JP6737023B2 - Simulation method and simulation device - Google Patents
Simulation method and simulation device Download PDFInfo
- Publication number
- JP6737023B2 JP6737023B2 JP2016140677A JP2016140677A JP6737023B2 JP 6737023 B2 JP6737023 B2 JP 6737023B2 JP 2016140677 A JP2016140677 A JP 2016140677A JP 2016140677 A JP2016140677 A JP 2016140677A JP 6737023 B2 JP6737023 B2 JP 6737023B2
- Authority
- JP
- Japan
- Prior art keywords
- storage device
- power storage
- voltage
- simulation
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Tests Of Electric Status Of Batteries (AREA)
- Secondary Cells (AREA)
Description
本発明は、シミュレーション方法及びシミュレーション装置に関する。 The present invention relates to a simulation method and a simulation device.
特許文献1には、電池モデル同定方法が記載されている。この方法では、電池に入力される電流波形を電流センサを用いて測定し、電池の端子電圧の電圧波形を電圧センサを用いて測定する。そして、システム同定演算部が、これらの電流波形及び電圧波形に基づいて、電池モデルのシステム同定を行う。
現在、車載用蓄電デバイスとして、鉛蓄電池、リチウムイオン電池、リチウムイオンキャパシタといった様々な蓄電デバイスが用いられている。そして、これらの電池を組み合わせて、様々な種類のハイブリッド方式が実用化されている。例えば、メイン蓄電デバイスとは別に、減速の際のエネルギー回生及び補機への給電のためのサブ蓄電デバイスを設ける、いわゆるμHEV(Hybrid Electric Vehicle)方式が近年特に有用とされている。 Currently, various electric storage devices such as lead storage batteries, lithium-ion batteries, and lithium-ion capacitors are used as in-vehicle electric storage devices. Various types of hybrid systems have been put to practical use by combining these batteries. For example, a so-called μHEV (Hybrid Electric Vehicle) system has recently been particularly useful, in which a sub power storage device for energy regeneration during deceleration and power supply to an auxiliary device is provided separately from the main power storage device.
一方、例えば車両の燃費シュミレーションにおいては、エンジン及び蓄電デバイスといった様々な動力源並びに負荷をモデル化し、規定の走行パターンを該モデルに入力して燃費を算出することが行われている。このような燃費シュミレーション等に含まれる蓄電デバイスのシミュレーションにおいて、ハイブリッド方式における複雑化した蓄電デバイス構成を正確にモデル化することは、シミュレーションを精度よく行うために極めて重要である。しかしながら、従来のシュミレーションにおいては、蓄電デバイスの使用による劣化を考慮せずに蓄電デバイスをモデル化しているので、劣化したときの蓄電デバイスの特性を精度良く推定するためには、モデルの特性パラメータを同定する際に、実際に劣化した蓄電デバイスを用意する必要があるという問題がある。 On the other hand, in a fuel consumption simulation of a vehicle, for example, various power sources and loads such as an engine and a power storage device are modeled, and a prescribed traveling pattern is input to the model to calculate fuel consumption. In the simulation of the electricity storage device included in such a fuel consumption simulation, it is extremely important to accurately model the complicated electricity storage device configuration in the hybrid system in order to perform the simulation accurately. However, in the conventional simulation, the electricity storage device is modeled without considering the deterioration due to the use of the electricity storage device. Therefore, in order to accurately estimate the characteristics of the electricity storage device when it deteriorates, the characteristic parameters of the model are set. There is a problem that it is necessary to prepare an actually deteriorated power storage device for identification.
本発明は、実際に劣化した蓄電デバイスを用いなくても、劣化したときの蓄電デバイスの特性を精度良く推定することができるシミュレーション方法及びシミュレーション装置を提供することを目的とする。 An object of the present invention is to provide a simulation method and a simulation apparatus capable of accurately estimating the characteristics of a power storage device when it deteriorates, without using a power storage device that has actually deteriorated.
本発明の一実施形態によるシミュレーション方法は、蓄電デバイスの等価回路モデルを用いてシミュレーションを行う方法であって、等価回路モデルを流れる電流に基づいて等価回路モデルの端子電圧を計算するステップを含み、等価回路モデルが複数の特性パラメータを含んでおり、少なくとも一つの特性パラメータが、蓄電デバイスの劣化の影響を表す時間関数を含んでおり、時間関数が、蓄電デバイスの暗電流放電時のSOC及び休止時のSOCの一方または双方の時間積分と、該時間積分に乗算された劣化速度を表す係数とを含む項を有する。 A simulation method according to an embodiment of the present invention is a method of performing simulation using an equivalent circuit model of an electricity storage device, including a step of calculating a terminal voltage of the equivalent circuit model based on a current flowing through the equivalent circuit model, The equivalent circuit model includes a plurality of characteristic parameters, at least one characteristic parameter includes a time function representing the influence of deterioration of the electricity storage device, and the time function is the SOC and the pause during dark current discharge of the electricity storage device. It has a term including a time integral of one or both of SOC of time and a coefficient representing a deterioration rate multiplied by the time integral.
また、本発明の一実施形態によるシミュレーション装置は、蓄電デバイスの等価回路モデルを用いてシミュレーションを行う装置であって、等価回路モデルを流れる電流に基づいて等価回路モデルの端子電圧を計算する電圧計算部を含み、等価回路モデルが複数の特性パラメータを含んでおり、少なくとも一つの特性パラメータが、蓄電デバイスの劣化の影響を表す時間関数を含んでおり、時間関数が、蓄電デバイスの暗電流放電時のSOC及び休止時のSOCの一方または双方の時間積分と、該時間積分に乗算された劣化速度を表す係数とを含む項を有する。 A simulation device according to an embodiment of the present invention is a device that performs simulation using an equivalent circuit model of an electricity storage device, and is a voltage calculation device that calculates a terminal voltage of the equivalent circuit model based on a current flowing through the equivalent circuit model. Part, the equivalent circuit model includes a plurality of characteristic parameters, at least one characteristic parameter includes a time function representing the influence of deterioration of the electricity storage device, the time function is the dark current discharge of the electricity storage device Of SOC and/or SOC at rest, and a term including a time integration of the SOC and a coefficient representing the deterioration rate multiplied by the time integration.
これらのシミュレーション方法及びシミュレーション装置では、少なくとも一つの特性パラメータが、蓄電デバイスの劣化の影響を表す時間関数を含む。このような時間関数に蓄電デバイスの使用期間(トータルサイクル時間)内の適切な時間(例えば動作状態を表す数値に関わる動作時間)を入力することにより、該使用時間経過時における蓄電デバイスの劣化度合いを特性パラメータに反映させることができる。そして、本発明者の知見によれば、暗電流放電時または休止時のSOCによって蓄電デバイスの劣化の度合いは大きく変化する。上記の方法及び装置では、時間関数が、劣化速度を表す係数と、蓄電デバイスの暗電流放電時のSOC及び休止時のSOCの一方または双方の時間積分とを乗算した項を含む。これにより、蓄電デバイスの暗電流放電時または休止時のSOCに基づく劣化度合いを精度良く表すことができる。従って、上記の方法及び装置によれば、実際に劣化した蓄電デバイスを用いなくても、劣化したときの蓄電デバイスの入出力特性を精度良く推定することができ、劣化した蓄電デバイスを用いた燃費シミュレーションなどを精度良く行うことができる。なお、この蓄電デバイスは、例えば鉛蓄電池である。 In these simulation methods and simulation devices, at least one characteristic parameter includes a time function representing the influence of deterioration of the power storage device. By inputting an appropriate time (for example, an operating time relating to a numerical value indicating an operating state) within the usage period (total cycle time) of the power storage device to such a time function, the degree of deterioration of the power storage device after the usage time elapses. Can be reflected in the characteristic parameter. According to the knowledge of the inventor of the present invention, the degree of deterioration of the power storage device greatly changes depending on the SOC during dark current discharge or at rest. In the above method and apparatus, the time function includes a term that is obtained by multiplying a coefficient indicating a deterioration rate by a time integral of one or both of SOC during dark current discharge of the electricity storage device and SOC during rest. This makes it possible to accurately represent the degree of deterioration based on the SOC of the electricity storage device during dark current discharge or at rest. Therefore, according to the method and apparatus described above, it is possible to accurately estimate the input/output characteristics of the power storage device when the power storage device deteriorates without using the power storage device that actually deteriorates, and the fuel consumption using the deteriorated power storage device can be estimated. A simulation or the like can be performed accurately. The power storage device is, for example, a lead storage battery.
上記のシミュレーション方法において、係数は蓄電デバイスの温度に応じて変化してもよい。これにより、蓄電デバイスの温度に応じて変化する劣化度合いを精度良く表すことができる。 In the above simulation method, the coefficient may change according to the temperature of the power storage device. This makes it possible to accurately represent the degree of deterioration that changes according to the temperature of the power storage device.
本発明によるシミュレーション方法及びシミュレーション装置によれば、実際に劣化した蓄電デバイスを用いなくても、劣化したときの蓄電デバイスの特性を精度良く推定することができる。 According to the simulation method and the simulation apparatus of the present invention, it is possible to accurately estimate the characteristics of the storage device when it deteriorates, without using the storage device that actually deteriorates.
以下、添付図面を参照しながら本発明によるシミュレーション方法及びシミュレーション装置の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。以下の説明において、蓄電デバイスを流れる電流とは、蓄電デバイスに入力される充電電流および蓄電デバイスから出力される放電電流の双方を指し、電流の符号が正である場合は充電を表し、電流の符号が負である場合は放電を表す。 Hereinafter, embodiments of a simulation method and a simulation apparatus according to the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements will be denoted by the same reference symbols, without redundant description. In the following description, the current flowing through the electricity storage device refers to both the charging current input to the electricity storage device and the discharging current output from the electricity storage device, and when the sign of the current is positive, it represents charging, If the sign is negative, it represents a discharge.
一実施形態に係るシミュレーション方法及びシミュレーション装置は、たとえば、蓄電デバイスが搭載された車両の燃費シミュレーションにおいて用いられる。この蓄電デバイスは、例えばμHEV方式を採用した車両に搭載されるメイン蓄電デバイス、若しくはメイン蓄電デバイスとは別に設けられたサブ蓄電デバイスである。蓄電デバイスがサブ蓄電デバイスである場合、蓄電デバイスは、車両に搭載された12V系の補機の消費電流を賄うために用いられる。 The simulation method and the simulation apparatus according to one embodiment are used, for example, in a fuel consumption simulation of a vehicle equipped with an electricity storage device. This power storage device is, for example, a main power storage device mounted in a vehicle that employs the μHEV system, or a sub power storage device provided separately from the main power storage device. When the electricity storage device is a sub electricity storage device, the electricity storage device is used to cover the current consumption of the 12V auxiliary device mounted on the vehicle.
[燃費シミュレーション装置の概要]
図1は、燃費シミュレーションを行う装置の概略構成を示す図である。図1に示されるように、燃費シミュレーション装置90は、その機能ブロックとして、入力部91と、制御部92と、出力部93とを含む。
[Outline of fuel consumption simulation device]
FIG. 1 is a diagram showing a schematic configuration of a device that performs a fuel consumption simulation. As shown in FIG. 1, the fuel
入力部91は、燃費シミュレーションに必要なデータを入力する。入力データの例は、車両の走行パターンである。それ以外にも、車両に搭載されるエンジンなどの各種デバイスの特性を定めるパラメータ、蓄電デバイスの充放電の制御方法の種類、蓄電デバイスの構成、車両に搭載される補機の消費電力、および車両の重量などのデータが入力され得る。
The
制御部92は、入力部91によって入力されたデータを用いて、燃費シミュレーションを行う。燃費シミュレーションの具体的な手法は特に限定されないが、たとえば、次のような手順で行われる。
The
まず、制御部92は、入力部91によって入力された走行パターンなどから、たとえば区間ごとに、車両が走行するために要求されるパワー(以下、単に「要求パワー」という)および補機の消費電流を算出する。区間としては、停止区間、加速区間、定速走行区間、および減速区間などがある。要求パワーは、加速区間では比較的大きく、定速走行区間では比較的小さい。要求パワーは、停止区間および減速区間では0であってもよい。補機の消費電流は、補機の種類によって異なる。たとえばオーディオ機器など連続的に使用される補機の消費電流の大きさは、区間によらずほぼ一定である。これに対し、エンジンの点火装置など一時的に使用される補機の消費電流の大きさは、使用時のみ大きくなる。
First, the
次に、制御部92は、区間ごとのエンジンの出力を算出する。エンジンの出力は、たとえば、停止区間ではエンジンが停止して0となり、それ以外の区間では所定の出力とされる。エンジンの出力のうち、要求パワーを上回る分の出力が、オルタネータによって電力に変換され、オルタネータから補機および蓄電デバイスに向かって供給される。オルタネータから供給される電力が補機の消費電力を上回ると、オルタネータから蓄電デバイスに電流が流れ、蓄電デバイスが充電される。オルタネータから供給される電力が補機の消費電力を下回ると、蓄電デバイスから補機に電流が流れ、蓄電デバイスが放電する。ここで、蓄電デバイスの端子電圧は、蓄電デバイスのSOCおよび充放電電流の大きさなどに依存する。この蓄電デバイスの端子電圧が、たとえば、蓄電デバイスの端子電圧を計算するための等価回路モデルを用いて推定される。端子電圧の推定の詳細については後述する。蓄電デバイスの充放電電流および蓄電デバイスの端子電圧から、制御部92は、区間ごとの蓄電デバイスの充放電電力も算出する。
Next, the
その後、制御部92は、全区間におけるエンジンの出力および蓄電デバイスの充放電電力の積算値を算出する。全区間におけるエンジンの出力の積算値は、入力部91によって入力された走行パターンで車両が走行した場合に、エンジンが消費するであろうエネルギー量を示す。全区間における蓄電デバイスの充放電電力の積算値は、入力部91によって入力された走行パターンで車両が走行した場合に、蓄電デバイスにおいて増減するであろうエネルギー量の大きさを示す。エンジンが消費するであろうエネルギー量と、蓄電デバイスにおいて減少するであろうエネルギー量との合計のエネルギー量は、入力部91によって入力された走行パターンの車両の走行に要するエネルギー量となる。走行パターンから車両の走行距離も分かるので、当該走行距離とそれに要するエネルギー量とに基づいて、制御部92は、所定エネルギー量当たりに走行可能な距離を燃費として算出する。
After that, the
出力部93は、制御部92によって算出された燃費を出力する。これにより、入力部91によって入力された走行パターンなどに基づく燃費シミュレーションの結果が得られる。
The
上述のように、燃費シミュレーションにおいては、蓄電デバイスの端子電圧が推定される。蓄電デバイスの端子電圧の推定精度を向上させることによって燃費シミュレーションの精度も向上するので、たとえば燃費の計算精度を向上させることを目的として、実施形態に係るシミュレーション装置(蓄電デバイスシミュレータ)が用いられてもよい。なお、以下の説明において、蓄電デバイスとしては、単一の鉛蓄電池が用いられる。蓄電デバイスは、鉛蓄電池に限られず、他の蓄電デバイスであってもよく、複数の蓄電デバイスを組み合わせた複合型の蓄電デバイスであってもよい。 As described above, in the fuel consumption simulation, the terminal voltage of the power storage device is estimated. Since the accuracy of fuel consumption simulation is improved by improving the estimation accuracy of the terminal voltage of the power storage device, the simulation device (power storage device simulator) according to the embodiment is used for the purpose of improving the calculation accuracy of fuel consumption. Good. In the following description, a single lead storage battery is used as the electricity storage device. The power storage device is not limited to the lead storage battery, and may be another power storage device or a composite type power storage device in which a plurality of power storage devices are combined.
本実施形態では、シミュレーション装置は、蓄電デバイスの端子電圧を計算するための蓄電デバイスモデルを用いて、蓄電デバイスの端子電圧を推定する。本実施形態では、蓄電デバイスモデルとして、蓄電デバイスの等価回路モデルを用いることとする。まず、等価回路モデルの例について、図2を参照して説明する。 In the present embodiment, the simulation apparatus estimates the terminal voltage of the power storage device by using the power storage device model for calculating the terminal voltage of the power storage device. In the present embodiment, an equivalent circuit model of a power storage device is used as the power storage device model. First, an example of the equivalent circuit model will be described with reference to FIG.
[蓄電デバイスの等価回路モデル]
図2に示される例では、等価回路モデル40は、互いに逆極性のノードN1およびノードN2の間に直列に接続された、回路10と、回路20と、定電圧源30とを含む。
[Equivalent circuit model of power storage device]
In the example shown in FIG. 2, the
ノードN1およびノードN2は、蓄電デバイスの外部の要素と電気的に接続される部分であり、等価回路モデル40に発生する電圧を与える。等価回路モデル40に発生する電圧は、蓄電デバイスの端子電圧V(t)である。ノードN1はアノードであり、蓄電デバイスを流れる電流I(t)を与える。なお、電圧および電流などの時間変化する物理量を示す符号に(t)などを付す場合があるが、このように示された物理量は、時刻tにおける当該物理量の値を意味するものとする。また、時刻tは、0以上の整数であり、端子電圧V(t)の推定の開始時刻からの経過時間を示す。時刻t=0は、端子電圧V(t)の推定の開始時刻である。
The nodes N 1 and N 2 are parts electrically connected to elements outside the power storage device, and give a voltage generated in the
回路10は、蓄電デバイスの直流インピーダンス(直流抵抗成分)を模擬する直流抵抗部である。回路10は、抵抗器11を含む。抵抗器11は、蓄電デバイスの線形直流抵抗成分を模擬している。線形直流抵抗成分としては、電極の抵抗が挙げられる。抵抗器11の抵抗値は定数である。回路10の抵抗器11の抵抗値によって、回路10のインピーダンスが定まる。回路10のインピーダンスが定まれば、等価回路モデル40に電流I(t)が流れたときに、その電流I(t)が回路10にも流れるので、電流I(t)と回路10のインピーダンスとから、回路10に発生する電圧が計算できる。回路10に発生する電圧を、直流抵抗電圧Vdc(t)と称し図示する。
The
回路20は、蓄電デバイスの分極インピーダンス成分を模擬する分極モデル部である。回路20は、並列接続された抵抗器およびコンデンサ(RC並列回路)を含む。図2に示される例では、2つのRC並列回路が直列に接続されている。具体的に、並列接続された抵抗器21およびコンデンサ22(第1のRC並列回路)と、並列接続された抵抗器23およびコンデンサ24(第2のRC並列回路)とが、直列に接続されている。第1のRC並列回路を構成する抵抗器21の抵抗値およびコンデンサ22の容量値は定数である。抵抗器21は、蓄電デバイスの第1の分極抵抗成分を模擬し、コンデンサ22は、蓄電デバイスの第1の分極容量成分を模擬している。第2のRC並列回路を構成する抵抗器23の抵抗値およびコンデンサ24の容量値は定数である。抵抗器23は蓄電デバイスの第2の分極抵抗成分を模擬し、コンデンサ24は蓄電デバイスの第2の分極容量成分を模擬している。
The
なお、図2に示される例では回路20は、第1及び第2の2つのRC並列回路を含むが、回路20は、少なくとも第1のRC並列回路(抵抗器21およびコンデンサ22)を含んでいればよい。また、回路20は、3つ以上のRC並列回路を含んでいてもよい。
Note that, in the example shown in FIG. 2, the
回路20の各抵抗器の抵抗値および各コンデンサの容量値によって、回路20のインピーダンスが定まる。回路20のインピーダンスが定まれば、等価回路モデル40に電流I(t)が流れたときに、その電流I(t)が回路20にも流れるので、電流I(t)と回路20のインピーダンスとから、回路20に発生する電圧が計算できる。回路20に発生する電圧を、分極電圧Vpol(t)と称し図示する。
The impedance of the
分極電圧Vpolは、抵抗器21およびコンデンサ22に発生する電圧と、抵抗器23およびコンデンサ24に発生する電圧との合計電圧である。抵抗器21およびコンデンサ22に発生する電圧を、第1分極電圧Vp1(t)と称し図示する。抵抗器23およびコンデンサ24に発生する電圧を、第2分極電圧Vp2(t)と称し図示する。すなわち、回路20において、以下の関係式(1)が成立する。
ここで、抵抗器21およびコンデンサ22から構成される第1のRC並列回路の時定数を時定数τ1とすると、時定数τ1は、抵抗器21の抵抗値とコンデンサ22の容量値とを乗じた値として定められる。時定数τ1は、抵抗器21およびコンデンサ22に発生する第1分極電圧Vp1(t)の時間変化に反映される。たとえば、時定数τ1が大きいほど、第1分極電圧Vp1(t)の時間変化は遅くなる。同様に、抵抗器23およびコンデンサ24から構成される第2のRC並列回路の時定数を時定数τ2とすると、時定数τ2は、抵抗器23の抵抗値とコンデンサ24の容量値とを乗じた値として定められる。時定数τ2は、抵抗器23およびコンデンサ24に発生する第2分極電圧Vp2(t)の時間変化に反映される。時定数τ1及びτ2は互いに異なる値に設定されてよい。回路20が複数の異なる時定数を有するRC並列回路を含むことで、分極電圧Vpol(t)の電圧の時間変化をより正確に表すことができる。各時定数は、たとえば、時定数τ1<時定数τ2となるように設定されてよい。
Here, assuming that the time constant of the first RC parallel circuit including the resistor 21 and the
定電圧源30は、一定の直流(DC)電圧を有する。定電圧源30の有する電圧は、蓄電デバイスの開放電圧(OCV:Open Circuit Voltage)である。定電圧源30のインピーダンスは0である。蓄電デバイスの開放電圧を、開放電圧Vocv(t)と称し図示する。開放電圧Vocv(t)は、たとえば、蓄電デバイスのSOCから求められる。その場合、開放電圧Vocv(t)は、SOCを引数とする関数となる。蓄電デバイスの温度なども、引数に含まれてもよい。
The
以上説明した回路10に発生する直流抵抗電圧Vdc(t)、回路20に発生する分極電圧Vpol(t)および定電圧源30が有する開放電圧Vocv(t)と、端子電圧V(t)との間には、以下の関係式(2)が成立する。
以上説明した蓄電デバイスの等価回路モデル40を用いて、実施形態に係るシミュレーション装置は、蓄電デバイスの端子電圧V(t)を推定する。
Using the
図3は、一実施形態に係るシミュレーション装置の概略構成を示す図である。シミュレーション装置1は、その機能ブロックとして、入力部2と、SOC計算部3と、パラメータ設定部4と、直流抵抗計算部5と、分極計算部6と、OCV計算部7と、端子電圧計算部8とを含む。
FIG. 3 is a diagram showing a schematic configuration of the simulation apparatus according to the embodiment. The
図4は、図3のシミュレーション装置1のハードウェア構成の例を示す図である。図4に示されるように、シミュレーション装置1は、物理的には、一または複数のCPU(Central Processing Unit)101と、主記憶装置であるRAM(Random Access Memory)102およびROM(Read Only Memory)103と、データ送受信デバイスである通信モジュール104と、ハードディスクおよびフラッシュメモリなどの補助記憶装置105と、キーボードなどのユーザの入力を受け付ける入力装置106と、ディスプレイなどの出力装置107と、を備えるコンピュータとして構成されている。図3に示されるシミュレーション装置1の各機能は、CPU101およびRAM102などのハードウェア上に一または複数の所定のコンピュータソフトウェアを読み込ませることにより、CPU101の制御のもとで通信モジュール104、入力装置106、および出力装置107を動作させるとともに、RAM102および補助記憶装置105におけるデータの読み出しおよび書き込みを行うことで実現される。なお、上記の説明はシミュレーション装置1のハードウェア構成として説明したが、燃費シミュレーション装置90がCPU101、RAM102およびROM103などの主記憶装置、通信モジュール104、補助記憶装置105、入力装置106、および出力装置107などを含む通常のコンピュータシステムとして構成されてもよい。
FIG. 4 is a diagram showing an example of the hardware configuration of the
再び図3を参照して、シミュレーション装置1の各機能の詳細を説明する。入力部2は、蓄電デバイスへの指定値(bat_demand)を入力する部分である。指定値は、たとえば上述の燃費シミュレーション装置90による燃費計算において蓄電デバイスに要求される、充放電電流の大きさ、および充放電電力の大きさなどを含む。入力部2は、入力した指定値を直流抵抗計算部5に出力する。
The details of each function of the
SOC計算部3は、蓄電デバイスのSOCを計算する部分である。たとえば、蓄電デバイスの初期のSOC(0)と、その後の蓄電デバイスの充放電電気量とから、蓄電デバイスのSOC(t)が計算される。蓄電デバイスの初期のSOC(0)の値は特に限定されず、適宜設定されてよい。蓄電デバイスの充放電電気量は、蓄電デバイスの充放電電流を充放電時間で積算することによって求められる。蓄電デバイスのSOC(t)は、時刻tにおける蓄電デバイスの充放電電気量と蓄電デバイスの満充電容量とに基づいて求められる。時刻tのSOC(t)の計算において、蓄電デバイスに流れる電流として、等価回路モデル40を時刻0から時刻t−1までに流れた電流Iが用いられ得る。この場合、SOC計算部3は、たとえば以下の式(3)によってSOC(t)を計算する。SOC計算部3は、計算したSOC(t)をパラメータ設定部4、分極計算部6、およびOCV計算部7にそれぞれ出力する。
パラメータ設定部4は、蓄電デバイスの端子電圧の推定に必要な種々の特性パラメータの値を設定する部分である。特性パラメータは、例えば、抵抗器11の抵抗値(直流抵抗)、抵抗器21の抵抗値(第1の分極抵抗)、時定数τ1(第1の分極時定数)、抵抗器23の抵抗値(第2の分極抵抗)、及び時定数τ2(第2の分極時定数)である。なお、各特性パラメータの値は、蓄電デバイスのSOCに応じて変更されてもよい。
The
パラメータ設定部4は、たとえば、各パラメータの値を記述するルックアップテーブルを参照することによって、各パラメータの値を設定する。ルックアップテーブルは、パラメータごとに設けられる。ルックアップテーブルは、たとえばSOCと各パラメータの値とが対応付けられたテーブルである。この場合、パラメータ設定部4は、各ルックアップテーブルを参照することによって、SOC計算部3から受け取ったSOC(t)に対応付けられた各パラメータの値を取得し、取得した値を各パラメータの値に設定する。なお、各ルックアップテーブルは、蓄電デバイスの温度ごとに準備されていてもよい。その場合には、さらに、蓄電デバイスの温度も考慮して、各パラメータの値が設定される。また、各パラメータの値は予め定められていてもよい。パラメータ設定部4は、設定した各パラメータの値を直流抵抗計算部5および分極計算部6に出力する。
The
直流抵抗計算部5は、等価回路モデル40中の回路10に発生する直流抵抗電圧Vdc(t)を計算する部分である。また、直流抵抗計算部5は、入力部2によって入力された指定値(bat_demand)から、等価回路モデル40に流れる電流I(t)を計算する部分でもある。分極計算部6は、等価回路モデル40中の回路20に発生する分極電圧Vpol(t)を計算する部分である。OCV計算部7は、蓄電デバイスの開放電圧Vocv(t)を計算する部分である。先に説明したように、開放電圧Vocv(t)は、蓄電デバイスのSOCから求められる。たとえば、各SOCの値と開放電圧Vocvの値とを対応付けたテーブルが予め準備されている。OCV計算部7は、当該テーブルを参照することによって、SOC計算部3から受け取ったSOC(t)から開放電圧Vocv(t)を計算する。なお、上述のテーブルが、温度ごとに準備されていてもよく、その場合には、さらに、蓄電デバイスの温度も考慮して、開放電圧Vocv(t)が計算される。
The DC
端子電圧計算部8は、蓄電デバイスの端子電圧V(t)を計算する部分である。先に説明したように、直流抵抗計算部5によって計算された直流抵抗電圧Vdc(t)、分極計算部6によって計算された分極電圧Vpol(t)、およびOCV計算部7によって計算された開放電圧Vocv(t)が端子電圧計算部8に送られる。端子電圧計算部8は、直流抵抗電圧Vdc(t)、分極電圧Vpol(t)、および開放電圧Vocv(t)に基づいて、端子電圧V(t)を計算する。具体的には、端子電圧計算部8は、上記式(2)に示されるように、直流抵抗電圧Vdc(t)、分極電圧Vpol(t)、および開放電圧Vocv(t)を加算し、その合計電圧を端子電圧V(t)として計算する。端子電圧計算部8は、計算した端子電圧V(t)をシミュレーション装置1の外部および直流抵抗計算部5に出力する。
The terminal voltage calculation unit 8 is a unit that calculates the terminal voltage V(t) of the power storage device. As described above, the DC resistance voltage Vdc(t) calculated by the DC
次に、図5を参照して、シミュレーション装置1が実行する端子電圧V(t)の計算処理(シミュレーション方法)を説明する。図5は、シミュレーション装置1が実行する端子電圧V(t)の計算処理の例を示すフローチャートである。図5に示されるフローチャートの処理は、たとえば燃費シミュレーション装置90の燃費計算において、ある時刻tにおける蓄電デバイスの端子電圧を推定する際に実行される。
Next, the calculation process (simulation method) of the terminal voltage V(t) executed by the
まず、入力部2が指定値(bat_demand)を入力する(ステップS01)。たとえば、入力部2は、シミュレーション装置1の外部装置から指定値を受け取ることにより、その指定値を入力する。そして、入力部2は、入力した指定値を直流抵抗計算部5に出力する。そして、SOC計算部3は、蓄電デバイスのSOCを計算する(ステップS02)。SOC計算部3は、たとえば、上述された式(3)を用いてSOC(t)を計算する。そして、SOC計算部3は、計算したSOC(t)をパラメータ設定部4、分極計算部6、およびOCV計算部7に出力する。
First, the
続いて、パラメータ設定部4は、等価回路モデル40の各特性パラメータを設定する(ステップS03)。ステップS03において設定される特性パラメータは、たとえば、抵抗器11の抵抗値、抵抗器21の抵抗値、時定数τ1、抵抗器23の抵抗値、及び時定数τ2である。パラメータ設定部4は、たとえば、各特性パラメータの値を記述するルックアップテーブルを参照することによって、SOC計算部3から受け取ったSOC(t)に対応付けられた各パラメータの値を取得し、取得した値を各パラメータの値に設定する。そして、パラメータ設定部4は、設定したパラメータを直流抵抗計算部5および分極計算部6に出力する。
Subsequently, the
続いて、直流抵抗計算部5は、パラメータ設定部4から提供された抵抗器11の抵抗値を用いて、電流I(t)および直流抵抗電圧Vdc(t)を計算する(ステップS04)。直流抵抗計算部5は、充放電モードが定電流放電モード(端子電圧V(t)によらず、一定の電流を流すモード)である場合には、入力部2によって入力された指定値に含まれる指定電流を電流I(t)に設定する。そして、直流抵抗計算部5は、この電流I(t)に基づいて直流抵抗電圧Vdc(t)を計算する。また、直流抵抗計算部5は、充放電モードが定電圧充電モード(蓄電デバイスを充電するための電圧源(たとえばオルタネータ)の出力電圧を一定にした状態で蓄電デバイスを充電するモード)である場合には、まず直流抵抗電圧Vdc(t)を計算する。そして、この直流抵抗電圧Vdc(t)に基づいて、等価回路モデル40に流れる電流I(t)を計算する。
Then, the DC
続いて、分極計算部6は、分極電圧Vpol(t)を計算する(ステップS05)。具体的には、分極計算部6は、パラメータ設定部4から提供された抵抗器21の抵抗値、時定数τ1、抵抗器23の抵抗値、及び時定数τ2を用いて、第1分極電圧Vp1(t)および第2分極電圧Vp2(t)を計算する。そして、分極計算部6は、それら第1分極電圧Vp1(t)および第2分極電圧Vp2(t)の合計値を、分極電圧Vpol(t)として計算する。
Subsequently, the
続いて、OCV計算部7は、開放電圧Vocv(t)を計算する(ステップS06)。たとえば、OCV計算部7は、各SOCの値と開放電圧Vocvの値とを対応付けたテーブルを参照することによって、SOC計算部3から受け取ったSOC(t)から開放電圧Vocv(t)を計算する。そして、OCV計算部7は、計算した開放電圧Vocv(t)を端子電圧計算部8に出力する。
Subsequently, the
続いて、端子電圧計算部8は、端子電圧V(t)を計算する(ステップS07)。具体的には、端子電圧計算部8は、直流抵抗計算部5によって計算された直流抵抗電圧Vdc(t)、分極計算部6によって計算された分極電圧Vpol(t)、およびOCV計算部7によって計算された開放電圧Vocv(t)に基づいて、端子電圧V(t)を計算する。より具体的には、端子電圧計算部8は、上記式(2)に示されるように、直流抵抗電圧Vdc(t)、分極電圧Vpol(t)、および開放電圧Vocv(t)を加算し、その合計電圧を端子電圧V(t)として計算する。そして、端子電圧計算部8は、計算した端子電圧V(t)をシミュレーション装置1の外部、および直流抵抗計算部5に出力する。以上のようにして、時刻tにおける端子電圧V(t)の計算処理が終了する。
Subsequently, the terminal voltage calculator 8 calculates the terminal voltage V(t) (step S07). Specifically, the terminal voltage calculation unit 8 uses the DC resistance voltage Vdc(t) calculated by the DC
なお、ステップS05の処理とステップS06の処理とは、並行して行われてもよく、実施される順番が逆になってもよい。 The process of step S05 and the process of step S06 may be performed in parallel, or may be performed in reverse order.
ここで、等価回路モデル40を構成する特性パラメータについて詳細に説明する。前述したように、等価回路モデル40は、例えば抵抗器11の抵抗値(直流抵抗)、抵抗器21の抵抗値(第1の分極抵抗)、時定数τ1(第1の分極時定数)、抵抗器23の抵抗値(第2の分極抵抗)、及び時定数τ2(第2の分極時定数)といった複数の特性パラメータを有する。通常、これらの特性パラメータは、蓄電デバイスの使用による劣化を考慮せずに算出される。その場合、劣化したときの蓄電デバイスの入出力特性を精度よく推定することができないという問題がある。
Here, the characteristic parameters forming the
そこで、本実施形態では、複数の特性パラメータのうち少なくとも一つの特性パラメータを以下の数式(4)のように設定する。すなわち、任意の特性パラメータAを
としてモデル化する。右辺の第1項A0は蓄電デバイス未使用時に対応する特性パラメータの初期値であり、右辺の第2項A1は、蓄電デバイスを或る時間使用した後における特性パラメータの変化分である。この変化分は、蓄電デバイスの劣化の影響を表す時間関数であり、使用期間内の適切な時間を入力することによって、当該使用時間経過後に対応する劣化した特性パラメータが得られる。なお、この時間は、例えば数百時間ないし数千時間といった長さである。
Therefore, in the present embodiment, at least one characteristic parameter among the plurality of characteristic parameters is set as in the following mathematical expression (4). That is, an arbitrary characteristic parameter A
To model as. The first term A 0 on the right side is the initial value of the characteristic parameter corresponding to when the electricity storage device is not used, and the second term A 1 on the right side is the change in the characteristic parameter after the electricity storage device has been used for a certain period of time. This change amount is a time function representing the influence of deterioration of the power storage device, and by inputting an appropriate time within the usage period, a corresponding deteriorated characteristic parameter can be obtained after the usage time has elapsed. This time is, for example, hundreds of hours to several thousands of hours.
特性パラメータAを数式(4)のように表現することにより、例えば未使用状態の蓄電デバイスを用いて初期特性パラメータA0を同定するだけで、任意の期間経過後の特性パラメータAを計算によって求めることができる。 By expressing the characteristic parameter A as in the mathematical expression (4), the characteristic parameter A after an arbitrary period has elapsed is calculated by simply identifying the initial characteristic parameter A 0 by using, for example, an unused power storage device. be able to.
上記の第2項A1は、蓄電デバイスの種類によって異なってもよい。蓄電デバイスが鉛蓄電池である場合、第2項A1は例えば次の数式(5)のように定義される。なお、係数a1、a2、及びa3は定数であり、SOC1(t)は暗電流放電時のSOCであり、SOC2(t)は休止時のSOCである。これらのSOCは時間tの関数となっている。
数式(5)に示されるA1は、3つの項を含んでいる。第1項は、
である。この項は、電流I(t)の絶対値の時間積分と、該時間積分に乗算された係数a1とを含む。この場合、電流I(t)は蓄電デバイスの動作状態を表す数値であって、電流I(t)の絶対値の時間積分は即ち、使用期間中に蓄電デバイスを流れる総電流量を表し、係数a1は、総電流量に対する蓄電デバイスの劣化の速度を表す。従って、数式(6)で表される項は、蓄電デバイスを流れる総電流量に基づく劣化(以下、通電劣化という)を表す。なお、t1は充放電時間である。また、蓄電デバイスの特性パラメータは複数あり、劣化の進行に伴ってこれらの特性パラメータの値が変化するが、通電劣化による変化分は、特性パラメータによって増加傾向の場合と減少傾向の場合とがある。従って、特性パラメータごとに係数a1の符号が決定される。
A 1 shown in Expression (5) includes three terms. The first term is
Is. This term includes the time integral of the absolute value of the current I(t) and the coefficient a 1 multiplied by the time integral. In this case, the current I(t) is a numerical value representing the operating state of the power storage device, and the time integration of the absolute value of the current I(t) is, that is, the total amount of current flowing through the power storage device during the use period, and the coefficient a 1 represents the rate of deterioration of the electricity storage device with respect to the total amount of current. Therefore, the term represented by Expression (6) represents deterioration (hereinafter referred to as energization deterioration) based on the total amount of current flowing through the power storage device. Note that t1 is the charge/discharge time. Further, there are a plurality of characteristic parameters of the electricity storage device, and the values of these characteristic parameters change as the deterioration progresses. However, the change due to energization deterioration may be increasing or decreasing depending on the characteristic parameter. .. Therefore, the sign of the coefficient a 1 is determined for each characteristic parameter.
第2項は、
である。この項は、電流I(t)の絶対値の時間積分と、該時間積分に乗算された係数a2及び放電深度(DOD)とを含む。DODは、例えば定数である。或いは、DODは時間tの関数であってもよく、その場合、I(t)の絶対値とDOD(t)との積が時間積分される。また、係数a2は、DODに対する蓄電デバイスの劣化の速度を表す。従って、数式(7)で表される項は、蓄電デバイスのDODに基づく劣化(DOD劣化)を表す。なお、DOD劣化による特性パラメータの変化分は、特性パラメータによって増加傾向の場合と減少傾向の場合とがある。従って、特性パラメータごとに係数a2の符号が決定される。
The second term is
Is. This term includes the time integral of the absolute value of the current I(t), the coefficient a 2 multiplied by the time integral, and the depth of discharge (DOD). DOD is, for example, a constant. Alternatively, DOD may be a function of time t, in which case the product of the absolute value of I(t) and DOD(t) is integrated over time. The coefficient a 2 represents the rate of deterioration of the power storage device with respect to DOD. Therefore, the term represented by the mathematical expression (7) represents deterioration (DOD deterioration) of the electricity storage device based on DOD. The change in the characteristic parameter due to the DOD deterioration may be increasing or decreasing depending on the characteristic parameter. Therefore, the sign of the coefficient a 2 is determined for each characteristic parameter.
第3項及び第4項は、
である。第3項は、SOC1(t)の時間積分と、この時間積分に乗算された係数a3とを含む。また、第4項は、SOC2(t)の時間積分と、この時間積分に乗算された、第3項と共通の係数a3とを含む。SOC1(t)及びSOC2(t)は蓄電デバイスの動作状態を表す数値である。係数a3は、暗電流放電時及び休止時の各SOCに対する蓄電デバイスの劣化の速度を表す。数式(8)で表される第3項及び第4項は、それぞれ蓄電デバイスの暗電流放電時及び休止時の各SOCに基づく劣化(暗電流放電劣化および休止劣化)を表す。暗電流放電劣化および休止劣化による特性パラメータの変化分は、特性パラメータによって増加傾向の場合と減少傾向の場合とがある。従って、特性パラメータごとに係数a3の符号が決定される。なお、暗電流放電とは、車両のエンジンが停止している状態(すなわちオルタネータが発電していない状態。但し、アイドリングストップ時を除く)において、カーナビゲーションシステム及び時計などに供給される微弱な電流をいい、暗電流放電時とはこのような微弱が流れている期間をいう。また、休止とは、暗電流が全く流れていない状態をいい、休止時とは休止状態である期間をいう。なお、t2は暗電流放電時間であり、t3は休止時間である。数式(8)においては、必要に応じて、SOC1(t)及びSOC2(t)の各時間積分項の一方(すなわち第3項及び第4項の一方)を省略してもよい。
The third and fourth terms are
Is. The third term includes the time integral of SOC 1 (t) and the coefficient a 3 multiplied by this time integral. Further, the fourth term includes the time integration of SOC 2 (t) and the coefficient a 3 common to the third term multiplied by the time integration. SOC 1 (t) and SOC 2 (t) are numerical values representing the operating state of the electricity storage device. The coefficient a 3 represents the rate of deterioration of the power storage device with respect to each SOC during dark current discharge and at rest. The third term and the fourth term represented by the mathematical expression (8) represent deterioration (dark current discharge deterioration and rest deterioration) based on each SOC during dark current discharge and rest of the electricity storage device, respectively. The change amount of the characteristic parameter due to dark current discharge deterioration and rest deterioration may be increasing or decreasing depending on the characteristic parameter. Therefore, the sign of the coefficient a 3 is determined for each characteristic parameter. The dark current discharge is a weak current supplied to the car navigation system and clock when the vehicle engine is stopped (that is, the alternator is not generating power, except when idling is stopped). The term "during dark current discharge" refers to a period during which such weakness is flowing. In addition, the term “pause” refers to a state in which no dark current flows at all, and the term “pause” refers to a period in the pause state. Note that t2 is the dark current discharge time and t3 is the rest time. In the mathematical expression (8), one of the time integral terms of SOC 1 (t) and SOC 2 (t) (that is, one of the third term and the fourth term) may be omitted as necessary.
なお、通常の充放電時においてはSOC1(t)=0、SOC2(t)=0である。暗電流放電時においてはI(t)=0、SOC2(t)=0である。休止時においてはI(t)=0、SOC1(t)=0である。 Note that SOC 1 (t)=0 and SOC 2 (t)=0 during normal charge/discharge. At the time of dark current discharge, I(t)=0 and SOC 2 (t)=0. At rest, I(t)=0 and SOC 1 (t)=0.
また、蓄電デバイスがリチウムイオン電池である場合、数式(4)の第2項A1は例えば次の数式(9)のように定義される。
数式(9)に示されるA1は、3つの項を含んでいる。第1項は通電劣化項である。第2項は、
である。この項は、電流I(t)の絶対値の時間積分と、該時間積分に乗算された係数a2と、該時間積分に乗算された自己発熱とを含む。すなわち、次の数式(11)によって表される時間τの関数Tは、蓄電デバイスの自己発熱を表す。
自己発熱Tは、数式(11)に示されるように、電流I(τ)の二乗の時間積分によって求められる。また、係数a2は、自己発熱Tに対する蓄電デバイスの劣化の速度を表す。従って、数式(10)で表される項は、蓄電デバイスの自己発熱に基づく劣化(以下、自己発熱劣化という)を表す。
A 1 shown in Expression (9) includes three terms. The first term is an energization deterioration term. The second term is
Is. This term includes the time integral of the absolute value of the current I(t), the coefficient a 2 multiplied by the time integral, and the self-heating generated by the time integral. That is, the function T of the time τ represented by the following formula (11) represents the self-heating of the electricity storage device.
The self-heating T is obtained by time integration of the square of the current I(τ) as shown in the equation (11). Further, the coefficient a 2 represents the rate of deterioration of the power storage device with respect to the self-heating T. Therefore, the term represented by Expression (10) represents deterioration due to self-heating of the electricity storage device (hereinafter referred to as self-heating deterioration).
第3項は、
である。この項は、休止時のSOC2(t)の時間積分と、該時間積分に乗算された係数a3とを含む。これらの意味付けは、前述した鉛蓄電池の場合の第4項と同様である。すなわち、この項は休止劣化項である。
The third term is
Is. This term includes the time integration of SOC 2 (t) at rest and the coefficient a 3 multiplied by the time integration. These meanings are the same as those in the fourth term in the case of the lead storage battery described above. That is, this term is a pause deterioration term.
上記の例では、数式(8)において暗電流放電劣化項が存在するが、数式(12)においては同様の暗電流放電劣化項が存在しない。それは次の理由による。例えば蓄電デバイスが単一で用いられる場合には、車両のエンジンが停止しても暗電流が流れる期間が必ず存在する。このような単一で用いられる蓄電デバイスとしては、鉛蓄電池が挙げられる。これに対し、例えばμHEV方式のようにメイン蓄電デバイス及びサブ蓄電デバイスが用いられる場合には、メイン蓄電デバイスのみから暗電流が供給され、サブ蓄電デバイスからは暗電流が供給されない状況が考えられる。そのような状況では、サブ蓄電デバイスにおいて暗電流状態は生じない。リチウムイオン電池は、このようなサブ蓄電デバイスとして用いられることが多い。従って、数式(12)においては暗電流放電劣化項が省略されている。 In the above example, the dark current discharge deterioration term exists in the mathematical expression (8), but the same dark current discharge deterioration term does not exist in the mathematical expression (12). The reason is as follows. For example, when a single power storage device is used, there is always a period during which dark current flows even if the vehicle engine stops. An example of such a single power storage device used is a lead storage battery. On the other hand, when a main power storage device and a sub power storage device are used as in the μHEV method, for example, a dark current is supplied only from the main power storage device and a dark current is not supplied from the sub power storage device. In such a situation, the dark current state does not occur in the sub power storage device. A lithium-ion battery is often used as such a sub power storage device. Therefore, in equation (12), the dark current discharge deterioration term is omitted.
また、蓄電デバイスがニッケル亜鉛電池である場合、数式(4)の第2項A1は例えば次の数式(13)のように定義される。
数式(13)に示されるA1は、3つの項を含んでいる。第1項は通電劣化項である。第2項はDOD劣化項である。第3項は休止劣化項である。ニッケル亜鉛電池もまた、上述したリチウムイオン電池と同様に、サブ蓄電デバイスとして用いられることが多い。従って、数式(13)においては暗電流放電劣化項が省略されている。
When the electricity storage device is a nickel-zinc battery, the second term A 1 of the formula (4) is defined as the following formula (13), for example.
A 1 shown in Expression (13) includes three terms. The first term is an energization deterioration term. The second term is the DOD deterioration term. The third term is the rest deterioration term. The nickel-zinc battery is also often used as a sub power storage device, like the lithium-ion battery described above. Therefore, in equation (13), the dark current discharge deterioration term is omitted.
ここで、上述した係数a1,a2,a3の算出方法について説明する。3つの係数a1,a2,a3を算出するためには、3つの異なるモデル式が必要となる。そこで、互いに時間波形が異なる3つの電流I(t)を特性パラメータの式に入力して3つのモデル式を立て、それらに基づいて係数a1,a2,a3を求める。図6(a)〜図6(c)は、そのような電流I(t)の波形の例を概念的に示すグラフである。これらの図において、縦軸は電流I(t)を表し、横軸は時間を表す。これらの電流波形は、定電圧充電期間Ta、及び定電流放電期間Tb、及び休止期間Tcを含む。図6(a)は、定電圧充電期間Taにおける電流が比較的大きい場合を示し、充電電流が大きい分だけ定電流放電期間Tbが長くなっている。図6(b)は、定電圧充電期間Taにおける電流が比較的小さい場合を示し、充電電流が小さい分だけ定電流放電期間Tbが短くなっている。図6(c)は、図6(a)及び図6(b)と較べて休止期間Tcが長い場合を示している。 Here, a method of calculating the above-mentioned coefficients a 1 , a 2 , and a 3 will be described. Three different model formulas are needed to calculate the three coefficients a 1 , a 2 , and a 3 . Therefore, three currents I(t) whose time waveforms are different from each other are input to the equations of the characteristic parameters to make three model equations, and the coefficients a 1 , a 2 and a 3 are obtained based on them. FIGS. 6A to 6C are graphs conceptually showing an example of the waveform of such a current I(t). In these figures, the vertical axis represents the current I(t) and the horizontal axis represents time. These current waveforms include a constant voltage charging period Ta, a constant current discharging period Tb, and a rest period Tc. FIG. 6A shows a case where the current in the constant voltage charging period Ta is relatively large, and the constant current discharging period Tb is lengthened by the larger charging current. FIG. 6B shows a case where the current during the constant voltage charging period Ta is relatively small, and the constant current discharging period Tb is shortened by the smaller charging current. FIG. 6C shows a case where the idle period Tc is longer than that in FIGS. 6A and 6B.
図7は、リチウムイオン電池を例として図6(a)〜図6(c)の電流波形を入力したときの、複数の特性パラメータのうち直流抵抗(図2の抵抗器11の抵抗値)の変化を示すグラフである。縦軸は直流抵抗(単位:mΩ)を表し、横軸はトータルサイクル時間(使用時間、単位:時間)を示す。また、同図において、菱形のプロットP1は図6(a)に示された電流波形を入力した場合を示し、正方形のプロットP2は図6(b)に示された電流波形を入力した場合を示し、三角形のプロットP3は図6(c)に示された電流波形を入力した場合を示す。図7に示されるように、入力される電流I(t)の波形が異なると、それに伴い直流抵抗の劣化分(数式(4)のA1)が変化することがわかる。
FIG. 7 shows the DC resistance (the resistance value of the
図8は、図6(a)〜図6(c)の電流波形に対応する、通電劣化項の時間積分の計算値をプロットしたグラフである。図9は、図6(a)〜図6(c)の電流波形に対応する、自己発熱劣化項の時間積分の計算値をプロットしたグラフである。図10は、図6(a)〜図6(c)の電流波形に対応する、休止劣化項の時間積分の計算値をプロットしたグラフである。なお、図8〜図10において、縦軸は時間積分値を表し、横軸はトータルサイクル時間(単位:時間)を表す。また、これらの図において、菱形のプロットP4は図6(a)に示された電流波形を入力したときの数値を示し、正方形のプロットP5は図6(b)に示された電流波形を入力したときの数値を示し、三角形のプロットP6は図6(c)に示された電流波形を入力したときの数値を示す。 FIG. 8 is a graph in which the calculated values of the time integration of the energization deterioration term are plotted, which correspond to the current waveforms of FIGS. 6(a) to 6(c). FIG. 9 is a graph in which the calculated values of the time integration of the self-heating deterioration term corresponding to the current waveforms of FIGS. 6A to 6C are plotted. FIG. 10 is a graph in which the calculated values of the time integration of the pause deterioration term are plotted, which correspond to the current waveforms of FIGS. 6(a) to 6(c). 8 to 10, the vertical axis represents the time integrated value and the horizontal axis represents the total cycle time (unit: hours). In these figures, the rhombic plot P4 shows the numerical values when the current waveform shown in FIG. 6(a) is input, and the square plot P5 shows the current waveform shown in FIG. 6(b). The triangular plot P6 shows the numerical values when the current waveform shown in FIG. 6C is input.
図8〜図10に示されるように、図6(a)〜図6(c)の電流波形に基づいて、通電劣化項、自己発熱劣化項、及び休止劣化項それぞれにおける時間積分の値が計算される。従って、係数a1,a2,a3を変数として含む互いに独立した3つの関数を作成でき、実験値とのカーブフィッティングによる最適化を行うことで、係数a1,a2,a3を求めることができる。図11(a)〜図11(c)は、カーブフィッティングの様子を概念的に示すグラフである。図11(a)〜図11(c)は、それぞれ図6(a)〜図6(c)の電流波形により得られたa1,a2,a3の関数と実験値とのフィッティングの様子を示している。図中のプロットP7〜P9が実験値であり、曲線R1〜R3が関数からの推定値である。 As shown in FIGS. 8 to 10, the value of the time integration in each of the energization deterioration term, the self-heating deterioration term, and the rest deterioration term is calculated based on the current waveforms in FIGS. 6A to 6C. To be done. Therefore, three independent functions including the coefficients a 1 , a 2 , and a 3 as variables can be created, and the coefficients a 1 , a 2 , and a 3 are obtained by performing optimization by curve fitting with experimental values. be able to. 11A to 11C are graphs conceptually showing the state of curve fitting. Figure 11 (a) ~ FIG. 11 (c), state of fitting a 1 obtained by the current waveform, respectively, in FIG 6 (a) ~ FIG 6 (c), a 2, a function of a 3 and the experimental values Is shown. Plots P7 to P9 in the figure are experimental values, and curves R1 to R3 are estimated values from the function.
図12は、上述した方法によって得られた、各特性パラメータの係数a1,a2,a3の数値例を示す図表である。図12に示されるように、上述した方法によって係数a1,a2,a3が好適に求められる。なお、図12には、フィッティング誤差(%)が併せて示されている。第1分極抵抗及び第2分極抵抗の誤差が比較的大きくなっているが、これは、試験期間が短く、劣化の進行度合いが小さい段階であることが原因と考えられる。 FIG. 12 is a table showing numerical examples of the coefficients a 1 , a 2 , and a 3 of each characteristic parameter obtained by the above-mentioned method. As shown in FIG. 12, the coefficients a 1 , a 2 and a 3 are preferably obtained by the method described above. Note that FIG. 12 also shows the fitting error (%). Although the error between the first polarization resistance and the second polarization resistance is relatively large, it is considered that this is because the test period is short and the progress of deterioration is small.
以上に説明した本実施形態によるシミュレーション方法およびシミュレーション装置1によって得られる効果について説明する。本実施形態のシミュレーション方法及びシミュレーション装置1では、数式(4)に示したように、少なくとも一つの特性パラメータAが、蓄電デバイスの劣化の影響を表す時間関数A1を含む。このような時間関数A1に蓄電デバイスの使用時間(トータルサイクル時間)を入力することにより、該使用時間経過時における蓄電デバイスの劣化度合いを特性パラメータAに反映させることができる。
The effects obtained by the simulation method and the
そして、本発明者の知見によれば、暗電流放電時または休止時のSOCによって蓄電デバイスの劣化の度合いは大きく変化する。本実施形態では、時間関数A1が、劣化速度を表す係数a3と、蓄電デバイスの暗電流放電時のSOC(SOC1(t))及び休止時のSOC(SOC2(t))の一方又は双方の時間積分とを乗算した項(例えば数式(8)、数式(12)など)を含む。これにより、蓄電デバイスの暗電流放電時または休止時の劣化度合いを精度良く表すことができる。従って、本実施形態によれば、実際に劣化した蓄電デバイスを用いなくても、劣化したときの蓄電デバイスの入出力特性を精度よく推定することができ、劣化した蓄電デバイスを用いた燃費シミュレーションなどを精度良く行うことができる。 According to the knowledge of the inventor of the present invention, the degree of deterioration of the power storage device greatly changes depending on the SOC during dark current discharge or at rest. In the present embodiment, the time function A 1 is one of the coefficient a 3 representing the deterioration rate, SOC (SOC 1 (t)) at the time of dark current discharge of the electricity storage device, and SOC (SOC 2 (t)) at the time of rest. Alternatively, it includes terms (for example, formula (8), formula (12), etc.) obtained by multiplying both time integrals. This makes it possible to accurately represent the degree of deterioration of the electricity storage device during dark current discharge or during rest. Therefore, according to the present embodiment, it is possible to accurately estimate the input/output characteristics of the power storage device when the power storage device is deteriorated without using the power storage device that is actually deteriorated. Can be performed accurately.
図13は、車両の燃費シミュレーションにおいて、リチウムイオン電池の等価回路モデルに本実施形態の特性パラメータを使用した場合(グラフG11)と、劣化による影響を考慮しない特性パラメータ(すなわち数式(4)の右辺第2項A1がないもの)を使用した場合(グラフG12)とにおける燃費誤差の最大値を比較した結果を示すグラフである。図13において、縦軸は燃費誤差の最大値(単位:%)を表し、横軸は試験期間(単位:日)を表す。なお、特性パラメータの初期値(すなわち数式(4)の右辺第1項A0)の同定に用いる電流I(t)としては、図14に示される電流波形を用いた。この電流波形は、定電圧充電期間T1、定電圧充電期間T1後の定電流放電期間T2、及び定電流放電期間T2後のクランキング期間T3を含む第1〜第3の期間TA〜TCを繰り返し含んでいる。なお、これら第1〜第3の期間TA〜TCにおける定電圧充電期間T1の電圧値は14(V)で一定であり、定電流放電期間T2及びクランキング期間T3の時間はそれぞれ59秒、1秒で一定である。また、第1〜第3の期間TA〜TCにおける電流値は次の通りである。
<第1の期間TA>
定電圧充電期間T1:100(A)
定電流放電期間T2:−20(A)
クランキング期間T3:−300(A)
<第2の期間TB>
定電圧充電期間T1:200(A)
定電流放電期間T2:−45(A)
クランキング期間T3:−300(A)
<第3の期間TC>
定電圧充電期間T1:50(A)
定電流放電期間T2:−10(A)
クランキング期間T3:−300(A)
FIG. 13 shows a case where the characteristic parameter of the present embodiment is used for the equivalent circuit model of the lithium-ion battery (graph G11) in the fuel consumption simulation of the vehicle, and a characteristic parameter which does not consider the influence of deterioration (that is, the right side of Expression (4)). it is a graph showing a result of comparing the maximum value of the fuel consumption error in the case with (graph G12) using second term a 1 that there is no). In FIG. 13, the vertical axis represents the maximum value of fuel consumption error (unit: %), and the horizontal axis represents the test period (unit: day). The current waveform shown in FIG. 14 was used as the current I(t) used for identifying the initial value of the characteristic parameter (that is, the first term A 0 on the right side of Expression (4)). This current waveform repeats first to third periods TA to TC including a constant voltage charging period T1, a constant current discharging period T2 after the constant voltage charging period T1, and a cranking period T3 after the constant current discharging period T2. Contains. The voltage value of the constant voltage charging period T1 in these first to third periods TA to TC is constant at 14 (V), and the constant current discharging period T2 and the cranking period T3 are 59 seconds and 1 respectively. It is constant in seconds. The current values in the first to third periods TA to TC are as follows.
<First period TA>
Constant voltage charging period T1:100(A)
Constant current discharge period T2: -20 (A)
Cranking period T3: -300(A)
<Second period TB>
Constant voltage charging period T1: 200 (A)
Constant current discharge period T2: −45 (A)
Cranking period T3: -300(A)
<Third period TC>
Constant voltage charging period T1:50(A)
Constant current discharge period T2: -10 (A)
Cranking period T3: -300(A)
また、燃費誤差の最大値とは、特性パラメータを含む等価回路モデルを用いて燃費シミュレーションを行った結果と、実際に測定された燃費との差の最大値である。燃費誤差は、電池の特性パラメータ抽出時の電圧誤差(蓄電デバイスの端子電圧の実測値とモデルによる端子電圧の推定値との差)に依存する。特性パラメータは複数存在し、それらの値の組合せに応じて電圧誤差は変化する。従って、同じ電圧誤差の値となる特性パラメータの値の組合せは無数に存在するので、同じ電圧誤差の値であっても特性パラメータの値の組合せによって燃費計算結果は異なる。上述した「最大値」とは、様々な特性パラメータの値の組合せに対する電圧誤差の最大値に対応する、燃費誤差の最大値を意味する。 Further, the maximum value of the fuel consumption error is the maximum value of the difference between the result of the fuel consumption simulation using the equivalent circuit model including the characteristic parameter and the actually measured fuel consumption. The fuel consumption error depends on the voltage error (difference between the measured value of the terminal voltage of the power storage device and the estimated value of the terminal voltage of the model) when the characteristic parameter of the battery is extracted. There are a plurality of characteristic parameters, and the voltage error changes depending on the combination of those values. Therefore, since there are an infinite number of combinations of characteristic parameter values having the same voltage error value, the fuel consumption calculation result varies depending on the combination of characteristic parameter values even if the same voltage error value is present. The above-mentioned “maximum value” means the maximum value of the fuel consumption error, which corresponds to the maximum value of the voltage error with respect to the combination of the values of various characteristic parameters.
図13に示されるように、試験期間が長くなるほど燃費誤差は大きくなるが、劣化による影響を考慮しない場合には、試験期間が60日を過ぎると燃費誤差の最大値が0.3%を超えている。これに対し、休止時等の劣化による影響を考慮した本実施形態では、試験期間が60日を過ぎても燃費誤差の最大値が0.05%以下に収まっている。このように、本実施形態の方法および装置によれば、試験期間が長くなるほど、蓄電デバイスの劣化の状態を精度よく燃費シミュレーション結果に反映させることができる。 As shown in FIG. 13, the longer the test period is, the larger the fuel consumption error becomes, but if the influence of deterioration is not taken into consideration, the maximum value of the fuel consumption error exceeds 0.3% when the test period exceeds 60 days. ing. On the other hand, in the present embodiment that takes into consideration the influence of deterioration such as during rest, the maximum value of the fuel consumption error is within 0.05% even after the test period exceeds 60 days. As described above, according to the method and apparatus of the present embodiment, the longer the test period is, the more accurately the deterioration state of the power storage device can be reflected in the fuel consumption simulation result.
本実施形態による燃費シミュレーション結果は、例えば、車両に採用される蓄電デバイス容量の選択に応用することができる。一般に、車両の燃費は搭載する蓄電デバイスの容量が大きいほど良くなる。一方、使用開始からの年数を経るほど、蓄電デバイスの性能が劣化し、車両の燃費は低下する。従来は、シミュレーションにおいて蓄電デバイスの劣化により性能がどれほど低下するかが不明であったため、燃費シミュレーション結果から選択される蓄電デバイス容量よりも十分に余裕のある蓄電デバイス容量が選択されていた。このような選択方法では、蓄電デバイス容量が必要以上に大きくなり易く、車両コスト低減の妨げとなるおそれがある。 The fuel consumption simulation result according to the present embodiment can be applied to, for example, selection of the capacity of a power storage device used in a vehicle. In general, the fuel efficiency of a vehicle improves as the capacity of a power storage device installed therein increases. On the other hand, the performance of the power storage device deteriorates and the fuel consumption of the vehicle decreases as the years after the use starts. Conventionally, it was unclear how much the performance deteriorates due to the deterioration of the electricity storage device in the simulation, so that the electricity storage device capacity having a sufficient margin to the electricity storage device capacity selected from the fuel consumption simulation result was selected. With such a selection method, the capacity of the electricity storage device tends to be unnecessarily large, which may hinder the vehicle cost reduction.
そのような問題に対し、本実施形態のシミュレーション方法およびシミュレーション装置1では、蓄電デバイスの劣化度合いに応じたシミュレーションを行うことができるので、使用開始からの年数を考慮した燃費シミュレーションを精度良く行うことができる。従って、所定の年数を経た後の推定燃費に基づいて、所定の燃費条件を満足できる蓄電デバイス容量を的確に選択することができる。
In order to solve such a problem, the simulation method and the
図15は、本実施形態による燃費シミュレーション結果の一例を示すグラフである。図15において、縦軸は燃費(単位:km/l)を表し、横軸は使用年数(単位:年)を表す。また、図中の菱形のプロットP10、正方形のプロットP11、及び三角形のプロットP12は、蓄電デバイス初期容量がそれぞれ3Ah、5Ah、及び7Ahである場合を示す。図15に示されるように、車両の燃費は蓄電デバイス容量が大きいほど良いが、使用年数が長くなるほど車両の燃費は低下する。そこで、例えば使用年数が5年経過した時点での燃費を30(km/l)以上としたい場合、このグラフによれば、車両に搭載する蓄電デバイス初期容量を5Ahとすれば良いことがわかる。このように、本実施形態によれば、所定の年数を経た後の推定燃費に基づいて、所定の燃費条件を満足できる蓄電デバイス容量を的確に選択することができる。 FIG. 15 is a graph showing an example of the fuel consumption simulation result according to the present embodiment. In FIG. 15, the vertical axis represents fuel consumption (unit: km/l), and the horizontal axis represents years of use (unit: year). In addition, a rhombic plot P10, a square plot P11, and a triangular plot P12 in the drawing show the cases where the electric storage device initial capacities are 3 Ah, 5 Ah, and 7 Ah, respectively. As shown in FIG. 15, the fuel consumption of the vehicle is better as the capacity of the power storage device is larger, but the fuel consumption of the vehicle decreases as the years of use increase. Therefore, for example, when it is desired to set the fuel consumption to be 30 (km/l) or more after 5 years of use, according to this graph, it is understood that the initial capacity of the power storage device mounted on the vehicle should be 5 Ah. As described above, according to the present embodiment, it is possible to accurately select the power storage device capacity that can satisfy the predetermined fuel consumption condition based on the estimated fuel consumption after a predetermined number of years.
なお、蓄電デバイス容量の選択は、推定燃費を基準として行う場合に限られない。本実施形態によれば、所定の年数を経た後の蓄電デバイスの推定特性に基づいて、所定の条件を満足できる蓄電デバイス容量を的確に選択することができる。 The selection of the storage device capacity is not limited to the case where the estimated fuel consumption is used as a reference. According to the present embodiment, it is possible to accurately select the storage device capacity that can satisfy the predetermined condition, based on the estimated characteristics of the power storage device after a predetermined number of years.
(変形例)
上記実施形態では、係数a1,a2,a3と蓄電デバイスの温度との関係については述べていない。すなわち、係数a1,a2,a3は、蓄電デバイスの温度によらず一定であってもよい。しかしながら、多くの場合において、好適な係数a1,a2,a3の値は蓄電デバイスの温度に依存する。従って、係数a1,a2,a3は、蓄電デバイスの温度に応じて変化してもよい。これにより、蓄電デバイスの温度に応じて変化する劣化度合いを精度良く表すことができる。
(Modification)
The above embodiment does not describe the relationship between the coefficients a 1 , a 2 , and a 3 and the temperature of the power storage device. That is, the coefficients a 1 , a 2 , and a 3 may be constant regardless of the temperature of the electricity storage device. However, in many cases, the preferred values of the coefficients a 1 , a 2 , a 3 depend on the temperature of the electricity storage device. Therefore, the coefficients a 1 , a 2 , and a 3 may change according to the temperature of the power storage device. This makes it possible to accurately represent the degree of deterioration that changes according to the temperature of the power storage device.
具体的には、係数a1,a2,a3が温度THの関数a1(TH),a2(TH),a3(TH)であってもよく、或いは、複数の温度毎に異なる係数a1,a2,a3が設定されてもよい。そのために、実験値とのカーブフィッティングによる最適化を行う際に、蓄電デバイスの温度を変えながら実験値を取得するとよい。 Specifically, the coefficients a 1 , a 2 , and a 3 may be functions a 1 (TH), a 2 (TH), and a 3 (TH) of the temperature TH, or different for each of a plurality of temperatures. The coefficients a 1 , a 2 and a 3 may be set. Therefore, when performing optimization by curve fitting with the experimental value, the experimental value may be acquired while changing the temperature of the power storage device.
本発明によるシミュレーション方法及びシミュレーション装置は、上述した実施形態及び変形例に限られるものではなく、他に様々な変形が可能である。例えば、上述した実施形態では、蓄電デバイスの動作状態を表し時間積分される数値として、蓄電デバイスを流れる電流I(t)、暗電流放電時のSOC1(t)、及び休止時のSOC2(t)を例示したが、本発明における当該数値としては、蓄電デバイスの動作状態を表すものであればこれら以外にも様々な数値を採用し得る。例えば、SOC1(t)、SOC2(t)に代わる数値として、蓄電デバイスの端子電圧を用いてもよい。 The simulation method and the simulation device according to the present invention are not limited to the above-described embodiments and modifications, and various modifications are possible. For example, in the above-described embodiment, the current I(t) flowing through the power storage device, the SOC 1 (t) at the time of dark current discharge, and the SOC 2 at the time of rest ( Although t) is illustrated, various numerical values other than these can be adopted as the numerical value in the present invention as long as it represents the operating state of the power storage device. For example, the terminal voltage of the power storage device may be used as a numerical value instead of SOC 1 (t) and SOC 2 (t).
1…シミュレーション装置、2…入力部、3…SOC計算部、4…パラメータ設定部、5…直流抵抗計算部、6…分極計算部、7…OCV計算部、8…端子電圧計算部、10,20…回路、11,21,23…抵抗器、22,24…コンデンサ、30…定電圧源、40…等価回路モデル、90…燃費シミュレーション装置、91…入力部、92…制御部、93…出力部、N1,N2…ノード。 1... Simulation device, 2... Input unit, 3... SOC calculation unit, 4... Parameter setting unit, 5... DC resistance calculation unit, 6... Polarization calculation unit, 7... OCV calculation unit, 8... Terminal voltage calculation unit, 10, 20... Circuit, 11, 21, 23... Resistor, 22, 24... Capacitor, 30... Constant voltage source, 40... Equivalent circuit model, 90... Fuel consumption simulation device, 91... Input section, 92... Control section, 93... Output , N 1 , N 2 ... Nodes.
Claims (4)
前記等価回路モデルを流れる電流に基づいて前記等価回路モデルの端子電圧を計算するステップを含み、
前記等価回路モデルが複数の特性パラメータを含んでおり、
少なくとも一つの前記特性パラメータが、前記蓄電デバイスの劣化の影響を表す時間関数を含んでおり、
前記時間関数が、前記蓄電デバイスの暗電流放電時の充電率及び休止時の充電率の一方または双方の時間積分と、前記時間積分に乗算された劣化速度を表す係数とを含む項を有する、シミュレーション方法。 A method of performing simulation using an equivalent circuit model of an electricity storage device,
Calculating a terminal voltage of the equivalent circuit model based on a current flowing through the equivalent circuit model,
The equivalent circuit model includes a plurality of characteristic parameters,
At least one of the characteristic parameters includes a time function representing the effect of deterioration of the electricity storage device,
The time function has a term including a time integration of one or both of a charging rate during dark current discharge and a charging rate during rest of the electricity storage device, and a coefficient representing a deterioration rate multiplied by the time integration, Simulation method.
前記等価回路モデルを流れる電流に基づいて前記等価回路モデルの端子電圧を計算する電圧計算部を含み、
前記等価回路モデルが複数の特性パラメータを含んでおり、
少なくとも一つの前記特性パラメータが、前記蓄電デバイスの劣化の影響を表す時間関数を含んでおり、
前記時間関数が、前記蓄電デバイスの暗電流放電時の充電率及び休止時の充電率の一方または双方の時間積分と、前記時間積分に乗算された劣化速度を表す係数とを含む項を有する、シミュレーション装置。 A device for performing simulation using an equivalent circuit model of an electricity storage device,
A voltage calculation unit that calculates a terminal voltage of the equivalent circuit model based on a current flowing through the equivalent circuit model,
The equivalent circuit model includes a plurality of characteristic parameters,
At least one of the characteristic parameters includes a time function representing the effect of deterioration of the electricity storage device,
The time function has a term including a time integration of one or both of a charging rate during dark current discharge and a charging rate during rest of the electricity storage device, and a coefficient representing a deterioration rate multiplied by the time integration, Simulation device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016140677A JP6737023B2 (en) | 2016-07-15 | 2016-07-15 | Simulation method and simulation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016140677A JP6737023B2 (en) | 2016-07-15 | 2016-07-15 | Simulation method and simulation device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018009940A JP2018009940A (en) | 2018-01-18 |
JP6737023B2 true JP6737023B2 (en) | 2020-08-05 |
Family
ID=60995413
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016140677A Active JP6737023B2 (en) | 2016-07-15 | 2016-07-15 | Simulation method and simulation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6737023B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018009963A (en) * | 2016-07-15 | 2018-01-18 | 日立化成株式会社 | Simulation method and simulation apparatus |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112019005423T5 (en) * | 2018-10-30 | 2021-07-15 | Sumitomo Electric Industries, Ltd. | Parameter estimation system, parameter estimation device, vehicle, computer program and parameter estimation method |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4864383B2 (en) * | 2005-08-24 | 2012-02-01 | 富士重工業株式会社 | Deterioration state estimation device for power storage device |
JP6148498B2 (en) * | 2013-02-28 | 2017-06-14 | 積水化学工業株式会社 | Battery model construction method and storage battery deterioration estimation device |
US10073147B2 (en) * | 2013-05-16 | 2018-09-11 | Nec Corporation | Battery state estimation device, battery state management system, battery, battery state estimation method, and non-transitory storage medium |
US20140350877A1 (en) * | 2013-05-25 | 2014-11-27 | North Carolina State University | Battery parameters, state of charge (soc), and state of health (soh) co-estimation |
CN105378499B (en) * | 2013-07-15 | 2018-06-01 | 古河电气工业株式会社 | Secondary cell condition checkout gear and secondary cell condition detection method |
JP2016003963A (en) * | 2014-06-17 | 2016-01-12 | カルソニックカンセイ株式会社 | Battery model identification method |
WO2016059869A1 (en) * | 2014-10-17 | 2016-04-21 | 株式会社 東芝 | Secondary battery charge state estimation device and secondary battery charge state estimation method |
-
2016
- 2016-07-15 JP JP2016140677A patent/JP6737023B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018009963A (en) * | 2016-07-15 | 2018-01-18 | 日立化成株式会社 | Simulation method and simulation apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2018009940A (en) | 2018-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6737022B2 (en) | Simulation method and simulation device | |
CN104773083B (en) | hybrid power transmission system and vehicle | |
WO2020143193A1 (en) | Method, device, and computer-readable storage medium for estimating charge state of battery | |
CN102203626B (en) | Apparatus and method for cell balancing using the voltage variation behavior of battery cell | |
Waag et al. | Adaptive on-line prediction of the available power of lithium-ion batteries | |
CN102119338B (en) | Apparatus and method for estimating state of health of battery based on battery voltage variation pattern | |
US10330731B2 (en) | Power and current estimation for batteries | |
Polis et al. | Battery cell identification and SOC estimation using string terminal voltage measurements | |
JP6988132B2 (en) | Simulation method and simulation equipment | |
CN105899395B (en) | Energy in assessment motor vehicle battery | |
CN103630843A (en) | Battery state estimation system, battery control system,and battery system | |
WO2019230033A1 (en) | Parameter estimation device, parameter estimation method, and computer program | |
JP6534746B2 (en) | Battery control device and battery system | |
Tannahill et al. | Future vision for reduction of range anxiety by using an improved state of charge estimation algorithm for electric vehicle batteries implemented with low‐cost microcontrollers | |
Wehbe et al. | Battery equivalent circuits and brief summary of components value determination of lithium ion: A review | |
US12122262B2 (en) | Battery management system, battery pack, electric vehicle, and battery management method | |
CN112986842B (en) | Method, device and equipment for estimating state of charge of battery | |
KR102259265B1 (en) | How to estimate the state of charge for a battery cell | |
JP2015215272A (en) | Secondary battery state detection device and secondary battery state detection method | |
JP2016090322A (en) | Battery parameter estimation device | |
JP6737023B2 (en) | Simulation method and simulation device | |
JP6740764B2 (en) | Storage device capacity selection method | |
WO2013057784A1 (en) | Battery control device and secondary battery system | |
JP6801715B2 (en) | Simulation method and simulation equipment | |
CN110391473A (en) | Method for charging an electrical energy storage unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190617 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200427 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200616 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200629 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6737023 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |