[go: up one dir, main page]

JP6763227B2 - Manufacturing method of reduced iron and manufacturing method of molten steel - Google Patents

Manufacturing method of reduced iron and manufacturing method of molten steel Download PDF

Info

Publication number
JP6763227B2
JP6763227B2 JP2016155249A JP2016155249A JP6763227B2 JP 6763227 B2 JP6763227 B2 JP 6763227B2 JP 2016155249 A JP2016155249 A JP 2016155249A JP 2016155249 A JP2016155249 A JP 2016155249A JP 6763227 B2 JP6763227 B2 JP 6763227B2
Authority
JP
Japan
Prior art keywords
furnace
cog
blast furnace
reduced iron
produced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016155249A
Other languages
Japanese (ja)
Other versions
JP2018024896A (en
Inventor
祐輝 ▲桑▼内
祐輝 ▲桑▼内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2016155249A priority Critical patent/JP6763227B2/en
Publication of JP2018024896A publication Critical patent/JP2018024896A/en
Application granted granted Critical
Publication of JP6763227B2 publication Critical patent/JP6763227B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Landscapes

  • Manufacture Of Iron (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

本発明は、還元鉄の製造方法および溶鋼の製造方法に関し、詳しくは、高炉と、コークス炉ガスを還元材として用いるシャフト炉または流動層式還元炉とを組み合わせて還元鉄や溶鋼を製造する方法に関する。
The present invention relates to a manufacturing method and a molten steel producing method of the reduced iron, particularly, for producing reduced iron or molten steel in combination with blast furnace, a shaft furnace or a fluidized bed reduction furnace using coke oven gas as a reducing agent about the.

大型高炉を基軸とした大規模高炉法では、焼結炉で鉄鉱石を焼成した焼結鉱と、コークス炉で原料炭を蒸し焼きにして製造したコークスとを高炉に装入して溶銑を製造し、溶銑を転炉で酸素精錬して溶鋼を生産する。その際、コークス炉で発生するコークス炉ガス(COG)と高炉で発生する高炉ガス(BFG)は、従来、熱延等の下工程の加熱炉や自家発電の燃料として使用されている。 In the large-scale blast furnace method based on a large-scale blast furnace, hot metal is produced by charging the sintered ore obtained by firing iron ore in a sintering furnace and coke produced by steaming coking coal in a coke oven into the blast furnace. , Iron ore is smelted with oxygen in a converter to produce molten steel. At that time, the coke oven gas (COG) generated in the coke oven and the blast furnace gas (BFG) generated in the blast furnace have conventionally been used as fuel for a heating furnace in a lower process such as hot spreading or for private power generation.

ところが、大型高炉プロセスでは、良質の鉄鉱石や良質の原料炭をそれぞれ一定割合以上配合しないと操業が不安定となるため、近い将来予測される原料の劣質化に直面した際に、操業諸元が悪化したり操業が困難になったりする懸念がある。例えば、焼結鉱の強度確保の観点から、粉鉱の配合比率には限界がある。そこで、近い将来に予想される国内で入手可能な鉄鉱石や原料炭等の原料の劣質化を踏まえると、現在主流となっている大型高炉と良質原料とによる高効率製鉄法が将来にわたって永続する可能性は小さく、劣質原料を使用可能なシャフト炉等のプロセスを併用する必要が生じてくると考えられる。 However, in the large-scale blast furnace process, the operation becomes unstable unless a certain proportion or more of high-quality iron ore and high-quality coking coal are mixed. Therefore, when faced with the deterioration of raw materials predicted in the near future, the operating specifications There is a concern that the operation will worsen or the operation will become difficult. For example, from the viewpoint of ensuring the strength of sinter, there is a limit to the mixing ratio of powder ore. Therefore, considering the deterioration of raw materials such as iron ore and coking coal that can be obtained in Japan in the near future, the high-efficiency iron-making method using large-scale blast furnaces and high-quality raw materials, which are currently the mainstream, will continue in the future. The possibility is small, and it is considered necessary to use a process such as a shaft furnace that can use inferior raw materials together.

また、COGは水素を約50〜55%含み、単体で酸化鉄を還元する能力を有する強還元性ガスであり、燃料として燃焼させるだけでは、COGの価値を十分に活用しきれていない。つまり、現在の高炉法は、製鉄プロセスとして最適化の余地が残された状態となっている。 Further, COG is a strongly reducing gas containing about 50 to 55% of hydrogen and having an ability to reduce iron oxide by itself, and the value of COG cannot be fully utilized only by burning it as fuel. In other words, the current blast furnace method leaves room for optimization as a steelmaking process.

特許文献1には、石炭ガス化プロセスの排ガスの熱を廃熱ボイラーによって回収して蒸気を生成し、その蒸気を直接製鉄プロセスの排ガスで過熱し、過熱蒸気を酸化剤として石炭ガス化炉に供給すること、また、石炭ガス化で生成された生成ガスを、直接製鉄プロセスの加熱還元炉に燃料として供給する方法が記載されている。 In Patent Document 1, the heat of the exhaust gas of the coal gasification process is recovered by a waste heat boiler to generate steam, the steam is directly heated by the exhaust gas of the iron making process, and the superheated steam is used as an oxidizing agent in a coal gasification furnace. It describes how to supply and how to directly supply the produced gas generated by coal gasification to the heating and reducing furnace of the iron making process as fuel.

特許文献2には、ランス付き竪型ガス化炉で固体状炭素物質に酸素を吹き込んでガス化させ、当該ガスと鉄鉱石類を600℃以上に加熱して金属化率が0.4以上0.8以下の予備還元物を製造し、その予備還元物を粗粒と微粒とに分級し、微粒分を塊成化する予備還元塊成化物の製造方法が開示されている。 In Patent Document 2, oxygen is blown into a solid carbon substance in a vertical gasification furnace with a lance to gasify it, and the gas and iron ore are heated to 600 ° C. or higher to have a metallization rate of 0.4 or higher. A method for producing a pre-reduced agglomerated product is disclosed in which a pre-reduced product of 8.8 or less is produced, the pre-reduced product is classified into coarse particles and fine particles, and the fine particles are agglomerated.

特許文献3には、COGを用いて酸化鉄を金属鉄に還元する直接還元シャフト炉が開示されている。特許文献4には、コークス炉ガス(COG)及び塩基性酸素製鋼炉ガス(BOFG)を用いて酸化鉄を金属鉄に還元する直接還元シャフト炉が開示され、BOFGの混合物から二酸化炭素を除去することが記載されている。 Patent Document 3 discloses a direct reduction shaft furnace that reduces iron oxide to metallic iron using COG. Patent Document 4 discloses a direct reduction shaft furnace that reduces iron oxide to metallic iron using coke oven gas (COG) and basic oxygen steelmaking furnace gas (BOFG), and removes carbon dioxide from a mixture of BOFG. It is stated that.

特許文献5には、直接還元法を使用して鉄鉱を還元する方法として、排ガスに還元ガスを追加した後、電気で再加熱して還元ガスとして再利用される方法が開示されている。 Patent Document 5 discloses, as a method of reducing iron ore by using a direct reduction method, a method of adding a reducing gas to exhaust gas and then reheating it with electricity to reuse it as a reducing gas.

特許文献6には、製鉄プロセスで発生するH及びCOの少なくとも一方を含む副生ガスを一部として含む還元ガスを還元鉄製造装置に供給する還元鉄の製造方法が開示され、副生ガスが、コークス炉より発生した副生ガスを含むことが記載されている。 Patent Document 6 discloses a method for producing reduced iron, which supplies a reduced iron containing a by-product gas containing at least one of H 2 and CO generated in the iron-making process to the reduced iron production apparatus as a part. However, it is described that it contains by-product gas generated from the coke oven.

特許第4712082号公報Japanese Patent No. 4712082 特許第5598423号公報Japanese Patent No. 5598423 特許第5731709号公報Japanese Patent No. 5731709 特許第5813214号公報Japanese Patent No. 5813214 特表2015−532948号公報Special Table 2015-532948 国際公開2011/099070号International Publication 2011/09970

ところが、上記特許文献1は、石炭ガス化の排ガスをボイラーや熱交換を通して蒸気を生成するものであり、製鉄プロセスから排出される還元性ガスであるCOGの有効利用に関するものではない。また、蒸気を過熱するために回転炉床炉(RHF)の排ガスを使用しているが、直接還元プロセスである必然性はない。 However, Patent Document 1 describes the exhaust gas of coal gasification to generate steam through a boiler and heat exchange, and does not relate to the effective use of COG, which is a reducing gas discharged from the iron making process. Also, although the exhaust gas from the rotary hearth furnace (RHF) is used to superheat the steam, it does not necessarily have to be a direct reduction process.

特許文献2は、石炭由来の還元性ガスを用いてシャフト炉等で鉄鉱石を還元するものであるが、還元性ガスを生成するために、新たに固体状炭素物質を用いる必要がある。 Patent Document 2 reduces iron ore in a shaft furnace or the like using a reducing gas derived from coal, but it is necessary to newly use a solid carbon substance in order to generate a reducing gas.

また、特許文献3および特許文献4は、シャフト炉やその周辺の設備に関するものであり、高炉由来で副生されたCOGをシャフト炉で有効利用することに関するものではない。特許文献5もまた、高炉を備えた設備から副生されるCOGの有効利用に関するものではない。 Further, Patent Documents 3 and 4 relate to the shaft furnace and its peripheral equipment, and do not relate to effectively utilizing the COG produced as a by-product from the blast furnace in the shaft furnace. Patent Document 5 also does not relate to the effective use of COG produced as a by-product from equipment equipped with a blast furnace.

特許文献6には、COG等の副生ガスの他、天然ガスや一般炭をガス化したガスを含めて、還元ガスとして改質することが記載されており、高炉を備えた設備から副生されるCOG量をシャフト炉に過不足なく有効活用することに関するものではない。 Patent Document 6 describes that in addition to by-product gas such as COG, natural gas and gasified gas of steam coal are reformed as a reducing gas, and by-product from equipment equipped with a blast furnace. It is not related to the effective utilization of the amount of COG produced in the shaft furnace in just proportion.

本発明の目的は、高炉を備えた製鉄プロセスから排出される還元性ガスであるCOGを還元材として有効活用し、製鉄所におけるエネルギー利用の最適化を図るとともに、将来的な原料の劣質化にも対応できるようにすることにある。 An object of the present invention is to effectively utilize COG, which is a reducing gas emitted from a steelmaking process equipped with a blast furnace, as a reducing agent to optimize energy utilization in a steelworks and to deteriorate the quality of raw materials in the future. Is also to be able to respond.

上記問題を解決するため、本発明は、高炉の出銑能力 (t/Yr)から、前記高炉へ供給するために必要とするコークス量を求め、次に、前記コークス量を製造する際に副生されるコークス炉ガス発生 COG (Nm /t)を求め、以下の式で求められる設備能力P (t/Yr)を有するシャフト炉または流動層式還元炉により、前記コークス炉ガスを還元材として還元鉄を製造することを特徴とする、還元鉄の製造方法を提供する。
=P ×F COG ×((C CO +C H2 +3×C CH4 )÷100)×(η÷100)÷F ÷22.4×16.0 ・・・(1)
ここで、
:高炉出銑能力(t/Yr)
COG :高炉における溶銑1tあたりのCOG発生量(Nm /t)
CO :COG中のCO含有率(体積%)
H2 :COG中のH 含有率(体積%)
CH4 :COG中のCH 含有率(体積%)
η:シャフト炉または流動層式還元炉におけるCOGの利用効率(%)
:シャフト炉または流動層式還元炉において、還元鉄を1t製造する際に取り除く必要のある酸素の質量(kg−O /t)
To solve the above problems, the present invention provides a blast of tapping capability P P (t / Yr), determine the amount of coke that required for supplying to the blast furnace, then when producing the amount of coke in the by-product is coke oven gas generation amount F COG (Nm 3 / t) determined by a shaft furnace or a fluidized bed reduction furnace having sought plant capacity P D (t / Yr) by the following equation, the coke Provided is a method for producing reduced iron, which comprises producing reduced iron using furnace gas as a reducing material .
P D = P P × F COG × ((C CO + C H2 + 3 × C CH4) ÷ 100) × (η ÷ 100) ÷ F O ÷ 22.4 × 16.0 ··· (1)
here,
P P : Blast furnace tapping capacity (t / Yr)
F COG : COG generation amount per 1 ton of hot metal in a blast furnace (Nm 3 / t)
C CO : CO content in COG (volume%)
C H2: H 2 content in the COG (vol%)
C CH4: CH 4 content in the COG (vol%)
η: COG utilization efficiency (%) in a shaft furnace or a fluidized bed reduction furnace
F O: In a shaft furnace or a fluidized bed reduction furnace, the reduced iron mass of oxygen that must be removed when 1t produced (kg-O 2 / t)

また、本発明は、前記還元鉄の製造方法で製造した還元鉄と、前記高炉で製造した溶銑とを混合して精錬炉へ投入し、仕上げ還元および精錬を行うことを特徴とする、溶鋼の製造方法を提供する。 Further, the present invention is characterized in that the reduced iron produced by the method for producing reduced iron and the hot metal produced in the blast furnace are mixed and put into a smelting furnace to perform finish reduction and smelting. Provide a manufacturing method.

また、前記還元鉄の製造方法で製造した還元鉄を熱間成型してHBIとし、前記HBIを前記高炉の原料として前記高炉で製造した溶銑を精錬炉へ投入し、仕上げ還元および精錬を行うことを特徴とする、溶鋼の製造方法を提供する。 Further, the reduced iron produced by the method for producing reduced iron is hot-molded to obtain HBI, and the hot metal produced in the blast furnace is charged into the smelting furnace using the HBI as a raw material for the blast furnace to perform finish reduction and refining. Provided is a method for producing molten iron, which is characterized by the above.

さらに、前記還元鉄の製造方法で製造した還元鉄を熱間成型してHBIとし、前記HBIを篩処理し、篩上分を前記高炉の原料とし、篩下分を前記高炉で製造した溶銑と混合して精錬炉へ投入し、仕上げ還元および精錬を行うことを特徴とする、溶鋼の製造方法を提供する。 Further, the reduced iron produced by the method for producing reduced iron is hot-molded to obtain HBI, the HBI is sieved, the upper part of the sieve is used as a raw material for the blast furnace, and the lower part of the sieve is used as a hot metal produced in the blast furnace. Provided is a method for producing molten steel, which comprises mixing and putting into a smelting furnace to perform finish reduction and refining.

本発明によれば、高炉を備えた製鉄所において、高炉の出銑能力に応じたシャフト炉または流動層式還元炉を設けることにより、コークス炉で副生されるCOGを過不足なく還元材として有効活用することができる。したがって、製鉄所のエネルギー利用の最適化を図るとともに、将来的な原料の劣質化にも対応できる。 According to the present invention, in a steel mill equipped with a blast furnace, by providing a shaft furnace or a fluidized layer type reduction furnace according to the tapping capacity of the blast furnace, COG produced as a by-product in the coke oven can be used as a reducing material in just proportion. It can be used effectively. Therefore, it is possible to optimize the energy use of steelworks and to cope with the deterioration of raw materials in the future.

本発明の第1の実施の形態にかかる製鉄所の構成およびプロセスを示すブロック図である。It is a block diagram which shows the structure and process of the steel mill which concerns on 1st Embodiment of this invention. 第1の実施の形態における、高炉出銑能力と竪型シャフト炉設備能力との関係を示すグラフである。It is a graph which shows the relationship between the blast furnace tapping capacity and the vertical shaft furnace equipment capacity in the 1st Embodiment. 本発明の第2の実施の形態にかかる製鉄所の構成およびプロセスを示すブロック図である。It is a block diagram which shows the structure and process of the steel mill which concerns on 2nd Embodiment of this invention. 第2の実施の形態における、高炉出銑能力と竪型シャフト炉設備能力との関係を示すグラフである。It is a graph which shows the relationship between the blast furnace tapping capacity and the vertical shaft furnace equipment capacity in the second embodiment. 本発明の第3の実施の形態にかかる製鉄所の構成およびプロセスを示すブロック図である。It is a block diagram which shows the structure and process of the steel mill which concerns on 3rd Embodiment of this invention.

以下、本発明の実施の形態を、図を参照して説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。なお、以下の実施の形態では、COGを還元材として用いる炉として竪型シャフト炉の例を記載するが、流動層式還元炉においても同様に実施することができる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present specification and the drawings, elements having substantially the same functional configuration are designated by the same reference numerals to omit duplicate description. In the following embodiment, an example of a vertical shaft furnace is described as a furnace using COG as a reducing agent, but the same can be applied to a fluidized bed type reducing furnace.

〈1.第1の実施の形態〉
図1は、本発明の第1の実施の形態にかかる製鉄所の構成およびプロセスの概略を示す。
<1. First Embodiment>
FIG. 1 shows an outline of the structure and process of a steel mill according to the first embodiment of the present invention.

製鉄所1には高炉2が備えられ、さらに、鉄鉱石を焼成して焼結鉱を製造する焼結炉3、および原料炭からコークスを製造するコークス炉4が備えられている。焼結鉱およびコークスは高炉2に装入され、高炉2内で溶銑が製造される。溶銑は転炉5または電気炉6からなる精錬炉7で精錬され、溶鋼が生産される。高炉2で副生される高炉ガス(以下、BFGと記する)は、加熱炉9や自家発電のために発電所10の燃料として使用される。 The steel mill 1 is provided with a blast furnace 2, a sintering furnace 3 for producing sinter by firing iron ore, and a coke furnace 4 for producing coke from coking coal. The sinter and coke are charged into the blast furnace 2, and hot metal is produced in the blast furnace 2. The hot metal is smelted in a smelting furnace 7 including a converter 5 or an electric furnace 6 to produce molten steel. The blast furnace gas produced as a by-product in the blast furnace 2 (hereinafter referred to as BFG) is used as fuel for the heating furnace 9 and the power plant 10 for private power generation.

本実施の形態では、このような高炉2を基軸とした製鉄所1の、高炉2と同一敷地内あるいは高炉2の設置場所に近接して、粉鉱を還元可能な竪型のシャフト炉11が設けられている。シャフト炉11には、高炉2での使用が困難な粉鉱石を例えばペレット化等により事前処理して投入され、還元材を加えて還元鉄が製造される。このようなシャフト炉11を併設することにより、製鉄所1で使用可能な原料性状の幅を拡げ、鉄鉱石や原料炭等の原料の劣質化に対応することができる。 In the present embodiment, a vertical shaft furnace 11 capable of reducing blast furnace 2 is provided in the same site as the blast furnace 2 or in the vicinity of the installation location of the blast furnace 2 in the steel mill 1 centered on the blast furnace 2. It is provided. Powdered ore, which is difficult to use in the blast furnace 2, is pretreated and put into the shaft furnace 11 by, for example, pelletization, and a reducing agent is added to produce reduced iron. By installing such a shaft furnace 11 in parallel, the range of raw material properties that can be used in the steel mill 1 can be expanded, and it is possible to cope with the deterioration of raw materials such as iron ore and coking coal.

シャフト炉11における還元材としては、コークス炉4で副生されるコークス炉ガス(以下、COGと記する)が用いられる。還元材として用いるCOGは、コークス炉4から排出されたままの状態でもよいし、改質してから用いてもよい。また、COGの一部は、コークス炉4や焼結炉3の燃料として利用してもよい。 As the reducing agent in the shaft furnace 11, coke oven gas (hereinafter referred to as COG) produced as a by-product in the coke oven 4 is used. The COG used as the reducing agent may be used as it is discharged from the coke oven 4 or after being modified. Further, a part of COG may be used as fuel for the coke oven 4 and the sintering furnace 3.

シャフト炉11の設備能力は、製鉄所1内で発生するCOGの発生量に応じた規模とする。すなわち、先ず、高炉2の出銑能力から、高炉2へ供給するために必要とするコークス量を求める。次に、そのコークス量を製造する際にコークス炉4から副生されるCOG量を求める。そして、そのCOG量のうち、シャフト炉11に供給できる量が、そのシャフト炉11で還元できる還元鉄量に必要な還元材の量とほぼ一致するような設備能力のシャフト炉11とする。このようにシャフト炉11の設備能力を決定することにより、COGを過不足なく、最も有効に活用できる。 The installed capacity of the shaft furnace 11 shall be of a scale corresponding to the amount of COG generated in the steelworks 1. That is, first, the amount of coke required for supplying to the blast furnace 2 is obtained from the tapping capacity of the blast furnace 2. Next, the amount of COG produced as a by-product from the coke oven 4 when the amount of coke is produced is determined. Then, the shaft furnace 11 has an equipment capacity such that the amount of COG that can be supplied to the shaft furnace 11 is substantially equal to the amount of reducing material required for the amount of reducing iron that can be reduced by the shaft furnace 11. By determining the equipment capacity of the shaft furnace 11 in this way, the COG can be utilized most effectively without excess or deficiency.

従来、製鉄所では、COGを加熱炉9の燃料として利用し、還元性ガスとして利用していなかった。一方、シャフト炉11の還元材としては、天然ガスを用いたり、石炭をガス化させてCOとHの混合ガスを合成したりしていた。本実施の形態では、従来の製鉄所でCOGを燃料としていた加熱炉や発電所には、安価な一般炭を燃料として供給する。また、高炉2で副生するBFGは、従来通り、加熱炉9や発電所10の燃料とする。これにより、強還元性ガスであるCOGを、シャフト炉11における還元ガスとして有効利用する。 Conventionally, in steelworks, COG is used as fuel for the heating furnace 9 and not as reducing gas. On the other hand, as the reducing agent of the shaft furnace 11, natural gas was used, or coal was gasified to synthesize a mixed gas of CO and H 2 . In the present embodiment, inexpensive steaming coal is supplied as fuel to a heating furnace or a power plant that uses COG as fuel in a conventional steel mill. Further, the BFG produced as a by-product in the blast furnace 2 is used as fuel for the heating furnace 9 and the power plant 10 as in the conventional case. As a result, COG, which is a strongly reducing gas, is effectively used as the reducing gas in the shaft furnace 11.

シャフト炉11で生産した還元鉄は、電気炉6または転炉5からなる精錬炉7で精錬する。すなわち、還元鉄は、そのまま電気炉6に投入するか、あるいは熱間で圧縮し固めてブリケット化し(HBI)、高炉2で製造した溶銑とともにHBIを転炉5に投入し、精錬炉7で精錬して溶鋼を製造する。 The reduced iron produced in the shaft furnace 11 is smelted in a smelting furnace 7 including an electric furnace 6 or a converter 5. That is, the reduced iron is put into the electric furnace 6 as it is, or is compressed by hot heat to be briquette (HBI), and HBI is put into the converter 5 together with the hot metal produced in the blast furnace 2 and refined in the smelting furnace 7. To manufacture molten steel.

図2は、本実施の形態における高炉2の出銑能力とシャフト炉11の設備能力との関係を示す。 FIG. 2 shows the relationship between the tapping capacity of the blast furnace 2 and the installed capacity of the shaft furnace 11 in the present embodiment.

シャフト炉11で生産した還元鉄と、高炉2で製造した溶銑とを混合して精錬炉7で精錬して溶鋼を製造する場合において、高炉2の出銑能力と、高炉2へコークスを供給するコークス炉4から発生するCOGの量がちょうど還元しうる還元鉄量から推定される竪型シャフト炉11の設備能力との関係を、シミュレーションにより求めた。図2において、実線は、コークス炉4で発生するCOG全量をシャフト炉11の還元材として使用する場合であり、点線は、コークス炉4および焼結炉3で使用するCOGは優先的にそちらへ供給し、余剰分のCOGをシャフト炉11へ供給する場合を示す。一点鎖線は、既存の竪型シャフト炉の商用プロセスとしての最小能力を示す。 When the reduced iron produced in the shaft furnace 11 and the hot metal produced in the blast furnace 2 are mixed and refined in the smelting furnace 7 to produce molten steel, the tapping capacity of the blast furnace 2 and coke are supplied to the blast furnace 2. The relationship between the amount of COG generated from the coke oven 4 and the installed capacity of the vertical shaft furnace 11 estimated from the amount of reduced iron that can be reduced was obtained by simulation. In FIG. 2, the solid line is the case where the total amount of COG generated in the coke oven 4 is used as the reducing agent of the shaft furnace 11, and the dotted line is the case where the COG used in the coke oven 4 and the sintering furnace 3 is preferentially directed there. The case where it supplies and supplies the surplus COG to the shaft furnace 11 is shown. The alternate long and short dash line indicates the minimum capacity of the existing vertical shaft furnace as a commercial process.

シャフト炉または流動層式還元炉の設備能力P(t/Yr)は、以下の式で求めた。
=P×FCOG×((CCO+CH2+3×CCH4)÷100)×(η÷100)÷F÷22.4×16.0 ・・・(1)
ここで、
:高炉出銑能力(t/Yr)
COG:高炉における溶銑1tあたりのCOG発生量(Nm/t)
CO:COG中のCO含有率(体積%)
H2:COG中のH含有率(体積%)
CH4:COG中のCH含有率(体積%)
η:シャフト炉または流動層式還元炉におけるCOGの利用効率(%)
:シャフト炉または流動層式還元炉において、還元鉄を1t製造する際に取り除く必要のある酸素の質量(kg−O/t)
Equipment capacity P D of the shaft furnace or fluidized bed reduction furnace (t / Yr) was determined by the following equation.
P D = P P × F COG × ((C CO + C H2 + 3 × C CH4) ÷ 100) × (η ÷ 100) ÷ F O ÷ 22.4 × 16.0 ··· (1)
here,
P P : Blast furnace tapping capacity (t / Yr)
F COG : COG generation amount per 1 ton of hot metal in a blast furnace (Nm 3 / t)
C CO : CO content in COG (volume%)
C H2: H 2 content in the COG (vol%)
C CH4: CH 4 content in the COG (vol%)
η: COG utilization efficiency (%) in a shaft furnace or a fluidized bed reduction furnace
FO : Mass of oxygen (kg-O 2 / t) that needs to be removed when producing 1 ton of reduced iron in a shaft furnace or a fluidized bed type reduction furnace.

シミュレーションを実施するにあたり、コークス炉4で発生するCOG全量をシャフト炉11の還元材として使用する場合は、式(1)において、FCOG=158.3(Nm/t)、CCO=6.5%、CH2=55%、CCH4=27%、η=75%、F=434(kg−O/t)とした。また、コークス炉4および焼結炉3で使用するCOGは優先的にそちらへ供給し、余剰分のCOGをシャフト炉11へ供給する場合は、式(1)において、FCOG=130.6(Nm/t)、CCO=6.5%、CH2=55%、CCH4=27%、η=75%、F=434(kg−O/t)とした。 When the total amount of COG generated in the coke oven 4 is used as the reducing agent for the shaft furnace 11 in carrying out the simulation, in the equation (1), F COG = 158.3 (Nm 3 / t), C CO = 6 .5%, C H2 = 55% , C CH4 = 27%, η = 75%, and the F O = 434 (kg-O 2 / t). Further, when the COG used in the coke oven 4 and the sintering furnace 3 is preferentially supplied to the coke oven 4 and the surplus COG is supplied to the shaft furnace 11, in the equation (1), F COG = 130.6 ( Nm 3 / t), C CO = 6.5%, C H2 = 55%, C CH 4 = 27%, η = 75%, FO = 434 (kg-O 2 / t).

製鉄所1が、ある出銑能力の高炉2を備えている場合もしくは新設する場合、その高炉2へ供給するコークスを製造するためのコークス炉4から副生するCOGを、過不足なく還元材として活用可能なシャフト炉11の設備能力は、図2に示す実線で規定される。この実線よりも大きなシャフト炉11を設置した場合、コークス炉4から副生されるCOGだけでは、必要な還元材が不足するため、別途、石炭ガス化設備や天然ガスの供給基地を構える必要が生じ、設備費が急騰する。 When the steel mill 1 is equipped with a blast furnace 2 having a certain tapping capacity or is newly installed, COG produced as a by-product from the coke oven 4 for producing coke to be supplied to the blast furnace 2 is used as a reducing agent in just proportion. The equipment capacity of the shaft furnace 11 that can be utilized is defined by the solid line shown in FIG. If a shaft furnace 11 larger than the solid line is installed, the COG produced as a by-product from the coke oven 4 will not be enough for the necessary reducing agent, so it is necessary to set up a separate coal gasification facility and natural gas supply base. Incurred, equipment costs skyrocket.

一方、製鉄所1において、配管設備等の都合上、コークス炉4や焼結炉3へCOG以外の燃料ガスを供給できない場合には、COGを優先的にこれらのプロセスへ供給しなければならなくなり、シャフト炉11へ供給可能なCOG量は減少する。その場合には、COGの量から求められるシャフト炉11の最大設備能力は、図2の点線まで低下する。 On the other hand, if the steel mill 1 cannot supply fuel gas other than COG to the coke oven 4 and the sintering furnace 3 due to piping equipment or the like, COG must be preferentially supplied to these processes. , The amount of COG that can be supplied to the shaft furnace 11 decreases. In that case, the maximum installed capacity of the shaft furnace 11 determined from the amount of COG decreases to the dotted line in FIG.

図2の実線または点線で示した設備能力よりも小さいシャフト炉11を設置した場合、いずれの場合においてもCOGが余剰となるが、この余剰COGは、従来通り、加熱炉9等の燃料ガスとして利用できるため、大きなデメリットが生じることにはならない。しかし、図2の一点鎖線で示した0.3(Mt−DRI/y)未満の設備能力のシャフト炉11を設置すると、炉容積に対する炉体表面積の比率が大きく、伝熱効率が悪くなるため、経済的ではない。したがって、熱経済合理性の観点から、新設するシャフト炉11の設備能力の下限は、図2の一点鎖線で示す0.3(Mt−DRI/y)以上とすることが好ましい。つまり、既設もしくは新設する高炉2の出銑能力に応じて、図2の実線または点線と一点鎖線との間の領域の設備能力を有するシャフト炉11を設置することが、還元能力を有する副生COGの有効利用の観点から好ましい。なお、この実線および点線は、高炉2におけるコークスの使用量、COGの組成、シャフト炉11で生産する還元鉄の還元率によって変化する。 When the shaft furnace 11 smaller than the installed capacity shown by the solid line or the dotted line in FIG. 2 is installed, the COG becomes surplus in each case, but this surplus COG is used as the fuel gas for the heating furnace 9 and the like as before. Since it can be used, there are no major disadvantages. However, if the shaft furnace 11 having an equipment capacity of less than 0.3 (Mt-DRI / y) shown by the one-point chain line in FIG. 2 is installed, the ratio of the surface area of the furnace body to the furnace volume is large and the heat transfer efficiency is deteriorated. Not economical. Therefore, from the viewpoint of thermal economic rationality, the lower limit of the installed capacity of the newly installed shaft furnace 11 is preferably 0.3 (Mt-DRI / y) or more shown by the alternate long and short dash line in FIG. That is, depending on the tapping capacity of the existing or newly installed blast furnace 2, installing the shaft furnace 11 having the equipment capacity in the area between the solid line or the dotted line and the alternate long and short dash line in FIG. 2 is a by-product having a reducing capacity. It is preferable from the viewpoint of effective use of COG. The solid line and the dotted line change depending on the amount of coke used in the blast furnace 2, the composition of COG, and the reduction rate of the reduced iron produced in the shaft furnace 11.

〈2.第2の実施の形態〉
図3は、本発明にかかる第2の実施の形態を示す製鉄所の構成およびプロセスの概略を示し、図4は、第2の実施の形態における高炉2の出銑能力とシャフト炉11の設備能力との関係を示す。
<2. Second Embodiment>
FIG. 3 shows an outline of the structure and process of the steel mill showing the second embodiment of the present invention, and FIG. 4 shows the tapping capacity of the blast furnace 2 and the equipment of the shaft furnace 11 in the second embodiment. Show the relationship with ability.

本実施の形態は、上述の図2に示す実施の形態と、製鉄所1の構成は同様であるが、図3に示すように、シャフト炉11で製造した還元鉄を熱間で圧縮しHBIとして密度と強度を高め、HBIを高炉原料として高炉2に投入する。そして高炉2で製造された溶銑を、転炉5または電気炉6からなる精錬炉7で酸素精錬して溶鋼を生産する。 This embodiment has the same configuration as that of the above-described embodiment shown in FIG. 2 and the structure of the steel mill 1, but as shown in FIG. 3, the reduced iron produced in the shaft furnace 11 is hot-compressed and HBI. The density and strength are increased, and HBI is put into the blast furnace 2 as a raw material for the blast furnace. Then, the hot metal produced in the blast furnace 2 is oxygen-refined in a smelting furnace 7 including a converter 5 or an electric furnace 6 to produce molten steel.

図4は、本実施の形態において、高炉2の出銑能力と、高炉2へコークスを供給するコークス炉4から発生するCOGの量がちょうど還元しうる還元鉄量から推定されるシャフト炉11の設備能力との関係を、シミュレーションにより求めたものである。実線、点線、および一点鎖線の意味は、図2と同様である。 FIG. 4 shows the shaft furnace 11 in which the tapping capacity of the blast furnace 2 and the amount of COG generated from the coke furnace 4 for supplying coke to the blast furnace 2 are estimated from the amount of reduced iron that can be reduced in the present embodiment. The relationship with the equipment capacity was obtained by simulation. The meanings of the solid line, the dotted line, and the alternate long and short dash line are the same as those in FIG.

シミュレーションを実施するにあたり、コークス炉4で発生するCOG全量をシャフト炉11の還元材として使用する場合は、式(1)において、FCOG=134.8(Nm/t)、CCO=6.5%、CH2=55%、CCH4=27%、η=75%、F=434(kg−O/t)とした。また、コークス炉4および焼結炉3で使用するCOGは優先的にそちらへ供給し、余剰分のCOGをシャフト炉11へ供給する場合は、式(1)において、FCOG=112.2(Nm/t)、CCO=6.5%、CH2=55%、CCH4=27%、η=75%、F=434(kg−O/t)とした。 When the total amount of COG generated in the coke oven 4 is used as the reducing agent for the shaft furnace 11 in carrying out the simulation, in the equation (1), F COG = 134.8 (Nm 3 / t), C CO = 6 .5%, C H2 = 55% , C CH4 = 27%, η = 75%, and the F O = 434 (kg-O 2 / t). Further, when the COG used in the coke oven 4 and the sintering furnace 3 is preferentially supplied to the coke oven 4 and the surplus COG is supplied to the shaft furnace 11, F COG = 112.2 (1) in the formula (1). Nm 3 / t), C CO = 6.5%, C H2 = 55%, C CH 4 = 27%, η = 75%, FO = 434 (kg-O 2 / t).

本実施の形態の場合にも、既設もしくは新設する高炉2の出銑能力に応じて、図4の実線または点線と一点鎖線との間の領域の設備能力を有するシャフト炉11を設置することが好ましい。図4では、同じ出銑能力の高炉に併設できる最大のシャフト炉の設備能力が、図2に比べて小さくなっている。これは、還元材の消費量が少ないHBIを高炉2に投入しているため、同じ出銑量でも、高炉2で必要とする還元材(コークス)の量が少なくなり、その結果として、副生されるCOG量が少なくなるためである。 Also in the case of the present embodiment, a shaft furnace 11 having an equipment capacity in the region between the solid line or the dotted line and the alternate long and short dash line in FIG. 4 can be installed according to the tapping capacity of the existing or newly installed blast furnace 2. preferable. In FIG. 4, the equipment capacity of the maximum shaft furnace that can be installed in a blast furnace having the same tapping capacity is smaller than that in FIG. This is because HBI, which consumes less reducing agent, is put into the blast furnace 2, so that the amount of reducing agent (coke) required in the blast furnace 2 is reduced even with the same amount of tapping, and as a result, by-products This is because the amount of COG produced is reduced.

本実施の形態の場合には、上述の第1の実施の形態に比べて、精錬炉7の操業がより安定するというメリットがある。つまり、シャフト炉11で生産された還元鉄がHBIとして高炉2へ投入されるため、精錬炉7には、高炉2から出銑された溶銑のみが供給される。したがって、精錬炉7で溶銑と還元鉄を混合したり、還元鉄の仕上げ還元反応をおこなったりする必要がないため、精錬時間が安定するだけでなく、精錬炉7内への酸化鉄の供給も最小限に抑えられ、耐火物の溶損を抑制できる。なお、本実施の形態においても、図4の実線および点線は、高炉2におけるコークスの使用量、COGの組成、シャフト炉11で生産する還元鉄の還元率によって変化する。 In the case of the present embodiment, there is an advantage that the operation of the smelting furnace 7 is more stable than that of the first embodiment described above. That is, since the reduced iron produced in the shaft furnace 11 is charged into the blast furnace 2 as HBI, only the hot metal ejected from the blast furnace 2 is supplied to the smelting furnace 7. Therefore, since it is not necessary to mix hot metal and reduced iron in the smelting furnace 7 or to carry out a finishing reduction reaction of the reduced iron, not only the smelting time is stable, but also the supply of iron oxide into the smelting furnace 7 is possible. It can be minimized and the melting damage of fireproof materials can be suppressed. Also in this embodiment, the solid line and the dotted line in FIG. 4 change depending on the amount of coke used in the blast furnace 2, the composition of COG, and the reduction rate of the reduced iron produced in the shaft furnace 11.

〈3.第3の実施の形態〉
図5は、本発明にかかる第3の実施の形態を示す製鉄所の構成およびプロセスの概略を示す。
<3. Third Embodiment>
FIG. 5 shows an outline of the structure and process of a steel mill showing a third embodiment of the present invention.

従来、シャフト炉11で還元鉄を製造する場合、上記第1の実施の形態のように、転炉5もしくは電気炉6等の精錬炉7で溶銑と混合し精錬して溶鋼とするのが一般的である。しかし、精錬炉7での還元鉄の投入割合が増加すると、シャフト炉11の操業変動によって還元鉄の還元率が変動した場合に、精錬炉7の操業が不安定となり、還元鉄の投入量に上限が生じてしまう。また、精錬炉7の操業を安定させるために高還元率を志向すると、シャフト炉11の生産性が低下してしまう懸念もある。 Conventionally, when reducing iron is produced in the shaft furnace 11, it is generally mixed with hot metal in a smelting furnace 7 such as a converter 5 or an electric furnace 6 and smelted to obtain molten steel as in the first embodiment. Is the target. However, when the input ratio of reduced iron in the smelting furnace 7 increases, the operation of the smelting furnace 7 becomes unstable when the reduction rate of reduced iron fluctuates due to the operation fluctuation of the shaft furnace 11, and the input amount of reduced iron becomes unstable. There will be an upper limit. Further, if a high reduction rate is aimed at in order to stabilize the operation of the smelting furnace 7, there is a concern that the productivity of the shaft furnace 11 may decrease.

そこで、本実施の形態では、シャフト炉11で製造した還元鉄を熱間成型してHBIにし、さらに、例えば焼結鉱と同等の40〜50mm程度の篩21を用いて篩処理する。そして、篩上分(成品HBI)を焼結鉱とともに高炉原料として利用し、高炉2へ投入する。成品HBIは十分に還元されているので、高炉2内で再度還元する必要はなく、結果として安定した高炉操業を維持しながら、高炉2からの出銑量を増加させることができる。一方、篩21の篩下分(粉HBI)は未還元かつ低強度であるため、高炉原料として再利用することはできない。そこで、この粉HBIは精錬炉7へ投入し、仕上げ還元したうえで溶解する。還元率の低いHBIを精錬炉7に投入すると精錬炉7の操業が不安定となる懸念があるが、篩下分のみであれば量が少なく、影響を最小限に抑えることができる。また、精錬炉7の操業状態に応じて、粉HBIの投入の有無を調整して操業してもよい。なお、本実施の形態において、篩処理以外の製鉄所1の構成は、上述の図1、図3に示す実施の形態と同様である。 Therefore, in the present embodiment, the reduced iron produced in the shaft furnace 11 is hot-molded into HBI, and further sieved using a sieve 21 having a size of about 40 to 50 mm, which is equivalent to that of sinter. Then, the sieve component (product HBI) is used as a raw material for the blast furnace together with the sinter, and is charged into the blast furnace 2. Since the product HBI is sufficiently reduced, it is not necessary to reduce it again in the blast furnace 2, and as a result, the amount of tapped iron output from the blast furnace 2 can be increased while maintaining stable blast furnace operation. On the other hand, since the subsieving portion (powder HBI) of the sieve 21 is unreduced and has low strength, it cannot be reused as a raw material for a blast furnace. Therefore, this powder HBI is put into the smelting furnace 7, finished and reduced, and then dissolved. If HBI having a low reduction rate is put into the smelting furnace 7, there is a concern that the operation of the smelting furnace 7 may become unstable, but if only the subsieving portion is used, the amount is small and the influence can be minimized. Further, the operation may be performed by adjusting the presence or absence of the powder HBI input according to the operating state of the smelting furnace 7. In the present embodiment, the configuration of the steelworks 1 other than the sieving process is the same as that of the above-described embodiments shown in FIGS. 1 and 3.

以上のように、本発明によれば、高炉2による製鉄プロセスで発生する副生ガスを過不足なく利用して、シャフト炉11による別の製鉄プロセスを効率よく操業させ、製鉄所1のエネルギー利用の最適化を図ることができる。さらに、製鉄所1内で高炉2とシャフト炉11とを併用することにより、一つの製鉄所1内で、高炉2では扱えない品質の原料から溶鋼を製造することができ、多様な原料を扱えるようになる。 As described above, according to the present invention, by utilizing the by-product gas generated in the iron-making process by the blast furnace 2 in just proportion, another iron-making process by the shaft furnace 11 can be efficiently operated, and the energy of the steelworks 1 is used. Can be optimized. Further, by using the blast furnace 2 and the shaft furnace 11 together in the steelworks 1, it is possible to manufacture molten steel from raw materials of a quality that cannot be handled by the blast furnace 2 in one steelworks 1, and it is possible to handle various raw materials. Will be.

なお、高炉2のメンテナンス等によりCOGが副生されない場合等には、従来還元材として用いられてきた天然ガスや石炭から生成する合成ガスを、シャフト炉11の還元材として使用してもよい。 When COG is not produced as a by-product due to maintenance of the blast furnace 2, natural gas or synthetic gas generated from coal, which has been conventionally used as a reducing agent, may be used as the reducing agent of the shaft furnace 11.

以上、本発明の好適な実施の形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Although preferred embodiments of the present invention have been described above, the present invention is not limited to such examples. It is clear that a person skilled in the art can come up with various modifications or modifications within the scope of the technical idea described in the claims, and of course, the technical scope of the present invention also includes them. It is understood that it belongs to.

例えば、上記実施の形態では、COGを還元材として用いる炉として竪型シャフト炉11の例を記載したが、流動層式還元炉12においても同様に実施することができる。 For example, in the above embodiment, an example of the vertical shaft furnace 11 is described as a furnace using COG as a reducing agent, but the same can be applied to the fluidized bed type reducing furnace 12.

本発明は、高炉と、還元ガスにより還元鉄を製造するシャフト炉または流動層式還元炉等とを併設する製鉄所に好適である。 The present invention is suitable for a steel mill having a blast furnace and a shaft furnace or a fluidized bed reduction furnace for producing reduced iron by reducing gas.

1 製鉄所
2 高炉
3 焼結炉
4 コークス炉
5 転炉
6 電気炉
7 精錬炉
11 シャフト炉
12 流動層式還元炉
21 篩
1 Steelworks 2 Blast furnace 3 Sintered furnace 4 Coke furnace 5 Converter 6 Electric furnace 7 Refining furnace 11 Shaft furnace 12 Flow layer type reduction furnace 21 Sieve

Claims (4)

高炉の出銑能力P(t/Yr)から、前記高炉へ供給するために必要とするコークス量を求め、
次に、前記コークス量を製造する際に副生されるコークス炉ガス発生量FCOG(Nm/t)を求め、
以下の式で求められる設備能力P(t/Yr)を有するシャフト炉または流動層式還元炉により、前記コークス炉ガスを還元材として還元鉄を製造することを特徴とする、還元鉄の製造方法。
=P×FCOG×((CCO+CH2+3×CCH4)÷100)×(η÷100)÷F÷22.4×16.0 ・・・(1)
ここで、
:高炉出銑能力(t/Yr)
COG:高炉における溶銑1tあたりのCOG発生量(Nm/t)
CO:COG中のCO含有率(体積%)
H2:COG中のH含有率(体積%)
CH4:COG中のCH含有率(体積%)
η:シャフト炉または流動層式還元炉におけるCOGの利用効率(%)
:シャフト炉または流動層式還元炉において、還元鉄を1t製造する際に取り除く必要のある酸素の質量(kg−O/t)
From blast furnace tapping capability P P (t / Yr), determine the amount of coke that is required to be supplied to the blast furnace,
Next, the coke oven gas generation amount FCOG (Nm 3 / t) produced as a by-product during the production of the coke amount was determined.
The shaft furnace or a fluidized bed reduction furnace having the production capacity obtained by the formula P D (t / Yr), characterized by producing reduced iron the coke oven gas as a reducing agent, the production of reduced iron Method.
P D = P P × F COG × ((C CO + C H2 + 3 × C CH4) ÷ 100) × (η ÷ 100) ÷ F O ÷ 22.4 × 16.0 ··· (1)
here,
P P : Blast furnace tapping capacity (t / Yr)
F COG : COG generation amount per 1 ton of hot metal in a blast furnace (Nm 3 / t)
C CO : CO content in COG (volume%)
C H2: H 2 content in the COG (vol%)
C CH4: CH 4 content in the COG (vol%)
η: COG utilization efficiency (%) in a shaft furnace or a fluidized bed reduction furnace
FO : Mass of oxygen (kg-O 2 / t) that needs to be removed when producing 1 ton of reduced iron in a shaft furnace or a fluidized bed type reduction furnace.
請求項1に記載の還元鉄の製造方法で製造した還元鉄と、前記高炉で製造した溶銑とを混合して精錬炉へ投入し、仕上げ還元および精錬を行うことを特徴とする、溶鋼の製造方法。 Manufacture of molten steel, which comprises mixing the reduced iron produced by the method for producing reduced iron according to claim 1 and the hot metal produced in the blast furnace and putting them into a smelting furnace for finish reduction and refining. Method. 請求項1に記載の還元鉄の製造方法で製造した還元鉄を熱間成型してHBIとし、前記HBIを前記高炉の原料として前記高炉で製造した溶銑を精錬炉へ投入し、仕上げ還元および精錬を行うことを特徴とする、溶鋼の製造方法。 The reduced iron produced by the method for producing reduced iron according to claim 1 is hot-molded to obtain HBI, and the hot metal produced in the blast furnace is charged into the smelting furnace using the HBI as a raw material for the blast furnace for finish reduction and refining. A method for producing molten iron, which comprises performing. 請求項1に記載の還元鉄の製造方法で製造した還元鉄を熱間成型してHBIとし、前記HBIを篩処理し、篩上分を前記高炉の原料とし、篩下分を前記高炉で製造した溶銑と混合して精錬炉へ投入し、仕上げ還元および精錬を行うことを特徴とする、溶鋼の製造方法。
The reduced iron produced by the method for producing reduced iron according to claim 1 is hot-molded to obtain HBI, the HBI is sieved, the upper part of the sieve is used as a raw material for the blast furnace, and the lower part of the sieve is produced in the blast furnace. A method for producing molten steel, which comprises mixing with hot metal and putting it into a smelting furnace for finish reduction and refining .
JP2016155249A 2016-08-08 2016-08-08 Manufacturing method of reduced iron and manufacturing method of molten steel Active JP6763227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016155249A JP6763227B2 (en) 2016-08-08 2016-08-08 Manufacturing method of reduced iron and manufacturing method of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016155249A JP6763227B2 (en) 2016-08-08 2016-08-08 Manufacturing method of reduced iron and manufacturing method of molten steel

Publications (2)

Publication Number Publication Date
JP2018024896A JP2018024896A (en) 2018-02-15
JP6763227B2 true JP6763227B2 (en) 2020-09-30

Family

ID=61195483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016155249A Active JP6763227B2 (en) 2016-08-08 2016-08-08 Manufacturing method of reduced iron and manufacturing method of molten steel

Country Status (1)

Country Link
JP (1) JP6763227B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102176345B1 (en) * 2018-10-17 2020-11-09 주식회사 포스코 Manufacturing appratus of molten iron reducing emission of carbon dioxide and manufacturing method of the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE51032T1 (en) * 1986-05-07 1990-03-15 Voest Alpine Ind Anlagen INTEGRATED METAL PLANT.
JP2006307275A (en) * 2005-04-27 2006-11-09 Nippon Steel Corp Method for producing reduced iron
JP5064330B2 (en) * 2008-08-11 2012-10-31 新日本製鐵株式会社 Method for producing reduced iron and pig iron
WO2011099070A1 (en) * 2010-02-10 2011-08-18 新日本製鐵株式会社 Process for production of reduced iron, and process for production of pig iron
US8496730B2 (en) * 2010-05-14 2013-07-30 Midrex Technologies, Inc. System and method for reducing iron oxide to metallic iron using coke oven gas and oxygen steelmaking furnace gas

Also Published As

Publication number Publication date
JP2018024896A (en) 2018-02-15

Similar Documents

Publication Publication Date Title
US6986800B2 (en) Method and apparatus for improved use of primary energy sources in integrated steel plants
KR20230006894A (en) Method for producing carburized spongy iron
CN104878147A (en) Method for making iron by smelting reduction
CN101153349A (en) Technique for reverting ironmaking by comprehensive utilization of fusion of coal gas and small ore
Kurunov The direct production of iron and alternatives to the blast furnace in iron metallurgy for the 21st century
Pang et al. The Low‐Carbon Production of Iron and Steel Industry Transition Process in China
JP6476940B2 (en) Manufacturing method of molten steel
WO2011099070A1 (en) Process for production of reduced iron, and process for production of pig iron
JP4427295B2 (en) Reducing gas desulfurization method, blast furnace operating method and reducing gas utilization method
Wei et al. Development of direct reduced iron in China: challenges and pathways
CN102586528A (en) Novel natural gas smelting reduction ironmaking process
KR101607254B1 (en) Combiner Ironmaking facilities
JP6763227B2 (en) Manufacturing method of reduced iron and manufacturing method of molten steel
CN103468862B (en) Efficient full-iron steelmaking method allowing molten iron to be added into pig iron in electric-arc furnace
Lu et al. Alternative ironmaking processes and their ferrous burden quality requirements
JPH079015B2 (en) Smelting reduction method for iron ore
JP2016536468A (en) Steel production in coke dry fire extinguishing system.
JP2024523267A (en) Process and system for producing sponge iron from iron ore
JP2020045508A (en) Operation method of blast furnace
JP2024532378A (en) How molten iron is produced
KR101607253B1 (en) Combiner ironmaking facilities
Jain Corex & Finex-New Developments in Utilization of Low Grade Raw Materials
JP2022505386A (en) Carbon dioxide emission reduction type molten iron manufacturing equipment and its manufacturing method
Schmöle et al. Ecological hot metal production using the coke plant and blast furnace route
JP7315125B1 (en) Method for reducing fine iron ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200824

R151 Written notification of patent or utility model registration

Ref document number: 6763227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151