[go: up one dir, main page]

JP6744319B2 - Positive electrode active material for lithium battery having porous structure and manufacturing method - Google Patents

Positive electrode active material for lithium battery having porous structure and manufacturing method Download PDF

Info

Publication number
JP6744319B2
JP6744319B2 JP2017540533A JP2017540533A JP6744319B2 JP 6744319 B2 JP6744319 B2 JP 6744319B2 JP 2017540533 A JP2017540533 A JP 2017540533A JP 2017540533 A JP2017540533 A JP 2017540533A JP 6744319 B2 JP6744319 B2 JP 6744319B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
lithium
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017540533A
Other languages
Japanese (ja)
Other versions
JP2017533571A (en
Inventor
カン,ドスーン
リー,アラム
チョイ,スングン
ムン,ジェウン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ENF Technology CO Ltd
Original Assignee
ENF Technology CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ENF Technology CO Ltd filed Critical ENF Technology CO Ltd
Publication of JP2017533571A publication Critical patent/JP2017533571A/en
Application granted granted Critical
Publication of JP6744319B2 publication Critical patent/JP6744319B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、多孔性構造を有するリチウム電池用正極活物質及びその製造方法に係り、より詳細には、多孔性構造を有することによって大きな比表面積及び優れた効率特性を有する多孔性リチウム電池用正極活物質及びその製造方法に関する。 The present invention relates to a positive electrode active material for a lithium battery having a porous structure and a method for producing the same, and more particularly, to a positive electrode for a porous lithium battery having a large specific surface area and excellent efficiency characteristics due to the porous structure. The present invention relates to an active material and a method for producing the same.

携帯電話、ノート型パソコンなどのIT産業の拡大と携帯機器の大衆化とによって、リチウム二次電池を中心とした小型二次電池の使用が増加しており、それによる消費者の高い要求を充足させるために、高性能と軽量化を両立した電池の必要性が高まっている。 Due to the expansion of the IT industry such as mobile phones and laptop computers and the popularization of mobile devices, the use of small secondary batteries, mainly lithium secondary batteries, is increasing, which satisfies the high demands of consumers. Therefore, there is an increasing need for batteries that have both high performance and light weight.

また、グリーンエネルギーの一環として環境に優しい自動車への関心が高まりつつあり、電気自動車用のモータ駆動用電源のような、高出力及び高エネルギー密度が求められる中大型自動車市場を先占するための研究が持続的に進められている。 In addition, as a part of green energy, interest in environment-friendly automobiles is increasing, and research to preempt the medium and large-sized automobile market, which requires high output and high energy density, such as motor drive power supplies for electric vehicles. Is being promoted continuously.

リチウム二次電池は、正極、負極、電解質、分離膜、で構成されている。正極は、電池の容量及び性能を決定する核心素材でありながら電池全体のコストに占める比重が大きいため、二次電池の商用化及び性能向上のためには正極の性能を向上させることが必須である。 The lithium secondary battery includes a positive electrode, a negative electrode, an electrolyte, and a separation film. Although the positive electrode is the core material that determines the capacity and performance of the battery, it has a large weight in the overall cost of the battery, so it is essential to improve the performance of the positive electrode in order to commercialize and improve the performance of the secondary battery. is there.

二次電池用正極材は、原料によってリチウムコバルト系(LCO)、リチウムニッケル系(LNO)、リチウムマンガン系(LMO)、リン酸鉄リチウム系(LFP)、に分類され、LCO、LNO、LMOのそれぞれの長所を併せ持つリチウムニッケル−コバルト−マンガン系(NCM)の使用比重が高まっている。 Cathode materials for secondary batteries are classified into lithium cobalt-based (LCO), lithium nickel-based (LNO), lithium manganese-based (LMO), and lithium iron phosphate-based (LFP) depending on the raw material, and are classified into LCO, LNO, and LMO. The specific gravity of use of lithium nickel-cobalt-manganese (NCM), which has both advantages, is increasing.

近年、電気自動車の市場が、HEV(ハイブリッド電気自動車)、PHEV(プラグインハイブリッド電気自動車)を中心に急激に拡大しつつある。HEV、PHEVは、瞬間出力特性が重要であることから、正極活物質については高出力の特性が要求されている。従来は、出力特性の向上が、正極活物質の粒子サイズを小さくすることで電解液との接触比表面積を大きくしリチウムイオンの電解液への移動度を高める方向に進められたが、単に粒子サイズを小さくするだけでは十分な出力が得られず、また、充放電サイクルを繰り返す過程で極微粒子が劣化するために長寿命性能特性が確保されにくいという問題がある。 In recent years, the market of electric vehicles has been rapidly expanding centering on HEVs (hybrid electric vehicles) and PHEVs (plug-in hybrid electric vehicles). Since the instantaneous output characteristics of HEV and PHEV are important, the cathode active material is required to have high output characteristics. Conventionally, the improvement of output characteristics has been promoted in the direction of increasing the mobility of lithium ions to the electrolytic solution by increasing the contact specific surface area with the electrolytic solution by decreasing the particle size of the positive electrode active material, There is a problem that sufficient output cannot be obtained only by reducing the size, and that long-term performance characteristics are difficult to ensure because the ultrafine particles deteriorate in the process of repeating charge and discharge cycles.

このような問題を解決するために、正極活物質粒子内部に中空構造を形成して電解液と接触する正極活物質の表面積を広げようとする試みがなされている。 In order to solve such a problem, attempts have been made to form a hollow structure inside the positive electrode active material particles to increase the surface area of the positive electrode active material in contact with the electrolytic solution.

特許文献1には、中心部に空間を有し、外側に複合酸化物からなる外殻部を有する中空粒子構造の正極活物質を提示しているが、前記正極活物質は、高出力充放電時に、外殻部構造が崩壊する可能性が高く、それによりサイクル特性が低下する。 Patent Document 1 presents a positive electrode active material having a hollow particle structure having a space in the center and an outer shell made of a composite oxide on the outside. However, the positive electrode active material is high-power charge/discharge. At times, the outer shell structure is likely to collapse, which reduces cycle performance.

また、特許文献2には、前駆体製造時の初期核生成工程を酸化性雰囲気下で進行させることで、ニッケルマンガン複合水酸化物粒子の外殻部の厚さを二次粒子径の5〜45%に設定した正極活物質を提示しているが、これも、中空構造の内側のみで気孔が大きく形成されており、充放電が繰り返されるうちに、急激な体積膨張によって割れが発生する恐れがある。割れが生じて外殻部が剥げ落ちれば、内部が露出されるか、球状粒子の形態を保持するのが困難になる。 Further, in Patent Document 2, the thickness of the outer shell part of the nickel-manganese composite hydroxide particles is set to 5 to the secondary particle diameter by advancing the initial nucleation step during the precursor production in an oxidizing atmosphere. Although a positive electrode active material set to 45% is presented, this also has large pores only inside the hollow structure, and cracks may occur due to rapid volume expansion during repeated charging and discharging. There is. If a crack occurs and the outer shell part peels off, the inside is exposed or it becomes difficult to maintain the shape of the spherical particles.

このように、中空構造を用いてある程度の出力特性の向上を図り、充放電過程での体積変化による粒子割れなどによる長寿命特性劣化をある程度改善することはできるが、粒子外部の電解液と粒子内部の電解液との流通経路が十分に確保されにくいことから改善に限界があること、中空構造の表面積には限界が存在すること、外殻部を持つ中空構造の特性上、物理的圧力による粒子の破損が避けられないこと、といった課題がある。 In this way, it is possible to improve the output characteristics to some extent by using the hollow structure, and it is possible to improve the deterioration of the long-life characteristics due to particle cracking due to the volume change in the charge and discharge process to some extent, There is a limit to improvement because it is difficult to secure a sufficient flow path with the electrolyte solution inside, there is a limit to the surface area of the hollow structure, and due to the characteristics of the hollow structure with the outer shell, it is There is a problem that particle damage is unavoidable.

韓国特許登録第10−1345509号公報Korean Patent Registration No. 10-1345509 韓国特許登録第10−1272411号公報Korean Patent Registration No. 10-1272411

本発明が解決しようとする課題は、高出力特性及び充放電安定性が向上した二次電池正極活物質を提供するところにある。 The problem to be solved by the present invention is to provide a secondary battery positive electrode active material having high output characteristics and improved charge/discharge stability.

本発明の他の課題は、前記リチウム電池用正極活物質の製造方法を提供するところにある。 Another object of the present invention is to provide a method for producing the positive electrode active material for the lithium battery.

前記課題を解決するために、本発明は、一次粒子の凝集体で二次粒子が形成され、前記二次粒子の内部領域の全体にわたって気孔が分布する多孔性構造であって、前記気孔が前記二次粒子の中心から放射状に分布しているリチウム電池用正極活物質を提供する。 In order to solve the above problems, the present invention forms a secondary particle with an aggregate of primary particles, and has a porous structure in which pores are distributed over the entire inner region of the secondary particle, and the pores are Provided is a positive electrode active material for a lithium battery, which is radially distributed from the center of secondary particles.

本発明の一つの実施形態によれば、前記一次粒子が、二次粒子の中心部から表面に向かって放射状に凝集し、球状の二次粒子を形成するものであり得る。 According to one embodiment of the present invention, the primary particles may be aggregated radially from the central portion of the secondary particles toward the surface to form spherical secondary particles.

本発明の一つの実施形態によれば、前記正極活物質は、リチウムと遷移金属との複合酸化物からなるものであり得る。 According to one embodiment of the present invention, the positive electrode active material may be composed of a composite oxide of lithium and a transition metal.

本発明の一つの実施形態によれば、前記遷移金属が、ニッケル、コバルト、マンガンから選択される1種以上の遷移金属であり得る。 According to one embodiment of the present invention, the transition metal may be one or more transition metals selected from nickel, cobalt and manganese.

本発明の一つの実施形態によれば、前記リチウム電池用正極活物質は、比表面積が1〜5m/gであり、二次粒子の平均粒径(D50)が2〜20μmであるものであり得る。 According to one embodiment of the present invention, the positive electrode active material for a lithium battery has a specific surface area of 1 to 5 m 2 /g and an average particle diameter (D50) of secondary particles of 2 to 20 μm. possible.

本発明の一つの実施形態によれば、前記リチウム電池用正極活物質は、下記化学式(I)で表されるリチウム−ニッケル複合酸化物を含むリチウム電池用正極活物質であり得る。 According to an embodiment of the present invention, the lithium battery positive electrode active material may be a lithium battery positive electrode active material including a lithium-nickel composite oxide represented by the following chemical formula (I).

LiNi1−x−y−zMnCo (I)
前記式において、
Mは、Mg、Al、Ti、Zr、Mo、W、Y、Sr、V、Ca、Nbから選択される1種以上の金属であり、
pは 0.90≦p≦1.2 であり、
xは 0≦x≦0.80 であり、
yは 0≦y≦0.50 であり、
zは 0<z≦0.05 である。
Li p Ni 1-x-y -z Mn x Co y M z O 2 (I)
In the above formula,
M is at least one metal selected from Mg, Al, Ti, Zr, Mo, W, Y, Sr, V, Ca and Nb,
p is 0.90≦p≦1.2,
x is 0≦x≦0.80,
y is 0≦y≦0.50,
z is 0<z≦0.05.

本発明の一つの実施形態によれば、前記リチウム電池用正極活物質が、3Cの条件下で80%以上の高率特性を有するものであり得る。 According to one embodiment of the present invention, the positive electrode active material for a lithium battery may have a high rate property of 80% or more under the condition of 3C.

本発明の他の課題を解決するために、本発明によるリチウム電池用正極活物質を製造する方法において、
ニッケル、コバルト、マンガンを含む金属塩混合水溶液を製造する段階と、
前記金属塩混合水溶液、錯イオン形成剤、及び、結晶形成調節剤、を含む反応溶液を反応器に投入する段階と、
不活性雰囲気下で前記反応溶液にpH調節剤を投入して反応溶液のpHを調節する段階と、
前記反応溶液を濾過して金属複合水酸化物を得る段階と、
前記金属複合水酸化物及びリチウム原料を混合して正極活物質前駆体を製造する段階と、
前記正極活物質前駆体を焼成する段階と、を含むリチウム電池用正極活物質の製造方法を提供する。
In order to solve the other problems of the present invention, in a method for producing a positive electrode active material for a lithium battery according to the present invention,
Producing a mixed metal salt aqueous solution containing nickel, cobalt and manganese;
Charging the reaction solution containing the metal salt mixed aqueous solution, the complex ion forming agent, and the crystal formation regulator into the reactor;
Adjusting the pH of the reaction solution by adding a pH adjuster to the reaction solution under an inert atmosphere;
Filtering the reaction solution to obtain a metal composite hydroxide,
Manufacturing a positive electrode active material precursor by mixing the metal composite hydroxide and a lithium raw material;
A method of manufacturing a positive electrode active material for a lithium battery, the method including the step of firing the positive electrode active material precursor.

本発明の一つの実施形態によれば、前記ニッケル、コバルト、マンガンを含む金属塩混合水溶液の濃度は、1.5〜4.0Mであり得る。 According to an embodiment of the present invention, the concentration of the metal salt mixed aqueous solution containing nickel, cobalt and manganese may be 1.5 to 4.0M.

本発明の一つの実施形態によれば、前記結晶形成調節剤はアルコール系添加剤であり、炭素数1〜10のアルコールであり、望ましくは、炭素数2〜10の多価アルコールであり得る。 According to one embodiment of the present invention, the crystal formation regulator is an alcohol-based additive, an alcohol having 1 to 10 carbon atoms, and preferably a polyhydric alcohol having 2 to 10 carbon atoms.

本発明の一つの実施形態によれば、前記アルコール系添加剤として、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、エリスリトール、ペンタエリスリトール、ブタンジオール、グリセリン、または、これらの混合物、からなる群から選択されるものであり得る。 According to one embodiment of the present invention, as the alcohol-based additive, methanol, ethanol, propanol, butanol, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, erythritol, pentaerythritol, butanediol, glycerin, or These mixtures may be selected from the group consisting of:

本発明の一つの実施形態によれば、前記前駆体製造時に複合金属水酸化物と混合するリチウム原料は、炭酸リチウムまたは水酸化リチウムであり得る。 According to one embodiment of the present invention, the lithium raw material mixed with the composite metal hydroxide during the production of the precursor may be lithium carbonate or lithium hydroxide.

本発明の一つの実施形態によれば、前記正極活物質前駆体の焼成温度は700〜950℃であり得る。 According to one embodiment of the present invention, the firing temperature of the positive electrode active material precursor may be 700 to 950°C.

また、本発明は、前記正極活物質を含むリチウム電池を提供する。 The present invention also provides a lithium battery including the positive electrode active material.

本発明は、粒子内部に気孔が均一に分布し、気孔が放射状に形成されたリチウム二次電池用正極活物質に関するものであって、一次粒子の結合体からなる球状に近い二次粒子の形態を成し、その内部に気孔が放射状に均一に分布しており、大きな比表面積を有し、これにより電解液の気孔内部への流入が容易であり、リチウムイオンの移動抵抗が低下して高出力特性を有する二次電池の製造を可能にする。 The present invention relates to a positive electrode active material for a lithium secondary battery in which pores are uniformly distributed inside the particles, and pores are radially formed, and the shape of the secondary particle is a nearly spherical shape composed of a combination of primary particles. The pores are evenly distributed radially inside, and have a large specific surface area, which facilitates the inflow of electrolyte into the pores and reduces the migration resistance of lithium ions. It enables production of a secondary battery having output characteristics.

実施例1の製造方法で製造されたリチウム二次電池用活物質の断面を撮影したSEM像。3 is an SEM image of a cross section of the active material for a lithium secondary battery manufactured by the manufacturing method of Example 1. 比較例1の製造方法で製造されたリチウム二次電池用活物質の断面を撮影したSEM像。5 is a SEM image of a cross section of the active material for a lithium secondary battery manufactured by the manufacturing method of Comparative Example 1. 比較例2の製造方法で製造されたリチウム二次電池用活物質の断面を撮影したSEM像。5 is an SEM image of a cross section of the active material for a lithium secondary battery manufactured by the manufacturing method of Comparative Example 2. 実施例1、比較例1、及び、比較例2、によるリチウム二次電池用活物質の出力特性及び寿命特性を示すグラフ。3 is a graph showing the output characteristics and life characteristics of the lithium secondary battery active materials according to Example 1, Comparative Example 1, and Comparative Example 2.

以下、本発明を実施例を参照してより詳細に説明する。しかし、これは、本発明を特定の実施形態に限定しようとするものではなく、本発明の技術思想及び本発明の範囲に含まれる変形物、均等物または代替物をいずれも含むものと理解しなければならない。 Hereinafter, the present invention will be described in more detail with reference to Examples. However, it is understood that this is not intended to limit the present invention to specific embodiments, but includes any variations, equivalents or alternatives included in the technical idea of the present invention and the scope of the present invention. There must be.

本発明によるリチウム電池用正極活物質は、一次粒子の凝集体で二次粒子が形成され、前記二次粒子の内部領域の全体にわたって気孔が分布する多孔性構造の粒子であって、前記気孔が前記二次粒子の中心から放射状に分布している正極活物質である。 The positive electrode active material for a lithium battery according to the present invention is a particle having a porous structure in which secondary particles are formed by agglomerates of primary particles, and pores are distributed over the entire inner region of the secondary particles, wherein the pores are The positive electrode active material is distributed radially from the center of the secondary particles.

本発明による正極活物質は、一次粒子からなる多孔性の二次粒子を提供する。前記一次粒子は多様な形態を有し特に制限されるものではないが、例えば、板状、針状、無定形の粒子形態であってよい。前記二次粒子は、前記一次粒子が凝集して球状粒子を成すものであり得る。 The positive electrode active material according to the present invention provides porous secondary particles composed of primary particles. The primary particles have various shapes and are not particularly limited, but may be, for example, plate-shaped, needle-shaped, or amorphous particle shapes. The secondary particles may be particles in which the primary particles are aggregated to form spherical particles.

前記二次粒子の内部は、前記一次粒子が凝集する際に形成された気孔を含むものであり得る。前記一次粒子間に存在する気孔は、二次粒子の中心部を基準に放射状に形成されている。 The inside of the secondary particles may include pores formed when the primary particles aggregate. The pores existing between the primary particles are radially formed based on the center of the secondary particles.

本発明によれば、前記放射状の多孔性構造は、板状または針状の一次粒子が二次粒子内部に前記二次粒子の中心から放射状に凝集し、前記一次粒子により形成された放射状区域を基準に気孔が形成されることによって、本発明による放射状の分布を有する多孔性構造の正極活物質が形成されうる。 According to the present invention, the radial porous structure, the plate-shaped or needle-shaped primary particles radially aggregate from the center of the secondary particles inside the secondary particles, the radial area formed by the primary particles. By forming the pores on the basis, the positive electrode active material having a porous structure having a radial distribution according to the present invention may be formed.

本発明の正極活物質粒子は、板状または針状の一次粒子が集まって球状の二次粒子を形成するが、二次粒子の内部に一次粒子が少なくとも部分的に中心から放射状に凝集しており、放射状に凝集した前記一次粒子の間で気孔が均一に分布する形状を有しうる。前記一次粒子が前記二次粒子の中心から放射状に凝集して分布することによって、前記気孔は前記二次粒子の中心部を基準に放射状に分布しうる。また、針状型または板状型ではない無定形の一次粒子が存在する場合にも、前記気孔が放射状に分布する形態を有しうる。 The positive electrode active material particles of the present invention are formed by collecting plate-shaped or needle-shaped primary particles to form spherical secondary particles, and the primary particles are at least partially radially aggregated from the center inside the secondary particles. However, the pores may have a shape in which the pores are uniformly distributed among the primary particles that are radially aggregated. When the primary particles are radially aggregated and distributed from the center of the secondary particles, the pores may be radially distributed based on the center of the secondary particles. In addition, even when amorphous primary particles that are not needle-shaped or plate-shaped are present, the pores may have a form in which they are radially distributed.

前記のような放射状の多孔性構造は、二次粒子内部の全体にわたって均一に形成された気孔によって大きな比表面積を実現し、これは、電解液との反応面積を大きくすることができる構造であって、二次電池の出力特性の向上に寄与する。 The radial porous structure as described above realizes a large specific surface area due to the pores formed uniformly throughout the inside of the secondary particles, which is a structure capable of increasing the reaction area with the electrolytic solution. And contributes to the improvement of the output characteristics of the secondary battery.

具体的には、一次粒子間に粒子の内部と外部とを連通する経路を形成することで、前記一次粒子間の経路を通じて電解液の浸入が可能となり、二次粒子の表面だけではなく内部でも電解液と反応する反応界面が形成される。これにより、Liイオン活物質と電解液との界面反応が円滑になり、充放電時のLiイオンの挿入及び脱離が円滑になって、リチウム電池の出力特性及び容量が向上する。 Specifically, by forming a path that connects the inside and the outside of the particles between the primary particles, it is possible to infiltrate the electrolytic solution through the path between the primary particles, and not only on the surface of the secondary particles but also inside. A reaction interface is formed that reacts with the electrolyte. Thereby, the interfacial reaction between the Li ion active material and the electrolytic solution becomes smooth, the insertion and desorption of Li ions at the time of charging and discharging become smooth, and the output characteristics and capacity of the lithium battery are improved.

本発明による正極活物質は、比表面積が1〜5m/gであり、前記粒子の平均粒径が2〜20μmであるリチウム電池用正極活物質であり得る。具体的には、粒子の平均粒径が2μm未満であれば、正極の充電密度が低下して容積当たりの電池容量が低下する。粒子の平均粒径が20μmを超過すれば、正極活性物質の比表面積が低下して電解液との界面が減少し、正極の抵抗が上昇して電池の出力特性が低下する。 The positive electrode active material according to the present invention may be a positive electrode active material for a lithium battery having a specific surface area of 1 to 5 m 2 /g and an average particle diameter of the particles of 2 to 20 μm. Specifically, if the average particle size of the particles is less than 2 μm, the charge density of the positive electrode is reduced and the battery capacity per volume is reduced. If the average particle size of the particles exceeds 20 μm, the specific surface area of the positive electrode active material decreases, the interface with the electrolytic solution decreases, the resistance of the positive electrode increases, and the output characteristics of the battery deteriorate.

前記正極活物質は、リチウムと遷移金属との複合酸化物からなるものであり、前記正極活物質は、前記リチウム遷移金属酸化物を単独で使用しても、場合によっては、2種以上の遷移金属を混合して使用しても良い。 The positive electrode active material is composed of a composite oxide of lithium and a transition metal, and the positive electrode active material may include two or more kinds of transitions even if the lithium transition metal oxide is used alone. You may mix and use a metal.

具体例としては、
リチウムコバルト酸化物(LiCoO2)、リチウムニッケル酸化物(LiNiO2)などの層状化合物や1またはそれ以上の遷移金属に置換された化合物;
化学式Li1+yMn2−yO4(ここで、yは、0〜0.33である)、LiMnO3、LiMn2O3、LiMnO2などのリチウムマンガン酸化物;
リチウム銅酸化物(Li2CuO2);
LiV3O8、LiFe3O4、V2O5、Cu2V2O7などのバナジウム酸化物;
化学式LiNi1−yMyO2(ここで、MはCo、Mn、Al、Cu、Fe、Mg、B、Ga、からなる群から選ばれる1種以上の金属であり、yは0.01〜0.3である)で表現されるNiサイト型リチウムニッケル酸化物;
化学式LiMn2−yMyO2(ここで、MはCo、Ni、Fe、Cr、Zn、Ta、からなる群から選ばれる1種以上の金属であり、yは0.01〜0.1である)またはLi2Mn3MO8(ここで、MはFe、Co、Ni、Cu、Zn、からなる群から選ばれる1種以上の金属である)で表現されるリチウムマンガン複合酸化物;
化学式のLiの一部がアルカリ土類金属イオンに置換されたLiMn2O4;
ジスルフィド化合物;
Fe2(MoO4)3、などが挙げられるが、これらのみに限定されるものではない。
As a specific example,
Layered compounds such as lithium cobalt oxide (LiCoO2) and lithium nickel oxide (LiNiO2), and compounds substituted with one or more transition metals;
Chemical formulas Li1+yMn2-yO4 (where y is 0 to 0.33), lithium manganese oxides such as LiMnO3, LiMn2O3, and LiMnO2;
Lithium copper oxide (Li2CuO2);
Vanadium oxides such as LiV3O8, LiFe3O4, V2O5, Cu2V2O7;
Chemical formula LiNi1-yMyO2 (where M is one or more metals selected from the group consisting of Co, Mn, Al, Cu, Fe, Mg, B and Ga, and y is 0.01 to 0.3). Ni site type lithium nickel oxide represented by
Chemical formula LiMn2-yMyO2 (where M is at least one metal selected from the group consisting of Co, Ni, Fe, Cr, Zn and Ta, and y is 0.01 to 0.1) or Li2Mn3MO8. (Where M is one or more metals selected from the group consisting of Fe, Co, Ni, Cu, Zn) and a lithium manganese composite oxide;
LiMn2O4 in which a part of Li in the chemical formula is replaced with an alkaline earth metal ion;
Disulfide compound;
Examples thereof include Fe2(MoO4)3, but are not limited thereto.

本発明による遷移金属は、ニッケル、コバルト、マンガンから選択される遷移金属が望ましく、前記ニッケル、コバルト、マンガンを含む3成分系正極活物質がさらに望ましいが、これらに限定されるものではない。 The transition metal according to the present invention is preferably a transition metal selected from nickel, cobalt and manganese, and more preferably a three-component positive electrode active material containing the above nickel, cobalt and manganese, but is not limited thereto.

本発明の望ましい実施形態における正極活物質は、下記化学式(I)で表現されるリチウム金属複合酸化物であり得る。 The positive electrode active material according to the preferred embodiment of the present invention may be a lithium metal composite oxide represented by the following chemical formula (I).

LiNi1−x−y−zMnCo (I)
前記式において、
Mは、Mg、Al、Ti、Zr、Mo、W、Y、Sr、V、Ca、Nbから選択される1種以上の金属であり、
pは、0.9≦p≦1.2 であり、
xは、0≦x≦0.80 であり、
yは、0≦y≦0.50 であり、
zは、0<z≦0.05 である。
Li p Ni 1-x-y -z Mn x Co y M z O 2 (I)
In the above formula,
M is at least one metal selected from Mg, Al, Ti, Zr, Mo, W, Y, Sr, V, Ca and Nb,
p is 0.9≦p≦1.2,
x is 0≦x≦0.80,
y is 0≦y≦0.50,
z is 0<z≦0.05.

本発明の正極活物質は、リチウムのモル比(p)が0.9〜1.2であってよい。リチウムのモル比が0.9よりも小さい場合、前記正極活物質の容量が減少する。リチウムのモル比が1.2より大きい場合、残留リチウムの含量が上昇し、ガス発生などによる電池の膨張のような問題を引き起こし得る。 The positive electrode active material of the present invention may have a lithium molar ratio (p) of 0.9 to 1.2. When the molar ratio of lithium is less than 0.9, the capacity of the positive electrode active material decreases. When the molar ratio of lithium is more than 1.2, the content of residual lithium is increased, which may cause problems such as battery expansion due to gas generation.

本発明の正極活物質は、電池の出力特性及び構造安定性、寿命特性などを向上させるために、添加元素を含有することが望ましい。前記添加元素は、主要元素の含量に比べて少量が添加され、リチウムニッケル複合酸化物粒子の表面または内部に均一に分布していることが望ましい。 The positive electrode active material of the present invention preferably contains an additive element in order to improve the output characteristics, structural stability, life characteristics and the like of the battery. It is desirable that the additive element is added in a small amount as compared with the content of the main element and is uniformly distributed on the surface or inside of the lithium nickel composite oxide particles.

前記添加元素Mのモル比(z)が0.05を超えると、充放電時に酸化還元反応に貢献するリチウムが減少するため、電池容量が低下する。 When the molar ratio (z) of the additional element M exceeds 0.05, the amount of lithium that contributes to the redox reaction during charge/discharge decreases, so that the battery capacity decreases.

前記本発明によるリチウム二次電池用正極活物質は、前記正極活物質の前駆体製造工程を最適化することで得られ、前記前駆体工程及び焼成工程を通じて粒子の比表面積と形態を適切に制御することによって、大きな比表面積を有する多孔性のリチウム二次電池用正極活物質の製造方法を提供することができる。 The positive electrode active material for a lithium secondary battery according to the present invention is obtained by optimizing the precursor production process of the positive electrode active material, and the specific surface area and morphology of the particles are appropriately controlled through the precursor process and the firing process. By doing so, it is possible to provide a method for producing a porous positive electrode active material for a lithium secondary battery having a large specific surface area.

前記のようなリチウム二次電池用正極活物質の製造方法で、前記前駆体及び活物質の平均粒径、粒度分布、反応面積、粒子内部構造、及び、組成、が決定される。前記条件の制御は、正極活物質を製造することができる方法であれば特に限定されるものではないが、以下に紹介される正極活物質の製造方法を使用することによって、本発明の正極活物質をより確実に製造することができる。 The average particle size, particle size distribution, reaction area, particle internal structure, and composition of the precursor and active material are determined by the method for manufacturing a positive electrode active material for a lithium secondary battery as described above. Control of the conditions is not particularly limited as long as it is a method capable of producing a positive electrode active material, but by using the method for producing a positive electrode active material introduced below, the positive electrode active material of the present invention can be produced. The substance can be manufactured more reliably.

以下、本発明によるリチウム二次電池用正極活物質の製造方法を提供する。 Hereinafter, a method for producing a positive electrode active material for a lithium secondary battery according to the present invention is provided.

本発明のリチウム二次電池用正極活物質は、
ニッケル、コバルト、マンガンを含む金属塩混合水溶液を製造する段階と、
前記金属塩混合水溶液、錯イオン形成剤、及び、アルコール系添加剤、を含む反応溶液を反応器に投入する段階と、
不活性雰囲気下で前記反応溶液にpH調節剤を投入してpHを調節する段階と、
前記反応溶液を濾過して金属複合水酸化物を得る段階と、
前記金属複合水酸化物及びリチウム原料を混合して正極活物質前駆体を製造する段階と、
前記正極活物質前駆体を焼成する段階と、を含むリチウム電池用正極活物質の製造方法であり得る。
The positive electrode active material for a lithium secondary battery of the present invention,
Producing a mixed metal salt aqueous solution containing nickel, cobalt and manganese;
Charging a reaction solution containing the metal salt mixed aqueous solution, a complex ion forming agent, and an alcohol-based additive into a reactor;
Adding a pH adjuster to the reaction solution under an inert atmosphere to adjust the pH,
Filtering the reaction solution to obtain a metal composite hydroxide,
Manufacturing a positive electrode active material precursor by mixing the metal composite hydroxide and a lithium raw material;
A method of manufacturing a positive electrode active material for a lithium battery, comprising: firing the positive electrode active material precursor.

前記金属複合水酸化物粒子の組成比(Ni:Co:Mn)は正極活物質においても保持されるので、前記金属複合水酸化物の組成比が得ようとする正極活物質と同一になるように調節することが望ましい。 Since the composition ratio (Ni:Co:Mn) of the metal composite hydroxide particles is retained in the positive electrode active material, the composition ratio of the metal composite hydroxide should be the same as that of the positive electrode active material to be obtained. It is desirable to adjust to.

前記金属複合水酸化物は、化学式(I)で表される金属複合水酸化物の粒子における金属原子のモル比に対応する金属複合化合物を製造するために、前記金属元素のモル比を反映した量の各金属塩化合物を水に溶解させることで、前記金属塩混合水溶液を調剤することができる。 The metal composite hydroxide reflects the molar ratio of the metal elements in order to produce a metal composite compound corresponding to the molar ratio of metal atoms in the particles of the metal composite hydroxide represented by the chemical formula (I). The metal salt mixed aqueous solution can be prepared by dissolving a quantity of each metal salt compound in water.

一方、反応器に投入される反応溶液は、前記金属塩混合水溶液及び錯イオン形成剤を含む。本発明の望ましい実施例によれば、前記反応溶液は、アルコール系添加剤をさらに含むものであり得る。また、前記反応溶液は、アルカリ水溶液の供給量を調整することでpHを調節することができる。 On the other hand, the reaction solution charged into the reactor contains the metal salt mixed aqueous solution and the complex ion forming agent. According to a preferred embodiment of the present invention, the reaction solution may further include an alcohol-based additive. Further, the pH of the reaction solution can be adjusted by adjusting the supply amount of the alkaline aqueous solution.

また、前記反応溶液において、粒子成長に伴って溶液のpHが変化するので、前記反応溶液のpHを所定の値に保持するために、前記反応溶液に混合水溶液及びアルカリ水溶液が供給される。 Further, in the reaction solution, the pH of the solution changes with particle growth, so that the reaction solution is supplied with the mixed aqueous solution and the alkaline aqueous solution in order to keep the pH of the reaction solution at a predetermined value.

<金属化合物>
前記金属塩化合物としては、化学式(I)で表される金属複合水酸化物の粒子における金属のモル比に対応する金属のモル比を有する金属化合物が用いられる。前記金属化合物は、化学式(I)で表されるニッケル複合水酸化物における金属のモル比に対応するモル比の金属を含有させるために、前記金属に対応する金属塩化合物から構成される。
<Metal compound>
As the metal salt compound, a metal compound having a metal molar ratio corresponding to the metal molar ratio in the particles of the metal composite hydroxide represented by the chemical formula (I) is used. The metal compound is composed of a metal salt compound corresponding to the metal in order to contain the metal in a molar ratio corresponding to the metal in the nickel composite hydroxide represented by the chemical formula (I).

