[go: up one dir, main page]

JP6752755B2 - Polyamide-based conductive composite fiber - Google Patents

Polyamide-based conductive composite fiber Download PDF

Info

Publication number
JP6752755B2
JP6752755B2 JP2017100392A JP2017100392A JP6752755B2 JP 6752755 B2 JP6752755 B2 JP 6752755B2 JP 2017100392 A JP2017100392 A JP 2017100392A JP 2017100392 A JP2017100392 A JP 2017100392A JP 6752755 B2 JP6752755 B2 JP 6752755B2
Authority
JP
Japan
Prior art keywords
conductive
polyamide
conductive layer
composite fiber
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017100392A
Other languages
Japanese (ja)
Other versions
JP2018193648A (en
Inventor
健吾 森江
健吾 森江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KB Seiren Ltd
Original Assignee
KB Seiren Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KB Seiren Ltd filed Critical KB Seiren Ltd
Priority to JP2017100392A priority Critical patent/JP6752755B2/en
Publication of JP2018193648A publication Critical patent/JP2018193648A/en
Application granted granted Critical
Publication of JP6752755B2 publication Critical patent/JP6752755B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Multicomponent Fibers (AREA)

Description

本発明は、ポリアミド系導電性複合繊維に関するものである。 The present invention relates to polyamide-based conductive composite fibers.

導電性を有する導電性繊維は、主に静電気によるスパークや埃のまとわりつきを防ぐ目的で引火性危険物取扱者のユニフォーム、クリーンルーム用防塵衣、カーペット、カーテン等用の生地に用いられることが多い。このような生地に用いられる際は、数mm〜数cmのピッチでグリット状またはストライプ状に導電繊維が挿し込まれており、これらの生地には低温低湿といった、種々の環境下でも安定した制電性能が求められている。
このような生地に用いる導電性繊維として、例えば、金属そのものからなる金属繊維、一般的な繊維に金属をメッキした金属メッキ繊維、一般的な繊維に導電性物質混練樹脂を溶融または溶液被覆させた導電性被覆繊維、導電性物質の混練樹脂組成物と熱可塑性樹脂を溶融複合紡糸した導電性複合繊維等が挙げられる。中でも、スパークを生じさせない制電性能、布帛とした際の風合い、耐腐食性、耐薬品性、耐伸張性、耐摩擦性、洗濯耐久性、製造コスト等を鑑みて、導電性カーボンブラックを使用した導電性複合繊維が最も好まれて使用されている。このような導電性複合繊維の繊維横断面においては、導電層が非導電層に完全に包まれている非露出タイプと、導電層が繊維表面の一部または繊維表面全体に露出している露出タイプがあり、用途に応じて様々な繊維横断面を持つ導電性複合繊維が使用されている。(特許文献1、特許文献2、特許文献3)
Conductive fibers are often used for uniforms of flammable hazardous materials handlers, dust-proof clothing for clean rooms, carpets, curtains, etc., mainly for the purpose of preventing sparks and clinging of dust due to static electricity. When used for such fabrics, conductive fibers are inserted in a grit or stripe shape at a pitch of several mm to several cm, and these fabrics are stably controlled even in various environments such as low temperature and low humidity. Electrical performance is required.
As conductive fibers used for such fabrics, for example, metal fibers made of metal itself, metal-plated fibers obtained by plating general fibers with metal, and general fibers obtained by melting or solution-coating a conductive substance kneaded resin. Examples thereof include conductive coating fibers, conductive composite fibers obtained by melt-compositing spinning a kneaded resin composition of a conductive substance and a thermoplastic resin. Above all, conductive carbon black is used in consideration of antistatic performance that does not cause sparks, texture when made into fabric, corrosion resistance, chemical resistance, stretch resistance, abrasion resistance, washing durability, manufacturing cost, etc. Conductive composite fibers are most preferred and used. In the fiber cross section of such a conductive composite fiber, a non-exposed type in which the conductive layer is completely wrapped in the non-conductive layer and an exposure in which the conductive layer is exposed to a part of the fiber surface or the entire fiber surface. There are types, and conductive composite fibers with various fiber cross sections are used depending on the application. (Patent Document 1, Patent Document 2, Patent Document 3)

特開2014−133950号公報Japanese Unexamined Patent Publication No. 2014-133950 特開平11−65226号公報JP-A-11-65226 国際公開WO01/021867号公報International Publication WO01 / 021867

