is lowered due to the increase in the content. Therefore, the manganese content is preferably limited to 15-35%.
炭素(C):23.6C+Mn≧28、及び33.5C−Mn≦23の関係を満たす範囲
炭素は、オーステナイトを安定化させながら強度を増加させる元素であり、特に、冷却過程若しくは加工によるオーステナイトからイプシロン若しくはアルファマルテンサイトへの変態点であるMs及びMdを低くする役割を果たす。そのため、炭素の添加量が不十分であると、オーステナイトの安定度が足りなくなるため、極低温で安定したオーステナイトが得られず、また、外部応力によってイプシロン若しくはアルファマルテンサイトへの加工誘起変態を起こしやすいため、靭性を減少させ、さらに、鋼材の強度も減少させる。これに対して、炭素の含量が多すぎると、炭化物が析出して靭性が急激に劣化し、強度が増加しすぎて加工性が悪くなる短所がある。
特に、本発明において、炭素の含量は、炭素及びその他の共に添加される元素との関係に留意しながら決定することが好ましい。本願発明者らが見出した炭化物形成に対する炭素とマンガンとの関係を図4に示した。図4から分かるように、炭化物は炭素によって形成されることが明白であるが、炭素が独立して炭化物の形成に影響を及ぼすのではなく、マンガンと複合的に作用してその形成傾向に影響を及ぼす。
Carbon (C): Range that satisfies the relationship of 23.6C + Mn ≧ 28 and 33.5C-Mn ≦ 23 Carbon is an element that increases the strength while stabilizing austenite, especially from austenite by the cooling process or processing. It plays a role in lowering Ms and Md, which are transformation points to epsilon or alpha maltensite. Therefore, if the amount of carbon added is insufficient, the stability of austenite becomes insufficient, so that stable austenite cannot be obtained at extremely low temperatures, and processing-induced transformation to epsilon or alpha martensite occurs due to external stress. Since it is easy, the toughness is reduced, and the strength of the steel material is also reduced. On the other hand, if the carbon content is too high, carbides are precipitated and the toughness is rapidly deteriorated, the strength is increased too much, and the workability is deteriorated.
In particular, in the present invention, it is preferable to determine the carbon content while paying attention to the relationship between carbon and other elements added together. The relationship between carbon and manganese for carbide formation found by the inventors of the present application is shown in FIG. As can be seen from FIG. 4, it is clear that carbides are formed by carbon, but carbon does not independently affect the formation of carbides, but acts in combination with manganese to affect its formation tendency. To exert.
図4には適正炭素含量が示されている。炭化物の形成を防止するためには、他の成分が本発明で規定する範囲を満たすという前提の下で23.6C+Mn(ここで、C、Mnは各成分の含量を質量%単位で示したものである。)の値を28以上に制御することが好ましい。これは、図面の平行四辺形領域の傾斜した左側境界を意味する。23.6C+Mnが28未満では、オーステナイトの安定度が減少し、極低温での衝撃によって加工誘起変態を起こすため、衝撃靭性を低下させる。炭素含量が多がすぎると、即ち33.5C−Mnが23より大きいと、炭素の添加過多により炭化物が析出し、低温衝撃靭性を低下させる問題が発生する。結論として、Mn:15〜35%、23.6C+Mn≧28、及び33.5C−Mn≦23を全て満たすように、Cを添加することが好ましい。また、図面からも分かるとおり、上記数式を満たす範囲内におけるC含量の最下限は0%である。 FIG. 4 shows the proper carbon content. In order to prevent the formation of carbides, 23.6C + Mn (where C and Mn indicate the content of each component in mass% units) on the premise that other components satisfy the range specified in the present invention. It is preferable to control the value of) to 28 or more. This means the sloping left boundary of the parallelogram region of the drawing. When 23.6C + Mn is less than 28, the stability of austenite decreases and the impact toughness decreases because the process-induced transformation occurs due to the impact at extremely low temperature. If the carbon content is too high, that is, if 33.5C-Mn is larger than 23, carbides are precipitated due to excessive addition of carbon, which causes a problem of lowering low temperature impact toughness. In conclusion, it is preferable to add C so as to satisfy all of Mn: 15-35%, 23.6C + Mn ≧ 28, and 33.5C—Mn ≦ 23. Further, as can be seen from the drawings, the lower limit of the C content within the range satisfying the above formula is 0%.
銅(Cu):5%以下(0%は除く)
銅は、炭化物内の固溶度が非常に低く、オーステナイト内での拡散が遅いため、オーステナイトと核生成した炭化物の界面に濃縮されるが、そのため、炭素の拡散を妨害することで炭化物成長を効果的に遅らせることができ、その結果、炭化物生成を抑制するという効果がある。また銅は、オーステナイトを安定化させて極低温靭性を向上させるという効果もある。但し、Cuの含量が5%を超えると、鋼材の熱間加工性を低下させる問題点があるため、その上限を5%に制限することが好ましい。さらに、上述した炭化物の抑制効果を得るためには、銅の含量が0.5%以上であることがより好ましい。
Copper (Cu): 5% or less (excluding 0%)
Copper has a very low solid solubility in charcoal and diffuses slowly in austenite, so it is concentrated at the interface between austenite and nucleated charcoal, which prevents charcoal growth by interfering with carbon diffusion. It can be effectively delayed, and as a result, has the effect of suppressing charcoal formation. Copper also has the effect of stabilizing austenite and improving cryogenic toughness. However, if the Cu content exceeds 5%, there is a problem that the hot workability of the steel material is lowered, so it is preferable to limit the upper limit to 5%. Further, in order to obtain the above-mentioned effect of suppressing carbides, the copper content is more preferably 0.5% or more.
クロム(Cr):28.5C+4.4Cr≦57(0%は除く)
クロムは、適正な添加量の範囲までは、オーステナイトを安定化させて低温での衝撃靭性を向上させ、オーステナイト内に固溶して鋼材の強度を増加させる役割を果たす。また、クロムは、鋼材の耐食性を向上させる元素でもある。但し、クロムは炭化物元素であって、特に、オーステナイト粒界に炭化物を形成して低温での衝撃を減少させる元素でもある。そのため、本発明で添加されるクロムの含量は、炭素及び、その他の共に添加される元素との関係に留意しながら決定することが好ましい。炭化物の形成を防止するためには、他の成分が本発明で規定する範囲を満たすという前提の下で28.5C+4.4Cr(ここで、C、Crは各成分の含量を質量%単位で示したものである。)の値を57以下に制御することが好ましい。28.5C+4.4Crの値が57を超えると、過度なクロム及び炭素含量によってオーステナイト粒界における炭化物の生成を効果的に抑制することが困難となり、これに伴い、低温での衝撃靭性が減少する問題点がある。そのため、本発明において、クロムの含量は、28.5C+4.4Cr≦57を満たすように添加することが好ましい。
Chromium (Cr): 28.5C + 4.4Cr ≦ 57 (excluding 0%)
Chromium plays a role in stabilizing austenite to improve impact toughness at low temperatures and solidifying in austenite to increase the strength of steel materials up to an appropriate addition range. Chromium is also an element that improves the corrosion resistance of steel materials. However, chromium is a carbide element, and in particular, it is also an element that forms carbides at the austenite grain boundaries to reduce the impact at low temperatures. Therefore, it is preferable to determine the content of chromium added in the present invention while paying attention to the relationship between carbon and other elements added together. In order to prevent the formation of charcoal, 28.5C + 4.4Cr (where C and Cr indicate the content of each component in mass% units) on the premise that other components satisfy the range specified in the present invention. It is preferable to control the value of) to 57 or less. When the value of 28.5C + 4.4Cr exceeds 57, it becomes difficult to effectively suppress the formation of carbides at the austenite grain boundary due to the excessive chromium and carbon content, and the impact toughness at low temperature is reduced accordingly. There is a problem. Therefore, in the present invention, it is preferable to add the chromium content so as to satisfy 28.5C + 4.4Cr ≦ 57.
Ti(チタニウム):0.01〜0.5%
チタニウム(Ti)は、鋼中の窒素(N)と結合してTiN析出物を形成する元素である。本発明では、高温熱間圧延時に一部のオーステナイト結晶粒の過度な粗大化が発生することがあるため、TiNを適切に析出させることで、オーステナイトの結晶粒成長を抑制することができる。この目的のために、Tiは、少なくとも0.01%以上添加する必要がある。但し、その含量が0.5%を超えると、その効果が飽和するだけでなく、かえって粗大なTiNが晶出することで、その効果が半減することもあり、好ましくない。そのため、本発明では、Tiの含量を0.01〜0.5%に制限することが好ましい。
Ti (titanium): 0.01-0.5%
Titanium (Ti) is an element that combines with nitrogen (N) in steel to form TiN precipitates. In the present invention, excessive coarsening of some austenite crystal grains may occur during high-temperature hot rolling. Therefore, proper precipitation of TiN can suppress the growth of austenite crystal grains. For this purpose, Ti needs to be added at least 0.01% or more. However, if the content exceeds 0.5%, not only the effect is saturated, but also the effect is halved due to the crystallization of coarse TiN, which is not preferable. Therefore, in the present invention, it is preferable to limit the Ti content to 0.01 to 0.5%.
N(窒素):0.003〜0.2質量%
本発明では、上記のTi添加の目的が効果的に達成されるよう、窒素(N)が同時に添加される必要がある。特に、TiNの効果的な析出のためには、Nを0.003%以上 添加することが好ましいが、Nの固溶度が0.2%以下であるため、それ以上添加するのは非常に困難であり、さらに、TiNの析出のためには0.2%以下の添加で足りるため、その上限は0.2%に制限することが好ましい。本発明においてNの含量は、0.003〜0.2%に制限することが好ましい。
N (nitrogen): 0.003 to 0.2% by mass
In the present invention, nitrogen (N) needs to be added at the same time so that the above-mentioned purpose of adding Ti can be effectively achieved. In particular, for effective precipitation of TiN, it is preferable to add 0.003% or more of N, but since the solid solubility of N is 0.2% or less, it is very difficult to add more. Furthermore, since it is difficult to add 0.2% or less for the precipitation of TiN, the upper limit thereof is preferably limited to 0.2%. In the present invention, the content of N is preferably limited to 0.003 to 0.2%.
本発明の残りの成分は鉄(Fe)である。但し、通常の製造過程では、原料又は周囲環境から意図しない不純物が不可避に混入されるため、これを排除することはできない。これらの不純物は、通常の製造過程における技術者には周知であるため、本明細書では全ての内容について特に言及しない。 The remaining component of the present invention is iron (Fe). However, in the normal manufacturing process, unintended impurities are inevitably mixed from the raw material or the surrounding environment, and therefore this cannot be excluded. Since these impurities are well known to engineers in the normal manufacturing process, all the contents are not specifically mentioned in the present specification.
また、Nに対するTiの質量比、即ちTi/Nは、下記関係式1を満たすことが好ましい。
[関係式1]
1.0≦Ti/N≦4.5
Ti/N比を1.0以上に制御すると、固溶Tiが窒素と結合して微細なTiNが析出するようになり、また、このように析出したTiNが安定して存在するようになるため、オーステナイトの結晶粒成長を抑制するのに非常に効果的である。
但し、Ti/N比が4.5を超えると、溶鋼中で粗大なTiNが晶出するため、鋼材の物性に悪影響を与え、TiNの均一な分布が得られず、さらに、TiNとして析出せず余分なTiが固溶状態で存在して、溶接熱影響部の靭性に悪影響を与えるようになる。しかしながら、Ti/N比が1.0未満であると、母材の固溶窒素量が増加して、溶接熱影響部の靭性に悪影響を与えるようになるため、Ti/N比は1.0以上4.5以下に制御することが好ましい。
Further, the mass ratio of Ti to N, that is, Ti / N preferably satisfies the following relational expression 1.
[Relationship formula 1]
1.0 ≤ Ti / N ≤ 4.5
When the Ti / N ratio is controlled to 1.0 or more, the solid solution Ti is combined with nitrogen to precipitate fine TiN, and the TiN precipitated in this way is stably present. , It is very effective in suppressing the grain growth of austenite.
However, if the Ti / N ratio exceeds 4.5, coarse TiN crystallizes in the molten steel, which adversely affects the physical properties of the steel material, makes it impossible to obtain a uniform distribution of TiN, and further precipitates as TiN. Excess Ti is present in a solid solution state, which adversely affects the toughness of the weld heat affected zone. However, if the Ti / N ratio is less than 1.0, the amount of solid solution nitrogen in the base metal increases, which adversely affects the toughness of the weld heat affected zone, so the Ti / N ratio is 1.0. It is preferable to control the above to 4.5 or less.
また、本発明に係る低温用鋼板は、0.01〜0.3μmの大きさを有するTiN析出物を含むことが好ましい。
TiN析出物の大きさが0.01μm未満であると、母材に再固溶しやすくなり、結晶粒成長を抑制する効果が十分でなくなる。これに対して、TiN析出物の大きさが0.3μmを超えると、オーステナイト結晶粒界のピン止め(pinning)効果が減少し、かえって粗大な大きさに起因して靭性に悪影響を及ぼす。そのため、TiN析出物の大きさは0.01〜0.3μmであることが好ましい。
Further, the low temperature steel sheet according to the present invention preferably contains a TiN precipitate having a size of 0.01 to 0.3 μm.
If the size of the TiN precipitate is less than 0.01 μm, it is likely to be re-solidified in the base metal, and the effect of suppressing crystal grain growth is not sufficient. On the other hand, when the size of the TiN precipitate exceeds 0.3 μm, the pinning effect of the austenite grain boundaries is reduced, and the toughness is adversely affected due to the coarse size. Therefore, the size of the TiN precipitate is preferably 0.01 to 0.3 μm.
また、本発明に係る低温用鋼板は、TiN析出物を1mm2当たり1.0×107〜1.0×1010個含むことが好ましい。
TiN析出物が1mm2当たり1.0×107個未満であると、結晶粒界のピン止め効果が微々たるものであり、粗大結晶粒の成長を効果的に抑制できなくなる。これに対して、TiN析出物が1mm2当たり1.0×1010個を超えると、析出物の大きさが相対的に小さくなって不安定になり、さらに、材料の衝撃靭性を劣位にする。そのため、TiN析出物の数は1mm2当たり1.0×107〜1.0×1010個であることが好ましい。
Also, low-temperature steel sheet according to the present invention preferably contains 1.0 × 10 7 ~1.0 × 10 10 per 1 mm 2 of TiN precipitates.
When TiN precipitates is 2 per 1.0 × 10 below 7 1 mm, the pinning effect of crystal grain boundaries is insignificant, it can not be effectively suppressed the growth of coarse crystal grains. On the other hand, when the number of TiN precipitates exceeds 1.0 × 10 10 per 1 mm 2 , the size of the precipitates becomes relatively small and unstable, and the impact toughness of the material becomes inferior. .. Therefore, the number of TiN precipitates is preferably 1.0 × 10 7 to 1.0 × 10 10 per 1 mm 2 .