前記金属塩化合物は、金属塩混合水溶液への供給を容易にするとともに良好に混合させるために、通常、水溶性であることが望ましく、水溶液中に溶解させて反応させることができる。したがって、金属塩化合物は、水溶性を有することが望ましい。 In order to facilitate the supply to the metal salt mixed aqueous solution and to mix it well, the metal salt compound is usually preferably water-soluble, and can be dissolved in the aqueous solution and reacted. Therefore, it is desirable that the metal salt compound has water solubility.

前記金属塩化合物としては、具体的に、無機酸塩などが挙げられる。具体的には、硝酸塩、硫酸塩、塩酸塩などが挙げられるが、これらに限定されるものではない。これら無機酸塩は、それぞれ単独で用いても良く、2種以上を併用しても良い。本発明の望ましい実施例によれば、前記金属塩化合物の例として、硫酸ニッケル、硫酸コバルト、及び、硫酸マンガン、が挙げられる。 Specific examples of the metal salt compound include inorganic acid salts. Specific examples thereof include, but are not limited to, nitrates, sulfates and hydrochlorides. These inorganic acid salts may be used alone or in combination of two or more kinds. According to a preferred embodiment of the present invention, examples of the metal salt compound include nickel sulfate, cobalt sulfate, and manganese sulfate.

<金属塩混合水溶液の濃度>
前記金属塩混合水溶液での金属塩化合物の濃度は、1.5〜4Mであることが望ましい。金属複合水溶液での金属化合物の濃度が1.5M未満であると、生成される粒子の量が少なくなり、生産性が低くなる。一方、金属複合水溶液の濃度が4Mを超えると、金属塩の結晶が析出して設備の配管が詰まる恐れがある。また、2種以上の金属化合物を用いる場合、金属塩化合物の濃度が前記の範囲になるように、各金属塩化合物の混合水溶液が調整されてもよい。前記金属塩混合水溶液は、0.1〜0.8L/時の流量で反応器に投入されうる。
<Concentration of metal salt mixed aqueous solution>
The concentration of the metal salt compound in the metal salt mixed aqueous solution is preferably 1.5 to 4M. When the concentration of the metal compound in the aqueous metal complex solution is less than 1.5 M, the amount of particles produced is small and the productivity is low. On the other hand, when the concentration of the metal composite aqueous solution exceeds 4 M, crystals of the metal salt may be deposited and the piping of the equipment may be clogged. When two or more kinds of metal compounds are used, the mixed aqueous solution of each metal salt compound may be adjusted so that the concentration of the metal salt compound falls within the above range. The metal salt mixed aqueous solution may be charged into the reactor at a flow rate of 0.1 to 0.8 L/hour.

<結晶形成調節剤>
前駆体合成時に、結晶形成調節剤(habit modifier)としてアルコールを添加して、粒子性状を調節することができる。アルコールのヒドロキシル基が水溶液中で粒子特定面の表面ヒドロキシル基に吸着し、吸着された面における粒子成長を抑制する。これは、モルフォロジー変化として表われる。結晶形成調節剤を用いて前駆体を製造した場合に、焼成時に一次粒子が凝集して二次粒子を形成すること、及び、均一な空隙分布を有する正極材の製造が可能であることを確認した。結晶形成調節剤は、組成とモルフォロジーによってその特性が変わり、反応条件及び含有量の調節を通じて最適化されうる。
<Crystal formation regulator>
During the precursor synthesis, alcohol can be added as a crystal formation regulator (habit modifier) to control the particle properties. The hydroxyl group of alcohol is adsorbed to the surface hydroxyl group of the specific surface of the particle in the aqueous solution, and the particle growth on the adsorbed surface is suppressed. This manifests itself as a morphological change. It was confirmed that when a precursor was produced using a crystal formation regulator, the primary particles aggregated during firing to form secondary particles, and that it is possible to produce a positive electrode material having a uniform void distribution. did. The crystal formation modifier has properties that vary depending on the composition and morphology, and can be optimized through adjustment of reaction conditions and content.

前記結晶形成調節剤として、炭素数1〜10のアルコール系化合物、望ましくは炭素数2〜10のアルコール系添加剤、を使用することができる。前記アルコール系添加剤は、金属複合水溶液及び錯イオン形成剤とともに反応槽に投入され、ヒドロキシル基を1〜10個、望ましくは2個以上、さらに望ましくは2個〜5個、含むものであり得る。 As the crystal formation regulator, an alcohol compound having 1 to 10 carbon atoms, preferably an alcohol additive having 2 to 10 carbon atoms can be used. The alcohol-based additive may be added to the reaction vessel together with the aqueous metal complex solution and the complex ion-forming agent, and may contain 1 to 10, preferably 2 or more, more preferably 2 to 5 hydroxyl groups. ..

例えば、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、エリスリトール、ペンタエリスリトール、ブタンジオール、グリセリン、または、これらの混合物、からなる群から選択されるものであり、前記添加剤は、水系溶媒を使用する金属複合水溶液中に添加され、生成される金属複合水酸化物の粒子の結晶形成を調節することができる。 For example, it is selected from the group consisting of methanol, ethanol, propanol, butanol, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, erythritol, pentaerythritol, butanediol, glycerin, or a mixture thereof, The additive can be added to the aqueous metal complex solution using an aqueous solvent to control the crystal formation of particles of the produced metal complex hydroxide.

結晶形成調節剤の添加量は、遷移金属100重量部を基準に0.01〜5重量部、望ましくは0.01〜3重量部、さらに望ましくは0.05〜2重量部、の範囲内で調節することができる。 The amount of the crystal formation regulator added is in the range of 0.01 to 5 parts by weight, preferably 0.01 to 3 parts by weight, and more preferably 0.05 to 2 parts by weight, based on 100 parts by weight of the transition metal. It can be adjusted.

<pH調節剤>
前記反応溶液のpHは、pH調節剤を用いて調整することができる。pH調節剤としては、例えば、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液などのアルカリ水溶液が挙げられるが、これらに限定するものではない。本発明によるpH調節剤は、水酸化ナトリウムを使用することが望ましい。前記反応溶液のpHは、一般的に用いられているpH測定計で測定することができる。
<pH adjuster>
The pH of the reaction solution can be adjusted using a pH adjuster. Examples of the pH adjuster include, but are not limited to, alkaline aqueous solutions such as aqueous solutions of alkali metal hydroxides such as sodium hydroxide and potassium hydroxide. It is preferable to use sodium hydroxide as the pH adjusting agent according to the present invention. The pH of the reaction solution can be measured by a commonly used pH meter.

<添加元素>
化学式(I)においてMは添加元素を示し、Ni、Co、Mnを除いたMg、Al、Ca、Ti、V、Cr、Mn、Zr、Nb、Mo、W、からなる群から選択された少なくとも1種の元素であり、前記添加元素を含有する化合物として水溶性の化合物を用いることが望ましい。前記添加元素を含有する化合物としては、例えば、硫酸マグネシウム、硫酸アルミニウム、アルミン酸ナトリウム、硫酸チタン、ペルオキソチタン酸アンモニウム、シュウ酸チタンカリウム、硫酸バナジウム、バナジン酸アンモニウム、硫酸クロム、クロム酸カリウム、硫酸マンガン、硫酸ジルコニウム、硝酸ジルコニウム、シュウ酸ニオブ、モリブデン酸アンモニウム、タングステン酸ナトリウム、タングステン酸アンモニウム、などが挙げられるが、これらに限定するものではない。
<Additive element>
In the chemical formula (I), M represents an additive element, and at least selected from the group consisting of Mg, Al, Ca, Ti, V, Cr, Mn, Zr, Nb, Mo, and W excluding Ni, Co, and Mn. It is desirable to use a water-soluble compound as the compound containing one kind of the additional element. Examples of the compound containing the additional element include magnesium sulfate, aluminum sulfate, sodium aluminate, titanium sulfate, ammonium peroxotitanate, potassium titanium oxalate, vanadium sulfate, ammonium vanadate, chromium sulfate, potassium chromate, and sulfuric acid. Examples thereof include, but are not limited to, manganese, zirconium sulfate, zirconium nitrate, niobium oxalate, ammonium molybdate, sodium tungstate, ammonium tungstate, and the like.

前記添加元素を複合水酸化物粒子の内部に均一に分散させるためには、前記混合水溶液に添加元素を含有する化合物を、望ましくは添加元素を含有する水溶性の化合物を、添加すれば良い。これにより、複合水酸化物粒子の内部に添加元素を均一に分散させることができる。 In order to uniformly disperse the additive element inside the composite hydroxide particles, a compound containing the additive element, preferably a water-soluble compound containing the additive element, may be added to the mixed aqueous solution. This makes it possible to uniformly disperse the additional element inside the composite hydroxide particles.

また、複合水酸化物粒子の表面に添加元素を被覆する場合には、添加元素を有する水溶液で複合金属水酸化物粒子をスラリー化し、結晶化反応によって添加元素を複合水酸化物粒子の表面に析出させることで、その表面を添加元素で被覆することができる。この場合、添加元素を含有する化合物を含む水溶液の代わりに、添加元素を含有する化合物のアルコキシド溶液を用いても良い。また、添加元素を含有する化合物を含んだ水溶液あるいはスラリーを金属複合水酸化物粒子に対して噴霧して乾燥させることによって、複合水酸化物粒子の表面に添加元素を被覆することができる。 When the surface of the composite hydroxide particles is coated with the additional element, the composite metal hydroxide particles are slurried with an aqueous solution having the additional element, and the additional element is added to the surface of the composite hydroxide particles by the crystallization reaction. By precipitating, the surface can be coated with the additional element. In this case, an alkoxide solution of the compound containing the additional element may be used instead of the aqueous solution containing the compound containing the additional element. The surface of the composite hydroxide particles can be coated with the additive element by spraying an aqueous solution or a slurry containing a compound containing the additive element onto the metal composite hydroxide particles and drying.

<錯イオン形成剤>
本発明による金属複合水酸化物反応は、金属塩複合水溶液と錯塩を形成する錯イオン形成剤を使用することができる。前記錯イオン形成剤は、金属塩の溶解度を上昇させることができる。典型的な錯イオン形成剤としては、アンモニウムイオン供給体が挙げられる。アンモニウムイオン供給体の例として、アンモニア、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、フッ化アンモニウムなどが挙げられるが、特に限定されるものではない。
<Complex ion forming agent>
The metal complex hydroxide reaction according to the present invention may use a complex ion-forming agent that forms a complex salt with the metal salt complex aqueous solution. The complex ion forming agent can increase the solubility of the metal salt. Typical complex ion formers include ammonium ion donors. Examples of the ammonium ion supplier include, but are not limited to, ammonia, ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride and the like.

アンモニアは、金属イオンの溶解度を一定に保持することができる範囲の濃度で添加される。前記金属混合水溶液の流量に対して0.01〜0.2、望ましくは0.05〜0.1、の比で供給されうる。また、アンモニア濃度が変動すると、金属イオンの溶解度が変動して均一な水酸化物粒子が形成されないため、アンモニア濃度を一定の値に保持することが望ましい。 Ammonia is added at a concentration within a range where the solubility of metal ions can be kept constant. The metal mixed solution may be supplied at a ratio of 0.01 to 0.2, preferably 0.05 to 0.1 with respect to the flow rate. Further, when the ammonia concentration changes, the solubility of the metal ions also changes and uniform hydroxide particles are not formed, so it is desirable to maintain the ammonia concentration at a constant value.

<反応溶液のpH及び反応温度>
前記反応槽の反応溶液の温度は、30〜80℃に保持することが望ましい。また、前記反応溶液の温度において、pH調節剤の投入によりpHを10〜13に調節することが望ましい。前記pHが13.0よりも高い場合は、粒子のサイズが過度に小さくなる。pHが10未満である場合は、巨大粒子が形成されるか、あるいは、不純物が混入され、生成粒子自体の粒度分布が不均質になりうる。したがって、前記のpH範囲でpHを一定に調節することで、生成される一次粒子及び二次粒子のサイズを調節することができ、均一な粒度分布を有しうる。
<pH and reaction temperature of reaction solution>
The temperature of the reaction solution in the reaction tank is preferably maintained at 30 to 80°C. Further, at the temperature of the reaction solution, it is desirable to adjust the pH to 10 to 13 by adding a pH adjusting agent. If the pH is higher than 13.0, the particle size becomes excessively small. If the pH is less than 10, large particles may be formed or impurities may be mixed in, and the particle size distribution of the produced particles themselves may become inhomogeneous. Therefore, by adjusting the pH to a constant value within the above pH range, the size of the primary particles and secondary particles produced can be adjusted, and a uniform particle size distribution can be obtained.

<反応工程の雰囲気>
本発明における反応槽の雰囲気は、反応槽内の酸素濃度が1体積%以下である雰囲気と定義される。酸素と不活性ガスとの混合雰囲気における酸素濃度が望ましくは0.5体積%以下、より望ましくは0.2体積%以下、になるように制御する。反応槽内の空間の酸素濃度を1体積%以下に制御して粒子成長させることによって、粒子の望ましくない酸化を抑制し、一次粒子の成長を促進することができる。反応槽内の空間をこのような雰囲気で保持するための手段としては、窒素などの不活性ガスを反応槽内の空間部に流通させること、さらに、反応液中に不活性ガスをバブリングさせることが挙げられる。
<Atmosphere of reaction process>
The atmosphere of the reaction tank in the present invention is defined as an atmosphere in which the oxygen concentration in the reaction tank is 1 vol% or less. The oxygen concentration in the mixed atmosphere of oxygen and the inert gas is controlled to be preferably 0.5% by volume or less, more preferably 0.2% by volume or less. By controlling the oxygen concentration in the space in the reaction tank to 1% by volume or less to grow the particles, it is possible to suppress undesired oxidation of the particles and promote the growth of the primary particles. As a means for maintaining the space in the reaction tank in such an atmosphere, an inert gas such as nitrogen is circulated in the space in the reaction tank, and further, an inert gas is bubbled in the reaction solution. Is mentioned.

雰囲気中の酸素濃度は、例えば、窒素などの不活性ガスを用いて調整することができる。雰囲気中の酸素濃度が所定の濃度になるように調節するための手段としては、例えば、前記雰囲気中に常に流通させることが挙げられる。 The oxygen concentration in the atmosphere can be adjusted using, for example, an inert gas such as nitrogen. Examples of means for adjusting the oxygen concentration in the atmosphere to a predetermined concentration include, for example, constantly circulating the oxygen in the atmosphere.

<複合水酸化物粒子の粒径制御>
金属複合水酸化物粒子の粒径は、粒子成長工程の時間によって制御することができる。所望の粒径に成長するように反応時間を調整することで、所望の粒径を有する複合水酸化物粒子が得られる。
<Control of particle size of composite hydroxide particles>
The particle size of the metal composite hydroxide particles can be controlled by the time of the particle growth step. By adjusting the reaction time so as to grow to a desired particle size, composite hydroxide particles having a desired particle size can be obtained.

また、金属複合水酸化物粒子の粒径は、pH値や、投入する原料の比率によっても制御が可能である。 The particle size of the metal composite hydroxide particles can also be controlled by the pH value and the ratio of the raw materials to be added.

<製造反応器>
前記装置としては、共沈反応を用いた二次電池正極活物質の製造反応に使われる反応器を使用することができ、例えば、連続式反応器(CSTR、Continuous Stirring Tank Reactor)、または、回分式反応器(Batch Type Tank Reactor)、を使用することができる。連続式反応器は生産性の面で利点がある。回分式反応器は、反応器安定化時間がない点、及び、型交換が不要であるという点、で利点がある。
<Production reactor>
As the apparatus, a reactor used for a reaction for producing a secondary battery positive electrode active material using a coprecipitation reaction may be used. For example, a continuous reactor (CSTR, Continuous Stirring Tank Reactor) or a batch A Batch Type Tank Reactor can be used. The continuous reactor has an advantage in productivity. The batch reactor has advantages in that there is no reactor stabilization time and that mold replacement is unnecessary.

本発明による金属複合水酸化物の生成反応は、反応器内の物質を10〜1000rpmの回転数で撹拌しながら反応させ、反応槽内に滞留する反応時間は3〜24時間、望ましくは5〜12時間、とする。 In the reaction for producing the metal composite hydroxide according to the present invention, the substance in the reactor is reacted with stirring at a rotation speed of 10 to 1000 rpm, and the reaction time for staying in the reaction tank is 3 to 24 hours, preferably 5 to 12 hours.

<熱処理工程>
前記反応槽で回収した金属複合水酸化物スラリーをオーバーフロー溶液から濾過及び蒸留水で洗浄した後、粒子を加熱して熱処理する工程で、金属複合水酸化物粒子中に残留している水分を除去する工程を経ることができる。
<Heat treatment process>
The metal complex hydroxide slurry recovered in the reaction tank is filtered from the overflow solution and washed with distilled water, and then the water remaining in the metal complex hydroxide particles is removed in a step of heating the particles to heat-treat them. Can be performed.

前記熱処理工程で、複合水酸化物粒子は、残留水分が除去される程度の温度まで加熱されれば良い。その熱処理温度は、特に限定されるものではないが、100〜400℃であってよく、望ましくは105〜200℃であってよい。熱処理温度が105℃未満では、残留水分を除去するために長い時間を必要とする。 In the heat treatment step, the composite hydroxide particles may be heated to a temperature at which residual water is removed. The heat treatment temperature is not particularly limited, but may be 100 to 400°C, and preferably 105 to 200°C. When the heat treatment temperature is lower than 105°C, it takes a long time to remove the residual moisture.

また、金属複合水酸化物粒子の熱処理時間は、熱処理温度によって異なるため一律的に決定することはできないが、1時間未満では複合水酸化物粒子中の残留水分の除去が十分になされない場合があるため1時間以上であることが望ましく、5〜24時間であることがより望ましい。複合水酸化物粒子の熱処理に用いられる設備は特に限定されず、複合水酸化物粒子を空気気流中で加熱することができるものであれば良く、例えば、送風乾燥機、ガス発生のない電気炉、などが挙げられる。 Further, the heat treatment time of the metal composite hydroxide particles cannot be uniformly determined because it depends on the heat treatment temperature. However, if less than 1 hour, the residual water content in the composite hydroxide particles may not be sufficiently removed. Therefore, it is preferably 1 hour or more, more preferably 5 to 24 hours. The equipment used for the heat treatment of the composite hydroxide particles is not particularly limited, as long as it can heat the composite hydroxide particles in an air stream, for example, a blast dryer, an electric furnace without gas generation. , And so on.

金属複合水酸化物粒子の熱処理を行う雰囲気は特に制限されず、簡易的に行うことができる大気であることが望ましい。 The atmosphere in which the heat treatment of the metal composite hydroxide particles is performed is not particularly limited, and it is desirable that the atmosphere is such that it can be performed easily.

<金属複合水酸化物粒子>
本発明による金属複合水酸化物は、下記化学式(II)で表されるものであり得る。
<Metal composite hydroxide particles>
The metal composite hydroxide according to the present invention may be represented by the following chemical formula (II).

Ni1−x−y−zCoMn(OH)2+α (II)
前記式において、
Mは、Mg、Al、Ti、Zr、Mo、W、Y、Sr、V、Ca、Nbから選択される1種以上の金属であり、
xは、0≦x≦0.8 であり、
yは、0≦y≦0.5 であり、
zは、0≦z≦0.05 であり、
αは、0≦α≦0.5 である。
Ni 1-x-y-z Co x Mn y M z (OH) 2 + α (II)
In the above formula,
M is at least one metal selected from Mg, Al, Ti, Zr, Mo, W, Y, Sr, V, Ca and Nb,
x is 0≦x≦0.8,
y is 0≦y≦0.5, and
z is 0≦z≦0.05,
α is 0≦α≦0.5.

本発明の複合水酸化物粒子は、複数の一次粒子が凝集して形成された球状の二次粒子である。 The composite hydroxide particles of the present invention are spherical secondary particles formed by aggregating a plurality of primary particles.

本発明の複合水酸化物粒子は、前述した本発明の正極活物質の原料として特に適したものである。したがって、本発明の正極活物質に使用することを前提として、本発明の金属複合水酸化物粒子について後述する。 The composite hydroxide particles of the present invention are particularly suitable as a raw material for the positive electrode active material of the present invention described above. Therefore, the metal composite hydroxide particles of the present invention will be described later on the assumption that they are used for the positive electrode active material of the present invention.

<平均粒径>
本発明の金属複合水酸化物粒子の平均粒径は、約2〜21μmである。前記のような平均粒径を有する金属複合水酸化物で製造された正極活物質は、約2〜20μmの平均粒径を有する。本発明の金属複合水酸化物粒子の平均粒径が2μm未満である場合、正極活物質の平均粒径が小さくなり、正極の充電密度が低下して容積当たりの電池容量が低下する。また、本発明の複合水酸化物粒子の平均粒径が21μmを超える場合、得られる正極活物質の比表面積が低下し正極活物質と電解液との接触面積が減少するため、正極の抵抗が上昇して電池の出力特性が低下する。
<Average particle size>
The metal composite hydroxide particles of the present invention have an average particle size of about 2 to 21 μm. The positive electrode active material prepared from the metal composite hydroxide having the above average particle diameter has an average particle diameter of about 2 to 20 μm. When the average particle size of the metal composite hydroxide particles of the present invention is less than 2 μm, the average particle size of the positive electrode active material decreases, the charge density of the positive electrode decreases, and the battery capacity per volume decreases. When the average particle size of the composite hydroxide particles of the present invention exceeds 21 μm, the specific surface area of the obtained positive electrode active material decreases and the contact area between the positive electrode active material and the electrolytic solution decreases, so that the resistance of the positive electrode increases. Rises and the output characteristics of the battery deteriorate.

<混合工程>
混合工程は、前記熱処理工程以後の乾燥された金属複合水酸化物と、リチウム化合物と、を混合することによって、リチウム複合金属混合物を得て正極活物質の前駆体を製造する工程である。
<Mixing process>
The mixing step is a step of mixing the dried metal composite hydroxide after the heat treatment step with a lithium compound to obtain a lithium composite metal mixture and manufacturing a precursor of the positive electrode active material.

リチウム混合物中のリチウムのモル比(Li)とリチウム以外の金属のモル比(Me)の比率Li/Meは、正極活物質でのLi/Meと同一になるように混合される。すなわち、リチウム(Li)と、ニッケル、コバルト、マンガン及びその他の添加元素の原子数の和(Me)との比Li/Meが0.90/1〜1.2/1となるように、望ましくは1/1〜1.15/1となるように、混合する。 The ratio Li/Me of the molar ratio (Li) of lithium and the molar ratio (Me) of metals other than lithium in the lithium mixture is mixed so as to be the same as Li/Me in the positive electrode active material. That is, it is desirable that the ratio Li/Me of lithium (Li) and the sum (Me) of the number of atoms of nickel, cobalt, manganese, and other additive elements be 0.90/1 to 1.2/1. Are mixed so as to be 1/1 to 1.15/1.

前記リチウム混合物を形成するために使われるリチウム化合物は、入手が容易であるという点から、水酸化リチウム、硝酸リチウム、炭酸リチウム、またはこれらの混合物であることが望ましい。本発明による多孔性の二次粒子を形成するためには、炭酸リチウムまたは水酸化リチウムであることがより望ましい。 The lithium compound used to form the lithium mixture is preferably lithium hydroxide, lithium nitrate, lithium carbonate, or a mixture thereof because it is easily available. In order to form the porous secondary particles according to the present invention, lithium carbonate or lithium hydroxide is more preferable.

また、リチウム化合物と熱処理された金属複合化合物の混合が十分ではない場合には、粒子間でリチウムの分布が不均一になり、各粒子のLi/Meがばらつく。すなわち、目標とする活物質の組成が得られないだけではなく、十分な電池特性が得られない恐れがある。 In addition, when the mixture of the lithium compound and the heat-treated metal composite compound is not sufficient, the distribution of lithium becomes uneven among particles, and Li/Me of each particle varies. That is, not only the target composition of the active material cannot be obtained, but also sufficient battery characteristics may not be obtained.

また、前記混合工程には、一般的な混合機を使用することができる。例えば、シェーカーミキサー、レーディゲミキサー、ジュリアミキサー、Vブレンダー、などが挙げられる。金属複合水酸化物粒子が破壊されず、かつ、リチウム化合物が十分に混合される程度に混合することができる。 In addition, a general mixer can be used in the mixing step. For example, a shaker mixer, a Loedige mixer, a Julia mixer, a V blender, etc. are mentioned. The metal composite hydroxide particles can be mixed to such an extent that the lithium compound is not destroyed and the lithium compound is sufficiently mixed.

<焼成工程>
前記焼成工程は、前記混合工程により製造されたリチウム−金属混合物を焼成して、リチウム−金属酸化物を形成する工程である。前記焼成工程でリチウム−金属混合物を焼成すれば、熱処理粒子中にリチウム化合物中のリチウムが粒子内部に拡散し、リチウム−金属複合酸化物が形成されうる。
<Firing process>
The firing step is a step of firing the lithium-metal mixture produced in the mixing step to form a lithium-metal oxide. If the lithium-metal mixture is fired in the firing step, lithium in the lithium compound may diffuse into the heat-treated particles to form a lithium-metal composite oxide.

前記焼成工程でリチウム混合物の焼成温度は700〜950℃、望ましくは800〜950℃であり、2〜10℃/分の速度で昇温することができる。 In the firing step, the firing temperature of the lithium mixture is 700 to 950°C, preferably 800 to 950°C, and the temperature can be raised at a rate of 2 to 10°C/min.

焼成温度が700℃未満であると、熱処理粒子中へのリチウムの拡散が十分に行われず、余剰のリチウム及び未反応の粒子が残るか、あるいは、結晶構造が十分に揃わず、十分な電池特性が得られなくなる。また、焼成温度が950℃を超えると、熱処理粒子の間で激しく焼結が発生するとともに、異常粒子が生じる恐れがある。したがって、焼成後の粒子が粗大になって粒子形態(後述する球状二次粒子の形態)を保持することができなくなる恐れがあり、すなわち、正極活物質を形成した際に比表面積が低下して正極の抵抗が上昇し、電池の容量が低下する。 If the firing temperature is lower than 700° C., the lithium is not sufficiently diffused into the heat-treated particles and surplus lithium and unreacted particles remain, or the crystal structure is not sufficiently aligned, resulting in sufficient battery characteristics. Will not be obtained. If the firing temperature exceeds 950° C., violent sintering may occur between the heat-treated particles and abnormal particles may occur. Therefore, the particles after firing may become coarse and may not be able to maintain the particle morphology (morphology of spherical secondary particles described later), that is, the specific surface area decreases when the positive electrode active material is formed. The resistance of the positive electrode increases and the capacity of the battery decreases.

前記リチウム混合物の焼成時間、すなわち、焼成温度での保持時間は、望ましくは3時間以上であり、より望ましくは6〜24時間である。3時間未満では、リチウムニッケル複合酸化物の生成が十分になされない場合がある。 The firing time of the lithium mixture, that is, the holding time at the firing temperature is preferably 3 hours or more, more preferably 6 to 24 hours. If it is less than 3 hours, the lithium nickel composite oxide may not be sufficiently formed.

焼成炉は特に限定されず、大気、酸素、場合によっては、窒素雰囲気中でリチウム−金属混合物を加熱することができるものであれば良い。例えば、ガスの発生のない電気炉が望ましく、ボックス炉、ロータリーキルンなどの形態の焼成炉を使用することができる。 The firing furnace is not particularly limited as long as it can heat the lithium-metal mixture in the atmosphere, oxygen and, in some cases, nitrogen atmosphere. For example, an electric furnace that does not generate gas is desirable, and a firing furnace in the form of a box furnace, a rotary kiln, or the like can be used.

以下、本発明の実施例を用いて具体的に説明するが、本発明は、これら実施例によって全く限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

(実施例1)
4L連続式オーバーフロー反応器(CSTR)内に水を満液入れ、撹拌速度700rpmで撹拌しながら、設定温度(30〜50℃)に温調し、反応槽に窒素ガスを導入して不活性雰囲気に調整した。
硫酸ニッケル、硫酸コバルト、硫酸マンガンを0.33:0.33:0.33のモル比で混合した2.5M濃度の金属硫酸塩水溶液と、25%水酸化ナトリウム、10%アンモニア水を準備した。
金属硫酸塩水溶液の流量を0.4L/時、アンモニア水の流量を金属水溶液の流量の0.08の比で調節して反応器に供給した。反応器内のpHが約11.0〜12.0になるように水酸化ナトリウム溶液の投入量を調節した。この際、遷移金属100重量部に対して0.2重量部のグリセリンを反応器に投入した。撹拌速度が700rpm、全体溶液の平均滞留時間が6時間になるように反応物を投入し、反応温度を30℃〜50℃に保持し、窒素ガスを導入して不活性雰囲気を保持した。
反応が安定したのちに、回収したオーバーフロー溶液を濾過、洗浄した後、120℃のオーブンで乾燥して、複合金属水酸化物形態の前駆体粒子を得た。
前記のように得られた水酸化物粒子に、炭酸リチウムを、前記水酸化物との当量比が1.02になるように混合した後、3℃/分の速度で昇温し、910℃で9時間焼成して、均一な放射状の気孔構造を有するリチウム複合金属酸化物を製造した。
(Example 1)
A 4 L continuous overflow reactor (CSTR) was filled with water and stirred at a stirring speed of 700 rpm to adjust the temperature to a set temperature (30 to 50° C.), and nitrogen gas was introduced into the reaction tank to create an inert atmosphere. Adjusted to.
A 2.5M concentration metal sulfate aqueous solution prepared by mixing nickel sulfate, cobalt sulfate and manganese sulfate in a molar ratio of 0.33:0.33:0.33, 25% sodium hydroxide and 10% ammonia water were prepared. ..
The flow rate of the metal sulfate aqueous solution was adjusted to 0.4 L/hour, and the flow rate of the ammonia water was adjusted to a ratio of 0.08 to the flow rate of the metal aqueous solution and supplied to the reactor. The amount of sodium hydroxide solution added was adjusted so that the pH in the reactor was about 11.0 to 12.0. At this time, 0.2 part by weight of glycerin was added to the reactor with respect to 100 parts by weight of the transition metal. The reaction product was charged so that the stirring rate was 700 rpm and the average residence time of the entire solution was 6 hours, the reaction temperature was maintained at 30°C to 50°C, and nitrogen gas was introduced to maintain the inert atmosphere.
After the reaction was stabilized, the recovered overflow solution was filtered, washed, and then dried in an oven at 120° C. to obtain composite metal hydroxide precursor particles.
Lithium carbonate was mixed with the hydroxide particles obtained as described above so that the equivalent ratio to the hydroxide was 1.02, and then the temperature was raised at a rate of 3° C./min to obtain 910° C. By firing for 9 hours, a lithium mixed metal oxide having a uniform radial pore structure was produced.

比較例1
4L連続式オーバーフロー反応器(CSTR)を用いて硫酸ニッケル、硫酸コバルト、硫酸マンガンを0.33:0.33:0.33のモル比で混合した2.5M濃度の金属硫酸塩水溶液を使って複合金属水酸化物を製造した。
金属硫酸塩水溶液の流量を0.4L/時、アンモニアの流量を金属水溶液の流量の0.08の比で調節して反応器に供給した。反応器内のpHが約11.0〜12.0になるように水酸化ナトリウム溶液の投入量を調節した。撹拌速度が700rpm、全体溶液の平均滞留時間が6時間になるように反応物を投入し、反応温度を30℃〜50℃に保持し、窒素ガスを導入して不活性雰囲気を保持した。
反応が安定したのちに、回収したオーバーフロー溶液を濾過、洗浄した後、120℃のオーブンで乾燥して、複合金属水酸化物形態の前駆体粒子を得た。
前記のように得られた水酸化物粒子に、炭酸リチウムを、前記水酸化物との当量比が1.02になるように混合した後、3℃/分の速度で昇温し、910℃で9時間焼成して、気孔がほとんどないリチウム複合金属酸化物を製造した。
Comparative Example 1
Using a 4 L continuous overflow reactor (CSTR), an aqueous solution of metal sulfate having a concentration of 2.5 M in which nickel sulfate, cobalt sulfate and manganese sulfate were mixed at a molar ratio of 0.33:0.33:0.33. A composite metal hydroxide was produced.
The flow rate of the aqueous solution of metal sulfate was adjusted to 0.4 L/hour, and the flow rate of ammonia was adjusted to a ratio of 0.08 to the flow rate of the aqueous solution of metal to be supplied to the reactor. The amount of sodium hydroxide solution added was adjusted so that the pH in the reactor was about 11.0 to 12.0. The reaction product was charged so that the stirring rate was 700 rpm and the average residence time of the entire solution was 6 hours, the reaction temperature was maintained at 30°C to 50°C, and nitrogen gas was introduced to maintain the inert atmosphere.
After the reaction was stabilized, the recovered overflow solution was filtered, washed, and then dried in an oven at 120° C. to obtain composite metal hydroxide precursor particles.
Lithium carbonate was mixed with the hydroxide particles obtained as described above so that the equivalent ratio to the hydroxide was 1.02, and then the temperature was raised at a rate of 3° C./min to obtain 910° C. By firing for 9 hours, a lithium composite metal oxide having few pores was produced.

比較例2
反応槽(4L)内に水を30%入れ、撹拌速度700rpmで撹拌しながら、設定温度(30〜50℃)に温調し、反応槽に窒素ガスを導入して不活性雰囲気に調整した。
前記反応槽内に、さらにアンモニア水100gを投入した後、pHが12.5になるように水酸化ナトリウムを添加した。
次いで、硫酸ニッケル、硫酸コバルト、硫酸マンガンを0.33:0.33:0.33のモル比で混合した2.5M濃度の金属硫酸塩水溶液と、アンモニア水と、を反応槽内にそれぞれ0.1L/時、0.01L/時で投入した。金属硫酸塩水溶液及びアンモニア水の投入を開始してから10分後より水酸化ナトリウムを投入し、初期粒子が成長するようにした。以後、水酸化ナトリウム水溶液を0.063〜0.065L/時の流量で投入した。
反応槽内が満液になった時点で、金属硫酸塩水溶液、水酸化ナトリウム溶液、及び、アンモニア水、の供給を停止して反応を終了させた。そして、得られた生成物を全量排出して濾過、洗浄した後、120℃のオーブンで乾燥して、複合金属水酸化物形態の前駆体粒子を得た。
前記により得られた水酸化物粒子に、炭酸リチウムを、前記水酸化物との当量比が1.02になるように混合した後、3℃/分の速度で昇温し、910℃で9時間焼成して、内部の中空空間と、外殻部と、を有する中空構造形態のリチウム複合金属酸化物を製造した。
Comparative example 2
30% of water was put in a reaction tank (4 L), the temperature was adjusted to a preset temperature (30 to 50° C.) while stirring at a stirring speed of 700 rpm, and nitrogen gas was introduced into the reaction tank to adjust to an inert atmosphere.
100 g of ammonia water was further added to the reaction tank, and sodium hydroxide was added so that the pH became 12.5.
Then, a metal sulfate aqueous solution having a concentration of 2.5M in which nickel sulfate, cobalt sulfate, and manganese sulfate were mixed at a molar ratio of 0.33:0.33:0.33 and ammonia water were respectively added to the reaction tank in an amount of 0. It was charged at 1 L/hour and 0.01 L/hour. Ten minutes after starting the introduction of the aqueous metal sulfate solution and the aqueous ammonia, sodium hydroxide was introduced to allow the initial particles to grow. Thereafter, an aqueous sodium hydroxide solution was added at a flow rate of 0.063 to 0.065 L/hour.
When the inside of the reaction tank became full, the supply of the aqueous metal sulfate solution, the sodium hydroxide solution, and the aqueous ammonia was stopped to terminate the reaction. Then, the entire amount of the obtained product was discharged, filtered, washed, and then dried in an oven at 120° C. to obtain precursor particles in the form of a composite metal hydroxide.
Lithium carbonate was mixed with the hydroxide particles obtained as described above so that the equivalent ratio to the hydroxide was 1.02, and then the temperature was raised at a rate of 3° C./min, and the temperature was adjusted to 9 at 910° C. By firing for a period of time, a lithium composite metal oxide having a hollow structure having an internal hollow space and an outer shell was produced.

<正極活物質断面測定>
実施例1、比較例1、及び、比較例2、から焼成された正極活物質粒子をサンプリングして、イオンビーム断面加工機(JEOL、SM−09010)を使って粒子の断面を5,000倍の倍率で測定した。観察結果を、それぞれ、図1、図2、及び、図3、に示した。
<Cathode active material cross-section measurement>
The positive electrode active material particles fired from Example 1, Comparative Example 1 and Comparative Example 2 were sampled, and the cross section of the particles was multiplied by 5,000 times using an ion beam cross section processing machine (JEOL, SM-09010). Was measured at a magnification of. The observation results are shown in FIGS. 1, 2 and 3, respectively.

<比表面積測定>
比表面積は、ガス吸着法比表面積測定装置(マイクロトラック・ベル株式会社製、BELSORP−mini II)によって測定した。
<Specific surface area measurement>
The specific surface area was measured by a gas adsorption method specific surface area measuring apparatus (BELSORP-mini II, manufactured by Microtrac Bell Co., Ltd.).

<粒度測定>
複合水酸化物及び正極活物質の平均粒径は、レーザ回折散乱式粒度分布測定装置(Microtrac Inc.製、Microtrac S3500)を用いて測定した体積積算値より算出した。
<Particle size measurement>
The average particle diameters of the composite hydroxide and the positive electrode active material were calculated from the integrated volume values measured using a laser diffraction/scattering particle size distribution measuring device (Microtrac S3500, manufactured by Microtrac Inc.).

Figure 0006744319
Figure 0006744319

実施例及び比較例のリチウム複合金属酸化物は、いずれも5μ以下の素粒子に製造されたが、図1から図3に示されたように、本発明による製造方法で製造された正極活物質は全体的に均一な気孔を有し、相対的に大きな比表面積を有することが分かる。 The lithium mixed metal oxides of the examples and the comparative examples were each manufactured to have a particle size of 5 μm or less. As shown in FIGS. 1 to 3, the positive electrode active material manufactured by the manufacturing method according to the present invention. It can be seen that has uniform pores throughout and has a relatively large specific surface area.

試験例2:電気化学特性評価
<コインセル評価>
前記実施例1、比較例1、及び、比較例2、から得られた正極活物質と、導電剤(スーパーP)と、フッ化ポリビニリデン(バインダー)と、を重量比90%、5%、5%で混合し、NMPと混合して均一なスラリーを得た。このスラリーをアルミニウム極板上に80μmの厚さに塗布した後、120℃で30分間NMPが完全に蒸発するまで乾燥した。
電解液は、炭酸エチレン/炭酸ジメチル(EC/DMC)(1/1体積%)に1モルのLiPFが溶解されたものを用いた。初期形成条件として、0.1Cで1回充放電を行った。
高率特性評価は、0.1C、0.2C、0.5C、1.0C、2.0C、3.0Cの各条件下で行った。充電電圧は4.3V、放電終止電圧は3.0Vとした。
Test Example 2: Electrochemical property evaluation <Coin cell evaluation>
The positive electrode active material obtained from Example 1, Comparative Example 1 and Comparative Example 2, the conductive agent (Super P), and polyvinylidene fluoride (binder) were used in a weight ratio of 90%, 5%, Mixed at 5% and mixed with NMP to obtain a uniform slurry. This slurry was applied on an aluminum plate to a thickness of 80 μm, and then dried at 120° C. for 30 minutes until NMP was completely evaporated.
The electrolytic solution used was one in which 1 mol of LiPF 6 was dissolved in ethylene carbonate/dimethyl carbonate (EC/DMC) (1/1% by volume). As an initial formation condition, charging and discharging were performed once at 0.1C.
The high rate characteristic evaluation was performed under each condition of 0.1C, 0.2C, 0.5C, 1.0C, 2.0C and 3.0C. The charging voltage was 4.3V and the final discharge voltage was 3.0V.

Figure 0006744319
Figure 0006744319

表2より、実施例1は、比較例1及び比較例2に比べて向上した高率特性を示したことがわかる。これは、内部に気孔が相対的に存在しない比較例1に比べて、実施例1の正極活物質は、内部に気孔が均一に分布して電解質との接触面積が増加することによって、リチウムイオンの電解液への移動が円滑になり、高率特性が向上したと考えられる。一方、気孔を有していても、中空構造の形態で外殻部を形成した形態の場合(比較例2)、表面積の増加に限界があり、電解液が中空内部へ流入しにくく、リチウムイオンの移動経路が制限されるため、高率評価時に相対的に低い出力特性を示した。 From Table 2, it can be seen that Example 1 exhibited improved high rate characteristics as compared with Comparative Examples 1 and 2. This is because the positive electrode active material of Example 1 has a more uniform distribution of pores inside and a larger contact area with the electrolyte, as compared with Comparative Example 1 in which pores are not relatively present inside. It is considered that the high-rate characteristics were improved by smooth movement of the electrolyte to the electrolytic solution. On the other hand, even if it has pores, in the case where the outer shell is formed in the form of a hollow structure (Comparative Example 2), there is a limit to the increase in surface area, and it is difficult for the electrolyte to flow into the hollow interior and Because of the limited movement path, the output characteristics were relatively low at high rate evaluation.

本発明によるリチウム電池用正極活物質は、一次粒子の凝集体で形成された二次粒子の内部領域の全体にわたって気孔が分布する多孔性構造の粒子であって、前記気孔が前記二次粒子の中心から放射状に分布していることによって、大きな比表面積を有し、これにより、電解液の気孔内部への流入が容易になり、リチウムイオンの移動抵抗が減少することによって、高出力特性を有する二次電池の製造を可能にする。 The positive electrode active material for a lithium battery according to the present invention is a particle having a porous structure in which pores are distributed over the entire inner region of the secondary particles formed of an aggregate of primary particles, and the pores are the secondary particles. It has a large specific surface area due to the radial distribution from the center, which facilitates the inflow of the electrolyte into the pores and reduces the migration resistance of lithium ions, resulting in high output characteristics. Enables the manufacture of secondary batteries.

Claims (6)

一次粒子の凝集体が二次粒子を形成し、
前記二次粒子の内部領域の全体にわたって気孔が分布する多孔性構造の粒子であって、
前記気孔が前記二次粒子の中心から放射状に分布しているリチウム電池用正極活物質の製造方法であって、
ニッケル、コバルト、マンガンを含む金属塩混合水溶液を製造する段階と、
前記金属塩混合水溶液、錯イオン形成剤、及び、結晶形成調節剤、を含む反応溶液を反応器に投入する段階と、
不活性雰囲気下で前記反応溶液にpH調節剤を投入して前記反応溶液のpHを調節する段階と、
前記反応溶液を濾過して金属複合水酸化物を得る段階と、
前記金属複合水酸化物とリチウム原料とを混合して正極活物質前駆体を製造する段階と、
前記正極活物質前駆体を焼成する段階と、を含み、
前記結晶形成調節剤がアルコール系添加剤であり、炭素数1〜10のアルコールであるリチウム電池用正極活物質の製造方法。
Aggregates of primary particles form secondary particles,
A particle having a porous structure in which pores are distributed over the entire inner region of the secondary particle,
A method for producing a positive electrode active material for a lithium battery, wherein the pores are radially distributed from the center of the secondary particles,
Producing a mixed metal salt aqueous solution containing nickel, cobalt and manganese;
Charging the reaction solution containing the metal salt mixed aqueous solution, the complex ion forming agent, and the crystal formation regulator into the reactor;
Adding a pH adjuster to the reaction solution under an inert atmosphere to adjust the pH of the reaction solution;
Filtering the reaction solution to obtain a metal composite hydroxide,
Producing a positive electrode active material precursor by mixing the metal composite hydroxide and a lithium raw material;
Firing the positive electrode active material precursor,
The method for producing a positive electrode active material for a lithium battery, wherein the crystal formation regulator is an alcohol-based additive and is an alcohol having 1 to 10 carbon atoms.
前記金属塩混合水溶液の濃度が1.0〜4.0Mである請求項1に記載のリチウム電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a lithium battery according to claim 1, wherein the concentration of the metal salt mixed aqueous solution is 1.0 to 4.0M. 前記結晶形成調節剤が、炭素数2〜10であるとともにヒドロキシル基を2個以上有する多価アルコールである請求項1に記載のリチウム電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a lithium battery according to claim 1, wherein the crystal formation regulator is a polyhydric alcohol having 2 to 10 carbon atoms and two or more hydroxyl groups. 前記アルコール系添加剤が、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、エリスリトール、ペンタエリスリトール、ブタンジオール、グリセリン、または、これらの混合物、からなる群から選択される請求項1に記載のリチウム電池用正極活物質の製造方法。 The alcohol additive is selected from the group consisting of methanol, ethanol, propanol, butanol, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, erythritol, pentaerythritol, butanediol, glycerin, or a mixture thereof. The method for producing a positive electrode active material for a lithium battery according to claim 1. 前記pHを調節する段階におけるpHが10〜13である請求項1に記載のリチウム電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a lithium battery according to claim 1, wherein the pH in the step of adjusting the pH is 10 to 13. 前記正極活物質前駆体の焼成温度が700〜950℃である請求項1に記載のリチウム電池用正極活物質の製造方法。
The method for producing a positive electrode active material for a lithium battery according to claim 1, wherein a firing temperature of the positive electrode active material precursor is 700 to 950°C.
JP2017540533A 2014-10-14 2015-10-14 Positive electrode active material for lithium battery having porous structure and manufacturing method Active JP6744319B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020140138375A KR101593401B1 (en) 2014-10-14 2014-10-14 Porous cathod active material for lithium rechargeable battery and preparation method thereof
KR10-2014-0138375 2014-10-14
PCT/KR2015/010801 WO2016060451A1 (en) 2014-10-14 2015-10-14 Cathode active material for lithium battery having porous structure and preparation method therefor

Publications (2)

Publication Number Publication Date
JP2017533571A JP2017533571A (en) 2017-11-09
JP6744319B2 true JP6744319B2 (en) 2020-08-19

Family

ID=55355244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017540533A Active JP6744319B2 (en) 2014-10-14 2015-10-14 Positive electrode active material for lithium battery having porous structure and manufacturing method

Country Status (4)

Country Link
JP (1) JP6744319B2 (en)
KR (1) KR101593401B1 (en)
CN (1) CN107004852B (en)
WO (1) WO2016060451A1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017135415A1 (en) * 2016-02-03 2017-08-10 旭硝子株式会社 Transition metal-containing hydroxide, and method for producing lithium-containing composite oxide
KR102237950B1 (en) * 2016-02-25 2021-04-08 주식회사 엘지화학 Positive electrode active material, positive electrode for lithium secondary battery comprising the same
KR102307908B1 (en) * 2016-07-20 2021-10-05 삼성에스디아이 주식회사 Nickel-based active material for lithium secondary battery, preparing method thereof, and lithium secondary battery comprising positive electrode including nickel-based active material
US11569503B2 (en) * 2016-07-20 2023-01-31 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
KR102295366B1 (en) * 2016-07-20 2021-08-31 삼성에스디아이 주식회사 Nickel-based active material for lithium secondary battery, preparing method thereof, and lithium secondary battery comprising positive electrode including nickel-based active material
US11302919B2 (en) 2016-07-20 2022-04-12 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
JP6500001B2 (en) 2016-08-31 2019-04-10 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
EP3331065B1 (en) * 2016-11-30 2019-07-24 Samsung SDI Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing nickel-based active material, and lithium secondary battery including positive electrode including nickel-based active material
CN110073527B (en) 2016-12-02 2023-07-14 三星Sdi株式会社 Nickel active material precursor and preparation method thereof, nickel active material and lithium secondary battery
CN110050366B (en) 2016-12-02 2022-06-14 三星Sdi株式会社 Nickel active material precursor, preparation method thereof, nickel active material, and lithium secondary battery
EP3550643A4 (en) 2016-12-02 2020-08-05 Samsung SDI Co., Ltd NICKEL ACTIVE MATERIAL PREPARATOR FOR LITHIUM SECONDARY BATTERY, METHOD FOR MANUFACTURING A NICKEL ACTIVE MATERIAL PRECURSOR, BY THE METHOD MANUFACTURED NICKEL ACTIVE MATERIAL PREPARATOR WITH LITHIUM BATTERY AND LITHIUM BATTERY NUMBER
US11456458B2 (en) 2016-12-08 2022-09-27 Samsung Sdi Co., Ltd. Nickel-based active material precursor for lithium secondary battery, preparing method thereof, nickel-based active material for lithium secondary battery formed thereof, and lithium secondary battery comprising positive electrode including the nickel-based active material
EP3333129B1 (en) 2016-12-08 2020-10-21 Samsung SDI Co., Ltd. Nickel-based active material for lithium secondary battery, preparing method thereof, and lithium secondary battery including positive electrode including the same
CN107565125B (en) * 2017-08-25 2019-10-29 湖南杉杉能源科技股份有限公司 A kind of high voltage precursor of nickel-cobalt-lithium-manganese-oxide and preparation method thereof and high voltage nickel-cobalt lithium manganate cathode material
EP3699987A4 (en) 2017-10-20 2021-10-27 Hunan Shanshan Energy Technology Co., Ltd. Lithium cobalt metal oxide powder and preparation method therefor, and method for measuring content of tricobalt tetroxide
KR102130484B1 (en) * 2017-11-15 2020-07-06 주식회사 에코프로비엠 Cathode active material and manufacturing method thereof
US11670754B2 (en) 2017-12-04 2023-06-06 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
KR102424398B1 (en) 2020-09-24 2022-07-21 삼성에스디아이 주식회사 Positive electrode for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
US11522189B2 (en) 2017-12-04 2022-12-06 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery, preparing method thereof, and rechargeable lithium battery comprising positive electrode
PL3723172T3 (en) 2017-12-04 2024-12-02 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
US11777075B2 (en) 2017-12-04 2023-10-03 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
KR20190130932A (en) 2018-05-15 2019-11-25 삼성에스디아이 주식회사 Positive electrode material for lithium secondary battery and lithium secondary battery comprising positive electrode including nickel-based active material
KR102256298B1 (en) 2018-06-26 2021-05-26 삼성에스디아이 주식회사 Nickel-based active material precursor for lithium secondary battery, preparing method thereof, nickel-based active material for lithium secondary battery formed thereof, and lithium secondary battery comprising positive electrode including the nickel-based active material
EP3611133A1 (en) 2018-08-14 2020-02-19 Samsung SDI Co., Ltd. Nickel-based active material precursor for lithium secondary battery, preparation method thereof, nickel-based active material for lithium secondary battery formed therefrom, and lithium secondary battery including cathode including the nickel-based active material
CN112997338B (en) * 2018-09-12 2024-10-29 浦项控股股份有限公司 Positive electrode active material, method of preparing the same, and lithium secondary battery including the same
CN109713297B (en) * 2018-12-26 2022-03-29 宁波容百新能源科技股份有限公司 High-nickel anode material with directionally arranged primary particles and preparation method thereof
US20220411283A1 (en) * 2020-01-29 2022-12-29 Lg Chem, Ltd. Positive Electrode Active Material Precursor For Secondary Battery, Positive Electrode Active Material, Preparation Methods Thereof, And Lithium Secondary Battery Including The Positive Electrode Active Material
EP4071855A4 (en) * 2020-09-30 2023-01-25 Contemporary Amperex Technology Co., Limited Blended positive electrode material, positive electrode sheet and preparation method therefor, battery, and device
KR102624905B1 (en) * 2020-11-25 2024-01-12 (주)포스코퓨처엠 Oriented cathode active material for lithium secondary battery and method for manufacturing the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4254267B2 (en) * 2002-02-21 2009-04-15 東ソー株式会社 Lithium manganese composite oxide granule secondary particles, method for producing the same, and use thereof
AU2003211395A1 (en) * 2002-02-21 2003-09-09 Tosoh Corporation Lithium manganese composite oxide granular secondary particle, method for production thereof and use thereof
JP4789066B2 (en) * 2006-03-06 2011-10-05 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
CN101308925B (en) * 2008-07-04 2011-02-02 深圳市贝特瑞新能源材料股份有限公司 Composite coated positive pole material of lithium ionic cell and preparing method thereof
KR101292757B1 (en) * 2011-01-05 2013-08-02 한양대학교 산학협력단 Cathod active material of full gradient, method for preparing the same, lithium secondary battery comprising the same
KR101373094B1 (en) * 2011-04-08 2014-03-12 로베르트 보쉬 게엠베하 Positive active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery including same
KR20130138073A (en) * 2012-06-08 2013-12-18 한양대학교 산학협력단 Precursor for cathod active material of lithium secondary battery, cathode active materials made by the same, and lithium secondary battery containing the same
JP2014049410A (en) * 2012-09-04 2014-03-17 Ngk Insulators Ltd Manufacturing method of cathode active material for lithium-ion battery
JP5703504B2 (en) * 2012-09-27 2015-04-22 日本碍子株式会社 Sodium sulfur battery package

Also Published As

Publication number Publication date
CN107004852A (en) 2017-08-01
WO2016060451A1 (en) 2016-04-21
CN107004852B (en) 2020-07-14
JP2017533571A (en) 2017-11-09
KR101593401B1 (en) 2016-02-12

Similar Documents

Publication Publication Date Title
JP6744319B2 (en) Positive electrode active material for lithium battery having porous structure and manufacturing method
JP7421039B2 (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery containing the same
JP7349109B2 (en) Method for producing lithium nickel-containing composite oxide
JP6991184B2 (en) Lithium secondary battery including nickel-based active material for lithium secondary battery, its manufacturing method, and positive electrode containing it
JP6986883B2 (en) Lithium secondary battery including nickel-based active material for lithium secondary battery, its manufacturing method, and positive electrode containing it
JP6201895B2 (en) Method for producing nickel cobalt manganese composite hydroxide
JP4789066B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2022113728A (en) Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the same
KR101694086B1 (en) Transition metal composite hydroxide capable of serving as precursor of positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using positive electrode active material
CN106848262B (en) Positive electrode active material with full particle concentration gradient for lithium secondary battery, preparation method thereof, and lithium secondary battery having the same
KR101478417B1 (en) Nickel-cobalt-manganese complex hydroxide particles and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery
JP6428105B2 (en) Nickel cobalt manganese compound and method for producing the same
JP6895105B2 (en) A method for producing nickel-manganese composite hydroxide particles and a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.
JPWO2014034430A1 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
CN103840150A (en) Cathode active material, method for preparing same, and lithium secondary batteries including the same
CN110650923A (en) Method for preparing positive electrode active material
JP7121283B2 (en) Method for producing nickel-cobalt composite hydroxide and method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2022115903A (en) Transition metal-containing composite hydroxide particle and manufacturing method of the same, positive electrode active material for nonaqueous electrolyte secondary battery and manufacturing method of the same, and nonaqueous electrolyte secondary battery
JP7172301B2 (en) Transition metal composite hydroxide, method for producing transition metal composite hydroxide, lithium transition metal composite oxide active material, and lithium ion secondary battery
CN107394201A (en) The manufacture method of nickel cobalt complex hydroxide and the manufacture method of positive electrode active material for nonaqueous electrolyte secondary battery
JP7211137B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing precursor used for producing positive electrode active material, method for producing positive electrode active material, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2021039120A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and electricity storage device
JP7273260B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP5799849B2 (en) Nickel-cobalt composite hydroxide and method for producing the same
JP6245081B2 (en) Nickel cobalt manganese composite hydroxide and method for producing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170822

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200730

R150 Certificate of patent or registration of utility model

Ref document number: 6744319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250