[go: up one dir, main page]

JP6762221B2 - 光学特性測定装置および光学特性測定方法 - Google Patents

光学特性測定装置および光学特性測定方法 Download PDF

Info

Publication number
JP6762221B2
JP6762221B2 JP2016245796A JP2016245796A JP6762221B2 JP 6762221 B2 JP6762221 B2 JP 6762221B2 JP 2016245796 A JP2016245796 A JP 2016245796A JP 2016245796 A JP2016245796 A JP 2016245796A JP 6762221 B2 JP6762221 B2 JP 6762221B2
Authority
JP
Japan
Prior art keywords
sample
optical
detection
detection data
optical characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016245796A
Other languages
English (en)
Other versions
JP2018100853A (ja
Inventor
宗大 岡本
宗大 岡本
勇貴 佐々木
勇貴 佐々木
先欽 羅
先欽 羅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Electronics Co Ltd
Original Assignee
Otsuka Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Electronics Co Ltd filed Critical Otsuka Electronics Co Ltd
Priority to JP2016245796A priority Critical patent/JP6762221B2/ja
Priority to TW106140651A priority patent/TWI756306B/zh
Priority to DE102017221960.2A priority patent/DE102017221960A1/de
Priority to KR1020170171479A priority patent/KR102341678B1/ko
Priority to US15/845,899 priority patent/US10168142B2/en
Priority to CN201711363844.2A priority patent/CN108204788B/zh
Publication of JP2018100853A publication Critical patent/JP2018100853A/ja
Application granted granted Critical
Publication of JP6762221B2 publication Critical patent/JP6762221B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0625Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0248Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using a sighting port, e.g. camera or human eye
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0278Control or determination of height or angle information for sensors or receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Mathematical Physics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Description

本発明は、サンプルの膜厚などの光学特性を測定する光学特性測定装置および光学特性測定方法に関する。
従来、膜厚のような光学特性を測定する手法として光の位相を用いる光干渉法が知られている(例えば特許文献1、2)。光干渉法では、測定対象のサンプルで反射した光のスペクトルを分光器で測定し、スペクトルのデータを解析することによってサンプルの光学特性が測定される。
特許文献1は、サンプル(被測定物)に対するフォーカス(焦点)合わせを容易化することにより、光学特性の測定精度を向上させる光学特性測定装置を開示している。特許文献1では、ユーザが表示部に表示される反射像の合焦状態を参照してサンプルと対物レンズ間の位置関係を変更したり、オートフォーカス技術を用いて制御装置がフォーカス合わせを行なったりした後、反射光のスペクトル測定を実行している。特許文献1の光学特性測定装置は、フォーカス合わせのためのカメラや観察用光源などの機構を有し、この機構を用いるための光学部品が組み込まれた複雑な光学系を採用している。
特開2008−286583号公報 特開2010−002327号公報
従来の光学特性の測定方法では、スペクトルの測定時にフォーカス合わせを行う必要があるため光学特性の測定に時間を費やしたり、フォーカス合わせのための機構を設けることによって装置構成が大掛かりになったりしていた。
本発明の目的は、サンプルからの光に基づくサンプルの光学特性の測定を行い易くすることができる光学特性測定装置及び光学特性測定方法を提供することである。
本発明の一態様に係る光学特性測定装置は、光学系と、検出部と、解析部とを備える。光学系は、サンプルから入射する検出光を集光する。検出部は、サンプルと光学系との間の光学距離が互いに異なった状態で光学系を介して入射したサンプルの検出光を複数回、分光して、それぞれの検出光のスペクトルを示す複数の検出データを生成する。解析部は、検出データが示すスペクトルを解析して、サンプルの所定の光学特性を測定する。解析部は、複数の検出データにおける検出光の大きさに基づいて、光学特性の測定に用いる検出データを特定し、特定した検出データに基づいて、光学特性を測定する。
本発明の一態様に係る光学特性測定方法は、光学系を介してサンプルから入射する検出光を集光するステップを含む。本方法は、検出部が、サンプルと光学系との間の光学距離が互いに異なった状態で光学系を介して入射したサンプルの検出光を複数回、分光して、それぞれの検出光のスペクトルを示す複数の検出データを生成するステップを含む。本方法は、解析部が、複数の検出データにおける検出光の大きさに基づいて、サンプルの所定の光学特性の測定に用いる検出データを特定するステップを含む。本方法は、解析部が、特定した検出データが示すスペクトルを解析して、光学特性を測定するステップを含む。
本発明に係る光学特性測定装置及び光学特性測定方法によると、光学距離が互いに異なった複数の検出データから、光学特性の測定に用いる検出データを特定する。これにより、サンプルからの光に基づくサンプルの光学特性の測定を行い易くすることができる。
実施形態1に係る光学特性測定装置の構成を示すブロック図 光学特性測定装置における反射率データを説明するための図 光学特性測定方法に関する実験結果を示すグラフ 実施形態1に係る光学特性測定装置の動作を示すフローチャート 実施形態1に係る光学特性測定装置の動作を説明するための図 光学特性測定装置による膜厚の算出方法を説明するための図 実施形態2に係る光学特性測定装置の動作を示すフローチャート 実施形態2に係る光学特性測定装置を説明するための図 変形例に係る光学特性測定装置の構成を示すブロック図
以下、添付の図面を参照して本発明に係る実施の形態を説明する。なお、以下の各実施形態において、同様の構成要素については同一の符号を付している。
(実施形態1)
実施形態1に係る光学特性測定装置および光学特性測定方法について、以下説明する。
1.構成
本実施形態に係る光学特性測定装置の構成について、図1を参照して説明する。図1は、実施形態1に係る光学特性測定装置1の構成を示すブロック図である。
本実施形態に係る光学特性測定装置1は、測定対象のサンプル2から入射する光に対して光学的な解析を行って、サンプル2の膜厚などの光学特性を測定する装置である。光学特性測定装置1は、図1に示すように、光源10と、光ファイバ11と、対物光学系12と、分光器13と、パーソナルコンピュータ(PC)14と、制御ユニット15と、駆動部16と、観察ユニット17とを備える。
サンプル2は、例えば単層膜や多層膜などの薄膜が形成された種々の半導体基板やガラス基板、フィルム部材などである。本実施形態では、サンプル2は、光学特性測定装置1の駆動部16(ステージ61)における水平面に配置される。以下、サンプル2の水平面中で互いに直交する二方向をそれぞれ「X方向」及び「Y方向」とし、水平面の法線方向を「Z方向」とする。
光源10は、サンプル2に照射するための照射光を発光する。光源10による照射光は、例えば白色光であり、測定対象のサンプル2の光学特性に応じた波長帯の範囲内で連続する波長スペクトル(連続スペクトル)を有する。光源10は、白熱灯、LED、重水素ランプ、キセノンランプ、ハロゲンランプなどの種々の光源で構成されてもよい。
光ファイバ11は、例えばY型ファイバで構成され、一つのプローブ端11aと二分岐の分岐端とを有する。プローブ端11aは対物光学系12に光学的に接続され、分岐端の一方は光源10に接続され、他方は分光器13に接続される。光ファイバ11は、光源10と対物光学系12との間を光学的に結合すると共に、対物光学系12と分光器13との間を光学的に結合する結合光学系の一例である。結合光学系は光ファイバ11に限らず、例えば種々の光学素子を配置した光学系であってもよい。
対物光学系12は、光学特性測定装置1内で、サンプル2に出射する光及びサンプル2から入射する光を集光、導光する光学系である。本実施形態における対物光学系12は、サンプル2に対向する第1のレンズ12a、及び第1のレンズ12aと光ファイバ11のプローブ端11aとの間に配置される第2のレンズ12bなどを含む。各レンズ12a,12bは、図1に示すように、対物光学系12の光軸がZ方向に向くように配置され、集光及びコリメートを行う。対物光学系12は、第1及び第2のレンズ12a,12bの光学特性等によって規定される固有の被写界深度を有する。
分光器13は、入射する光を分光(即ちスペクトル分解)し、光の波長スペクトルを検出する。分光器13は、本実施形態における検出部の一例である。分光器13は、例えばマルチチャンネル型分光器で構成され、スリット及びグレーティングなどを含む分光光学系と、受光面を有するCCDイメージセンサなどの検出素子と、内部メモリとを備える。検出素子は、フォトダイオードアレイ等で構成されてもよい。
マルチチャンネル型の分光器13では、入射した光がスリットを介してグレーティングに導光され、グレーティングで回折して検出素子に入射する。これにより、検出素子は、受光面上で波長毎に異なる領域においての回折光を受光して、複数の波長成分(例えば512個)の光の強度を同時に検出する自己走査式の検出動作を実現する。分光器13は、検出素子の検出結果による検出データを内部メモリにバッファして、所定周期(例えば1〜5ミリ秒)で受光した光の検出データを生成する。検出データの一例(反射率データ)については後述する。
PC14は、例えばソフトウェアと協働して所定の機能を実現するCPU、及びフラッシュメモリ等の内部メモリなどを備える。内部メモリには、例えば分光器13から受信したデータや、本実施形態に係る光学特性測定方法を実行するためのプログラムなどが格納されている。PC14は、内部メモリに格納されたデータやプログラムを読み出して種々の演算処理を行い、各種機能を実現する。
例えば、PC14は、分光器13から検出データを受信し、検出データに対して所定のデータ処理を行うことにより光学特性の解析を行う。PC14は、本実施形態における解析部の一例である。また、本実施形態では、PC14は、光学特性測定装置1内の各部とデータ通信を行って各種制御を行う。
制御ユニット15は、PC14からの指示に基づいて、駆動部16の駆動を制御する制御装置である。制御ユニット15は、例えばマイコンや通信インタフェース等を備える。なお、制御ユニット15による制御機能は、PC14において実現されてもよい。
駆動部16は、サンプル2が配置される水平面を有するステージ61と、ステージ61を移動させるように駆動するアクチュエータ62とを備える。例えば、駆動部16において、ステージ61はX,Y,Z方向の三軸にそれぞれ移動可能に構成される。X,Y方向の移動により、サンプル2の種々の水平位置における膜厚を測定することが容易になる。なお、駆動部16は、ステージ61がZ方向の一軸で移動可能に構成されてもよい。
観察ユニット17は、光学特性測定装置1においてサンプル2の主面等を観察するためのモジュールであり、カメラ71、観察光源72、及び観察光学系73等を備える。
カメラ71は、CCD又はCMOSイメージング素子などの撮像素子などを備え、撮像画像を示す撮像データを生成してPC14に出力する。
観察光源72は、カメラ71によってサンプル2を撮像する際にサンプル2を照らすことを目的とする光源であり、白色LEDなどで構成される。
観察光学系73は、観察光源72からサンプル2に出射する光、及びサンプル2からカメラに入射する光を導光する光学系であり、ビームスプリッタ及びレンズなどを備える。本実施形態では、図1に示すように、観察光学系73の一部が対物光学系12の内部に組み込まれている。これにより、対物光学系12において分光器13に入射する光の状態を、観察ユニット17で観察するようなことも可能である。
なお、本実施形態に係る光学特性測定装置1では、特にサンプル2を観察するような必要がない場合、観察ユニット17が省略されてもよい。本実施形態に係る光学特性測定方法によると、観察ユニット17を用いなくてもサンプル2の膜厚などを測定可能である。
2.動作
以上のように構成される光学特性測定装置1の動作を以下に説明する。
2−1.動作の概要
光学特性測定装置1の動作の概要について、図1,2を参照して説明する。
光学特性測定装置1(図1)において、光源10が照射光を出射する。照射光は光ファイバ11を介して対物光学系12に入射する。図1に示すように、照射光は、対物光学系12の第2のレンズ12bにおいてコリメートされ、第1のレンズ12aにおいて集光されて、ステージ61に配置されたサンプル2に照射される。
サンプル2において、照射光は、サンプル2の膜厚分の間隔を有する二つの主面のそれぞれで反射される。各主面において反射した光は、サンプル2の膜厚分の間隔に応じて干渉しながら、対物光学系12に入射する。
光学特性測定装置1において、サンプル2からの反射光は、対物光学系12の第1のレンズ12aにおいてコリメートされ、第2のレンズ12bにおいて集光されて、光ファイバ11を介して分光器13に入射する。分光器13は、サンプル2からの反射光を含む光の波長スペクトルを示す検出データとして反射率データを生成する。分光器13による反射率データについて、図2を用いて説明する。
図2は、光学特性測定装置1における反射率データD1を説明するための図である。反射率データD1は、分光器13において検出された反射光の波長スペクトルである反射率スペクトルを示す。反射率スペクトルは、図2に示すように、検出された反射光における各種波長λ成分の反射率Rで表される。反射率データD1において、図2に示すような反射率スペクトルにおける反射率Rの振動は、サンプル2の膜厚分の間隔による反射光の干渉によって生じる。
図1に戻り、光学特性測定装置1におけるPC14は、分光器13からの反射率データD1をデータ解析することにより、サンプル2の膜厚を算出する。PC14による膜厚の算出処理においては、例えば非線形最小二乗法やFFT(高速フーリエ変換)法、ピークバレー法など、種々の公知の方法を適用することができる(特許文献2参照)。
2−2.本願発明者の知見について
膜厚を測定する手法においては、反射率データD1を高精度で取得することによって、膜厚を精度良く測定可能になる。このことから、従来の手法では、分光器とサンプルとの間でフォーカス合わせを行って、取得される反射率データの精度を確保していた。これに対して、本願発明者は、鋭意検討の結果、フォーカス合わせを特に行わずに高精度の反射率データを得る手法を考案した。以下、本願発明者がこのような考案に到る知見を得た実験について、図3を用いて説明する。
図3は、本願発明者による実験の実験結果を示すグラフである。本実験では、光学特性測定装置1において、対物光学系12からサンプル2までの距離d(つまりZ位置)を変化させながら、各距離dのサンプル2から分光器13に入射する反射光を検出し、それぞれの検出結果の反射率データD1を生成した。
図3のグラフにおいて、横軸は、光学特性測定装置1のZ方向における所定位置からサンプル2までの距離dである。曲線C1は、各距離dで検出された反射光に基づく反射率データD1に対して、所定の演算式を用いて算出した膜厚の算出値を示す(図中左側の縦軸参照)。
また、曲線C2は、各距離dの反射率データD1における平均反射率を示す(図中右側の縦軸参照)。平均反射率は、一つの反射率データD1中の反射率スペクトル(各波長λの反射率R)にわたる平均の反射率であり、検出された反射光の強度(大きさ)に対応する。二つの曲線C1,C2は、距離d毎の同じ反射率データD1に基づく膜厚の算出値と平均反射率とを示している。
図3の曲線C1によると、領域R1外において、膜厚の算出値のばらつきが、領域R1内よりも顕著に大きい。領域R1は、対物光学系12の被写界深度に対応する領域である。また、曲線C2は、被写界深度の領域R1中にピークPfを有する。領域R1中のピークの位置dfは、検出された反射光の強度が最大であることから、被写界深度の範囲内における真のフォーカス位置であると考えられる。
図3の被写界深度の領域R1内において、膜厚の算出値の曲線C1は、安定的ではあるが傾斜しており、真のフォーカス位置dfと他の位置との間で膜厚の算出値にずれがある。ここで、コントラスト法等の通常のフォーカス技術によると、被写界深度の領域R1内では何処でもフォーカスが合っていることとなり、被写界深度の領域R1内部でフォーカス合わせを行って、真のフォーカス位置dfの反射率データD1を得るようなことは困難である。これに対して、本願発明者は、本実験における曲線C2に着目し、平均反射率のピークPfを確認することによって真のフォーカス位置dfの反射率データD1が容易に特定されるという知見を得た。
2−3.動作の詳細
以上のような本願発明者の知見に基づき、本実施形態に係る光学特性測定装置1では、所定範囲内でサンプル2をZ方向に移動させながら、分光器13で連続的に反射光を検出するスキャンを行って、サンプル2までの距離dが互いに異なった複数の反射率データD1を生成する。この際、PC14において、生成した複数の反射率データD1のそれぞれの平均反射率に基づいて、膜厚測定に用いる反射率データD1を選択する。これにより、光学特性測定装置1において、特にフォーカス合わせを行うことなく、容易に膜厚の測定を行える。
以下、本実施形態に係る光学特性測定装置1の動作の詳細について、図4,5,6を参照して説明する。
図4は、本実施形態に係る光学特性測定装置1の動作を示すフローチャートである。図5は、光学特性測定装置1の動作を説明するための図である。図6は、光学特性測定装置1による膜厚の算出方法を説明するための図である。
図4のフローチャートは、光学特性測定装置1におけるPC14によって実行される。本フローチャートは、光源10が照射光を照射した状態で開始される。
まず、PC14は、制御ユニット15を介して、駆動部16におけるステージ61のZ位置を制御し、図5に示すように、ステージ61上のサンプル2をZ方向における初期位置d0(図5)に配置する(S1)。初期位置d0は、反射率データD1を取得しながらサンプル2を移動させる際のサンプル2のスキャンを開始する位置である。図5を用いて、光学特性測定装置1におけるスキャンについて説明する。
図5は、光学特性測定装置1におけるスキャン領域R2を示している。スキャン領域R2は、ステップS2〜S4(スキャン時)においてサンプル2が移動する領域である。図5に示すように、スキャン領域R2の一端は初期位置d0であり、他端はスキャンを終了する終了位置d1である。すなわち、サンプル2は、初期位置d0から終了位置d1まで移動させられる。本実施形態において、スキャン領域R2は、対物光学系12の被写界深度の領域R1を含む所定範囲(例えば1mm区間)に設定される。これにより、スキャン領域R2には、真のフォーカス位置dfも含まれることとなる。
図4に戻り、次に、PC14は、制御ユニット15に移動開始の指示を送信し、スキャン領域R2においてサンプル2が配置されたステージ61(図1)の移動を開始する(S2)。制御ユニット15は、移動開始の指示を受信すると、駆動部16のアクチュエータ62を制御して、Z方向におけるステージ61の移動を開始する。
サンプル2の移動開始後、分光器13は、所定の周期(例えば1ミリ秒)でサンプル2における照射光の反射光を検出する。分光器13は、検出結果の反射率データD1を生成して順次、PC14に出力する。PC14は、分光器13から反射率データD1を取得する(S3)。
この際、制御ユニット15は、特に分光器13の動作タイミングとステージ61の移動タイミングとを同期させるようなことなく、所定の速度(例えば0.5mm/秒)でステージ61を移動させ、終了位置d1に到達するとPC14に通知する。分光器13の動作周期とステージ61の移動速度とは、例えばスキャン領域R2中で反射率データD1を取得する回数、或いは真のフォーカス位置dfに対する許容誤差の観点から適宜、設定される。
PC14は、制御ユニット15からの通知に基づいて、サンプル2の移動が終了したか否かを判断する(S4)。PC14は、制御ユニット15から移動終了の通知を受信するまで、ステップS3以降の処理を繰り返す(S4でNO)。これにより、スキャン領域R2においてサンプル2が真のフォーカス位置dfを通過した際の反射光に基づく反射率データを含む複数の反射率データD1が取得される。複数の反射率データD1は、対物光学系12からサンプル2までの距離dが互いに異なった状態でそれぞれ検出された反射率データD1である。
PC14は、サンプル2の移動が終了したと判断した場合(S4でYES)、取得した複数の反射率データD1のそれぞれにおいて、反射率データD1毎に反射スペクトルを平均して平均反射率を計算する(S5)。具体的に、PC14は、一つの反射率データD1において波長λ成分毎の反射率Rを積算して平均値を計算し、複数の反射率データD1のそれぞれに対して同様の計算を行う。
次に、PC14は、計算した平均反射率に基づいて、取得した複数の反射率データD1の中から、最大の平均反射率を有する反射率データを選択する(S6)。ステップS6の処理は、取得した複数の反射率データD1の中から、膜厚の算出に用いる反射率データを特定するための処理である。
次に、PC14は、選択した反射率データに基づいて、例えばFFT法などによって反射率データが示す反射率スペクトルを解析し、サンプル2の膜厚を算出する(S7)。ステップS7の処理について、図6(a),(b)を用いて具体的に説明する。
図6(a)は、ステップS6で選択される反射率データの一例を示す。図6(b)は、図6(a)の反射率データに対する解析結果の解析データを例示している。
図6(a)では、図3に示すような平均反射率(曲線C2)のピークPfの位置dfで得られた反射率データを例示している。PC14は、ステップS6で図6(a)のような反射率データを選択すると、選択した反射率データにおける波長スペクトルの波長λを波数に変換し、変換したデータに対してFFTを実行する。この際、PC14は、例えばサンプル2の屈折率などの予め設定された各種パラメータを用いる。
上記のような解析処理により、図6(a)の検出データから図6(b)の解析データが得られる。図6(b)によると、図6(a)における波長領域の振動特性に対応するピークPsが、膜厚単位で得られている。PC14は、このような膜厚単位におけるピークPsの位置dsを、サンプル2の膜厚として算出する(S7)。
PC14は、膜厚を算出することにより(S7)、図4のフローチャートによる処理を終了する。
以上の処理によると、真のフォーカス位置dfを含むスキャン領域R2においてサンプル2を移動させながら複数の反射率データD1を取得し(S2〜S4)、最大の平均反射率を有する反射率データを用いて膜厚を求める(S5〜S7)。これにより、特にフォーカス合わせや、分光器13の動作タイミングとステージ61の移動タイミングとを同期させるような複雑な制御を行なわずに、容易に膜厚の測定を行える。また、複数の反射率データD1の中で最も真のフォーカス位置dfの近傍で得られたと考えられる高精度な反射率データを特定して(S6)、精度良く膜厚の測定を行える。
以上の説明では、ステップS3,S4において制御ユニット15は分光器13の動作タイミングとステージ61の移動タイミングとを特に同期させなかったが、同期させてもよい。例えば、ステージ61を段階的に移動させたり、反射率データの取得タイミングのステージ61のZ位置と反射率データとを関連付けしたりしてもよい。
また、以上の説明では、PC14は、各反射率データD1の平均反射率の計算はステップS4で「YES」に進んでから行ったが、これに限らず、例えばステップS3で取得した反射率データD1から順次、平均反射率を計算してもよい。
3.まとめ
以上のように、本実施形態に係る光学特性測定装置1は、対物光学系12と、分光器13と、PC14とを備える。対物光学系12は、サンプル2から入射する検出光の一例の反射光を集光する。分光器13は、サンプル2と対物光学系12との間の光学距離が互いに異なった状態で対物光学系12を介して入射したサンプル2の反射光を複数回、分光して、反射光のスペクトルを示す検出データである反射率データD1を複数、生成する。PC14は、反射率データD1が示すスペクトルを解析して、サンプル2の膜厚などの光学特性を測定する。PC14は、複数の反射率データD1における検出光の大きさ(平均反射率)に基づいて、光学特性の測定に用いる検出データを特定し、特定した検出データに基づいて、光学特性を測定する。
以上の光学特性測定装置1によると、光学距離が互いに異なった複数の反射率データD1から、光学特性の測定に用いる検出データを特定する。これにより、サンプル2からの光に基づくサンプル2の光学特性の測定を行い易くすることができる。
なお、検出データを特定するための検出光(反射光)の大きさは、反射率データD1の反射率スペクトルにわたる平均反射率に限らない。例えば反射率スペクトルにわたる反射率Rの合計値や、反射率スペクトルの一部の波長帯における反射率Rの平均値、合計値が、上記の検出光の大きさとして用いられてもよい。
本実施形態において、光学特性測定装置1は、サンプル2に照射光を照射する光源10をさらに備える。検出光は、サンプル2における照射光の反射光を含む。PC14は、光学特性としてサンプル2の膜厚を測定する。これにより、サンプル2からの反射光に基づくサンプル2の膜厚測定を行い易くすることができる。
また、本実施形態において、分光器13は、サンプル2と対物光学系12との間の光学距離が所定範囲内で変化している期間中に入射する検出光に基づいて、複数の検出データを生成する。所定範囲は、対物光学系12によるフォーカス位置dfを含むスキャン領域R2である。これにより、スキャン領域R2においてサンプル2がフォーカス位置dfの通過中の検出データが得られ、このような検出データを特定してサンプル2の光学特性の測定を精度良く行える。
また、本実施形態において、PC14は、複数の検出データの中で、検出光の大きさが最も大きい検出データを選択して、光学特性の測定に用いる検出データとして特定する。これにより、上記複数の検出データの中で最も高精度の検出データを光学特性の測定に用いることができる。
また、本実施形態において、光学特性測定装置1は、駆動部16をさらに備える。駆動部16は、サンプル2と対物光学系12との間の光学距離を変化させるように、サンプル2を移動させる。サンプル2の移動に代えて、又はこれに加えて、光学特性測定装置1は、対物光学系12を移動させるアクチュエータ等を含む駆動部を備えてもよい。
また、本実施形態において、検出部としての分光器13は、例えばマルチチャンネル型分光器で構成される。分光器13は、マルチチャンネル型に限らず、種々の分光器が用いられてもよい。
また、本実施形態に係る光学特性測定方法は、対物光学系12を介してサンプル2から入射する検出光を集光するステップを含む。本方法は、分光器13が、サンプル2と対物光学系12との間の光学距離が互いに異なった状態で対物光学系12を介して入射したサンプル2の検出光を複数回、分光して、それぞれの検出光のスペクトルを示す複数の検出データを生成するステップを含む。本方法は、PC14が、複数の検出データにおける検出光の大きさに基づいて、サンプル2の所定の光学特性の測定に用いる検出データを特定するステップを含む。本方法は、PC14が、特定した検出データが示すスペクトルを解析して、光学特性を測定するステップを含む。
以上の光学特性測定方法によると、サンプル2からの光に基づくサンプル2の光学特性の測定を行い易くすることができる。
(実施形態2)
実施形態1では、複数の反射率データD1の中から、真のフォーカス位置df近傍における反射率データを選択した。実施形態2では、複数の反射率データD1に基づき、真のフォーカス位置dfにおける反射率データのデータ推定を行う。以下、本実施形態に係る光学特性測定装置1について、図7,図8を用いて説明する。
図7は、実施形態2に係る光学特性測定装置1の動作を示すフローチャートである。図8は、実施形態2に係る光学特性測定装置1を説明するための図である。
本実施形態に係る光学特性測定装置1は、実施形態1に係る光学特性測定装置1と同様の構成の構成において、図7のフローチャートに示す動作を行う。図7のフローチャートにおいて、光学特性測定装置1のPC14は、図4のステップS5,S6の代わりに、反射率データを推定するための処理(ステップS5A,S6A)を実行する。反射率データの推定について、図8(a),(b)を用いて説明する。
図8(a)では、図7のステップS3,S4で取得された複数の反射率データD1を示している。複数の反射率データD1をステップS3,S4で取得された順番に並べることで、図7に示すように、Z方向における反射率データD1を確認することができる。そこで、本実施形態では、例えば真のフォーカス位置df(図3参照)の直上では反射率データD1が取得されていなかった場合に、複数の反射率データD1から真のフォーカス位置dfにおける反射率データの推定を行う(図8(b)参照)。
具体的に、図7のフローチャートにおいて、PC14は、ステップS3,S4で取得された複数の反射率データD1に基づいて、波長λ成分毎のフィッティングを行う(ステップS5A)。
ステップS5Aにおいて、PC14は、各反射率データD1から同じ波長λ成分のデータを抽出し、図8(a)に示すように、RZ平面においてカーブフィッティングを行う。この際、Z方向におけるデータの間隔は例えば等間隔に設定し、カーブフィッティングには二次関数等の所定の関数形を用いる。ステップS5Aの処理により、各波長λ成分において、図8(a)に示すようなピークPeが検出される。
次に、PC14は、波長λ成分毎のフィッティング結果に基づいて、図8(b)に示すように、推定の反射率データDeを生成する(S6A)。例えば、PC14は、各波長λ成分におけるピークPeを収集し、それぞれのピークPeによる波長スペクトルを表すように推定の反射率データDeを生成する。このような推定の反射率データDeは、生成元の各検出データD1よりも大きい反射率Rを有する。
PC14は、生成した推定の反射率データDeに基づき膜厚を算出する(S7)。
以上の処理によると、ステップS3,S4で取得された複数の反射率データD1に基づく推定の反射率データDeは、膜厚などの光学特性を測定するための検出データとして特定される。
上記のステップS6Aにおいて、各波長λ成分におけるピークPeを収集して推定の反射率データDeする際には、波長λ成分毎のピークPeのZ位置は一致しなくてもよい。このようにしても、ステップS5Aのフィッティングにより、推定の反射率データDeを高精度に得ることができる。
また、ステップS6Aにおける推定の反射率データDeの生成方法は、上記の方法に限らず、例えば各波長λ成分にわたり共通のZ位置(真のフォーカス位置dfに対応)を有するように推定の反射率データDeを生成してもよい。例えば、PC14は、波長λ成分毎のピークPeのZ位置を平均化したり、所定値の波長λ成分のピークPeを参照したりしてZ位置を決定し、ステップS5Aのフィッティング結果から同Z位置のデータを収集する。
以上のように、本実施形態に係る光学特性測定装置1において、PC14は、複数の検出データ(D1)に基づいて、検出光の大きさ(反射率R)が各検出データよりも大きい推定の検出データ(De)を生成し、光学特性の測定に用いる検出データとして特定する。これにより、真のフォーカス位置dfの直上では検出データが取得されてなかった場合であっても高精度の検出データを特定し、光学特性の測定に用いることができる。
(他の実施形態)
上記の実施形態1,2では、駆動部16を用いたが、駆動部16を用いなくてもよい。このような変形例について、図9を参照して説明する。
図9は、変形例に係る光学特性測定装置1Aの構成を示すブロック図である。本変形例に係る光学特性測定装置1Aは、実施形態1に係る光学特性測定装置1と同様の構成において、駆動部16及び制御ユニット15に代えて、サンプル2を支持する支持部16Aを備える。
例えば大型のガラス基板等のサンプル2においては、サンプル2自体が自然に振動している場合がある。このような場合に、光学特性測定装置1Aでは、サンプル2自体が振動している期間中に分光器13で複数の反射率データD1を検出することにより、光学特性の測定に適した反射率データを特定することができる。この際、支持部16Aは、例えばサンプル2の振動の振幅内にフォーカス位置dfが含まれるように位置決めされる。
また、光学特性測定装置1Aにおいては、サンプル2の振動中あるいは特に振動していない場合であっても、手動でサンプル2或いは対物光学系12を移動させながら分光器13で複数の反射率データD1を検出してもよい。手動で移動させた場合においても、実施形態1のようにアクチュエータ62で駆動を行った場合と同様に、光学特性の測定に適した反射率データを特定できる。
上記の各実施形態では、サンプル2の光学特性として膜厚を測定したが、測定対象の光学特性は膜厚に限らず、例えばサンプル2の色や屈折率、反射率、消衰係数であってもよいし、蛍光スペクトルや蛍光エネルギー等の蛍光特性であってもよい。蛍光特性を測定する場合、分光器13では、蛍光スペクトルを表す検出データが生成される。
また、蛍光特性を測定する場合、例えば光学特性測定装置1における光源10として励起光を発光する励起光源を採用する。また、サンプル2を電気的に励起させて蛍光発光させてもよく、サンプル2が自発光するような場合には、光学特性測定装置1において光源10を省略してもよい。
また、上記の各実施形態では、複数の検出データを生成する際に、サンプル2と対物光学系12との間の距離を変化させたが、これに限らず、例えば各種光学素子によりサンプル2と対物光学系12との間の光路長を変化させてもよい。光学特性測定装置1では、サンプル2と対物光学系12との間の距離や光路長など光学距離が異なった複数の検出データが生成された際に、光学特性の測定に適した検出データを特定することができる。
1 光学特性測定装置
10 光源
12 対物光学系
13 分光器
14 PC
16 駆動部
2 サンプル

Claims (9)

  1. サンプルから入射する検出光を集光する光学系と、
    前記サンプルと前記光学系との間の光学距離が互いに異なった状態で前記光学系を介して入射したサンプルの検出光を複数回、分光して、それぞれの検出光のスペクトルを示す複数の検出データを生成する検出部と、
    前記検出データが示すスペクトルを解析して、前記サンプルの所定の光学特性を測定する解析部とを備え、
    前記解析部は、
    前記複数の検出データにおける検出光の大きさに基づいて、前記光学特性の測定に用いる検出データを特定し、
    特定した検出データに基づいて、前記光学特性を測定する
    光学特性測定装置。
  2. 前記サンプルに照射光を照射する光源をさらに備え、
    前記検出光は、前記サンプルにおける前記照射光の反射光を含み、
    前記解析部は、前記光学特性として前記サンプルの膜厚を測定する
    請求項1に記載の光学特性測定装置。
  3. 前記検出部は、前記サンプルと前記光学系との間の光学距離が所定範囲内で変化している期間中に入射する検出光に基づいて、前記複数の検出データを生成し、
    前記所定範囲は、前記光学系によるフォーカス位置を含む
    請求項1又は2に記載の光学特性測定装置。
  4. 前記解析部は、前記複数の検出データの中で、前記検出光の大きさが最も大きい検出データを選択して、前記光学特性の測定に用いる検出データとして特定する
    請求項1〜3のいずれか1項に記載の光学特性測定装置。
  5. 前記解析部は、前記複数の検出データに基づいて、前記検出光の大きさが各検出データよりも大きい推定の検出データを生成し、前記光学特性の測定に用いる検出データとして特定する
    請求項1〜3のいずれか1項に記載の光学特性測定装置。
  6. 前記サンプルと前記光学系との間の光学距離を変化させるように、前記サンプル及び前記光学系の少なくとも一方を移動させる駆動部をさらに備える
    請求項1〜5のいずれか1項に記載の光学特性測定装置。
  7. 前記検出部は、前記サンプルが自然に振動している期間中に入射する検出光に基づき、前記複数の検出データを生成する
    請求項1〜5のいずれか1項に記載の光学特性測定装置。
  8. 前記検出部は、マルチチャンネル型分光器で構成される
    請求項1〜7のいずれか1項に記載の光学特性測定装置。
  9. 光学系を介してサンプルから入射する検出光を集光するステップと、
    検出部が、前記サンプルと前記光学系との間の光学距離が互いに異なった状態で前記光学系を介して入射したサンプルの検出光を複数回、分光して、それぞれの検出光のスペクトルを示す複数の検出データを生成するステップと、
    解析部が、前記複数の検出データにおける検出光の大きさに基づいて、前記サンプルの所定の光学特性の測定に用いる検出データを特定するステップと、
    前記解析部が、特定した検出データが示すスペクトルを解析して、前記光学特性を測定するステップと
    を含む光学特性測定方法。
JP2016245796A 2016-12-19 2016-12-19 光学特性測定装置および光学特性測定方法 Active JP6762221B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016245796A JP6762221B2 (ja) 2016-12-19 2016-12-19 光学特性測定装置および光学特性測定方法
TW106140651A TWI756306B (zh) 2016-12-19 2017-11-23 光學特性測定裝置及光學特性測定方法
DE102017221960.2A DE102017221960A1 (de) 2016-12-19 2017-12-05 Optikmessvorrichtung und optikmessverfahren
KR1020170171479A KR102341678B1 (ko) 2016-12-19 2017-12-13 광학 특성 측정 장치 및 광학 특성 측정 방법
US15/845,899 US10168142B2 (en) 2016-12-19 2017-12-18 Optical characteristic measuring apparatus and optical characteristic measuring method
CN201711363844.2A CN108204788B (zh) 2016-12-19 2017-12-18 光学特性测定装置以及光学特性测定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016245796A JP6762221B2 (ja) 2016-12-19 2016-12-19 光学特性測定装置および光学特性測定方法

Publications (2)

Publication Number Publication Date
JP2018100853A JP2018100853A (ja) 2018-06-28
JP6762221B2 true JP6762221B2 (ja) 2020-09-30

Family

ID=62251176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016245796A Active JP6762221B2 (ja) 2016-12-19 2016-12-19 光学特性測定装置および光学特性測定方法

Country Status (6)

Country Link
US (1) US10168142B2 (ja)
JP (1) JP6762221B2 (ja)
KR (1) KR102341678B1 (ja)
CN (1) CN108204788B (ja)
DE (1) DE102017221960A1 (ja)
TW (1) TWI756306B (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107036539B (zh) * 2017-06-14 2018-07-13 深圳中科飞测科技有限公司 膜厚测量系统及方法
JP7219463B2 (ja) * 2019-04-15 2023-02-08 大塚電子株式会社 光学ユニット、光学測定装置および光学測定方法
JP7341849B2 (ja) * 2019-10-24 2023-09-11 大塚電子株式会社 光学測定装置および光学測定方法
KR20210094328A (ko) * 2020-01-21 2021-07-29 삼성전자주식회사 대상체 인식 장치 및 그 동작 방법
KR102772409B1 (ko) * 2020-08-13 2025-02-25 삼성전자주식회사 분광 계측 장치와 방법, 및 그 계측 방법을 이용한 반도체 소자 제조방법
CN113009292B (zh) * 2021-02-25 2021-12-28 西安交通大学 局部放电微光光谱探测器
DE102021124048A1 (de) * 2021-09-16 2023-03-16 Precitec Optronik Gmbh Optische Dickenmessvorrichtung

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2924514B2 (ja) * 1992-11-13 1999-07-26 日産自動車株式会社 断面形状測定装置
JP3789515B2 (ja) * 1994-12-02 2006-06-28 株式会社キーエンス 膜厚測定機能付光学顕微鏡
WO2000071971A1 (en) * 1999-05-24 2000-11-30 Luxtron Corporation Optical techniques for measuring layer thicknesses
US6567172B1 (en) * 2000-08-09 2003-05-20 International Business Machines Corporation System and multipass probe for optical interference measurements
JP5172203B2 (ja) * 2007-05-16 2013-03-27 大塚電子株式会社 光学特性測定装置および測定方法
KR100947464B1 (ko) * 2008-02-13 2010-03-17 에스엔유 프리시젼 주식회사 두께 측정장치
JP5309359B2 (ja) 2008-06-20 2013-10-09 大塚電子株式会社 膜厚測定装置および膜厚測定方法
JP5468836B2 (ja) * 2009-07-28 2014-04-09 株式会社 光コム 測定装置及び測定方法
JP5870576B2 (ja) * 2011-09-22 2016-03-01 オムロン株式会社 光学計測装置
JP6044315B2 (ja) * 2012-12-12 2016-12-14 オムロン株式会社 変位計測方法および変位計測装置
JP2014202642A (ja) * 2013-04-05 2014-10-27 オリンパス株式会社 光学素子の面間隔測定装置および面間隔測定方法
JP6196119B2 (ja) * 2013-10-11 2017-09-13 大塚電子株式会社 形状測定装置及び形状測定方法
JP2016024009A (ja) * 2014-07-18 2016-02-08 株式会社ミツトヨ 厚さ測定装置及び厚さ測定方法
TWM504949U (zh) * 2015-03-24 2015-07-11 Radiation Technology Co Ltd 薄膜量測設備

Also Published As

Publication number Publication date
DE102017221960A1 (de) 2018-06-21
US20180172431A1 (en) 2018-06-21
JP2018100853A (ja) 2018-06-28
KR20180071171A (ko) 2018-06-27
CN108204788B (zh) 2021-11-02
CN108204788A (zh) 2018-06-26
US10168142B2 (en) 2019-01-01
KR102341678B1 (ko) 2021-12-20
TW201830005A (zh) 2018-08-16
TWI756306B (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
JP6762221B2 (ja) 光学特性測定装置および光学特性測定方法
KR102456213B1 (ko) 이미징 기반 오버레이 계측을 위한 포커스 최적화를 위한 시스템 및 방법
TW201037266A (en) Film thickness measurement device and measurement method
JP2008268387A (ja) 共焦点顕微鏡
JP2010515027A5 (ja)
CN107037437B (zh) 厚度测量装置及厚度测量方法
KR20130039005A (ko) 3차원 형상 및 두께 측정 장치
JP4939304B2 (ja) 透明膜の膜厚測定方法およびその装置
EP3601968A1 (en) Optical probe, raman spectroscopy system, and method of using the same
WO2013084557A1 (ja) 形状測定装置
KR101251292B1 (ko) 편광을 이용한 3차원 형상 및 두께 측정 장치
JP2013088358A (ja) 干渉式膜厚計
US20210231501A1 (en) Multi-mode thermal imaging device and operation method thereof
JP4192038B2 (ja) 表面形状および/または膜厚測定方法及びその装置
JP7318868B2 (ja) 試料の測定装置、測定方法およびプログラム
JP7358204B2 (ja) 膜厚測定装置および膜厚測定方法
JP6511263B2 (ja) 平面分光干渉計
KR20150021346A (ko) 3차원 형상 측정기
US20150057972A1 (en) Measuring apparatus and measuring method
JP6688712B2 (ja) 反射スペクトルの測定方法
JP7643566B2 (ja) ラマン-赤外分光分析複合機、およびラマン分光と赤外分光による測定方法
JP2006300533A (ja) 近赤外分光分析計
JP2006300664A (ja) フーリエ分光装置,測定タイミング検出方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200908

R150 Certificate of patent or registration of utility model

Ref document number: 6762221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250