また、本発明に係る低温用鋼板は、微細組織内において200μm以上の大きさを有する粗大オーステナイトの結晶粒の数を単位cm2当たり5個以下に限定する。
通常、200μm未満の結晶粒大きさを有するオーステナイトは、双晶発生応力がスリップ発生応力に比べて十分に大きく、構造物を作製するときに、通常の低温用鋼材の変形率の範囲内では不均一変形を起こさないため、その大きさは200μm以上に限定することが好ましい。また、200μm以上の大きさを有する結晶粒の密度がcm2当たり5個を超えると、粗大結晶粒の高い密度により不均一変形が表面品質に影響を与える程度に劣化するため、200μm以上の大きさを有する結晶粒の密度は、cm2当たり5個以下に限定することが好ましい。
Further, in the low temperature steel plate according to the present invention, the number of coarse austenite crystal grains having a size of 200 μm or more in the microstructure is limited to 5 or less per 1 cm 2 .
Normally, austenite having a grain size of less than 200 μm has a sufficiently large twinning stress as compared with the slip-generating stress, and is not within the range of the deformation rate of ordinary low-temperature steel materials when manufacturing structures. The size is preferably limited to 200 μm or more so as not to cause uniform deformation. Further, when the density of crystal grains having a size of 200 μm or more exceeds 5 per cm 2 , the high density of coarse crystal grains deteriorates to the extent that non-uniform deformation affects the surface quality, so the size is 200 μm or more. It is preferable to limit the density of crystal grains having a grain to 5 or less per cm 2 .
一方、本発明に係る低温用鋼板は、オーステナイト組織を面積分率で95%以上含むことが好ましい。低温でも延性破壊を示す代表的な軟質組織であるオーステナイトは、低温靭性を確保するための必須の微細組織として面積分率で95%以上含まなければならず、95%未満では、十分な低温靭性、即ち−196℃で41J以上の衝撃靭性を確保するのに十分でないため、その下限は95%に制限することが好ましい。
また、オーステナイト粒界に存在する炭化物は、面積分率で5%以下であることが好ましい。本発明において、オーステナイト以外に存在できる組織としては、炭化物が代表的であるが、これは、オーステナイト結晶粒界に析出して粒界破断の原因となり、低温靭性及び延性を劣位にするため、その上限は5%に制限することが好ましい。
On the other hand, the low temperature steel sheet according to the present invention preferably contains an austenite structure in an area fraction of 95% or more. Austenite, which is a typical soft structure showing ductile fracture even at low temperature, must contain 95% or more in area fraction as an essential microstructure for ensuring low temperature toughness, and less than 95% has sufficient low temperature toughness. That is, since it is not sufficient to secure an impact toughness of 41 J or more at -196 ° C., the lower limit thereof is preferably limited to 95%.
The carbides present at the austenite grain boundaries are preferably 5% or less in terms of surface integral. In the present invention, carbide is a typical structure that can exist other than austenite, but this is because it precipitates at the austenite grain boundaries and causes grain boundary fracture, resulting in inferior low temperature toughness and ductility. The upper limit is preferably limited to 5%.
以下、本発明の表面加工品質に優れた低温用鋼板の製造方法について詳細に説明する。
本発明の表面加工品質に優れた低温用鋼板の製造方法は、上述した合金組成を満たすスラブを準備する段階と、スラブを1050〜1250℃の温度で加熱する段階と、加熱されたスラブを熱間圧延して熱延鋼板を得る段階と、を含む。
Hereinafter, the method for producing a low-temperature steel sheet having excellent surface processing quality of the present invention will be described in detail.
The method for producing a low-temperature steel sheet having excellent surface processing quality of the present invention includes a step of preparing a slab satisfying the above-mentioned alloy composition, a step of heating the slab at a temperature of 1050 to 1250 ° C., and a step of heating the heated slab. Includes a step of rolling between to obtain a hot-rolled steel sheet.
スラブを準備する段階
上述した合金組成を満たすスラブを準備する。合金組成を制御した理由も上述の通りである。
Steps to prepare slabs Prepare slabs that satisfy the alloy composition described above. The reason for controlling the alloy composition is also as described above.
加熱する段階
スラブを1050〜1250℃の温度で加熱する。
これは、スラブの製造段階で生成する鋳造組織、偏析及び2次相の固溶及び均質化のためのものであって、1050℃未満では、均質化が足りなかったり、加熱炉の温度が低すぎるため、熱間圧延時に変形抵抗が大きくなるという問題があり、1250℃を超えると、鋳造組織内の偏析帯における部分溶融及び表面品質の劣化が生じ、TiNが晶出してオーステナイトの微細化に寄与できず、かえって物性の劣化を招くことがある。そのため、スラブの加熱温度は、1050〜1250℃の範囲を有することが好ましい。
Heating Stage The slab is heated at a temperature of 1050 to 1250 ° C.
This is for the casting structure, segregation and solid solution and homogenization of the secondary phase produced during the slab production stage. Below 1050 ° C, the homogenization is insufficient or the temperature of the heating furnace is low. Therefore, there is a problem that the deformation resistance becomes large during hot rolling, and if the temperature exceeds 1250 ° C., partial melting and deterioration of surface quality occur in the segregation zone in the cast structure, TiN crystallizes, and austenite becomes finer. It cannot contribute and may lead to deterioration of physical properties. Therefore, the heating temperature of the slab preferably has a range of 1050 to 1250 ° C.
熱間圧延段階
加熱されたスラブを熱間圧延して熱延鋼板を得る。
本発明では、上述した合金組成及びスラブの加熱温度を満たすことで、表面加工品質に優れた低温用鋼板を得ることができる。したがって、熱間圧延段階の条件を制御する必要は特になく、一般的な方法によって熱間圧延を行うことができる。
Hot-rolling stage The heated slab is hot-rolled to obtain a hot-rolled steel sheet.
In the present invention, a low-temperature steel sheet having excellent surface processing quality can be obtained by satisfying the above-mentioned alloy composition and heating temperature of the slab. Therefore, it is not particularly necessary to control the conditions of the hot rolling stage, and hot rolling can be performed by a general method.
以下に、実施例を挙げて本発明をより具体的に説明する。但し、後述する実施例は本発明をより詳細に説明するための例示であり、本発明の権利範囲を限定するためのものではないことに留意すべきである。これは、本発明の権利範囲が、特許請求の範囲に記載の事項と、これから合理的に類推される事項により決定されるためである。
表1に記載の成分系を満たすスラブを、表2に記載の条件で製造した後、微細組織、降伏強度、延伸率、−196℃でのシャルピー衝撃靭性などを測定し、それぞれを表2又は表3に示した。
表3において、表面不均一(表面ムラ)は、低温用鋼板の表面を肉眼で観察して評価したものである。
Hereinafter, the present invention will be described in more detail with reference to examples. However, it should be noted that the examples described later are examples for explaining the present invention in more detail, and are not for limiting the scope of rights of the present invention. This is because the scope of rights of the present invention is determined by the matters described in the claims and the matters reasonably inferred from the matters.
After producing a slab satisfying the component system shown in Table 1 under the conditions shown in Table 2, the microstructure, yield strength, elongation, Charpy impact toughness at -196 ° C., etc. were measured, and each was measured in Table 2 or It is shown in Table 3.
In Table 3, the surface non-uniformity (surface unevenness) was evaluated by visually observing the surface of the low temperature steel plate.
発明例1〜5は、本発明で制御する成分系及び組成範囲を満たす鋼種であって、TiNの微細な析出により粗大オーステナイトの結晶粒の密度を単位面積1cm2当たり5個以下に制御することで、加工後に表面ムラのない優れた品質の低温用鋼材が得られることが分かり、また、微細組織内のオーステナイト分率が95%以上に制御され、炭化物は5%未満に制御される安定したオーステナイトが得られることから、極低温で優れた靭性が得られることを示している。
これに対して、比較例1〜3は、Tiが未添加であるためTiNの析出ができず、粗大結晶粒が発生して加工後に表面ムラが発生したことが分かった。
特に、比較例4は、本発明で制御する成分系及び組成範囲を満たしておらず、フェライトが生成することで衝撃靭性が非常に劣位にあることが分かった。また、本発明で制御するTiNの大きさ及び個数も満たしておらず、粗大結晶粒の個数が多くなり、表面ムラが発生したことが分かった。
一方、比較例5〜6では、本発明で制御する範囲内でTi及びNが添加されているが、Ti及びNの質量比、TiN析出物の大きさ及び個数が本発明で制御する範囲を満たしておらず、粗大なTiNが析出することで粗大結晶粒が過度に生成し、加工後に表面ムラが発生したことが分かった。
Examples 1 to 5 are steel grades satisfying the component system and composition range controlled by the present invention, and the density of coarse austenite crystal grains is controlled to 5 or less per 1 cm 2 unit area by fine precipitation of TiN. It was found that an excellent quality low-temperature steel material with no surface unevenness can be obtained after processing, and the austenite fraction in the microstructure is controlled to 95% or more, and the carbide is controlled to less than 5%. Since austenite is obtained, it is shown that excellent toughness can be obtained at extremely low temperatures.
On the other hand, in Comparative Examples 1 to 3, it was found that TiN could not be precipitated because Ti was not added, coarse crystal grains were generated, and surface unevenness occurred after processing.
In particular, Comparative Example 4 did not satisfy the component system and composition range controlled by the present invention, and it was found that the impact toughness was extremely inferior due to the formation of ferrite. Further, it was found that the size and number of TiNs controlled by the present invention were not satisfied, the number of coarse crystal grains increased, and surface unevenness occurred.
On the other hand, in Comparative Examples 5 to 6, Ti and N are added within the range controlled by the present invention, but the range in which the mass ratio of Ti and N and the size and number of TiN precipitates are controlled by the present invention is defined. It was found that it was not satisfied and coarse TiN was precipitated to excessively generate coarse crystal grains, and surface unevenness occurred after processing.
図1は、オーステナイト結晶粒が粗大化して非理想的な粗大結晶粒を形成した従来の鋼材の微細組織を撮影した写真であり、図2は、図1の鋼材を引張した後、鋼材の表面に不均一が発生した写真である。このように、鋼材の微細組織におけるオーステナイト結晶粒が粗大化して非理想的な粗大結晶粒を形成すると、加工後には、図2に示したとおり表面品質が劣化することが確認できる。しかしながら、発明例における微細組織を撮影した図3では、非理想的な粗大オーステナイト結晶粒のない均一な結晶粒を形成しているため、加工後においても表面加工品質に優れたものとなることが確認できる。 FIG. 1 is a photograph of the fine structure of a conventional steel material in which austenite crystal grains are coarsened to form non-ideal coarse crystal grains, and FIG. 2 is a photograph of the surface of the steel material after tensioning the steel material of FIG. It is a photograph in which non-uniformity occurred. As described above, when the austenite crystal grains in the fine structure of the steel material are coarsened to form non-ideal coarse crystal grains, it can be confirmed that the surface quality is deteriorated as shown in FIG. 2 after processing. However, in FIG. 3 in which the microstructure in the example of the invention is photographed, since uniform crystal grains without non-ideal coarse austenite crystal grains are formed, the surface processing quality may be excellent even after processing. You can check.
以上、実施例を参照して説明したが、当該技術分野の熟練された当業者は、下記の特許請求の範囲に記載された本発明の思想及び領域から外れない範囲内で本発明を多様に修正及び変更できるということが理解できるだろう。 Although the above description has been made with reference to Examples, skilled artisans in the art of the present invention can use the present invention in various ways within the scope of the idea and domain of the present invention described in the claims below. You can see that it can be modified and changed.
Claims (4)
前記Tiと前記Nは下記関係式1を満たし、0.012〜0.025μmの大きさを有するTiN析出物を1mm2当たり2.7×108〜5.4×108個含み、
微細組織として、オーステナイトを面積分率で95%以上含み、前記微細組織内において200μm以上の大きさを有するオーステナイトの結晶粒の数が単位cm2当たり5個以下であることを特徴とする表面加工品質に優れた低温用鋼板。
[関係式1]
1.13≦Ti/N≦2.38
(但し、各数式のMn、C、Cr、Ti、及びNは各成分含量の質量%を意味する。) Manganese (Mn): 21.7 to 28.6% by mass, carbon (C): 23.6C + Mn ≧ 28, and 33.5C-Mn ≦ 23, and 0.39 to 1.1% by mass. , Copper (Cu): 5% by mass or less (excluding 0% by mass), Chromium (Cr): 28.5C + 4.4Cr ≦ 57 (excluding 0% by mass), and 0.55 to 3.45 From the range satisfying% by mass , Ti (titanium): 0.01 to 0.5% by mass, N (nitrogen): 0.003 to 0.2% by mass, remaining iron (Fe), and other unavoidable impurities. Become
The Ti and the N satisfy the following relational expression 1 and contain 2.7 × 10 8 to 5.4 × 10 8 TiN precipitates having a size of 0.012 to 0.025 μm per 1 mm 2 .
Surface processing characterized by containing 95% or more of austenite as a microstructure in an area fraction and having 5 or less crystal grains of austenite having a size of 200 μm or more in the microstructure per unit cm 2. High quality low temperature steel sheet.
[Relationship formula 1]
1.13 ≤ Ti / N ≤ 2.38
(However, Mn, C, Cr, Ti, and N in each formula mean mass% of each component content.)
前記Tiと前記Nは下記関係式1を満たすスラブを準備する段階と、
前記スラブを1050〜1250℃の温度で加熱してオーステナイトの微細組織を形成させる段階と、
前記加熱されたスラブを熱間圧延して熱延鋼板を製造する段階と、を含み、
前記熱延鋼板は、0.012〜0.025μmの大きさを有するTiN析出物を1mm2当たり2.7×108〜5.4×108個含み、
前記熱延鋼板は、微細組織として、オーステナイトを面積分率で95%以上含み、
前記鋼板の微細組織内において200μm以上の大きさを有するオーステナイトの結晶粒の数が単位cm2当たり5個以下であることを特徴とする表面加工品質に優れた低温用鋼板の製造方法。
[関係式1]
1.13≦Ti/N≦2.38
(但し、各数式のMn、C、Cr、Ti、及びNは各成分含量の質量%を意味する。)
Manganese (Mn): 21.7 to 28.6% by mass, carbon (C): 23.6C + Mn ≧ 28, and 33.5C-Mn ≦ 23, and 0.39 to 1.1% by mass. , Copper (Cu): 5% by mass or less (excluding 0% by mass), Chromium (Cr): 28.5C + 4.4Cr ≦ 57 (excluding 0% by mass), and 0.55 to 3.45 From the range satisfying% by mass , Ti (titanium): 0.01 to 0.5% by mass, N (nitrogen): 0.003 to 0.2% by mass, remaining iron (Fe), and other unavoidable impurities. Become
The Ti and the N are at the stage of preparing a slab satisfying the following relational expression 1 and
The step of heating the slab at a temperature of 1050 to 1250 ° C. to form a fine structure of austenite, and
Including a step of hot-rolling the heated slab to produce a hot-rolled steel sheet.
The hot-rolled steel sheet contains 2.7 × 10 8 to 5.4 × 10 8 TiN precipitates having a size of 0.012 to 0.025 μm per 1 mm 2 .
