[go: up one dir, main page]

JP6753151B2 - Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine - Google Patents

Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine Download PDF

Info

Publication number
JP6753151B2
JP6753151B2 JP2016111806A JP2016111806A JP6753151B2 JP 6753151 B2 JP6753151 B2 JP 6753151B2 JP 2016111806 A JP2016111806 A JP 2016111806A JP 2016111806 A JP2016111806 A JP 2016111806A JP 6753151 B2 JP6753151 B2 JP 6753151B2
Authority
JP
Japan
Prior art keywords
exhaust gas
passage
cooling
selective reduction
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016111806A
Other languages
Japanese (ja)
Other versions
JP2017218914A (en
Inventor
弘吉 前川
弘吉 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2016111806A priority Critical patent/JP6753151B2/en
Publication of JP2017218914A publication Critical patent/JP2017218914A/en
Application granted granted Critical
Publication of JP6753151B2 publication Critical patent/JP6753151B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)

Description

本発明は、内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法に関する。 The present invention relates to an exhaust gas purification system for an internal combustion engine and an exhaust gas purification method for an internal combustion engine.

排気管をSCRF(SCRをコートとしたフィルタ)とSCR(選択的触媒還元方式の触媒)との間で分岐させ、この分岐管に排気制御弁及び冷却素子を備えて、排気を冷却する必要がある場合には、目標触媒温度に応じて、分岐管を通過する排気の量を増加させて、SCRに流入する排気の温度を制御する内燃機関の排気浄化システムが提案されている(例えば、特許文献1参照)。 It is necessary to branch the exhaust pipe between SCRF (filter coated with SCR) and SCR (selective catalytic reduction type catalyst), and provide an exhaust control valve and a cooling element in this branch pipe to cool the exhaust. In some cases, an exhaust gas purification system for an internal combustion engine has been proposed that controls the temperature of the exhaust gas flowing into the SCR by increasing the amount of exhaust gas passing through the branch pipe according to the target catalyst temperature (for example, patent). Reference 1).

特開2015−86848号公報Japanese Unexamined Patent Publication No. 2015-86848

ところで、上記の排気浄化システムでは、冷却素子(排気ガス冷却装置)の冷却能力の変動を考慮して、SCRに流入する排気の温度を制御していない。そのため、冷却素子の冷却能力が一時的に過大となった場合には、SCRの触媒温度が活性温度範囲より低い温度となって、SCRのNOx浄化率が低下する懸念があった。 By the way, in the above-mentioned exhaust gas purification system, the temperature of the exhaust flowing into the SCR is not controlled in consideration of the fluctuation of the cooling capacity of the cooling element (exhaust gas cooling device). Therefore, when the cooling capacity of the cooling element is temporarily excessive, there is a concern that the catalyst temperature of SCR becomes lower than the active temperature range and the NOx purification rate of SCR decreases.

本発明の目的は、選択還元型触媒装置の過熱による劣化及びNOx浄化率の低下を抑制しつつ、排気ガス冷却装置の冷却能力の一時的な過大による選択還元型触媒装置のNOx浄化率の低下を抑制することができる内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法を提供することにある。 An object of the present invention is to suppress deterioration due to overheating of the selective reduction catalyst device and decrease in the NOx purification rate, while reducing the NOx purification rate of the selective reduction catalyst device due to a temporary increase in the cooling capacity of the exhaust gas cooling device. It is an object of the present invention to provide an exhaust gas purification system for an internal combustion engine and an exhaust gas purification method for an internal combustion engine.

上記の目的を達成するための本発明の内燃機関の排気ガス浄化システムは、内燃機関の排気通路に上流側より順に尿素水供給装置、選択還元型触媒装置を備えて構成される内燃機関の排気ガス浄化システムにおいて、前記尿素水供給装置より上流側の前記排気通路に、排気ガス冷却装置を有する分岐通路を前記排気通路に並行して備えて、前記排気通路から前記分岐通路への分岐点に流路切替装置を備えるとともに、前記選択還元型触媒装置の内部、または、前記選択還元型触媒装置より上流側または下流側の前記排気通路にSCR用温度検出装置を備え、前記排気ガス冷却装置より下流側の前記分岐通路に冷却用温度検出装置を備えて、前記排気ガス浄化システムを制御する制御装置が、前記SCR用温度検出装置の検出値が予め設定された冷却開始温度閾値以上となったときに、前記流路切替装置を制御して、排気ガスの流れを前記排気通路から前記分岐通路に切り替えるとともに、前記排気ガス冷却装置の冷却能力を前記冷却用温度検出装置の検出値に基づいて制御して、前記選択還元型触媒装置のNOx浄化率が予め設定された浄化率閾値以上となる前記選択還元型触媒装置の温度範囲を適性温度範囲とし、この適性温度範囲の上限値を前記冷却開始温度閾値に設定するとともに、さらに、前記適性温度範囲内に目標温度範囲を設定して、前記SCR用温度検出装置の検出値がこの目標温度範囲内に予め設定した設定時間の間連続して含まれたときに、前記流路切替装置を制御して、排気ガスの流れを前記分岐通路から前記排気通路に切り替える制御を行うように構成される。
あるいは、上記の目的を達成するための本発明の内燃機関の排気ガス浄化システムは、内燃機関の排気通路に上流側より順に尿素水供給装置、選択還元型触媒装置を備えて構成される内燃機関の排気ガス浄化システムにおいて、前記尿素水供給装置より上流側の前記排気通路に、排気ガス冷却装置を有する分岐通路を前記排気通路に並行して備えて、前記排気通路から前記分岐通路への分岐点に流路切替装置を備えるとともに、前記選択還元型触媒装置の内部、または、前記選択還元型触媒装置より上流側または下流側の前記排気通路にSCR用温度検出装置を備え、前記排気ガス冷却装置より下流側の前記分岐通路に冷却用温度検出装置を備えて、前記排気ガス浄化システムを制御する制御装置が、前記SCR用温度検出装置の検出値が予め設定された冷却開始温度閾値以上となったときに、前記流路切替装置を制御して、排気ガスの流れを前記排気通路から前記分岐通路に切り替えるとともに、前記排気ガス冷却装置の冷却能力を前記冷却用温度検出装置の検出値に基づいて制御して、前記選択還元型触媒装置のNOx浄化率が予め設定された浄化率閾値以上となる前記選択還元型触媒装置の温度範囲を適性温度範囲とし、この適性温度範囲の上限値を前記冷却開始温度閾値に設定し、さらに、前記適性温度範囲の内に目標温度範囲を設定して、前記SCR用温度検出装置の検出値が前記適性温度範囲の内に含まれるが前記目標温度範囲の下限値より低い温度であるときに、前記流路切替装置を制御して、排気ガスの流れを前記分岐通路から前記排気通路に切り替える制御を行うように構成される。
あるいは、上記の目的を達成するための本発明の内燃機関の排気ガス浄化システムは、内燃機関の排気通路に上流側より順に尿素水供給装置、選択還元型触媒装置を備えて構成される内燃機関の排気ガス浄化システムにおいて、前記尿素水供給装置より上流側の前記排気通路に、排気ガス冷却装置を有する分岐通路を前記排気通路に並行して備えて、前記排気通路から前記分岐通路への分岐点に流路切替装置を備えるとともに、前記流路切替装置を、前記排気通路または前記分岐通路の両方に排気ガスを流通できる流量調整装置として構成して、さらに、前記選択還元型触媒装置の内部、または、前記選択還元型触媒装置より上流側または下流側の前記排気通路にSCR用温度検出装置を備え、前記排気ガス冷却装置より下流側の前記分岐通路に冷却用温度検出装置を備えて、前記排気ガス浄化システムを制御する制御装置が、前記SCR用温度検出装置の検出値が予め設定された冷却開始温度閾値以上となったときに、前記流路切替装置を制御して、排気ガスの流れを前記排気通路から前記分岐通路に切り替えるとともに、前記排気ガス冷却装置の冷却能力を前記冷却用温度検出装置の検出値に基づいて制御して、排気ガスの流れを前記排気通路と前記分岐通路の間で切り替えるときに、前記冷却用温度検出装置の検出値の変動量が大きくなるにつれて、前記分岐通路を通過する排気ガスの流量の変動量を小さく設定して、前記流量調整装置を制御するように構成される。
The exhaust gas purification system of the internal combustion engine of the present invention for achieving the above object is provided with a urea water supply device and a selective reduction catalyst device in order from the upstream side in the exhaust passage of the internal combustion engine. In the gas purification system, a branch passage having an exhaust gas cooling device is provided in parallel with the exhaust passage in the exhaust passage on the upstream side of the urea water supply device, and at a branch point from the exhaust passage to the branch passage. A flow path switching device is provided, and an SCR temperature detection device is provided inside the selective reduction type catalyst device or in the exhaust passage on the upstream side or the downstream side of the selective reduction type catalyst device, and the exhaust gas cooling device is provided. The control device that controls the exhaust gas purification system by providing a cooling temperature detection device in the branch passage on the downstream side has a detection value of the SCR temperature detection device equal to or higher than a preset cooling start temperature threshold. At times, the flow path switching device is controlled to switch the flow of exhaust gas from the exhaust passage to the branch passage, and the cooling capacity of the exhaust gas cooling device is based on the detection value of the cooling temperature detecting device. The temperature range of the selective reduction catalyst device, which is controlled so that the NOx purification rate of the selective reduction catalyst device becomes equal to or higher than a preset purification rate threshold, is set as an appropriate temperature range, and the upper limit of the appropriate temperature range is defined as the cooling. In addition to setting the start temperature threshold, the target temperature range is set within the appropriate temperature range, and the detection value of the SCR temperature detection device is continuously set within the target temperature range for a preset time. When included, the flow path switching device is controlled to control the flow of exhaust gas from the branch passage to the exhaust passage .
Alternatively, the exhaust gas purification system of the internal combustion engine of the present invention for achieving the above object is an internal combustion engine in which a urea water supply device and a selective reduction catalyst device are provided in order from the upstream side in the exhaust passage of the internal combustion engine. In the exhaust gas purification system of the above, a branch passage having an exhaust gas cooling device is provided in parallel with the exhaust passage in the exhaust passage on the upstream side of the urea water supply device, and the branch from the exhaust passage to the branch passage is provided. A flow path switching device is provided at a point, and an SCR temperature detection device is provided inside the selective reduction type catalyst device or in the exhaust passage on the upstream side or downstream side of the selective reduction type catalyst device to cool the exhaust gas. A cooling temperature detection device is provided in the branch passage on the downstream side of the device, and the control device that controls the exhaust gas purification system has a detection value of the SCR temperature detection device equal to or higher than a preset cooling start temperature threshold. When this happens, the flow path switching device is controlled to switch the flow of exhaust gas from the exhaust passage to the branch passage, and the cooling capacity of the exhaust gas cooling device is set to the detection value of the cooling temperature detecting device. Based on the control, the temperature range of the selective reduction catalyst device in which the NOx purification rate of the selective reduction catalyst device is equal to or higher than a preset purification rate threshold is set as the appropriate temperature range, and the upper limit of this appropriate temperature range is set. The cooling start temperature threshold is set, and the target temperature range is set within the appropriate temperature range, and the detection value of the SCR temperature detection device is included in the appropriate temperature range, but the target temperature range. When the temperature is lower than the lower limit of the above, the flow path switching device is controlled to switch the flow of exhaust gas from the branch passage to the exhaust passage.
Alternatively, the exhaust gas purification system of the internal combustion engine of the present invention for achieving the above object is an internal combustion engine in which a urea water supply device and a selective reduction catalyst device are provided in order from the upstream side in the exhaust passage of the internal combustion engine. In the exhaust gas purification system of the above, a branch passage having an exhaust gas cooling device is provided in parallel with the exhaust passage in the exhaust passage on the upstream side of the urea water supply device, and the branch from the exhaust passage to the branch passage is provided. A flow path switching device is provided at a point, and the flow path switching device is configured as a flow rate adjusting device capable of flowing exhaust gas to both the exhaust passage and the branch passage, and further, the inside of the selective reduction type catalyst device. Alternatively, the exhaust passage on the upstream side or the downstream side of the selective reduction type catalyst device is provided with an SCR temperature detection device, and the branch passage on the downstream side of the exhaust gas cooling device is provided with a cooling temperature detection device. When the control device that controls the exhaust gas purification system reaches or equal to the preset cooling start temperature threshold value of the SCR temperature detection device, the control device controls the flow path switching device to control the exhaust gas. The flow is switched from the exhaust passage to the branch passage, the cooling capacity of the exhaust gas cooling device is controlled based on the detection value of the cooling temperature detection device, and the flow of the exhaust gas is controlled between the exhaust passage and the branch passage. When switching between, as the fluctuation amount of the detection value of the cooling temperature detection device increases, the fluctuation amount of the flow rate of the exhaust gas passing through the branch passage is set small to control the flow rate adjusting device. It is configured as follows.

また、上記の目的を達成するための本発明の内燃機関の排気ガス浄化方法は、内燃機関の排気通路に上流側より順に尿素水供給装置、選択還元型触媒装置を備えるとともに、前記尿素水供給装置より上流側の前記排気通路に、排気ガス冷却装置を有する分岐通路を前記排気通路に並行して備えて、前記排気通路から前記分岐通路への分岐点に流路切替装置を備えて構成される内燃機関の排気ガス浄化方法において、前記選択還元型触媒装置の温度が予め設定された冷却開始温度閾値以上となったときに、前記流路切替装置を制御して、排気ガスの流れを前記排気通路から前記分岐通路に切り替えるとともに、前記排気ガス冷却装置の冷却能力を前記排気ガス冷却装置を通過直後の排気ガスの温度に基づいて制御し、前記選択還元型触媒装置のNOx浄化率が予め設定された浄化率閾値以上となる前記選択還元型触媒装置の温度範囲を適性温度範囲とし、この適性温度範囲の上限値を前記冷却開始温度閾値に設定し、さらに、前記適性温度範囲の内に目標温度範囲を設定して、前記選択還元型触媒装置の温度がこの目標温度範囲内に予め設定した設定時間の間連続して含まれたときに、前記流路切替装置を制御して、排気ガスの流れを前記分岐通路から前記排気通路に切り替える制御を行うことを特徴とする方法である。
あるいは、上記の目的を達成するための本発明の内燃機関の排気ガス浄化方法は、内燃機関の排気通路に上流側より順に尿素水供給装置、選択還元型触媒装置を備えるとともに、前記尿素水供給装置より上流側の前記排気通路に、排気ガス冷却装置を有する分岐通路を前記排気通路に並行して備えて、前記排気通路から前記分岐通路への分岐点に流路切替装置を備えて構成される内燃機関の排気ガス浄化方法において、前記選択還元型触媒装置の温度が予め設定された冷却開始温度閾値以上となったときに、前記流路切替装置を制御して、排気ガスの流れを前記排気通路から前記分岐通路に切り替えるとともに、前記排気ガス冷却装置の冷却能力を前記排気ガス冷却装置を通過直後の排気ガスの温度に基づいて制御し、前記選択還元型触媒装置のNOx浄化率が予め設定された浄化率閾値以上となる前記選択還元型触媒装置の温度範囲を適性温度範囲とし、この適性温度範囲の上限値を前記冷却開始温度閾値に設定し、さらに、前記適性温度範囲の内に目標温度範囲を設定して、前記選択還元型触媒装置の温度が前記適性温度範囲の内に含まれるが前記目標温度範囲の下限値より低い温度であるときに、前記流路切替装置を制御して、排気ガスの流れを前記分岐通路から前記排気通路に切り替える制御を行うことを特徴とする方法である。
Further, in the exhaust gas purification method for an internal combustion engine of the present invention for achieving the above object, a urea water supply device and a selective reduction catalyst device are provided in the exhaust passage of the internal combustion engine in order from the upstream side, and the urea water supply. The exhaust passage on the upstream side of the device is provided with a branch passage having an exhaust gas cooling device in parallel with the exhaust passage, and a flow path switching device is provided at a branch point from the exhaust passage to the branch passage. In the exhaust gas purification method of an internal combustion engine, when the temperature of the selective reduction type catalyst device becomes equal to or higher than a preset cooling start temperature threshold value, the flow path switching device is controlled to control the flow of exhaust gas. While switching from the exhaust passage to the branch passage, the cooling capacity of the exhaust gas cooling device is controlled based on the temperature of the exhaust gas immediately after passing through the exhaust gas cooling device, and the NOx purification rate of the selective reduction type catalyst device is determined in advance. The temperature range of the selective reduction type catalyst device that is equal to or higher than the set purification rate threshold is set as the appropriate temperature range, the upper limit of the appropriate temperature range is set as the cooling start temperature threshold, and the temperature range is further within the appropriate temperature range. A target temperature range is set, and when the temperature of the selective reduction catalyst device is continuously included in the target temperature range for a preset set time, the flow path switching device is controlled to exhaust the air. This method is characterized by controlling the flow of gas from the branch passage to the exhaust passage .
Alternatively, the exhaust gas purification method for an internal combustion engine of the present invention for achieving the above object includes a urea water supply device and a selective reduction catalyst device in the exhaust passage of the internal combustion engine in this order from the upstream side, and supplies the urea water. The exhaust passage on the upstream side of the device is provided with a branch passage having an exhaust gas cooling device in parallel with the exhaust passage, and a flow path switching device is provided at a branch point from the exhaust passage to the branch passage. In the exhaust gas purification method of an internal combustion engine, when the temperature of the selective reduction type catalyst device becomes equal to or higher than a preset cooling start temperature threshold value, the flow path switching device is controlled to control the flow of exhaust gas. While switching from the exhaust passage to the branch passage, the cooling capacity of the exhaust gas cooling device is controlled based on the temperature of the exhaust gas immediately after passing through the exhaust gas cooling device, and the NOx purification rate of the selective reduction type catalyst device is determined in advance. The temperature range of the selective reduction type catalyst device that is equal to or higher than the set purification rate threshold is set as the appropriate temperature range, the upper limit of the appropriate temperature range is set as the cooling start temperature threshold, and the temperature range is further within the appropriate temperature range. A target temperature range is set, and the flow path switching device is controlled when the temperature of the selective reduction type catalyst device is included in the appropriate temperature range but is lower than the lower limit of the target temperature range. The method is characterized in that the flow of exhaust gas is controlled to be switched from the branch passage to the exhaust passage.

本発明の内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法によれば、選択還元型触媒装置の過熱による劣化及びNOx浄化率の低下を抑制しつつ、排気ガス冷却装置の冷却能力の一時的な過大による選択還元型触媒装置のNOx浄化率の低下を抑制することができる。 According to the exhaust gas purification system of the internal combustion engine and the exhaust gas purification method of the internal combustion engine of the present invention, the cooling capacity of the exhaust gas cooling device can be suppressed while suppressing deterioration due to overheating of the selective reduction catalyst device and reduction of the NOx purification rate. It is possible to suppress a decrease in the NOx purification rate of the selective reduction catalyst device due to a temporary excess.

また、排気ガス冷却装置の冷却能力に基づいて選択還元型触媒装置に流入する排気ガスの温度を制御するので、選択還元型触媒装置より上流側に配置される尿素水供給装置から供給される尿素水のアンモニアへの加水分解反応が促進される温度範囲にこの排気ガスの温度を確実に維持することができる。 Further, since the temperature of the exhaust gas flowing into the selective reduction catalyst device is controlled based on the cooling capacity of the exhaust gas cooling device, urea supplied from the urea water supply device located upstream of the selective reduction catalyst device is used. The temperature of this exhaust gas can be reliably maintained in a temperature range in which the hydrolysis reaction of water to ammonia is promoted.

本発明の内燃機関の排気ガス浄化システムの構成を示す図である。It is a figure which shows the structure of the exhaust gas purification system of the internal combustion engine of this invention. 選択還元型触媒装置の温度とNOx浄化率の関係を示す図である。It is a figure which shows the relationship between the temperature of a selective reduction type catalyst apparatus and NOx purification rate. 本発明の内燃機関の排気ガス浄化方法の制御フローを示す図である。It is a figure which shows the control flow of the exhaust gas purification method of the internal combustion engine of this invention. 従来技術の内燃機関の排気ガス浄化システムの構成を示す図である。It is a figure which shows the structure of the exhaust gas purification system of the internal combustion engine of the prior art.

以下、本発明に係る実施形態の内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法について、図面を参照しながら説明する。 Hereinafter, the exhaust gas purification system of the internal combustion engine and the exhaust gas purification method of the internal combustion engine according to the embodiment of the present invention will be described with reference to the drawings.

図1に示すように、本発明の排気ガス浄化システム1は、エンジン2の排気通路(排気管)10に上流側より順に酸化触媒装置(DOC)11、微粒子捕集装置12、尿素水供給装置15、選択還元型触媒装置(SCR)13を備えて構成されるシステムである。 As shown in FIG. 1, the exhaust gas purification system 1 of the present invention has an oxidation catalyst device (DOC) 11, a fine particle collection device 12, and a urea water supply device in this order from the upstream side to the exhaust passage (exhaust pipe) 10 of the engine 2. 15. This system is provided with a selective catalytic reduction (SCR) 13.

酸化触媒装置11は、ハニカム構造を形成する基材に、排気ガスGの炭化水素(HC)や一酸化炭素(CO)等を酸化する貴金属触媒(酸化触媒)が担持されて構成される。貴金属触媒としては、炭化水素を水と二酸化炭素に、一酸化炭素を二酸化炭素にそれぞれ酸化する白金(Pt)系の触媒が好ましい。 The oxidation catalyst device 11 is configured by supporting a noble metal catalyst (oxidation catalyst) that oxidizes hydrocarbons (HC), carbon monoxide (CO), etc. of the exhaust gas G on a base material forming a honeycomb structure. As the noble metal catalyst, a platinum (Pt) -based catalyst that oxidizes hydrocarbons to water and carbon dioxide and carbon monoxide to carbon dioxide is preferable.

この貴金属触媒による炭化水素及び一酸化炭素の酸化反応は発熱反応であるので、この発熱により排気ガスGは昇温する。これを利用して、微粒子捕集装置12の強制PM再生制御時等、高温の排気ガスGが必要となるときには、酸化触媒装置11より上流側の排気通路10を通過する排気ガスGに含まれる炭化水素の量を一時的に増加させて、この増加分の炭化水素を酸化触媒装置11で酸化させることで、排気ガスGを高温化している。 Since the oxidation reaction of hydrocarbons and carbon monoxide by this noble metal catalyst is an exothermic reaction, the temperature of the exhaust gas G rises due to this heat generation. Utilizing this, when a high temperature exhaust gas G is required such as during forced PM regeneration control of the fine particle collecting device 12, it is included in the exhaust gas G passing through the exhaust passage 10 on the upstream side of the oxidation catalyst device 11. The exhaust gas G is heated in temperature by temporarily increasing the amount of hydrocarbons and oxidizing the increased amount of hydrocarbons in the oxidation catalyst device 11.

なお、炭化水素の量を一時的に増加させる方法としては、例えば、エンジン2の気筒(シリンダ)2a内で燃料のポスト噴射を行う方法や、酸化触媒装置11より上流側の排気通路10に燃料噴射装置(図示しない)を備えて、この燃料噴射装置から燃料を噴射する方法がある。 As a method for temporarily increasing the amount of hydrocarbons, for example, a method of post-injecting fuel in the cylinder 2a of the engine 2 or a method of performing fuel post-injection in the exhaust passage 10 on the upstream side of the oxidation catalyst device 11 is used. There is a method of injecting fuel from this fuel injection device by providing an injection device (not shown).

微粒子捕集装置12は、排気ガスG中の粒子状物質(PM)を捕集するために、その内部にフィルタを備えて構成される。このフィルタは、多孔質のセラミックのハニカムのセル(チャンネル)の入口と出口を交互に目封じしたモノリスハニカム型ウォールフロータイプのフィルタである。 The fine particle collecting device 12 is configured to include a filter inside the particulate matter (PM) in the exhaust gas G in order to collect the particulate matter (PM). This filter is a monolith honeycomb type wall flow type filter in which inlets and outlets of porous ceramic honeycomb cells (channels) are alternately sealed.

排気ガスGは、微粒子捕集装置12の目封じされていないセルの入口より流入し、隣接する出口を目封じされていないセルとの境界に形成されたPM捕集用の壁を通過した後、出口を目封じされていないセルの出口より流出する。排気ガスGに含まれるPMはPM捕集用の壁で捕集されるが、捕集量には限界がある。したがって、PM捕集量が限界値に到達する前に、微粒子捕集装置12の内部に高温の排気ガスGを通過させて、この排気ガスGの熱により微粒子捕集装置12の内部に捕集されたPMを燃焼除去する強制PM再生制御を定期的に行っている。 Exhaust gas G flows in from the entrance of the unsealed cell of the fine particle collecting device 12, and passes through the PM collecting wall formed at the boundary between the adjacent outlet and the unsealed cell. , The exit flows out from the exit of the unsealed cell. The PM contained in the exhaust gas G is collected by the wall for collecting PM, but the amount of PM collected is limited. Therefore, before the PM collection amount reaches the limit value, the high-temperature exhaust gas G is passed through the inside of the fine particle collection device 12, and the heat of the exhaust gas G collects the particles inside the fine particle collection device 12. Forced PM regeneration control that burns and removes the generated PM is regularly performed.

選択還元型触媒装置13は、その上流側の排気通路10に備えた尿素水供給装置15より噴射される尿素水Uを排気ガスGの熱により加水分解して生成されたアンモニア(NH3)を還元剤として、排気ガスGに含まれる窒素酸化物(NOx)を窒素(N2)に浄化する装置である。 The selective reduction type catalyst device 13 produces ammonia (NH 3 ) produced by hydrolyzing the urea water U injected from the urea water supply device 15 provided in the exhaust passage 10 on the upstream side by the heat of the exhaust gas G. As a reducing agent, it is a device that purifies nitrogen oxides (NOx) contained in exhaust gas G into nitrogen (N 2 ).

なお、排気ガスGに含まれるNOxの浄化に使用されないアンモニアは、選択還元型触媒装置13の内部に吸蔵されるか、または、選択還元型触媒装置13より下流側の排気通路10に流出(スリップ)する。また、選択還元型触媒装置13のアンモニア吸蔵容量(アンモニアを吸蔵可能な上限量)は、選択還元型触媒装置13の温度が高くなるにつれて、少なくなる。 Ammonia that is not used for purifying NOx contained in the exhaust gas G is occluded inside the selective reduction catalyst device 13 or flows out (slip) to the exhaust passage 10 downstream of the selective reduction catalyst device 13. ). Further, the ammonia storage capacity (upper limit amount capable of storing ammonia) of the selective reduction catalyst device 13 decreases as the temperature of the selective reduction catalyst device 13 increases.

また、本発明の排気ガス浄化システム1を制御する制御装置40が配設される。この制御装置40は、エンジン2の運転状態等を表す各種センサの検出値を基に、尿素水供給装置15からの尿素水Uの供給量等を制御する装置である。 Further, a control device 40 for controlling the exhaust gas purification system 1 of the present invention is arranged. The control device 40 is a device that controls the supply amount of urea water U from the urea water supply device 15 based on the detection values of various sensors indicating the operating state of the engine 2.

本発明の排気ガス浄化システム1は、図1に示すように、尿素水供給装置15より上流側の排気通路10に、排気ガス冷却装置21を有する分岐通路20を排気通路10に平行して備えるとともに、排気通路10から分岐通路20への分岐点に三方弁(流路切替装置)22を備えるシステムである点で、図4に示す従来技術の内燃機関の排気ガス浄化システム1Xとは異なっている。 As shown in FIG. 1, the exhaust gas purification system 1 of the present invention includes a branch passage 20 having an exhaust gas cooling device 21 in the exhaust passage 10 on the upstream side of the urea water supply device 15 in parallel with the exhaust passage 10. At the same time, the system is provided with a three-way valve (flow path switching device) 22 at the branch point from the exhaust passage 10 to the branch passage 20, which is different from the exhaust gas purification system 1X of the conventional internal combustion engine shown in FIG. There is.

また、選択還元型触媒装置13の温度を検出するSCR用温度検出センサ(SCR用温度検出装置)30を選択還元型触媒装置13の内部(図1ではこの位置)、または、選択還元型触媒装置13より上流側または下流側の排気通路10に備えるとともに、排気ガス冷却装置21より下流側の分岐通路20に、排気ガス冷却装置21を通過後の排気ガスGbの温度を検出するための冷却用温度検出センサ(冷却用温度検出装置)31を備える。 Further, the SCR temperature detection sensor (SCR temperature detection device) 30 that detects the temperature of the selective reduction catalyst device 13 is placed inside the selective reduction catalyst device 13 (at this position in FIG. 1) or the selective reduction catalyst device. For cooling in the exhaust passage 10 on the upstream side or the downstream side of the 13 and for detecting the temperature of the exhaust gas Gb after passing through the exhaust gas cooling device 21 in the branch passage 20 on the downstream side of the exhaust gas cooling device 21. A temperature detection sensor (cooling temperature detection device) 31 is provided.

なお、排気ガス冷却装置21には、空気やエンジン冷却水やラジエータ用冷却水等の冷却媒体がその内部の冷却媒体用通路(図示しない)に流通しており、この冷却媒体用通路に隣接する排気ガス用通路(図示しない)を通過する排気ガスGbを冷却媒体により冷却している。 In the exhaust gas cooling device 21, cooling media such as air, engine cooling water, and radiator cooling water are circulated in the cooling medium passage (not shown) inside the exhaust gas cooling device 21, and are adjacent to the cooling medium passage. The exhaust gas Gb passing through the exhaust gas passage (not shown) is cooled by a cooling medium.

また、SCR用温度検出センサ30の設置位置について、図1に示すように選択還元型触媒装置13の内部にSCR用温度検出センサ30を設けて、選択還元型触媒装置13の温度を直接検出するのが好ましいが、選択還元型触媒装置13より上流側または下流側の排気通路10にSCR用温度検出センサ30を備えて、このSCR用温度検出センサ30の検出値を選択還元型触媒装置13の温度として代用してもよい。 Further, regarding the installation position of the SCR temperature detection sensor 30, as shown in FIG. 1, the SCR temperature detection sensor 30 is provided inside the selective reduction catalyst device 13 to directly detect the temperature of the selective reduction catalyst device 13. However, the SCR temperature detection sensor 30 is provided in the exhaust passage 10 on the upstream side or the downstream side of the selective reduction catalyst device 13, and the detection value of the SCR temperature detection sensor 30 is selected by the selective reduction catalyst device 13. It may be substituted as the temperature.

そして、制御装置40が、SCR用温度検出センサ30の検出値Tが冷却開始温度閾値T1以上となったときに、三方弁22を制御して、排気ガスGの流れを排気通路10から分岐通路20に切り替えるとともに、排気ガス冷却装置21の冷却能力を冷却用温度検出センサ31の検出値に基づいて制御するように構成する。 Then, when the detection value T of the SCR temperature detection sensor 30 becomes equal to or higher than the cooling start temperature threshold T1, the control device 40 controls the three-way valve 22 to branch the flow of the exhaust gas G from the exhaust passage 10. It is configured to switch to 20 and control the cooling capacity of the exhaust gas cooling device 21 based on the detection value of the cooling temperature detection sensor 31.

ここで、冷却開始温度閾値T1は、この閾値以上となると、選択還元型触媒装置13に担持される触媒の熱劣化が進行したり、NOx浄化率が低下したりすることが懸念される閾値として実験等により予め設定される値である。 Here, when the cooling start temperature threshold value T1 is equal to or higher than this threshold value, there is a concern that the thermal deterioration of the catalyst supported on the selective reduction catalyst device 13 may progress or the NOx purification rate may decrease. It is a value set in advance by an experiment or the like.

また、排気ガス冷却装置21の冷却能力とは、排気ガスGbと熱交換する空気やエンジン冷却水等の冷却媒体の排気ガス冷却装置21への流通量や温度である。また、排気ガス冷却装置21の冷却能力の向上は、冷却媒体の排気ガス冷却装置21への流通量を多くするか、または、冷却媒体の温度を低温化することにより行われる。逆に、冷却能力の低下は、流通量を少なくするか、または、冷却媒体の温度を高温化することにより行われる。 The cooling capacity of the exhaust gas cooling device 21 is the amount and temperature of the cooling medium such as air or engine cooling water that exchanges heat with the exhaust gas Gb to the exhaust gas cooling device 21. Further, the cooling capacity of the exhaust gas cooling device 21 is improved by increasing the flow amount of the cooling medium to the exhaust gas cooling device 21 or lowering the temperature of the cooling medium. On the contrary, the cooling capacity is lowered by reducing the distribution amount or raising the temperature of the cooling medium.

すなわち、本発明の内燃機関の排気ガス浄化システム1では、エンジン2の高負荷運転時や微粒子捕集装置12の強制PM再生制御時等、選択還元型触媒装置13の温度Tが、選択還元型触媒装置13に担持される触媒の熱劣化が進行したり、NOx浄化率の低下が懸念されるほどの高温である場合に、選択還元型触媒装置13に流入する前の排気ガスGの全量を排気ガス冷却装置21により冷却して、低温化した排気ガスGを選択還元型触媒装置13に流入させることで、選択還元型触媒装置13の温度Tを低温化する。 That is, in the exhaust gas purification system 1 of the internal combustion engine of the present invention, the temperature T of the selective reduction type catalyst device 13 is the selective reduction type during high load operation of the engine 2 or forced PM regeneration control of the fine particle collection device 12. When the temperature is high enough that the thermal deterioration of the catalyst carried on the catalyst device 13 progresses or the NOx purification rate may decrease, the total amount of the exhaust gas G before flowing into the selective reduction type catalyst device 13 is used. The temperature T of the selective reduction catalyst device 13 is lowered by cooling the exhaust gas G by the exhaust gas cooling device 21 and flowing the lowered exhaust gas G into the selective reduction catalyst device 13.

また、排気ガス冷却装置21による排気ガスGbの冷却時に、冷却用温度検出センサ31の検出値に基づいて排気ガス冷却装置21の冷却能力を制御することで、排気ガス冷却装置21の冷却能力が一時的に過大となって、排気ガスGbが過剰に低温化して、選択還元型触媒装置13の温度Tが過剰に低温化するのを抑制する。 Further, when the exhaust gas Gb is cooled by the exhaust gas cooling device 21, the cooling capacity of the exhaust gas cooling device 21 is increased by controlling the cooling capacity of the exhaust gas cooling device 21 based on the detection value of the cooling temperature detection sensor 31. It is possible to prevent the temperature T of the selective reduction catalyst device 13 from being excessively lowered due to the temporary excessive cooling of the exhaust gas Gb.

したがって、この構成によれば、選択還元型触媒装置13の過熱による劣化及びNOx浄化率の低下を抑制しつつ、排気ガス冷却装置21の冷却能力の一時的な過大による選択還元型触媒装置13のNOx浄化率の低下を抑制することができる。 Therefore, according to this configuration, while suppressing deterioration due to overheating of the selective reduction catalyst device 13 and a decrease in the NOx purification rate, the selective reduction catalyst device 13 due to a temporary increase in the cooling capacity of the exhaust gas cooling device 21. It is possible to suppress a decrease in the NOx purification rate.

また、上記の内燃機関の排気ガス浄化システム1において、図2に示すように、制御装置40が、選択還元型触媒装置13のNOx浄化率Pが実験等により予め設定された浄化率閾値P1以上となる選択還元型触媒装置13の温度範囲を適性温度範囲Rpとし、この適性温度範囲Rpの上限値を冷却開始温度閾値T1に設定するとともに、この適性温度範囲Rp内に目標温度範囲Rtを設定する。なお、適性温度範囲Rpの下限値T2は、選択還元型触媒装置13のNOx浄化率を考慮して設定される値である。 Further, in the exhaust gas purification system 1 of the internal combustion engine, as shown in FIG. 2, the control device 40 has a NOx purification rate P of the selective reduction catalyst device 13 equal to or higher than the purification rate threshold P1 set in advance by experiments or the like. a selective reduction catalyst device 13 proper temperature range Rp temperature range as a, and sets the upper limit of the proper temperature range Rp in the cooling start temperature threshold T1, setting the target temperature range Rt to the proper temperature range Rp To do. The lower limit value T2 of the appropriate temperature range Rp is a value set in consideration of the NOx purification rate of the selective reduction catalyst device 13.

また、目標温度範囲Rtの上限値Ta及び下限値Tbは、Ta=(3×T1+7×T2)/10、Tb=(7×T1+3×T2)/10の両方の式に適性温度範囲Rpの上限値T1及び下限値T2を代入して算出するようにすると、選択還元型触媒装置13の温度TをNOx浄化率の低下及び触媒の熱劣化を防止する適性温度範囲Rpに容易に維持することができるので好ましい。 Further, the upper limit value Ta and the lower limit value Tb of the target temperature range Rt are the upper limit of the appropriate temperature range Rp in both the equations of Ta = (3 × T1 + 7 × T2) / 10 and Tb = (7 × T1 + 3 × T2) / 10. By substituting the value T1 and the lower limit value T2 for calculation, the temperature T of the selective reduction catalyst device 13 can be easily maintained in the appropriate temperature range Rp to prevent a decrease in the NOx purification rate and thermal deterioration of the catalyst. It is preferable because it can be done.

さらに、適性温度範囲Rpの上限値T1と下限値T2の中央値T3(=(T1+T2)/2)より、実験等で予め設定された設定温度差ΔTだけ高温の温度を、目標温度範囲Rtの上限値Taに設定し、中央値T3より、設定温度差ΔTだけ低温の温度を、下限値Tbに設定すると、選択還元型触媒装置13の温度Tを適性温度範囲Rpにより容易に維持することができるので好ましい。 Further, from the median value T3 (= (T1 + T2) / 2) of the upper limit value T1 and the lower limit value T2 of the appropriate temperature range Rp, a temperature higher by the set temperature difference ΔT preset in an experiment or the like is set to the target temperature range Rt. When the upper limit value Ta is set and the temperature lower than the median value T3 by the set temperature difference ΔT is set to the lower limit value Tb, the temperature T of the selective reduction type catalyst device 13 can be easily maintained within the appropriate temperature range Rp. It is preferable because it can be done.

そして、排気ガス冷却装置21による排気ガスGbの冷却を開始後、SCR用温度検出センサ30の検出値Tがこの目標温度範囲Rt内に実験等により予め設定した設定時間tc連続して含まれたときに、選択還元型触媒装置13の温度Tが適性温度範囲Rp内で安定したとして、三方弁22を制御して、排気ガスGの流れを分岐通路20から排気通路10に切り替える制御を行うように構成する。 Then, after the cooling of the exhaust gas Gb by the exhaust gas cooling device 21 is started, the detection value T of the SCR temperature detection sensor 30 is continuously included in the target temperature range Rt for a set time tk preset by an experiment or the like. Occasionally, assuming that the temperature T of the selective reduction catalyst device 13 is stable within the appropriate temperature range Rp, the three-way valve 22 is controlled to control the flow of the exhaust gas G from the branch passage 20 to the exhaust passage 10. Configure to.

この構成によれば、三方弁22により排気ガスGの流れを分岐通路20から排気通路10に切り替えて、排気ガス冷却装置21による排気ガスGの冷却を終了した直後に、選択還元型触媒装置13の温度Tが冷却開始温度閾値T1以上となって、再度排気ガス冷却装置21による排気ガスGの冷却を必要とする状況を防止することができる。言い換えれば、三方弁22による排気ガスGの流れの切替精度を向上させることができる。 According to this configuration, the flow of the exhaust gas G is switched from the branch passage 20 to the exhaust passage 10 by the three-way valve 22, and immediately after the cooling of the exhaust gas G by the exhaust gas cooling device 21 is completed, the selective reduction type catalyst device 13 It is possible to prevent a situation in which the temperature T of the above becomes equal to or higher than the cooling start temperature threshold T1 and the exhaust gas G needs to be cooled again by the exhaust gas cooling device 21. In other words, the accuracy of switching the flow of the exhaust gas G by the three-way valve 22 can be improved.

また、上記の内燃機関の排気ガス浄化システム1において、制御装置40が、SCR用温度検出センサ30の検出値Tが適性温度範囲Rp内に含まれるが目標温度範囲Rtの下限値Tbより低い温度(T2≦T<Tb)であるときに、三方弁22を制御して、排気ガスGの流れを分岐通路20から排気通路10に切り替える制御を行うように構成すると、選択還元型触媒装置13の温度Tが適性温度範囲Rpの下限値T2以下となって過剰に低温化するのを防止することができる。 Further, in the exhaust gas purification system 1 of the internal combustion engine, the control device 40 has a temperature lower than the lower limit value Tb of the target temperature range Rt, although the detection value T of the SCR temperature detection sensor 30 is included in the appropriate temperature range Rp. When (T2 ≦ T <Tb), the three-way valve 22 is controlled to switch the flow of the exhaust gas G from the branch passage 20 to the exhaust passage 10, and the selective reduction type catalyst device 13 It is possible to prevent the temperature T from becoming excessively low below the lower limit value T2 of the appropriate temperature range Rp.

なお、図1では流路切替装置として三方弁22を備えたが、流路切替機能だけでなく流量調整機能も備えた流量調整弁(流量調整装置)22を代わりに備えてもよい。この場合は、三方弁22のように排気通路10または分岐通路20のいずれか一方に排気ガスGを流通させるのではなく、排気通路10または分岐通路20のいずれか一方または両方に排気ガスGを流通させることができる。 Although the three-way valve 22 is provided as the flow path switching device in FIG. 1, a flow rate adjusting valve (flow rate adjusting device) 22 having a flow rate adjusting function as well as a flow rate switching function may be provided instead. In this case, the exhaust gas G is not circulated through either the exhaust passage 10 or the branch passage 20 as in the three-way valve 22, but the exhaust gas G is passed through the exhaust passage 10 or the branch passage 20 or both. Can be distributed.

したがって、制御装置40が、排気ガスGの流れを排気通路10と分岐通路20の間で切り替えるときに、三方弁22のように即時に切り替えるのではなく、徐々にまたは段階的に切り替えることができるので、選択還元型触媒装置13の温度の急変動を防止して、NOx浄化率の急変動を防止することができる。 Therefore, when the control device 40 switches the flow of the exhaust gas G between the exhaust passage 10 and the branch passage 20, it can be switched gradually or stepwise, instead of switching immediately as in the three-way valve 22. Therefore, it is possible to prevent a sudden change in the temperature of the selective reduction catalyst device 13 and prevent a sudden change in the NOx purification rate.

一方、三方弁22のように、排気通路10と分岐通路20の間の排気ガスGの流れを即時に切り替える構成であると、選択還元型触媒装置13に流入する排気ガスGの温度を迅速に低下させて、選択還元型触媒装置13の温度Tを目標温度範囲Rt内に即時に収めることができるので、選択還元型触媒装置13の過熱による劣化をより確実に防止することができる。 On the other hand, if the configuration is such that the flow of the exhaust gas G between the exhaust passage 10 and the branch passage 20 is immediately switched like the three-way valve 22, the temperature of the exhaust gas G flowing into the selective reduction type catalyst device 13 can be quickly changed. Since the temperature T of the selective reduction catalyst device 13 can be lowered immediately within the target temperature range Rt, deterioration due to overheating of the selective reduction catalyst device 13 can be more reliably prevented.

また、制御装置40が、排気ガスGの流れを排気通路10と分岐通路20の間で切り替えるときに、冷却用温度検出センサ31の検出値の変動量ΔTTが大きくなるにつれて、分岐通路20を通過する排気ガスGbの流量の変動量ΔVを小さく設定して、流量調整弁22を制御するように構成する。 Further, when the control device 40 switches the flow of the exhaust gas G between the exhaust passage 10 and the branch passage 20, the control device 40 passes through the branch passage 20 as the fluctuation amount ΔTT of the detection value of the cooling temperature detection sensor 31 increases. The fluctuation amount ΔV of the flow rate of the exhaust gas Gb is set small to control the flow rate adjusting valve 22.

この構成によれば、変動量ΔTTが大きくなったときに、排気ガス冷却装置21の冷却能力が一時的に過大したとして、流量調整弁22により変動量ΔVを小さくして、排気ガス冷却装置21により冷却される排気ガスGbの流量の増加を抑制するので、選択還元型触媒装置13に流入する排気ガスGが過剰に低温化するのを抑制することができ、選択還元型触媒装置13のNOx浄化率の低下を抑制することができる。 According to this configuration, when the fluctuation amount ΔTT becomes large, assuming that the cooling capacity of the exhaust gas cooling device 21 is temporarily excessive, the fluctuation amount ΔV is reduced by the flow rate adjusting valve 22 to reduce the fluctuation amount ΔV, and the exhaust gas cooling device 21 Since the increase in the flow rate of the exhaust gas Gb cooled by the above is suppressed, it is possible to suppress the exhaust gas G flowing into the selective reduction catalyst device 13 from becoming excessively low in temperature, and the NOx of the selective reduction catalyst device 13 can be suppressed. It is possible to suppress a decrease in the purification rate.

次に、上記の内燃機関の排気ガス浄化システム1を用いた、本発明の内燃機関の排気ガス浄化方法の制御フローについて、図3を参照しながら説明する。図3の制御フローは、エンジン2の運転中に実験等により予め設定した制御時間毎に、上級の制御フローより呼ばれてスタートする制御フローである。 Next, the control flow of the exhaust gas purification method of the internal combustion engine of the present invention using the exhaust gas purification system 1 of the internal combustion engine will be described with reference to FIG. The control flow of FIG. 3 is a control flow that is called from a higher-level control flow and starts at each control time preset by an experiment or the like during operation of the engine 2.

図3の制御フローがスタートすると、ステップS10にて、選択還元型触媒装置13に流入する排気ガスGを排気ガス冷却装置21により冷却して、選択還元型触媒装置13の過熱による劣化及びNOx浄化率の低下を防止する必要があるか否かを判定する。この判定は、選択還元型触媒装置13の温度(SCR用温度検出センサ30の検出値)Tが冷却開始温度閾値T1以上となったか否かにより行う。 When the control flow of FIG. 3 starts, in step S10, the exhaust gas G flowing into the selective reduction catalyst device 13 is cooled by the exhaust gas cooling device 21, and the selective reduction catalyst device 13 is deteriorated due to overheating and NOx purification. Determine if it is necessary to prevent the rate from dropping. This determination is made based on whether or not the temperature T of the selective reduction catalyst device 13 (detected value of the temperature detection sensor 30 for SCR) T is equal to or higher than the cooling start temperature threshold value T1.

ステップS10にて、選択還元型触媒装置13の温度Tが冷却開始温度閾値T1未満である場合(NO)には、排気ガスGの冷却が不要であるとして、リターンに進んで、本制御フローを終了する。 In step S10, when the temperature T of the selective reduction catalyst device 13 is less than the cooling start temperature threshold value T1 (NO), it is assumed that the exhaust gas G does not need to be cooled, and the process proceeds to return to perform this control flow. finish.

一方、ステップS10にて、選択還元型触媒装置13の温度Tが冷却開始温度T1以上である場合(YES)には、排気ガスGの冷却が必要であるとして、ステップS20に進み、ステップS20にて、流路切替装置22を制御して、排気ガスGの流れを排気通路10から分岐通路20に切り替えるとともに、排気ガス冷却装置21の冷却能力を排気ガス冷却装置21を通過直後の排気ガスGbの温度(冷却用温度検出センサ31の検出値)TTに基づいて調整制御する。ステップS20の制御を実施後、ステップS30に進む。 On the other hand, in step S10, when the temperature T of the selective reduction catalyst device 13 is equal to or higher than the cooling start temperature T1 (YES), it is assumed that the exhaust gas G needs to be cooled, and the process proceeds to step S20 and proceeds to step S20. The flow path switching device 22 is controlled to switch the flow of the exhaust gas G from the exhaust passage 10 to the branch passage 20, and the cooling capacity of the exhaust gas cooling device 21 is changed to the exhaust gas Gb immediately after passing through the exhaust gas cooling device 21. (Detected value of the cooling temperature detection sensor 31) Adjustment and control are performed based on the TT. After performing the control in step S20, the process proceeds to step S30.

なお、この切替時に、排気ガスGbの温度の変動量ΔTTが大きくなるにつれて、流量調整弁22を制御して、分岐通路20を通過する排気ガスGbの流量の変動量ΔVを小さく設定するとより好ましい。 At the time of this switching, it is more preferable to control the flow rate adjusting valve 22 to set the fluctuation amount ΔV of the flow rate of the exhaust gas Gb passing through the branch passage 20 to be smaller as the fluctuation amount ΔTT of the temperature of the exhaust gas Gb increases. ..

ステップS30にて、選択還元型触媒装置13に流入する排気ガスGの冷却が不要となったか否かを判定する。この判定は、選択還元型触媒装置13の温度Tが図2に示す目標温度範囲Rt内に設定時間tc連続して含まれるか、または、適性温度範囲Rp内に含まれるが目標温度範囲Rtの下限値Tbより低い温度(T2≦T<Tb)である場合に、排気ガスGの冷却が不要となったとすることにより行う。ステップS30にて、上記の判定が成立しない場合(NO)には、排気ガスGの冷却が未だ必要であると判定して、実験等により予め設定した制御時間を経過後、再度ステップS30の判定を行う。 In step S30, it is determined whether or not cooling of the exhaust gas G flowing into the selective reduction catalyst device 13 is no longer necessary. In this determination, the temperature T of the selective reduction catalyst device 13 is continuously included in the target temperature range Rt shown in FIG. 2 for a set time ct continuously, or is included in the appropriate temperature range Rp but is included in the target temperature range Rt. This is performed by assuming that cooling of the exhaust gas G is no longer necessary when the temperature is lower than the lower limit value Tb (T2 ≦ T <Tb). If the above determination is not established in step S30 (NO), it is determined that the exhaust gas G still needs to be cooled, and after the control time preset by an experiment or the like has elapsed, the determination in step S30 is performed again. I do.

一方、ステップS30にて、上記の判定が成立する場合(YES)には、排気ガスGの冷却が不要となったと判定して、ステップS40に進み、ステップS40にて、流路切替装置22を制御して、排気ガスGの流れを分岐通路20から排気通路10に切り替える制御を行うとともに、排気ガス冷却装置21の冷却能力を通常の運転状態時の冷却能力に戻す。ステップS40の制御を実施後、リターンに進んで、本制御フローを終了する。 On the other hand, if the above determination is established in step S30 (YES), it is determined that the cooling of the exhaust gas G is no longer necessary, the process proceeds to step S40, and the flow path switching device 22 is switched in step S40. By controlling, the flow of the exhaust gas G is switched from the branch passage 20 to the exhaust passage 10, and the cooling capacity of the exhaust gas cooling device 21 is returned to the cooling capacity in the normal operating state. After performing the control in step S40, the process proceeds to return and the present control flow is terminated.

以上より、本発明の内燃機関の排気ガス浄化システム1を基にした、本発明の内燃機関の排気ガス浄化方法は、エンジン2の排気通路10に上流側より順に尿素水供給装置15、選択還元型触媒装置13を備えるとともに、尿素水供給装置15より上流側の排気通路10に、排気ガス冷却装置21を有する分岐通路20を排気通路10に並行して備えて、排気通路10から分岐通路20への分岐点に流路切替装置22を備えて構成される内燃機関の排気ガス浄化方法において、選択還元型触媒装置13の温度Tが予め設定された冷却開始温度閾値T1以上となったときに、流路切替装置22を制御して、排気ガスGの流れを排気通路10から分岐通路20に切り替えるとともに、排気ガス冷却装置21の冷却能力を排気ガス冷却装置21を通過直後の排気ガスGbの温度に基づいて制御することを特徴とする方法となる。 Based on the above, the exhaust gas purification method for the internal combustion engine of the present invention, which is based on the exhaust gas purification system 1 for the internal combustion engine of the present invention, is to selectively reduce the urea water supply device 15 to the exhaust passage 10 of the engine 2 in order from the upstream side. A branch passage 20 having an exhaust gas cooling device 21 is provided in parallel with the exhaust passage 10 in the exhaust passage 10 on the upstream side of the urea water supply device 15 in addition to the type catalyst device 13, and the branch passage 20 is provided from the exhaust passage 10. When the temperature T of the selective reduction type catalyst device 13 becomes equal to or higher than the preset cooling start temperature threshold T1 in the exhaust gas purification method of the internal combustion engine provided with the flow path switching device 22 at the branch point to , The flow path switching device 22 is controlled to switch the flow of the exhaust gas G from the exhaust passage 10 to the branch passage 20, and the cooling capacity of the exhaust gas cooling device 21 is changed to that of the exhaust gas Gb immediately after passing through the exhaust gas cooling device 21. The method is characterized by controlling based on temperature.

本発明の内燃機関の排気ガス浄化システム1及び内燃機関の排気ガス浄化方法によれば、選択還元型触媒装置13の過熱による劣化及びNOx浄化率の低下を抑制しつつ、排気ガス冷却装置21の冷却能力の一時的な過大による選択還元型触媒装置13のNOx浄化率の低下を抑制することができる。 According to the exhaust gas purification system 1 of the internal combustion engine and the exhaust gas purification method of the internal combustion engine of the present invention, the exhaust gas cooling device 21 can suppress the deterioration of the selective reduction catalyst device 13 due to overheating and the decrease of the NOx purification rate. It is possible to suppress a decrease in the NOx purification rate of the selective reduction catalyst device 13 due to a temporary excess of the cooling capacity.

また、排気ガス冷却装置21の冷却能力に基づいて選択還元型触媒装置13に流入する排気ガスGの温度を制御するので、選択還元型触媒装置13より上流側に配置される尿素水供給装置15から供給される尿素水Uのアンモニアへの加水分解反応が促進される温度範囲にこの排気ガスGの温度を確実に維持することができる。 Further, since the temperature of the exhaust gas G flowing into the selective reduction catalyst device 13 is controlled based on the cooling capacity of the exhaust gas cooling device 21, the urea water supply device 15 arranged on the upstream side of the selective reduction catalyst device 13 The temperature of the exhaust gas G can be reliably maintained in a temperature range in which the hydrolysis reaction of the urea water U supplied from the source to ammonia is promoted.

さらに、排気ガス冷却装置21により選択還元型触媒装置13に流入する排気ガスGの温度を低温化することができるので、選択還元型触媒装置13の温度を低温化して、そのアンモニア吸蔵容量を大きくすることができる。その結果、選択還元型触媒装置13から流出する(スリップする)アンモニアの量を、図4に示すアンモニアスリップ触媒装置14の設置が不要となるほど少ない量に抑制することができる。 Further, since the exhaust gas cooling device 21 can lower the temperature of the exhaust gas G flowing into the selective reduction catalyst device 13, the temperature of the selective reduction catalyst device 13 can be lowered to increase the ammonia storage capacity thereof. can do. As a result, the amount of ammonia flowing out (slip) from the selective reduction catalyst device 13 can be suppressed to such a small amount that the installation of the ammonia slip catalyst device 14 shown in FIG. 4 becomes unnecessary.

1、1X 内燃機関の排気ガス浄化システム
2 エンジン
10 排気通路
13 選択還元型触媒装置(SCR)
15 尿素水供給装置
20 分岐通路
21 排気ガス冷却装置
22 三方弁(流路切替装置)、流量調整弁(流量調整装置)
30 SCR用温度検出センサ(SCR用温度検出装置)
31 冷却用温度検出センサ(冷却用温度検出装置)
40 制御装置
G 排気ガス
Ga 排気通路を通過する排気ガス
Gb 分岐通路を通過する排気ガス
Rp 適性温度範囲
Rt 目標温度範囲
T 選択還元型触媒装置の温度(SCR用温度検出センサの検出値)
T1 冷却開始温度閾値(適正温度範囲の上限値)
Tb 目標温度範囲の下限値
P 選択還元型触媒装置のNOx浄化率
P1 NOx浄化率閾値
tc 設定時間
TT 排気ガス冷却装置を通過直後の排気ガスの温度(冷却用温度検出センサの検出値)
ΔTT 冷却用温度検出センサの検出値の変動量
ΔV 分岐通路を通過する排気ガスの流量の変動量
1, 1X Exhaust gas purification system for internal combustion engine 2 Engine 10 Exhaust passage 13 Selective catalytic reduction (SCR)
15 Urea water supply device 20 Branch passage 21 Exhaust gas cooling device 22 Three-way valve (flow path switching device), flow rate adjusting valve (flow rate adjusting device)
30 SCR temperature detection sensor (SCR temperature detection device)
31 Cooling temperature detection sensor (cooling temperature detection device)
40 Control device G Exhaust gas Ga Exhaust gas passing through the exhaust passage Gb Exhaust gas passing through the branch passage Rp Appropriate temperature range Rt Target temperature range T Temperature of selective reduction catalyst device (detection value of temperature detection sensor for SCR)
T1 Cooling start temperature threshold (upper limit of proper temperature range)
Tb Lower limit of target temperature range P NOx purification rate of selective reduction catalyst device P1 NOx purification rate threshold tc Setting time TT Exhaust gas temperature immediately after passing through the exhaust gas cooling device (detection value of cooling temperature detection sensor)
ΔTT Fluctuation amount of detection value of cooling temperature detection sensor ΔV Fluctuation amount of exhaust gas flow rate passing through branch passage

Claims (5)

内燃機関の排気通路に上流側より順に尿素水供給装置、選択還元型触媒装置を備えて構成される内燃機関の排気ガス浄化システムにおいて、
前記尿素水供給装置より上流側の前記排気通路に、排気ガス冷却装置を有する分岐通路を前記排気通路に並行して備えて、前記排気通路から前記分岐通路への分岐点に流路切替装置を備えるとともに、
前記選択還元型触媒装置の内部、または、前記選択還元型触媒装置より上流側または下流側の前記排気通路にSCR用温度検出装置を備え、前記排気ガス冷却装置より下流側の前記分岐通路に冷却用温度検出装置を備えて、
前記排気ガス浄化システムを制御する制御装置が、
前記SCR用温度検出装置の検出値が予め設定された冷却開始温度閾値以上となったときに、前記流路切替装置を制御して、排気ガスの流れを前記排気通路から前記分岐通路に切り替えるとともに、前記排気ガス冷却装置の冷却能力を前記冷却用温度検出装置の検出値に基づいて制御して、
前記選択還元型触媒装置のNOx浄化率が予め設定された浄化率閾値以上となる前記選択還元型触媒装置の温度範囲を適性温度範囲とし、この適性温度範囲の上限値を前記冷却開始温度閾値に設定するとともに、
さらに、前記適性温度範囲内に目標温度範囲を設定して、
前記SCR用温度検出装置の検出値がこの目標温度範囲内に予め設定した設定時間の間連続して含まれたときに、前記流路切替装置を制御して、排気ガスの流れを前記分岐通路から前記排気通路に切り替える制御を行うように構成される内燃機関の排気ガス浄化システム。
In an exhaust gas purification system of an internal combustion engine, which is provided with a urea water supply device and a selective reduction catalyst device in order from the upstream side in the exhaust passage of the internal combustion engine.
A branch passage having an exhaust gas cooling device is provided in parallel with the exhaust passage in the exhaust passage on the upstream side of the urea water supply device, and a flow path switching device is provided at a branch point from the exhaust passage to the branch passage. Be prepared and
A temperature detection device for SCR is provided inside the selective reduction catalyst device or in the exhaust passage on the upstream side or downstream side of the selective reduction catalyst device, and cooling is performed in the branch passage on the downstream side of the exhaust gas cooling device. Equipped with a temperature detector for
The control device that controls the exhaust gas purification system
When the detection value of the SCR temperature detection device becomes equal to or higher than the preset cooling start temperature threshold value, the flow path switching device is controlled to switch the flow of exhaust gas from the exhaust passage to the branch passage. , The cooling capacity of the exhaust gas cooling device is controlled based on the detection value of the cooling temperature detecting device .
The temperature range of the selective reduction catalyst device in which the NOx purification rate of the selective reduction catalyst device is equal to or higher than the preset purification rate threshold value is set as the appropriate temperature range, and the upper limit of the appropriate temperature range is set as the cooling start temperature threshold value. As well as setting
Further, a target temperature range is set within the appropriate temperature range, and the temperature range is set.
When the detection value of the SCR temperature detection device is continuously included in the target temperature range for a preset time, the flow path switching device is controlled to flow the exhaust gas flow through the branch passage. An exhaust gas purification system for an internal combustion engine configured to control switching from the exhaust gas to the exhaust passage .
内燃機関の排気通路に上流側より順に尿素水供給装置、選択還元型触媒装置を備えて構成される内燃機関の排気ガス浄化システムにおいて、In the exhaust gas purification system of an internal combustion engine, which is configured by equipping the exhaust passage of the internal combustion engine with a urea water supply device and a selective reduction catalyst device in order from the upstream side.
前記尿素水供給装置より上流側の前記排気通路に、排気ガス冷却装置を有する分岐通路を前記排気通路に並行して備えて、前記排気通路から前記分岐通路への分岐点に流路切替装置を備えるとともに、A branch passage having an exhaust gas cooling device is provided in parallel with the exhaust passage in the exhaust passage on the upstream side of the urea water supply device, and a flow path switching device is provided at a branch point from the exhaust passage to the branch passage. Be prepared and
前記選択還元型触媒装置の内部、または、前記選択還元型触媒装置より上流側または下流側の前記排気通路にSCR用温度検出装置を備え、前記排気ガス冷却装置より下流側の前記分岐通路に冷却用温度検出装置を備えて、A temperature detection device for SCR is provided inside the selective reduction catalyst device or in the exhaust passage on the upstream side or downstream side of the selective reduction catalyst device, and cooling is performed in the branch passage on the downstream side of the exhaust gas cooling device. Equipped with a temperature detector for
前記排気ガス浄化システムを制御する制御装置が、The control device that controls the exhaust gas purification system
前記SCR用温度検出装置の検出値が予め設定された冷却開始温度閾値以上となったときに、前記流路切替装置を制御して、排気ガスの流れを前記排気通路から前記分岐通路に切り替えるとともに、前記排気ガス冷却装置の冷却能力を前記冷却用温度検出装置の検出値に基づいて制御して、When the detection value of the SCR temperature detection device becomes equal to or higher than the preset cooling start temperature threshold value, the flow path switching device is controlled to switch the flow of exhaust gas from the exhaust passage to the branch passage. , The cooling capacity of the exhaust gas cooling device is controlled based on the detection value of the cooling temperature detecting device.
前記選択還元型触媒装置のNOx浄化率が予め設定された浄化率閾値以上となる前記選択還元型触媒装置の温度範囲を適性温度範囲とし、この適性温度範囲の上限値を前記冷却開始温度閾値に設定し、さらに、前記適性温度範囲の内に目標温度範囲を設定して、The temperature range of the selective reduction catalyst device in which the NOx purification rate of the selective reduction catalyst device is equal to or higher than the preset purification rate threshold value is set as the appropriate temperature range, and the upper limit of the appropriate temperature range is set as the cooling start temperature threshold value. Set, and further set the target temperature range within the appropriate temperature range,
前記SCR用温度検出装置の検出値が前記適性温度範囲の内に含まれるが前記目標温度範囲の下限値より低い温度であるときに、前記流路切替装置を制御して、排気ガスの流れを前記分岐通路から前記排気通路に切り替える制御を行うように構成される内燃機関の排気ガス浄化システム。When the detection value of the SCR temperature detection device is included in the appropriate temperature range but is lower than the lower limit value of the target temperature range, the flow path switching device is controlled to control the flow of exhaust gas. An exhaust gas purification system for an internal combustion engine configured to control switching from the branch passage to the exhaust passage.
内燃機関の排気通路に上流側より順に尿素水供給装置、選択還元型触媒装置を備えて構成される内燃機関の排気ガス浄化システムにおいて、In the exhaust gas purification system of an internal combustion engine, which is configured by equipping the exhaust passage of the internal combustion engine with a urea water supply device and a selective reduction catalyst device in order from the upstream side.
前記尿素水供給装置より上流側の前記排気通路に、排気ガス冷却装置を有する分岐通路を前記排気通路に並行して備えて、前記排気通路から前記分岐通路への分岐点に流路切替装置を備えるとともに、前記流路切替装置を、前記排気通路または前記分岐通路の両方に排気ガスを流通できる流量調整装置として構成して、A branch passage having an exhaust gas cooling device is provided in parallel with the exhaust passage in the exhaust passage on the upstream side of the urea water supply device, and a flow path switching device is provided at a branch point from the exhaust passage to the branch passage. In addition, the flow path switching device is configured as a flow rate adjusting device capable of flowing exhaust gas to both the exhaust passage and the branch passage.
さらに、前記選択還元型触媒装置の内部、または、前記選択還元型触媒装置より上流側または下流側の前記排気通路にSCR用温度検出装置を備え、前記排気ガス冷却装置より下流側の前記分岐通路に冷却用温度検出装置を備えて、Further, an SCR temperature detection device is provided inside the selective reduction catalyst device or in the exhaust passage on the upstream side or downstream side of the selective reduction catalyst device, and the branch passage on the downstream side of the exhaust gas cooling device. Equipped with a cooling temperature detector
前記排気ガス浄化システムを制御する制御装置が、The control device that controls the exhaust gas purification system
前記SCR用温度検出装置の検出値が予め設定された冷却開始温度閾値以上となったときに、前記流路切替装置を制御して、排気ガスの流れを前記排気通路から前記分岐通路に切り替えるとともに、前記排気ガス冷却装置の冷却能力を前記冷却用温度検出装置の検出値に基づいて制御して、When the detection value of the SCR temperature detection device becomes equal to or higher than the preset cooling start temperature threshold value, the flow path switching device is controlled to switch the flow of exhaust gas from the exhaust passage to the branch passage. , The cooling capacity of the exhaust gas cooling device is controlled based on the detection value of the cooling temperature detecting device.
排気ガスの流れを前記排気通路と前記分岐通路の間で切り替えるときに、When switching the flow of exhaust gas between the exhaust passage and the branch passage,
前記冷却用温度検出装置の検出値の変動量が大きくなるにつれて、前記分岐通路を通過する排気ガスの流量の変動量を小さく設定して、前記流量調整装置を制御するように構成される内燃機関の排気ガス浄化システム。An internal combustion engine configured to control the flow rate adjusting device by setting a small fluctuation amount of the flow rate of exhaust gas passing through the branch passage as the fluctuation amount of the detected value of the cooling temperature detecting device increases. Exhaust gas purification system.
内燃機関の排気通路に上流側より順に尿素水供給装置、選択還元型触媒装置を備えるとともに、前記尿素水供給装置より上流側の前記排気通路に、排気ガス冷却装置を有する分岐通路を前記排気通路に並行して備えて、前記排気通路から前記分岐通路への分岐点に流路切替装置を備えて構成される内燃機関の排気ガス浄化方法において、
前記選択還元型触媒装置の温度が予め設定された冷却開始温度閾値以上となったときに、前記流路切替装置を制御して、排気ガスの流れを前記排気通路から前記分岐通路に切り替えるとともに、前記排気ガス冷却装置の冷却能力を前記排気ガス冷却装置を通過直後の排気ガスの温度に基づいて制御し、
前記選択還元型触媒装置のNOx浄化率が予め設定された浄化率閾値以上となる前記選択還元型触媒装置の温度範囲を適性温度範囲とし、この適性温度範囲の上限値を前記冷却開始温度閾値に設定し、さらに、前記適性温度範囲の内に目標温度範囲を設定して、
前記選択還元型触媒装置の温度がこの目標温度範囲内に予め設定した設定時間の間連続して含まれたときに、前記流路切替装置を制御して、排気ガスの流れを前記分岐通路から前記排気通路に切り替える制御を行うことを特徴とする内燃機関の排気ガス浄化方法。
The exhaust passage of the internal combustion engine is provided with a urea water supply device and a selective reduction catalyst device in this order from the upstream side, and a branch passage having an exhaust gas cooling device is provided in the exhaust passage on the upstream side of the urea water supply device. In the exhaust gas purification method of an internal combustion engine configured by providing a flow path switching device at a branch point from the exhaust passage to the branch passage in parallel with the above.
When the temperature of the selective reduction catalyst device becomes equal to or higher than a preset cooling start temperature threshold, the flow path switching device is controlled to switch the flow of exhaust gas from the exhaust passage to the branch passage, and at the same time. The cooling capacity of the exhaust gas cooling device is controlled based on the temperature of the exhaust gas immediately after passing through the exhaust gas cooling device .
The temperature range of the selective reduction catalyst device in which the NOx purification rate of the selective reduction catalyst device is equal to or higher than the preset purification rate threshold value is set as the appropriate temperature range, and the upper limit of the appropriate temperature range is set as the cooling start temperature threshold value. Set, and further set the target temperature range within the appropriate temperature range,
When the temperature of the selective reduction catalyst device is continuously included in the target temperature range for a preset time, the flow path switching device is controlled to flow the exhaust gas flow from the branch passage. An exhaust gas purification method for an internal combustion engine, which controls switching to the exhaust passage .
内燃機関の排気通路に上流側より順に尿素水供給装置、選択還元型触媒装置を備えるとともに、前記尿素水供給装置より上流側の前記排気通路に、排気ガス冷却装置を有する分岐通路を前記排気通路に並行して備えて、前記排気通路から前記分岐通路への分岐点に流路切替装置を備えて構成される内燃機関の排気ガス浄化方法において、The exhaust passage of the internal combustion engine is provided with a urea water supply device and a selective reduction catalyst device in this order from the upstream side, and a branch passage having an exhaust gas cooling device is provided in the exhaust passage on the upstream side of the urea water supply device. In the exhaust gas purification method of an internal combustion engine configured by providing a flow path switching device at a branch point from the exhaust passage to the branch passage in parallel with the above.
前記選択還元型触媒装置の温度が予め設定された冷却開始温度閾値以上となったときに、前記流路切替装置を制御して、排気ガスの流れを前記排気通路から前記分岐通路に切り替えるとともに、前記排気ガス冷却装置の冷却能力を前記排気ガス冷却装置を通過直後の排気ガスの温度に基づいて制御し、When the temperature of the selective reduction catalyst device becomes equal to or higher than a preset cooling start temperature threshold, the flow path switching device is controlled to switch the flow of exhaust gas from the exhaust passage to the branch passage, and at the same time. The cooling capacity of the exhaust gas cooling device is controlled based on the temperature of the exhaust gas immediately after passing through the exhaust gas cooling device.
前記選択還元型触媒装置のNOx浄化率が予め設定された浄化率閾値以上となる前記選択還元型触媒装置の温度範囲を適性温度範囲とし、この適性温度範囲の上限値を前記冷却開始温度閾値に設定し、さらに、前記適性温度範囲の内に目標温度範囲を設定して、The temperature range of the selective reduction catalyst device in which the NOx purification rate of the selective reduction catalyst device is equal to or higher than the preset purification rate threshold value is set as the appropriate temperature range, and the upper limit of the appropriate temperature range is set as the cooling start temperature threshold value. Set, and further set the target temperature range within the appropriate temperature range,
前記選択還元型触媒装置の温度が前記適性温度範囲の内に含まれるが前記目標温度範囲の下限値より低い温度であるときに、前記流路切替装置を制御して、排気ガスの流れを前記分岐通路から前記排気通路に切り替える制御を行うことを特徴とする内燃機関の排気ガス浄化方法。When the temperature of the selective reduction catalyst device is included in the appropriate temperature range but is lower than the lower limit of the target temperature range, the flow path switching device is controlled to control the flow of exhaust gas. An exhaust gas purification method for an internal combustion engine, which controls switching from a branch passage to the exhaust passage.
JP2016111806A 2016-06-03 2016-06-03 Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine Active JP6753151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016111806A JP6753151B2 (en) 2016-06-03 2016-06-03 Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016111806A JP6753151B2 (en) 2016-06-03 2016-06-03 Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2017218914A JP2017218914A (en) 2017-12-14
JP6753151B2 true JP6753151B2 (en) 2020-09-09

Family

ID=60658913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016111806A Active JP6753151B2 (en) 2016-06-03 2016-06-03 Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine

Country Status (1)

Country Link
JP (1) JP6753151B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109578116B (en) * 2018-11-27 2020-10-27 安徽江淮汽车集团股份有限公司 SCR (selective catalytic reduction) aftertreatment system for preventing urea from crystallizing

Also Published As

Publication number Publication date
JP2017218914A (en) 2017-12-14

Similar Documents

Publication Publication Date Title
EP3423684B1 (en) System for axial zoning of heating power
JP4400356B2 (en) Exhaust gas purification device for internal combustion engine
JP3829699B2 (en) Exhaust gas purification system and its regeneration control method
JP4930215B2 (en) Exhaust purification device
JP5119690B2 (en) Exhaust gas purification device for internal combustion engine
JP2004316658A5 (en)
JP6733352B2 (en) Oxidation catalyst and exhaust gas purification system
JP2008115775A (en) Exhaust gas purification system for internal combustion engine
JP6586377B2 (en) Exhaust purification device
KR20180031516A (en) Exhaust system and control method of nitrogent oxide desorption
JP2005299474A (en) Exhaust gas purification system
JP4780054B2 (en) Exhaust gas purification device for internal combustion engine
JP6753151B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP2006207512A (en) Exhaust emission control device and exhaust emission control method for internal combustion engine
JP3843746B2 (en) Continuous regeneration type diesel particulate filter system and its regeneration control method
JP2007154717A (en) Exhaust emission control device and exhaust emission control method for internal combustion engine
JP5854323B2 (en) Exhaust gas purification device for internal combustion engine
JP2008138564A (en) Engine exhaust system provided with dpf device
JP4742942B2 (en) Exhaust purification device
JP3747793B2 (en) Fuel injection control method and regeneration control method for continuous regeneration type diesel particulate filter system
JP6705294B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP2020045884A (en) Exhaust gas treatment system and vehicle
JP6753179B2 (en) Oxidation catalyst and exhaust gas purification system
JP2008202511A (en) Exhaust emission control device for diesel engine
JP2007100510A (en) Exhaust emission control device of internal combustion engine, and exhaust emission control method for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200803

R150 Certificate of patent or registration of utility model

Ref document number: 6753151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150