ところで、繊維横断面において導電層となるカーボンブラック含有樹脂組成物を配し、非導電層かつ強度保持層となる樹脂を配し溶融複合紡糸することで導電性複合繊維となるが、カーボンブラック含有樹脂組成物は溶融流動性が低いことにより導電性複合繊維の強伸度が著しく劣り、工程通過性や耐久性に劣ったものとなるため、様々な工夫がなされている。特に後工程通過性や耐久性にかかわる導電性複合繊維の強度及び伸度に関しては、例えば一般的に強度に優れ、柔軟な樹脂として挙げられるポリアミドの中でも高粘度のものを強度保持層に使用するとより強度は向上し、工程通過性も優れたものとなる。しかし、強度保持層に高粘度ポリアミドを使用すると複合繊維の収縮率と収縮応力が高くなるため寸法安定性に劣り、例えば寸法安定性に優れるポリエステル糸と混用し、布帛として精練、染色、乾燥、仕上げ熱セットといった工程を通過させると、布帛内の導電性複合繊維の部分が強く収縮し、布帛全体が波打ったようなシワが生じ、品位に劣ったものとなる。
本発明は、上記の課題を鑑み、ポリアミド系導電性複合繊維において、強伸度及び導電性に優れ、更にポリエステル糸と混用して布帛とした際にシワが生じない寸法安定性に優れた導電性複合繊維を得ることを目的とする。
By the way, a carbon black-containing resin composition as a conductive layer is arranged in the cross section of the fiber, and a resin as a non-conductive layer and a strength-retaining layer is arranged and melt-composite spun to obtain a conductive composite fiber, which contains carbon black. Since the resin composition has low melt fluidity, the strength and elongation of the conductive composite fiber are remarkably inferior, and the process passability and durability are inferior. Therefore, various measures have been taken. In particular, regarding the strength and elongation of the conductive composite fiber, which is related to the passability and durability in the post-process, for example, when a polyamide having a high viscosity among the polyamides generally excellent in strength and being listed as a flexible resin is used for the strength retaining layer. The strength is further improved, and the process passability is also excellent. However, when high-viscosity polyamide is used for the strength-retaining layer, the shrinkage rate and shrinkage stress of the composite fiber become high, so that the dimensional stability is inferior. When it is passed through a process such as finishing heat setting, the portion of the conductive composite fiber in the fabric is strongly shrunk, and wrinkles appear to be wavy in the entire fabric, resulting in inferior quality.
In view of the above problems, the present invention has excellent conductivity and conductivity in polyamide-based conductive composite fibers, and also has excellent dimensional stability that does not cause wrinkles when mixed with polyester yarn to form a fabric. The purpose is to obtain sex composite fibers.

上記目的を達成するため、本発明は、繊維横断面において導電層と、強度保持層となる非導電層からなる導電性複合繊維であって、導電層は、導電性カーボンブラックを15質量%以上、45質量%以下含有したポリアミドであり、非導電層はメタキシレンジアミンと脂肪族ジカルボン酸の重縮合で得られるポリアミドである導電性複合繊維をその要旨とする。
上記導電性複合繊維において、導電層のポリアミドが、ポリアミド6、ポリアミド12またはポリアミド66であることが好ましい。
また、上記導電性複合繊維おいて、繊維横断面における非導電層/導電層の面積比率が30/70〜98/2であることが好ましい。
In order to achieve the above object, the present invention is a conductive composite fiber composed of a conductive layer and a non-conductive layer serving as a strength retaining layer in the cross section of the fiber, and the conductive layer contains 15% by mass or more of conductive carbon black. , 45% by mass or less of the polyamide, and the non-conductive layer is a conductive composite fiber which is a polyamide obtained by polycondensation of metaxylene diamine and an aliphatic dicarboxylic acid.
In the conductive composite fiber, the polyamide of the conductive layer is preferably polyamide 6, polyamide 12, or polyamide 66.
Further, in the conductive composite fiber, the area ratio of the non-conductive layer / conductive layer in the cross section of the fiber is preferably 30/70 to 98/2.

本発明の導電性複合繊維は、強伸度及び導電性に優れ、ポリエステル糸と混用しても、加工後にシワ等の不良がない品位の高い布帛を得ることができる。 The conductive composite fiber of the present invention is excellent in strong elongation and conductivity, and even when mixed with polyester yarn, it is possible to obtain a high-quality fabric without defects such as wrinkles after processing.

以下、本発明を詳細に説明する。
本発明は、導電層と強度保持層となる非導電層とからなる導電性複合繊維である。
そして、非導電層はメタキシレンジアミンと脂肪族ジカルボン酸の重縮合で得られるポリアミドからなる。
Hereinafter, the present invention will be described in detail.
The present invention is a conductive composite fiber composed of a conductive layer and a non-conductive layer serving as a strength retaining layer.
The non-conductive layer is made of a polyamide obtained by polycondensation of metaxylylenediamine and an aliphatic dicarboxylic acid.

本発明において、非導電層を構成するポリアミドは、メタキシレンジアミンと脂肪族ジカルボン酸の重縮合から得られるポリアミドであり、例えば、メタキシレンジアミンとアジピン酸の重縮合から得られるポリアミドMXD6、メタキシレンジアミンとセバシン酸の重縮合から得られるポリアミドMXD8が好適に挙げられる。これらは三菱ガス化学(株)のMXナイロンシリーズとして一般的に入手できる。 In the present invention, the polyamide constituting the non-conductive layer is a polyamide obtained by polycondensation of metaxylene diamine and an aliphatic dicarboxylic acid. For example, polyamide MXD6 and metaxylene obtained by polycondensation of metaxylene diamine and adipic acid. Polyamide MXD8 obtained from polycondensation of diamine and sebacic acid is preferably mentioned. These are generally available as the MX nylon series of Mitsubishi Gas Chemical Company, Inc.

本発明の導電性複合繊維の導電層は、導電性カーボンブラックを15質量%以上、45質量%以下含有したポリアミドである。 The conductive layer of the conductive composite fiber of the present invention is a polyamide containing 15% by mass or more and 45% by mass or less of conductive carbon black.

本発明において、導電層を構成するベースポリマーとなる熱可塑性樹脂は、ポリアミドである。
このようなポリアミドとしては、例えば、ポリアミド6、ポリアミド66、ポリアミド12、ポリアミド11、ポリアミド66及びそれらを主体とする共重合体が挙げられ、中でも、ポリアミド6、ポリアミド66、ポリアミド12が好ましい。
In the present invention, the thermoplastic resin serving as the base polymer constituting the conductive layer is polyamide.
Examples of such a polyamide include polyamide 6, polyamide 66, polyamide 12, polyamide 11, polyamide 66 and a copolymer containing them as a main component, and among them, polyamide 6, polyamide 66 and polyamide 12 are preferable.

本発明の導電性複合繊維において、導電層は、導電性カーボンブラックを15質量%以上、45質量%以下含有する。カーボンブラックの量が、少な過ぎると導電性及び制電性が得られず、多過ぎると、紡糸の際に、流動性が失われ製糸性が悪くなる傾向がある。中でも、カーボンブラックの含有量は、20質量%以上、40質量%以下が好ましい。 In the conductive composite fiber of the present invention, the conductive layer contains 15% by mass or more and 45% by mass or less of conductive carbon black. If the amount of carbon black is too small, conductivity and antistatic properties cannot be obtained, and if it is too large, fluidity tends to be lost during spinning and the spinning property tends to deteriorate. Above all, the content of carbon black is preferably 20% by mass or more and 40% by mass or less.

本発明において、導電層に用いられる導電性カーボンブラックとしては、ケッチェンブラック、ファーネスブラック、アセチレンブラックなどが挙げられ、優れた導電性を有するカーボンブラックであれば特に限定はされない。 In the present invention, examples of the conductive carbon black used for the conductive layer include Ketjen black, furnace black, and acetylene black, and the present invention is not particularly limited as long as it is a carbon black having excellent conductivity.

本発明における導電層に導電性カーボンブラックを含有させる方法としては、(1)溶融複合紡糸時に導電性カーボンブラックと樹脂を混合する方法、(2)予め、導電性カーボンブラックとベースポリマーとなる樹脂を混練させ、導電性カーボンブラックとベースポリマーの樹脂組成物を得た後に、この樹脂組成物を溶融複合紡糸し、導電層を形成する方法等が挙げられるが、後者の方が好ましい。 The methods for incorporating the conductive carbon black into the conductive layer in the present invention include (1) a method of mixing the conductive carbon black and the resin at the time of melt composite spinning, and (2) a resin serving as the base polymer with the conductive carbon black in advance. Is kneaded to obtain a resin composition of conductive carbon black and a base polymer, and then this resin composition is melt-composite spun to form a conductive layer. The latter is preferable.

本発明の導電性複合繊維は、繊維横断面における非導電層/導電層の面積比率が30/70〜98/2であることが好ましい。この範囲外となった場合は十分な導電性が得られず、布帛に使用した際に制電性が損なわれたり、糸強度が著しく低下するばかりでなく、糸切れが多発するおそれがある。より好ましくは、非導電層/導電層の面積比率が50/50〜95/5である。尚、本発明において、繊維横断面は、繊維軸長手方向に垂直な面をいう。 In the conductive composite fiber of the present invention, the area ratio of the non-conductive layer / conductive layer in the cross section of the fiber is preferably 30/70 to 98/2. If it is out of this range, sufficient conductivity cannot be obtained, and when it is used for a fabric, not only the antistatic property is impaired, the yarn strength is remarkably lowered, but also the yarn breakage may occur frequently. More preferably, the area ratio of the non-conductive layer / conductive layer is 50/50 to 95/5. In the present invention, the fiber cross section refers to a plane perpendicular to the fiber axis longitudinal direction.

本発明の導電性複合繊維の断面形状は、導電層が非導電層に完全に包まれている非露出タイプ、導電層が繊維表面の一部または繊維表面全体に露出している露出タイプのいずれでもよい。繊維表面全体に露出している露出タイプは、特に、通常、強伸度が得られにくいが、本発明の導電性複合繊維であれば、十分な強伸度を得て、ポリエステル糸と混用して布帛としても、シワにならず、品位の高い布帛を得ることができる。
本発明の導電性複合繊維において、制電性が優れる点からは、繊維表面全体に露出している露出タイプが好ましく、芯に非導電層、鞘に導電層を配したものが好ましい。
The cross-sectional shape of the conductive composite fiber of the present invention is either a non-exposed type in which the conductive layer is completely wrapped in the non-conductive layer, or an exposed type in which the conductive layer is exposed to a part of the fiber surface or the entire fiber surface. It may be. In particular, the exposed type exposed on the entire fiber surface usually has difficulty in obtaining strong elongation, but the conductive composite fiber of the present invention can obtain sufficient strong elongation and is mixed with polyester yarn. As a cloth, it is possible to obtain a high-quality cloth without wrinkles.
In the conductive composite fiber of the present invention, from the viewpoint of excellent antistatic property, an exposed type that is exposed on the entire surface of the fiber is preferable, and a non-conductive layer on the core and a conductive layer on the sheath are preferable.

このような本発明の導電性複合繊維は、ポリエステル糸と組み合わせた布帛に用いたとしても、加工の際にシワが生じず、クリーンルーム用の防塵衣、作業衣等に好適に用いることができる。 Even if the conductive composite fiber of the present invention is used for a fabric combined with polyester yarn, it does not wrinkle during processing and can be suitably used for dust-proof clothing for clean rooms, work clothing, and the like.

また、本発明の導電性複合繊維は、織編物に混用して制電性生地とし、ユニフォーム、クリーンルーム用防塵衣、カーペット、カーテンに好適に用いることができる。短繊維化して紡績糸や不織布としても良いし、導電性を利用した導電ブラシ、タッチパネル用ペン先や手袋として使用しても良い。 Further, the conductive composite fiber of the present invention is mixed with a woven or knitted fabric to form an antistatic fabric, and can be suitably used for uniforms, dustproof clothing for clean rooms, carpets, and curtains. It may be shortened into a spun yarn or a non-woven fabric, or it may be used as a conductive brush utilizing conductivity, a pen tip for a touch panel, or a glove.

本発明の導電性複合繊維の好適な製造方法の例を示す。
上記の導電性カーボンブラック、上記のポリアミドを準備し、混練して樹脂組成物を製造する。得られた樹脂組成物を導電層、ポリアミドMXD6またはポリアミドMXD8を非導電層とし、導電層と非導電層が繊維横断面で複合された状態で吐出される複合口金と用いて、溶融複合紡糸を行い、導電性複合繊維を製造する。
An example of a suitable manufacturing method of the conductive composite fiber of the present invention is shown.
The above-mentioned conductive carbon black and the above-mentioned polyamide are prepared and kneaded to produce a resin composition. A melt composite spinning is performed by using the obtained resin composition as a conductive layer and polyamide MXD6 or polyamide MXD8 as a non-conductive layer, and using a composite base that discharges the conductive layer and the non-conductive layer in a composite state in a fiber cross section. To produce a conductive composite fiber.

以下に実施例を挙げて本発明を具体的に説明する。なお、本発明は以下に述べる実施例に限定されるものではない。尚、本発明の実施例及び比較例で得られた導電性繊維及びそれからなる生地の特性・評価は次に示す方法より求めた。 The present invention will be specifically described below with reference to examples. The present invention is not limited to the examples described below. The characteristics and evaluation of the conductive fibers and the fabric made of the conductive fibers obtained in the examples and comparative examples of the present invention were obtained by the following methods.

<ポリアミドの相対粘度ηr>
96.0%硫酸における相対粘度ηrは、50mlの96.0%硫酸に0.5gのポリアミドを溶解させた溶液を準備し、25℃でオストワルド粘度計を通し、溶液の流下時間を硫酸の流下時間で割りかえすことにより求めた。
<破断強度、破断伸度及び強伸度積>
導電性複合繊維の破断強度及び破断伸度は、JIS−L−1013に準じ、(株)島津製作所製AGS−1KNGオートグラフ引っ張り試験機を用い、試料糸長20cm、引っ張り速度20cm/minの条件で試料が伸長破断したときの強度及び伸度を測定して求めた。また、それらの数値から下記式より強伸度積を求めた。後工程や耐久性を鑑みると、強伸度積は好ましくは20以上、さらに好ましくは22以上である。
<Relative viscosity of polyamide ηr>
For the relative viscosity ηr in 96.0% sulfuric acid, prepare a solution in which 0.5 g of polyamide is dissolved in 50 ml of 96.0% sulfuric acid, pass it through an Ostwald viscometer at 25 ° C., and allow the flow time of the solution to flow down the sulfuric acid. Obtained by dividing by time.
<Production of breaking strength, breaking elongation and strong elongation>
The breaking strength and breaking elongation of the conductive composite fiber are in accordance with JIS-L-1013, using an AGS-1KNG autograph tensile tester manufactured by Shimadzu Corporation, and the conditions are that the sample yarn length is 20 cm and the tensile speed is 20 cm / min. The strength and elongation when the sample was stretched and fractured were measured and obtained. In addition, the strong elongation product was calculated from these values by the following formula. Considering the post-process and durability, the strong elongation product is preferably 20 or more, more preferably 22 or more.

Figure 0006752755
<熱水収縮率>
JIS−L−1013に準じ、熱水収縮率を求めた。
<繊維の導電性評価(線抵抗値)>
線抵抗値は、導電性複合繊維を10cm採取し、その両端に導電性接着剤でアルミ箔を接着させ、ヒューレットパッカード製ハイレジスタンスメーター4339Bを用いて測定した。
<サンプル生地の作製>
導電性複合繊維を56dtex/24fのポリエチレンテレフタレート繊維にカバリングしたカバリング糸を8mmピッチで経糸に用い、その他の経糸及び緯糸は84dtex/36fのポリエチレンテレフタレート繊維とし、タフタを作製し、70℃の弱アルカリ性精練液にて精練し、130℃で染色し、乾燥した後160℃で熱セットしてサンプル生地とした。
<シワの評価>
サンプル生地を平坦な台の上に載せて光源を横方向から当てることにより目視でシワ不良の評価を行った。
シワのないものは○、軽度のシワがみられるものは△、強いシワがみられるものは×と評価した。
Figure 0006752755
<Hot water shrinkage rate>
The hot water shrinkage rate was determined according to JIS-L-1013.
<Evaluation of fiber conductivity (line resistance value)>
The linear resistance value was measured by collecting 10 cm of a conductive composite fiber, adhering aluminum foil to both ends thereof with a conductive adhesive, and using a high resistance meter 4339B manufactured by Hewlett-Packard.
<Making sample fabric>
A covering yarn obtained by covering a conductive composite fiber with a polyethylene terephthalate fiber of 56 dtex / 24 f was used as a warp yarn at a pitch of 8 mm, and other warp yarns and weft yarns were made of a polyethylene terephthalate fiber of 84 dtex / 36 f to prepare a taffeta, which was weakly alkaline at 70 ° C. It was scoured with a scouring solution, dyed at 130 ° C., dried, and then heat-set at 160 ° C. to prepare a sample dough.
<Evaluation of wrinkles>
Wrinkle defects were visually evaluated by placing the sample fabric on a flat table and shining a light source from the side.
Those without wrinkles were evaluated as ○, those with mild wrinkles were evaluated as △, and those with strong wrinkles were evaluated as ×.

〔実施例1〕
ポリアミド6に導電性カーボンブラックを35質量%混練した樹脂組成物を鞘の導電層、ポリアミドMXD6(三菱ガス化学製MXナイロン S−6011)を芯の非導電層とし、導電層が繊維表面全体に露出した芯鞘型複合繊維を形成する口金を用いて溶融複合紡糸機にて複合紡糸を行った。口金のホール数は24ホールであり、吐出された複合繊維を8糸条に分け、1糸条を3フィラメントとし、油剤付与ガイド、ゴデットローラーを介し1500m/minで回転するボビンに未延伸糸として巻き取った。巻き取られた未延伸糸を延撚機にてフィードローラー、90℃の予熱ローラー、150℃の熱セットローラーを介し、予熱ローラーと熱セットローラー間で破断伸度が30〜80%程度となるように回転速度差を付けて延伸させ、トラベラを介してパーンに巻き取り、22dtex/3fの導電性複合繊維の延伸糸を得た。尚、繊維横断面における非導電層/導電層の面積比率は83.3/16.7とした。
得られた導電性複合繊維は強伸度に優れたものとなり、後工程の通過性にも優れたものであった。また得られた導電性複合繊維を用いて、サンプル生地を作製した。得られたサンプル生地は、シワの発生がなく、品位に優れるものであった。
[Example 1]
A resin composition obtained by kneading 35% by mass of conductive carbon black with polyamide 6 is used as a conductive layer of a sheath, and polyamide MXD6 (MX nylon S-6011 manufactured by Mitsubishi Gas Chemicals Co., Ltd.) is used as a core non-conductive layer, and the conductive layer covers the entire fiber surface. Composite spinning was performed with a melt composite spinning machine using a mouthpiece for forming exposed core-sheath composite fibers. The number of holes in the base is 24, and the discharged composite fiber is divided into 8 threads, 1 thread is 3 filaments, and an undrawn thread is attached to a bobbin that rotates at 1500 m / min via an oiling guide and a godet roller. Winded up as. The undrawn yarn that has been wound is passed through a feed roller, a preheating roller at 90 ° C., and a heat setting roller at 150 ° C. in a twisting machine, and the elongation at break becomes about 30 to 80% between the preheating roller and the heat setting roller. As described above, the yarn was stretched with a difference in rotation speed and wound around a pan via a traveler to obtain a drawn yarn of a conductive composite fiber of 22dtex / 3f. The area ratio of the non-conductive layer / conductive layer in the cross section of the fiber was 83.3 / 16.7.
The obtained conductive composite fiber had excellent strength and elongation, and also had excellent passability in the subsequent process. Further, a sample dough was prepared using the obtained conductive composite fiber. The obtained sample dough had no wrinkles and was of excellent quality.

〔実施例2〕
鞘の導電層をポリアミド12とし、導電性カーボンブラックを35質量%混練した樹脂組成物とした以外は、実施例1と同様の条件で22dtex/3fの導電性複合繊維の延伸糸を得た。繊維横断面における非導電層/導電層の面積比率は83.3/16.7とした。
得られた導電性複合繊維は強伸度に優れたものとなり、後工程の通過性にも優れたものであった。また得られた導電性複合繊維を用いて、サンプル生地を作製した。得られたサンプル生地は、シワの発生がなく、品位に優れるものであった。
[Example 2]
A drawn yarn of 22dtex / 3f conductive composite fiber was obtained under the same conditions as in Example 1 except that the conductive layer of the sheath was polyamide 12 and the conductive carbon black was kneaded in a resin composition of 35% by mass. The area ratio of the non-conductive layer / conductive layer in the cross section of the fiber was 83.3 / 16.7.
The obtained conductive composite fiber had excellent strength and elongation, and also had excellent passability in the subsequent process. Further, a sample dough was prepared using the obtained conductive composite fiber. The obtained sample dough had no wrinkles and was of excellent quality.

〔実施例3〕
ポリアミド6に導電性カーボンブラックを35質量%混練した樹脂組成物を芯の導電層、ポリアミドMXD6(三菱ガス化学製MXナイロン S−6011)を鞘の非導電層とし、導電層が繊維表面全体に2点露出し、非導電層に挟まれる形のサンドイッチ芯鞘型複合繊維を形成する口金を用いて溶融複合紡糸機にて複合紡糸を行った。口金のホール数は24ホールであり、吐出された複合繊維を4糸条に分け、1糸条を6フィラメントとし、油剤付与ガイド、ゴデットローラーを介し1000m/minで回転するボビンに未延伸糸として巻き取った。巻き取られた未延伸糸を延撚機にてフィードローラー、90℃の予熱ローラー、150℃の熱セットローラーを介し、予熱ローラーと熱セットローラー間で破断伸度が30〜80%程度となるように回転速度差を付けて延伸させ、トラベラを介してパーンに巻きとり、22dtex/6fの導電性複合繊維の延伸糸を得た。尚、繊維横断面における非導電層/導電層の面積比率は90.9/9.1とした。
得られた導電性複合繊維は強伸度に優れたものとなり、後工程の通過性にも優れたものであった。また得られた導電性繊維を用いて、サンプル生地を作製した。得られたサンプル生地は、シワの発生がなく、品位に優れるものであった。
[Example 3]
A resin composition obtained by kneading 35% by mass of conductive carbon black with polyamide 6 is used as a conductive layer for the core, and polyamide MXD6 (MX nylon S-6011 manufactured by Mitsubishi Gas Chemicals Co., Ltd.) is used as a non-conductive layer for the sheath, and the conductive layer covers the entire fiber surface. Composite spinning was performed with a melt composite spinning machine using a mouthpiece that was exposed at two points and formed a sandwich core-sheath type composite fiber sandwiched between non-conductive layers. The number of holes in the base is 24, and the discharged composite fiber is divided into 4 threads, 1 thread is 6 filaments, and an undrawn thread is attached to a bobbin that rotates at 1000 m / min via an oiling guide and a godet roller. Winded up as. The undrawn yarn that has been wound is passed through a feed roller, a preheating roller at 90 ° C., and a heat setting roller at 150 ° C. in a twisting machine, and the elongation at break becomes about 30 to 80% between the preheating roller and the heat setting roller. As described above, the yarn was stretched with a difference in rotation speed and wound around a pan via a traveler to obtain a drawn yarn of a conductive composite fiber of 22dtex / 6f. The area ratio of the non-conductive layer / conductive layer in the cross section of the fiber was 90.9 / 9.1.
The obtained conductive composite fiber had excellent strength and elongation, and also had excellent passability in the subsequent process. Further, a sample dough was prepared using the obtained conductive fiber. The obtained sample dough had no wrinkles and was of excellent quality.

〔実施例4〕
非導電層をポリアミドMXD8(三菱ガス化学製MXナイロン LEXTER8000)とした以外は、実施例3と同様の条件で22dtex/6fの導電性複合繊維の延伸糸を得た。
得られた導電性複合繊維は強伸度に優れたものとなり、後工程の通過性にも優れたものであった。また得られた導電性繊維を用いて、サンプル生地を作製した。得られたサンプル生地は、シワの発生がなく、品位に優れるものであった。
[Example 4]
A drawn yarn of 22dtex / 6f conductive composite fiber was obtained under the same conditions as in Example 3 except that the non-conductive layer was polyamide MXD8 (MX nylon LEXTER8000 manufactured by Mitsubishi Gas Chemical Company).
The obtained conductive composite fiber had excellent strength and elongation, and also had excellent passability in the subsequent process. Further, a sample dough was prepared using the obtained conductive fiber. The obtained sample dough had no wrinkles and was of excellent quality.

〔比較例1〕
ポリアミド6に導電性カーボンブラックを35質量%混練した樹脂組成物を鞘の導電層、ポリアミド6(ηr=3.37)を芯の非導電層とし、導電層が繊維表面全体に露出した芯鞘型複合繊維を形成する口金を用いて溶融複合紡糸機にて複合紡糸を行った。口金のホール数は24ホールであり、吐出された複合繊維を8糸条に分け、1糸条を3フィラメントとし、油剤付与ガイド、ゴデットローラーを介し1500m/minで回転するボビンに未延伸糸として巻き取った。巻き取られた未延伸糸を延撚機にてフィードローラー、115℃の予熱ローラー、130℃の熱セットローラーを介し、予熱ローラーと熱セットローラー間で破断伸度が30〜80%程度となるように回転速度差を付けて延伸させ、トラベラを介してパーンに巻きとり、22dtex/3fの導電性複合繊維の延伸糸を得た。尚、繊維横断面における非導電層/導電層の面積比率は83.3/16.7とした。
得られた導電性複合繊維は強伸度に優れたものとなった。これを用いて、サンプル生地を作製した。得られたサンプル生地は、シワが発生し、波打ったものとなった。
[Comparative Example 1]
A resin composition obtained by kneading 35% by mass of conductive carbon black with polyamide 6 is used as a conductive layer of a sheath, and polyamide 6 (ηr = 3.37) is used as a non-conductive layer of a core, and the conductive layer is exposed on the entire fiber surface. Composite spinning was performed with a melt composite spinning machine using a base for forming a mold composite fiber. The number of holes in the base is 24, and the discharged composite fiber is divided into 8 threads, 1 thread is 3 filaments, and an undrawn thread is attached to a bobbin that rotates at 1500 m / min via an oiling guide and a godet roller. Winded up as. The undrawn yarn that has been wound is passed through a feed roller, a preheating roller at 115 ° C., and a heat setting roller at 130 ° C. in a twisting machine, and the elongation at break becomes about 30 to 80% between the preheating roller and the heat setting roller. As described above, the yarn was stretched with a difference in rotation speed and wound around a pan via a traveler to obtain a drawn yarn of a conductive composite fiber of 22dtex / 3f. The area ratio of the non-conductive layer / conductive layer in the cross section of the fiber was 83.3 / 16.7.
The obtained conductive composite fiber has excellent strength and elongation. Using this, a sample dough was prepared. The obtained sample dough was wrinkled and wavy.

〔比較例2〕
非導電層をポリアミド6(ηr=2.58)とした以外は、比較例1と同様の条件で22dtex/3fの導電性複合繊維の延伸糸を得た。
得られた導電性複合繊維を用いて、サンプル生地を作製した。得られたサンプル生地は、軽度のシワがみられた。
[Comparative Example 2]
A drawn yarn of 22dtex / 3f conductive composite fiber was obtained under the same conditions as in Comparative Example 1 except that the non-conductive layer was polyamide 6 (ηr = 2.58).
A sample dough was prepared using the obtained conductive composite fiber. The obtained sample dough had slight wrinkles.

〔比較例3〕
非導電層をポリアミド66(ηr=2.80)とした以外は、比較例1と同様の条件で22dtex/3fの導電性複合繊維の延伸糸を得た。
得られた導電性複合繊維を用いて、サンプル生地を作製した。得られたサンプル生地は、軽度のシワがみられた。
[Comparative Example 3]
A drawn yarn of 22dtex / 3f conductive composite fiber was obtained under the same conditions as in Comparative Example 1 except that the non-conductive layer was polyamide 66 (ηr = 2.80).
A sample dough was prepared using the obtained conductive composite fiber. The obtained sample dough had slight wrinkles.

〔比較例4〕
非導電層をポリアミド66(ηr=3.80)とした以外は、比較例1と同様の条件で22dtex/3fの導電性複合繊維の延伸糸を得た。
得られた導電性複合繊維を用いて、サンプル生地を作製した。得られたサンプル生地は、軽度のシワがみられた。
実施例及び比較例で得られた導電性複合繊維の構成と、糸質物性を表1に、導電性複合繊維を用いて作製したサンプル生地のシワの評価を表2に示す。
[Comparative Example 4]
A drawn yarn of 22dtex / 3f conductive composite fiber was obtained under the same conditions as in Comparative Example 1 except that the non-conductive layer was polyamide 66 (ηr = 3.80).
A sample dough was prepared using the obtained conductive composite fiber. The obtained sample dough had slight wrinkles.
Table 1 shows the composition of the conductive composite fibers obtained in Examples and Comparative Examples, and the physical properties of the yarn, and Table 2 shows the evaluation of wrinkles in the sample fabric prepared by using the conductive composite fibers.

Figure 0006752755
Figure 0006752755

Figure 0006752755
Figure 0006752755

表1、表2の結果より、本発明の実施例から得られた複合繊維は、導電性、強伸度及び寸法安定性に優れた導電性複合繊維であった。このため、耐久性及び工程通過性に優れ、更にポリエステルと混用し、布帛とした際にシワが生じないものであった。 From the results shown in Tables 1 and 2, the composite fibers obtained from the examples of the present invention were conductive composite fibers having excellent conductivity, strong elongation and dimensional stability. For this reason, it is excellent in durability and process passability, and is not wrinkled when mixed with polyester to form a cloth.

本発明の導電性複合繊維は、強伸度とそれに伴う耐久性及び工程通過性、また導電性に優れ、更に生地加工の際に寸法安定性に優れる。そのため、クリーンルーム用の防塵衣、作業衣等に好適に用いることができる。 The conductive composite fiber of the present invention is excellent in high elongation and associated durability, process passability, conductivity, and dimensional stability during fabric processing. Therefore, it can be suitably used for dust-proof clothing for clean rooms, work clothing, and the like.

Claims (3)

繊維横断面において非導電層と導電層を有する導電性複合繊維であって、導電層は、導電性カーボンブラックを15質量%以上、45質量%以下含有したポリアミドであり、非導電層は、メタキシレンジアミンと脂肪族ジカルボン酸の重縮合で得られるポリアミドである導電性複合繊維。 A conductive composite fiber having a non-conductive layer and a conductive layer in the cross section of the fiber, the conductive layer is a polyamide containing 15% by mass or more and 45% by mass or less of conductive carbon black, and the non-conductive layer is a meta. A conductive composite fiber that is a polyamide obtained by polycondensation of xylene diamine and an aliphatic dicarboxylic acid. 導電層のポリアミドが、ポリアミド6またはポリアミド12である請求項1記載の導電性複合繊維。 The conductive composite fiber according to claim 1, wherein the polyamide of the conductive layer is polyamide 6 or polyamide 12. 繊維横断面における非導電層/導電層の面積比率が30/70〜98/2である請求項1または2に記載の導電性複合繊維。 The conductive composite fiber according to claim 1 or 2, wherein the area ratio of the non-conductive layer / conductive layer in the cross section of the fiber is 30/70 to 98/2.
JP2017100392A 2017-05-19 2017-05-19 Polyamide-based conductive composite fiber Active JP6752755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017100392A JP6752755B2 (en) 2017-05-19 2017-05-19 Polyamide-based conductive composite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017100392A JP6752755B2 (en) 2017-05-19 2017-05-19 Polyamide-based conductive composite fiber

Publications (2)

Publication Number Publication Date
JP2018193648A JP2018193648A (en) 2018-12-06
JP6752755B2 true JP6752755B2 (en) 2020-09-09

Family

ID=64570795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017100392A Active JP6752755B2 (en) 2017-05-19 2017-05-19 Polyamide-based conductive composite fiber

Country Status (1)

Country Link
JP (1) JP6752755B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023127174A1 (en) * 2021-12-29 2023-07-06

Also Published As

Publication number Publication date
JP2018193648A (en) 2018-12-06

Similar Documents

Publication Publication Date Title
TWI395848B (en) Electrically-conductive core-sheath type composite fiber and production method thereof
JP4902545B2 (en) Conductive conjugate fiber and method for producing the same
JP2008156810A (en) Core-sheath composite conductive fiber
JP3880743B2 (en) Woven fabric and dust-proof garment with excellent conductivity and antistatic properties
JP4367038B2 (en) Fiber and fabric
JP6752755B2 (en) Polyamide-based conductive composite fiber
JP7535284B2 (en) Conductive composite fiber and its manufacturing method
JP7340183B1 (en) Core-sheath type polyester composite fiber and its manufacturing method
JP2011157647A (en) Wiping cloth
JP2012117196A (en) Monofilament for screen gauze
JP2004036040A (en) Antistatic woven or knitted fabric and dustproof clothing
JP2017106134A (en) Conductive composite textured yarn and conductive woven fabric
JP2012207361A (en) Ultra fine fiber and wiping cloth containing ultra fine fiber
JP7428054B2 (en) textiles and clothing
CN116695285B (en) Nylon fabric with antistatic function and preparation method thereof
CN115244234A (en) Conductive composite processed yarn, fabric and garment
JP4628846B2 (en) Conductive brush
JP2003278031A (en) Highly durable conductive fiber
JP2015161050A (en) Conductive composite fiber
CN117813425A (en) Core-sheath type polyester composite fiber and manufacturing method thereof
JP4298675B2 (en) Polytrimethylene terephthalate multifilament yarn
JP3958227B2 (en) Blended yarn
JP2813368B2 (en) Antistatic composite fiber
JP6420141B2 (en) Conductive yarn and method for producing the same
JP2017075435A (en) Conductive composite fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200819

R150 Certificate of patent or registration of utility model

Ref document number: 6752755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150