The hot-rolled steel sheet contains austenite as a fine structure in an area fraction of 95% or more.
A method for producing a low-temperature steel sheet having excellent surface processing quality, wherein the number of crystal grains of austenite having a size of 200 μm or more in the fine structure of the steel sheet is 5 or less per unit cm 2 .
[Relationship formula 1]
1.13 ≤ Ti / N ≤ 2.38
(However, Mn, C, Cr, Ti, and N in each formula mean mass% of each component content.)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2014-0189137 | 2014-12-24 | ||
KR1020140189137A KR101665821B1 (en) | 2014-12-24 | 2014-12-24 | Low temperature steels having superior surface quality and method for production thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017531487A Division JP6810691B2 (en) | 2014-12-24 | 2015-12-11 | Low temperature steel sheet with excellent surface processing quality and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020002465A JP2020002465A (en) | 2020-01-09 |
JP6764510B2 true JP6764510B2 (en) | 2020-09-30 |
Family
ID=56150966
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017531487A Active JP6810691B2 (en) | 2014-12-24 | 2015-12-11 | Low temperature steel sheet with excellent surface processing quality and its manufacturing method |
JP2019142931A Active JP6764510B2 (en) | 2014-12-24 | 2019-08-02 | Low temperature steel sheet with excellent surface processing quality and its manufacturing method |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017531487A Active JP6810691B2 (en) | 2014-12-24 | 2015-12-11 | Low temperature steel sheet with excellent surface processing quality and its manufacturing method |
Country Status (7)
Country | Link |
---|---|
US (1) | US20170362675A1 (en) |
EP (1) | EP3239328B1 (en) |
JP (2) | JP6810691B2 (en) |
KR (1) | KR101665821B1 (en) |
CN (1) | CN107109602B (en) |
CA (1) | CA2970151C (en) |
WO (1) | WO2016105002A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101940874B1 (en) * | 2016-12-22 | 2019-01-21 | 주식회사 포스코 | High manganese steel with superior low temperature toughness and yield strength and method for manufacturing the same |
SG11201907930QA (en) * | 2017-04-26 | 2019-09-27 | Jfe Steel Corp | HIGH-Mn STEEL AND PRODUCTION METHOD THEREFOR |
CN107190201B (en) * | 2017-07-17 | 2019-03-26 | 武汉钢铁有限公司 | LPG ship steel and manufacturing method |
US11335515B2 (en) | 2017-09-07 | 2022-05-17 | Monash University | Capacitive energy storage device and method of producing the same |
KR102109270B1 (en) * | 2017-10-18 | 2020-05-12 | 주식회사 포스코 | Low temperature high manganese steel plate with excellent surface property and method for manufacturing the same |
KR102031455B1 (en) * | 2017-12-26 | 2019-10-11 | 주식회사 포스코 | Hot-rolled steel sheet having excellent low temperature toughness, steel pipe using the steel sheet and method for manufacturing thereof |
KR102123604B1 (en) | 2018-03-29 | 2020-06-15 | 닛폰세이테츠 가부시키가이샤 | Austenitic wear-resistant steel plate |
KR102255827B1 (en) * | 2018-10-25 | 2021-05-26 | 주식회사 포스코 | Low-temperature austenitic high manganese steel having excellent surface quality and manufacturing method for the same |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR920004941B1 (en) | 1989-12-28 | 1992-06-22 | 포항종합제철 주식회사 | Manufacturing method of high manganese steel with excellent cryogenic properties |
JPH0742549B2 (en) * | 1990-09-28 | 1995-05-10 | 新日本製鐵株式会社 | High Mn non-magnetic steel for linear motor car steel bridge |
KR970001324B1 (en) * | 1994-03-25 | 1997-02-05 | 김만제 | Hot rolling method of high mn steel |
JPH09195007A (en) * | 1996-01-19 | 1997-07-29 | Kawasaki Steel Corp | Chromium-manganese-nitrogen base austenitic stainless steel excellent in corrosion resistance |
JP4141557B2 (en) * | 1998-12-18 | 2008-08-27 | 松下電器産業株式会社 | Electronic component mounting apparatus and mounting method |
EP1444373B1 (en) * | 2001-11-16 | 2007-09-12 | Posco | Steel plate having superior toughness in weld heat-affected zone and method for manufacturing the same, welding fabric using the same |
JP4529872B2 (en) | 2005-11-04 | 2010-08-25 | 住友金属工業株式会社 | High Mn steel material and manufacturing method thereof |
KR20120097160A (en) * | 2011-02-24 | 2012-09-03 | 현대제철 주식회사 | High strength steel plate and method of manufacturing the same |
CN104220617B (en) * | 2011-12-27 | 2016-10-26 | Posco公司 | There is the machining property of excellence and there is in welding heat affected region the austenitic steel of low-temperature flexibility, and manufacture method |
KR101461736B1 (en) * | 2012-12-21 | 2014-11-14 | 주식회사 포스코 | Austenitic steel having excellent machinability and superior cryogenic toughness in weld heat-affected zone and manufacturing method thereof |
KR101353843B1 (en) * | 2011-12-27 | 2014-01-20 | 주식회사 포스코 | Austenitic steel with excellent cryogenic toughness in heat affected zone |
CN104204262B (en) * | 2011-12-28 | 2018-02-02 | Posco公司 | Abrasive austenic steel and its production method with excellent machining property and ductility |
KR101412259B1 (en) * | 2012-03-29 | 2014-07-02 | 현대제철 주식회사 | Steel sheet and method of manufacturing the same |
KR101412327B1 (en) * | 2012-06-28 | 2014-06-25 | 현대제철 주식회사 | Hot-rolled steel sheet and method of manufacturing the hot-rolled steel sheet |
CN104884661B (en) * | 2012-12-26 | 2017-05-31 | Posco公司 | Excellent high intensity austenitic type steel of welding heat influence area toughness and preparation method thereof |
-
2014
- 2014-12-24 KR KR1020140189137A patent/KR101665821B1/en active Active
-
2015
- 2015-12-11 US US15/535,595 patent/US20170362675A1/en not_active Abandoned
- 2015-12-11 EP EP15873529.0A patent/EP3239328B1/en active Active
- 2015-12-11 WO PCT/KR2015/013554 patent/WO2016105002A1/en active Application Filing
- 2015-12-11 CN CN201580070966.5A patent/CN107109602B/en active Active
- 2015-12-11 JP JP2017531487A patent/JP6810691B2/en active Active
- 2015-12-11 CA CA2970151A patent/CA2970151C/en active Active
-
2019
- 2019-08-02 JP JP2019142931A patent/JP6764510B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US20170362675A1 (en) | 2017-12-21 |
CA2970151A1 (en) | 2016-06-30 |
WO2016105002A8 (en) | 2016-12-15 |
JP2018503742A (en) | 2018-02-08 |
EP3239328A4 (en) | 2017-12-13 |
WO2016105002A1 (en) | 2016-06-30 |
EP3239328A1 (en) | 2017-11-01 |
EP3239328B1 (en) | 2021-11-17 |
KR101665821B1 (en) | 2016-10-13 |
CA2970151C (en) | 2021-01-19 |
CN107109602A (en) | 2017-08-29 |
JP6810691B2 (en) | 2021-01-06 |
CN107109602B (en) | 2022-02-25 |
KR20160078853A (en) | 2016-07-05 |
JP2020002465A (en) | 2020-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6764510B2 (en) | Low temperature steel sheet with excellent surface processing quality and its manufacturing method | |
JP6615773B2 (en) | Low temperature steel with excellent surface processing quality | |
JP6588440B2 (en) | High strength low specific gravity steel plate and method for producing the same | |
KR101647227B1 (en) | Low temperature steels having superior surface quality and method for production thereof | |
JP2019504200A (en) | Low yield ratio high strength steel material excellent in stress corrosion cracking resistance and low temperature toughness and method for producing the same | |
JP6817434B2 (en) | Steel materials for pressure vessels with excellent hydrogen-induced cracking resistance and their manufacturing methods | |
CA3047937A1 (en) | Steel material for welded steel pipe, having excellent longitudinal uniform elongation, manufacturing method therefor, and steel pipe using same | |
KR20150075305A (en) | Steels for low temperature services having superior yield strength and method for production thereof | |
JP7096337B2 (en) | High-strength steel plate and its manufacturing method | |
JP2008013812A (en) | High toughness and high tensile strength thick steel plate and its production method | |
JP2019505676A (en) | High strength structural steel plate with excellent hot resistance and method for producing the same | |
KR101299361B1 (en) | Steel and manufacturing method of steel pipe using the steel | |
JP5423309B2 (en) | Thick steel plate for offshore structures and manufacturing method thereof | |
KR101543915B1 (en) | Austenitic steels for low temperature services having excellent strength and method for manufacturing the same | |
CN116368253A (en) | High-strength steel sheet excellent in heat stability and method for producing same | |
JP2022510934A (en) | Steel materials for pressure vessels with excellent hydrogen-induced crack resistance and their manufacturing methods | |
JP7445744B2 (en) | Ferritic stainless steel cold-rolled annealed steel sheet with improved high-temperature creep resistance and its manufacturing method | |
JP2022510929A (en) | Steel materials for pressure vessels with excellent hydrogen-induced crack resistance and their manufacturing methods | |
KR101543917B1 (en) | Low temperature steels having superior surface quality and method for production thereof | |
JP7404520B2 (en) | High-strength, extra-thick steel material with excellent cryogenic deformation aging impact toughness in the center and its manufacturing method | |
JP3640936B2 (en) | Hot rolling method of high toughness steel using thin slab | |
KR20240106702A (en) | Hot rolled steel sheet and method of manufacturing the same | |
KR20130116233A (en) | Line pipe steel plate excellent in hydrogen induced cracking resistance and method for manufacturing the same | |
KR20240105702A (en) | Hot rolled steel having high sour resistance and method of manufacturing the same | |
CN111542632A (en) | High-strength steel material having excellent toughness in weld heat-affected zone and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190802 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200616 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200730 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200818 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200911 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6764510 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |