JP6731157B2 - Square rechargeable battery - Google Patents
Square rechargeable battery Download PDFInfo
- Publication number
- JP6731157B2 JP6731157B2 JP2017018511A JP2017018511A JP6731157B2 JP 6731157 B2 JP6731157 B2 JP 6731157B2 JP 2017018511 A JP2017018511 A JP 2017018511A JP 2017018511 A JP2017018511 A JP 2017018511A JP 6731157 B2 JP6731157 B2 JP 6731157B2
- Authority
- JP
- Japan
- Prior art keywords
- current collector
- negative electrode
- laminated
- positive
- positive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Connection Of Batteries Or Terminals (AREA)
- Sealing Battery Cases Or Jackets (AREA)
Description
本発明は、角型二次電池に関する。詳しくは、複数の正負極が交互に積層された構造の電極体と集電構造を備える角型二次電池に関する。 The present invention relates to a prismatic secondary battery. Specifically, the present invention relates to a prismatic secondary battery including an electrode body having a structure in which a plurality of positive and negative electrodes are alternately stacked and a current collecting structure.
リチウムイオン二次電池、ニッケル水素電池等の二次電池は、パソコンや携帯端末等のいわゆるポータブル電源用途のみならず、近年は車両駆動用電源として好ましく用いられている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池は、電気自動車(EV)、プラグインハイブリッド自動車(PHV)、ハイブリッド自動車(HV)等の車両の駆動用高出力電源として好ましく、今後も需要が拡大するものと期待されている。
この種の二次電池の典型的な形態として、矩形シート状の正極および負極を、セパレータを間に介在させつつ交互に多数積層した構造のいわゆる積層型電極体を備えた角型二次電池(即ち、各面が矩形状である直方体構造の電池ケースを備える二次電池をいう。以下同じ。)を備えた角型二次電池が挙げられる。
積層型電極体は、単位容積当たりの電池容量が比較的大きいため、高容量、高出力が望まれる車両駆動用電源として好適であり、積層する正負極シート数の増減によって、電池サイズ或いは電池容量の調整を容易に行うことができる。例えば、特許文献1には、矩形シート状のセパレータを間に介在させつつ同じく矩形シート状の正極シートおよび負極シートを交互に積層した幅広面が矩形状であり所定の厚みを有する積層型電極体を備えたラミネートフィルム封止タイプの二次電池の一例が開示されている。
Secondary batteries such as lithium-ion secondary batteries and nickel-hydrogen batteries have been favorably used not only for so-called portable power sources such as personal computers and mobile terminals but also as vehicle driving power sources in recent years. In particular, a lithium ion secondary battery that is lightweight and obtains high energy density is preferable as a high output power source for driving vehicles such as electric vehicles (EV), plug-in hybrid vehicles (PHV), and hybrid vehicles (HV), and will continue to be used in the future. It is expected that demand will increase.
As a typical form of this type of secondary battery, a rectangular secondary battery including a so-called laminated electrode body having a structure in which a large number of rectangular sheet-shaped positive and negative electrodes are alternately laminated with a separator interposed therebetween ( That is, a prismatic secondary battery including a secondary battery including a battery case having a rectangular parallelepiped structure in which each surface is rectangular (the same applies hereinafter).
Since the laminated electrode body has a relatively large battery capacity per unit volume, it is suitable as a vehicle driving power source for which high capacity and high output are desired. Can be easily adjusted. For example, in
また、積層型電極体を採用した二次電池における上記ラミネートフィルム封止タイプとは異なる他の一形態として、典型的には金属製である角型(箱型)の電池ケース内に積層型電極体を収容し、当該ケースの開口部を溶接等によって封止し密閉した構造の角型二次電池が挙げられる。かかる構成の二次電池は、当該電極体が角型電池ケース内に収容されていることから、上記ラミネートフィルム封止タイプと比較して、電池自体が外部からの衝撃に強い物理的強度を有しており、保安上の観点から好ましい形態の電池といえる。
また、使用する角型(箱形)電池ケースのサイズや容量を変更することによって、収容する電極体のサイズや容量も容易に変更することができる。このため、高容量の二次電池を容易に提供することができる。例えば、特許文献2には、この種の角型(箱形)電池ケースに幅広面が矩形状である積層型電極体を収容してなる密閉構造の二次電池が記載されている。
Further, as another mode different from the above laminated film sealing type in a secondary battery employing a laminated electrode body, a laminated electrode is typically provided in a rectangular (box) battery case made of metal. An example is a prismatic secondary battery having a structure in which a body is housed and the opening of the case is sealed by welding or the like. In the secondary battery having such a configuration, since the electrode body is housed in the rectangular battery case, the battery itself has physical strength that is stronger against external impact than the laminated film sealing type. Therefore, it can be said that the battery has a preferable form from the viewpoint of safety.
Further, by changing the size and capacity of the rectangular (box-shaped) battery case to be used, the size and capacity of the electrode body to be housed can be easily changed. Therefore, a high-capacity secondary battery can be easily provided. For example,
積層型電極体を角型電池ケースに収容した構成の角型二次電池では、上記ラミネートフィルム封止タイプの電池と比較して、当該ケース内における積層型電極体自体の構造安定性をより向上させる工夫が必要である。即ち、積層型電極体は、セパレータを間に介在させつつ正極シートと負極シートとが交互に積層する構造であるため、金属製その他の硬い材質および形状の電池ケース内における構造安定性は比較的低い。このため、車両駆動用電源として好適なハイレート充放電を長期にわたって維持するには、電池ケース内で当該積層型電極体の構造が安定的に保持されていることが重要である。
特に、積層された正負極シート間において位置ずれを生じさせないため、積層型電極体の積層方向における正負極シートとセパレータとの間で高い保持力を実現する必要がある。例えば、上述の特許文献2に開示される電極体では、積層された正負極シート間において位置ずれを生じさせないため、積層型電極体の積層面(積層型電極体における正負極シート積層方向の側面をいう。以下同じ。)をわたるようにして一方の幅広面(正負極シートの形状に対応する積層型電極体の積層方向の両端のいずれか一方の外表面をいう。以下同じ。)から他方の幅広面にかけて保持テープが貼り付けられている。
さらには、特許文献1や特許文献2に記載されるような態様の積層型電極体の集電構造(具体的には、電極体の周縁の一部から張り出された集電タップ構造)は、振動をともなう走行時に比較的大電流で急速なハイレート充放電を行う必要のある車両駆動用電源として十分とはいえず、かかる集電構造にも改良の余地がある。
本発明は、積層型電極体を備える二次電池に関する上記課題を解決するべく創出されたものであり、特に車両駆動用電源(車両搭載用二次電池)として適する、高容量化を実現し得る積層型電極体を備えた角型二次電池であって、車両搭載時においても良好な構造安定性を有し、且つ、ハイレート充放電特性に優れる集電構造を有する角型二次電池を提供することを目的とする。
In the rectangular secondary battery having a structure in which the laminated electrode body is housed in a rectangular battery case, the structural stability of the laminated electrode body itself in the case is further improved as compared with the above-mentioned laminated film sealed type battery. It is necessary to devise to make it. That is, since the laminated electrode body has a structure in which positive electrode sheets and negative electrode sheets are alternately laminated with a separator interposed therebetween, structural stability in a battery case made of metal or other hard material and shape is relatively high. Low. Therefore, in order to maintain high-rate charging/discharging, which is suitable as a power source for driving a vehicle, for a long period of time, it is important that the structure of the laminated electrode body is stably held in the battery case.
In particular, it is necessary to realize a high holding force between the positive and negative electrode sheets and the separator in the stacking direction of the stacked electrode body in order to prevent the positional deviation between the stacked positive and negative electrode sheets. For example, in the electrode body disclosed in
Furthermore, the current collecting structure of the laminated electrode body of the aspect described in
The present invention was created to solve the above-mentioned problems relating to a secondary battery including a laminated electrode body, and can realize a high capacity particularly suitable as a power source for driving a vehicle (secondary battery for mounting on a vehicle). Provided is a rectangular secondary battery having a laminated electrode body, which has good structural stability even when mounted on a vehicle and has a current collecting structure excellent in high-rate charge/discharge characteristics. The purpose is to do.
上記目的を実現するべく、本発明は、
一対の幅広面を有し、該幅広面に隣接する側面の一つに開口部が形成されている有底直方体状のケース本体と、該開口部を塞ぐ矩形プレート状の蓋体とから構成される角型の電池ケースと、
矩形シート状の正極集電体と該集電体上に形成された正極活物質層とを有する正極と、矩形シート状の負極集電体と該集電体上に形成された負極活物質層とを有する負極とが、矩形シート状のセパレータを間に介在させつつ交互に積層された構造の積層型電極体と、を備えた角型二次電池を提供する。
ここで開示される角型二次電池は、
前記ケースの内部には、外部接続端子と電気的に接続された正極集電端子および負極集電端子がそれぞれ設けられており、
前記積層された正極それぞれの前記蓋体と平行になる方向の一方の端部には、前記正極活物質層を有しない正極集電体露出部が前記蓋体と直交する方向に沿って形成されており、
前記積層された負極それぞれの前記蓋体と平行になる方向の一方の端部には、前記負極活物質層を有しない負極集電体露出部が前記蓋体と直交する方向に沿って形成されており、
前記蓋体と平行になる方向の一方の端部に前記正極集電体露出部が積層され、且つ、該方向の他方の端部に前記負極集電体露出部が積層されており、
前記積層された正極集電体露出部および負極集電体露出部は、それぞれ、該積層方向に2つ以上に分割されて束ねられた複数の集電束を構成しており、且つ、該複数の集電束のそれぞれは、個々別々に同じ極側の前記集電端子と接合されている。
そして、ここで開示される角型二次電池では、前記正負極側それぞれの集電束の数は、各集電束に属する区画された電極体積層部分の厚みが、いずれも以下の式(1)で求められる区画電極体最大許容厚みM(mm):
M=18.7×H/W+1.4 (1)
(式中のHは、前記正極集電体の前記蓋体と直交する方向の辺長(mm)であり、
Wは、前記セパレータの前記蓋体と平行になる方向の辺長(mm)である。)
を超えないように設定されていることを特徴とする。
なお、本明細書において上記の「集電束に属する区画された電極体積層部分」とは、正負極側いずれか一の集電束において、該集電束を構成する正極(負極)集電体のうちの電極体積層方向のもっとも外側にある2つ(積層方向両端)の正極(負極)集電体の間に配置される電極体積層部分をいう。
In order to achieve the above object, the present invention provides
It is composed of a bottomed rectangular parallelepiped case body having a pair of wide surfaces and an opening formed in one of the side surfaces adjacent to the wide surfaces, and a rectangular plate-shaped lid closing the opening. Square battery case,
A positive electrode having a rectangular sheet-shaped positive electrode current collector and a positive electrode active material layer formed on the current collector, a rectangular sheet-shaped negative electrode current collector, and a negative electrode active material layer formed on the current collector And a laminated type electrode body having a structure in which a negative electrode having the above is alternately laminated with a rectangular sheet separator interposed therebetween.
The prismatic secondary battery disclosed here is
Inside the case, a positive electrode current collector terminal and a negative electrode current collector terminal that are electrically connected to an external connection terminal are provided,
A positive electrode current collector exposed portion having no positive electrode active material layer is formed at one end of each of the laminated positive electrodes in a direction parallel to the lid, along a direction orthogonal to the lid. And
A negative electrode current collector exposed portion having no negative electrode active material layer is formed at one end of each of the laminated negative electrodes in a direction parallel to the lid, along a direction orthogonal to the lid. And
The positive electrode current collector exposed portion is laminated at one end portion in the direction parallel to the lid body, and the negative electrode current collector exposed portion is laminated at the other end portion in the direction,
The positive electrode current collector exposed portion and the negative electrode current collector exposed portion that are stacked together constitute a plurality of current collecting bundles that are divided into two or more in the stacking direction and are bundled. Each of the current collecting bundles is separately and individually joined to the current collecting terminal on the same pole side.
In the prismatic secondary battery disclosed herein, the number of the current collecting fluxes on each of the positive and negative electrode sides is determined by the following formula ( Maximum allowable thickness M (mm) of partitioned electrode body obtained in 1):
M=18.7×H/W+1.4 (1)
(H in the formula is a side length (mm) of the positive electrode current collector in a direction orthogonal to the lid body,
W is a side length (mm) in a direction parallel to the lid of the separator. )
It is characterized in that it is set not to exceed.
It should be noted that in the present specification, the above-mentioned “partitioned electrode body laminated portion belonging to the current collection flux” means, in any one of the positive and negative electrode side current collection fluxes, a positive electrode (negative electrode) current collection which constitutes the current collection flux. It refers to an electrode body laminated portion arranged between two outermost (both ends in the lamination direction) positive electrode (negative electrode) current collectors of the body in the electrode body lamination direction.
本発明者は、積層型電極体において、積層する正極(負極)の集電体露出部をいくつかに分割して複数の集電束を形成する場合の良好な集電束数を検討した。分割数が少なすぎる(即ち、個々の集電束に属する区画された電極体積層部分がいずれも比較的分厚い場合)と、各集電束に属する区画された電極体積層部分の自重やサイズの影響により隣接する集電束に属する区画された電極体積層部分間において相対的な位置ずれ(シートずれ)が生じる虞がある。かかる位置ずれは、電極体自体の機械的強度を低下させ、集電機能等の電気的性能の低下も招く虞があるため好ましくない。
また、発明者の検討により、上記位置ずれが発生し易くなる集電束に属する区画された電極体積層部分の厚みは、積層型電極体を構成する矩形シート状の正負極集電体ならびにセパレータの形状、具体的には蓋体と平行な方向を横および直交する方向を縦としたときの積層型電極体の幅広面が縦長の矩形状であるときと横長の矩形状であるとき)によっても相違することを新たに見出した。
The present inventor examined a good number of current collecting fluxes in the case of forming a plurality of current collecting fluxes by dividing the current collector exposed portion of the positive electrode (negative electrode) to be laminated in the laminated electrode body. When the number of divisions is too small (that is, when the divided electrode body laminated portions belonging to the individual current collecting fluxes are relatively thick), the self-weight and size of the divided electrode body laminated portions belonging to each current collecting flux may be reduced. Due to the influence, relative positional deviation (sheet deviation) may occur between the divided electrode body laminated portions belonging to the adjacent current collecting bundles. Such a positional shift is not preferable because it may lower the mechanical strength of the electrode body itself and may lower the electrical performance such as the current collecting function.
Further, according to the study by the inventor, the thickness of the partitioned electrode body laminated portion belonging to the current collecting flux in which the positional deviation easily occurs is determined by the rectangular sheet-shaped positive and negative electrode current collectors and separators constituting the laminated electrode body. Shape, specifically, when the wide surface of the laminated electrode body has a vertically long rectangular shape and a horizontally long rectangular shape when the direction parallel to the lid is horizontal and the direction perpendicular to the lid is vertical). It was newly found that
かかる観点から種々検討した結果、矩形状の積層型電極体においては、各集電束に属する区画された電極体積層部分の厚みが上記式(1)において導き出される区画電極体最大許容厚みM(mm)を上回らないように、集電束数を決定することにより、隣接する集電束にそれぞれ属する区画電極体積層部分間における好ましくない位置ずれを効果的に抑制し得ることを見出し、本発明を創出するに至った。
即ち、ここで開示される角型二次電池によると、積層型電極体の機械的特性及び/又は電気的特性に悪影響を及ぼしかねない隣接する集電束に属する区画された電極体積層部分間における矩形シート状の正負極及び/又はセパレータの相対的な位置ずれが抑制され、高容量化およびハイレート充放電を良好に実現し得る集電構造(ここで開示される集電部材)を備える角型二次電池を提供することができる。
好ましくは、上記セパレータの蓋体と平行になる方向の辺長W(mm)は、上記正極活物質層および負極活物質層の同方向における何れか長い方の長さとほぼ等しい。
As a result of various studies from this viewpoint, in the rectangular laminated electrode body, the maximum allowable thickness M() of the partitioned electrode body derived from the above formula (1) is derived from the thickness of the partitioned electrode body laminated portion belonging to each current collecting flux. The present invention has found that by determining the number of current collection fluxes so as not to exceed 10 mm), it is possible to effectively suppress an undesired positional deviation between the partitioned electrode body laminated portions belonging to the adjacent current collection fluxes. Came to create.
That is, according to the prismatic secondary battery disclosed herein, between the divided electrode body laminated portions belonging to the adjacent current collecting bundles that may adversely affect the mechanical characteristics and/or the electric characteristics of the laminated electrode body. Of the rectangular sheet-like positive and negative electrodes and/or separators in which the relative displacement is suppressed, and a current collecting structure (current collecting member disclosed herein) capable of favorably realizing high capacity and high rate charging/discharging is formed. A type secondary battery can be provided.
Preferably, the side length W (mm) in the direction parallel to the lid of the separator is substantially equal to the longer one of the positive electrode active material layer and the negative electrode active material layer in the same direction.
ここで開示される角型二次電池の好適な一態様は、
前記正極集電端子および負極集電端子には、同じ極側の前記複数の集電束のそれぞれを個々別々に接合するための集電部が、該複数の集電束と同数、相互に間隔をあけて設けられていることを特徴とする。
このように、複数の集電束と同数の集電部が相互に間隔をあけて設けられている正極集電端子および負極集電端子を使用することにより、隣接する各集電束が相互に障害にならずに効果的に集電を行うことができる。したがって、効率の良い集電(導電)経路が容易に形成され、比較的大電流での充放電(ハイレート充放電)を好適に行うことができる。
A preferred embodiment of the prismatic secondary battery disclosed herein is
The positive electrode current collector terminal and the negative electrode current collector terminal are provided with current collectors for individually joining the plurality of current collection fluxes on the same pole side, respectively, the same number as the plurality of current collection fluxes, and mutually spaced apart. It is characterized by being provided with a space.
In this way, by using the positive electrode current collector terminal and the negative electrode current collector terminal in which the same number of current collecting units as the plurality of current collecting fluxes are provided at intervals, the adjacent current collecting fluxes are mutually The current can be effectively collected without any obstacle. Therefore, an efficient current collecting (conducting) path is easily formed, and charging/discharging with a relatively large current (high-rate charging/discharging) can be suitably performed.
以下、ここで開示される角型二次電池の一例として、リチウムイオン二次電池の好適な一実施形態を、図面を参照しつつ詳細に説明する。各図における寸法関係(長さ、幅、厚み等)は、説明の理解しやすさを重視しているため、実際の寸法関係を正確に反映するものではない。また、同じ作用を奏する部材・部位には同じ符号を付し、重複する説明は省略または簡略化する。本明細書において特に言及している事項以外の事柄であって実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
以下の実施形態に示すリチウムイオン二次電池に限られず、積層型電極体を装備し得る他の角型二次電池、例えば電気二重層キャパシタ、リチウムイオンキャパシタ、ナトリウムイオン二次電池等においても本発明を好適に実施することができる。
本明細書において「活物質」とは、正極側または負極側において電荷担体(例えばリチウムイオン二次電池においてはリチウムイオン)の吸蔵および放出に関与する物質をいう。なお、本明細書中の数値範囲A〜B(A、Bは任意の数)は、A以上B以下を示すものとする。
Hereinafter, a preferred embodiment of a lithium ion secondary battery as an example of the prismatic secondary battery disclosed herein will be described in detail with reference to the drawings. The dimensional relationship (length, width, thickness, etc.) in each drawing is not intended to accurately reflect the actual dimensional relationship because importance is placed on ease of understanding of the description. In addition, the same reference numerals are given to members and parts that have the same action, and duplicate explanations are omitted or simplified. Matters other than the matters particularly referred to in the present specification and necessary for implementation can be grasped as design matters of a person skilled in the art based on conventional technology in the field. The present invention can be carried out based on the contents disclosed in this specification and the common general technical knowledge in the field.
The present invention is not limited to the lithium-ion secondary battery shown in the following embodiments, but can be applied to other rectangular secondary batteries that can be equipped with a laminated electrode body, such as an electric double layer capacitor, a lithium-ion capacitor, and a sodium-ion secondary battery. The invention can be preferably implemented.
In the present specification, the “active material” refers to a material that is involved in storage and release of charge carriers (eg, lithium ions in a lithium ion secondary battery) on the positive electrode side or the negative electrode side. The numerical ranges A to B (A and B are arbitrary numbers) in the present specification indicate A or more and B or less.
図1に示すように、本実施形態に係るリチウムイオン二次電池10は、扁平形状の積層型電極体50(図2)が、図示しない電解質(ここでは非水電解液)とともに、当該積層型電極体50の形状に対応する扁平な角型の電池ケース12(即ちリチウムイオン二次電池10の外装容器)に収容されて構成される密閉構造の角型二次電池である。
電池ケース12は、幅広面に隣接する一側面(リチウムイオン二次電池10の通常の使用状態において上面に相当する。)に開口部が形成されている箱形(即ち有底直方体状)のケース本体14と、その開口部に取り付けられて該開口部を塞ぐ矩形プレート状の蓋体16とから構成される。かかる蓋体16がケース本体14の開口部周縁に溶接されることにより、扁平形状の積層型電極体50の矩形状の幅広面に対向する一対のケース幅広面と、該ケース幅広面に隣接する4つの幅狭な矩形状の側面(即ち、そのうちの一つは蓋体16により構成される。)との六面体(直方体)形状の密閉構造の電池ケース12が構成される。
特に制限するものではないが、この種の電池の電池ケースの好適なサイズとして、ケース本体14および蓋体16の長辺側の長さ:80mm〜200mm、ケース本体14および蓋体16の短辺側の長さ(即ち電池ケース12の厚み):5mm〜50mm(例えば8mm〜40mm)、電池ケース12の高さ:70mm〜150mmを例示することができる。積層型電極体50のサイズは、使用する電池ケースに収容できるサイズに規定されればよく、特に限定されない。
電池ケース12(ケース本体14および蓋体16)の材質は、従来のこの種の二次電池で使用されるものと同じであればよく、特に制限はない。アルミニウム、ステンレス鋼、ニッケルめっき銅等が例示される。
As shown in FIG. 1, in the lithium ion
The
Although not particularly limited, as a preferred size of the battery case of this type of battery, the length of the long side of the
The material of the battery case 12 (
図1に示すように、蓋体16の外面側には外部接続端子である負極端子18および正極端子20が一体に形成されている。蓋体16には、電池ケース12の内圧が所定レベル以上に上昇した場合に該内圧を開放するように構成された薄肉の安全弁40、および、非水電解液を供給するための注液口42が形成されている。図1は注液完了後の状態であり、注液口42は封止材43により封止されている。なお、安全弁40の機構、注液口42の封止形態は、従来のこの種の電池と同様でよく、特別な構成は要しない。
As shown in FIG. 1, a
図2に示すように、本実施形態に係る積層型電極体50は、矩形シート状の正極(以下「正極シート51」という。)と、該正極シート51と同様の矩形シート状の負極(以下「負極シート55」という。)とを、同様の矩形シート状のセパレータ58(図3)を間に介在させつつ交互に積層することにより構成されている。
正極シート51は、矩形シート状の正極集電体52の両面に正極活物質層(図示せず)が形成されており、一方、負極シート55は、矩形シート状の負極集電体56の両面に負極活物質層(図示せず)が形成されている。
矩形状の正極集電体52の蓋体16と平行になる方向(以下「長辺方向」ともいう。)の一方の端部には、蓋体16と直交する方向(以下「短辺方向」ともいう。)に沿って帯状に正極活物質層を有しない正極集電体露出部52Aが形成されている。同様に、矩形状の負極集電体56の長辺方向の他方の端部には、短辺方向に沿って帯状に負極活物質層を有しない負極集電体露出部56Aが形成されている。
As shown in FIG. 2, the
The
One end of the rectangular positive electrode
図2に示すように、正極シート51と負極シート55とは、長辺方向に位置をややずらしてセパレータ58の長辺方向の一方の端部から正極集電体露出部52Aがはみ出し、且つ、他方の端部から負極集電体露出部56Aがはみ出すように積層される。その結果、積層型電極体50の長辺方向の一方の端部および他方の端部に、それぞれ、正極集電体露出部52Aが積層された部分および負極集電体露出部56Aが積層された部分が形成される。これら正極集電体露出部52Aおよび負極集電体露出部56Aのそれぞれにおいて上述した複数の集電束を形成するのであるが、このことは後述する。
As shown in FIG. 2, the
なお、リチウムイオン二次電池を構成する積層型電極体50の正負極を構成する材料(正極活物質、負極活物質、導電材、バインダ等)や構成部材(正極集電体、負極集電体、等)ならびに電解質(非水電解液を構成する溶媒、リチウム塩、等)は、従来の一般的なリチウムイオン二次電池を構成するために使用されるものと同様であればよく、本発明を何ら特徴付けるものではないため、詳細な説明は省略する。
The materials (positive electrode active material, negative electrode active material, conductive material, binder, etc.) and constituent members (positive electrode current collector, negative electrode current collector) that form the positive and negative electrodes of the
次に、本実施形態に係るリチウムイオン二次電池10における集電構造について説明する。
図3に示すように、電池ケース12内に収容された積層型電極体50の正極集電体露出部52Aおよび負極集電体露出部56Aには、それぞれ、正極集電端子32および負極集電端子36の集電部(集電プレート)33,37が溶接(符号Sは溶接部分を指す。)によって接合されている。正極集電端子32および負極集電端子36は、さらに蓋体16に設けられた正極端子20および負極端子18とそれぞれ電気的に接続している。かかる正極集電端子32および負極集電端子36を介する集電構造により、積層型電極体50と正極端子20および負極端子18とをつなぐ電気的経路が構成されている。
Next, the current collecting structure in the lithium ion
As shown in FIG. 3, the positive electrode current collector exposed
図4に示すように、積層型電極体50は、正極シート51、負極シート55およびセパレータ58を所望するセット数だけ積層することにより構築される。本実施形態では、リチウムイオン二次電池の特性を考慮し、積層方向の両端がいずれも負極シート55A,55Zとなるように、正極シート51よりも負極シート55の方が1枚多く積層される。また、電池ケース12内での絶縁性をより高めるべく、積層方向の一方の端にある負極シート55Aの外表面側にさらにセパレータ58を配置し、同様に、他方の端にある負極シート55Zの外表面側にもさらにセパレータ58を配置している。或いはまた、かかる最外表面のセパレータ58に代えて、絶縁性合成樹脂(例えばポリオレフィン)製のフィルム(図示せず)を、積層型電極体50とケース12の内壁との間に配置してもよい。
また、セパレータ58の材質は特に限定されず、従来からこの種の角型二次電池(リチウムイオン二次電池)において多用されている材質のものを使用することができる。例えば、ポリエチレン、ポリプロピレン等のポリオレフィン製の多孔質シートからなるセパレータが挙げられる。
As shown in FIG. 4, the
In addition, the material of the
図4に示すように、本実施形態に係る積層型電極体50の集電構造では、正極集電体露出部52Aおよび負極集電体露出部56Aは、それぞれ、積層方向に2つ以上に分割されて束ねられた複数の集電束80,90を構成している。なお、図4では、集電構造をシンプルにして分かり易く説明するために正負極側それぞれ2つの集電束80,90であるが、これに限られず、より多くの分割数とすることができる。例えば、図5に示す積層型電極体50では、正極側が3つの集電束80および負極側が4つの集電束90に分割されているが、このように正負極側それぞれの分割数は一致させる必要はなく、相互に異なっていてもよい。
なお、図4に示すように、本実施形態に係る積層型電極体50では、積層方向の一方の端にある負極シート55Aと該積層方向の他方の端にある負極シート55Zとの間に存在する正負極間セパレータ58のいずれもが、正極集電束80のいずれか、及び/又は、負極集電束90のいずれかに内包された状態で配置されている。このため、図4中の縦向き矢印で示すように、積層方向の両端の集電体露出部52A,56A、即ち当該集電束80,90の外表面を構成する2つの集電体露出部52A,56Aに挟まれた状態の正負極シート51,55およびセパレータ58には、当該集電束80,90の形成のために複数の集電体(露出部)を束ねることによって生じる応力として正負極積層方向に圧力を生じさせる。かかる圧力は、当該集電束の内部に積層する正負極シート51,55およびセパレータ58の保持力を高め、当該集電束の内部に積層する正負極およびセパレータの積層方向に対する横方向への位置ずれを抑制することができる。
As shown in FIG. 4, in the current collecting structure of the
As shown in FIG. 4, in the
本実施形態に係る正極集電端子32および負極集電端子36は、複数の集電束80,90のそれぞれを個々別々に接合するための集電部(集電プレート)33,37が集電束と同数、相互に間隔をあけて設けられている。好適な一形態を図6に示す。なお、図6には、正負極用集電端子32A,32B,32Cの好適例を示している。正極集電端子および負極集電端子のいずれにも使用することができる。
図6の(a)〜(c)に示す集電端子32A,32B,32Cは、対応する各集電束80,90の外表面を構成する正負極集電体露出部52A,56Aの一部と溶接により接合される。具体的には、本実施形態に係る集電端子32A,32B,32Cは、大まかにいって、蓋体16のケース内面側に配置される接続部34と、蓋体16のケース外面側に配置される外部接続端子である上記正極端子20と接続(嵌合)される接続突起35と、対応する集電束80,90の収束された先端部分(以下「収束部分81,91」という。)の外表面に配置され、当該集電束80,90の収束部分81,91の外表面の一部と溶接により接合されるプレート状の集電部(集電プレート)33とを備えている。そして、集電部33は、好ましくは等間隔に、相互に間隔をあけて必要な数、即ち、対応する集電束と同数だけ設けられている。図示されるように、複数設けられた集電部33は、いずれも接続部34とつながっている。
かかる構成により、集電束80,90の数に限定なく、一つの正極(負極)集電端子によって、当該正極(負極)側の集電構造を形成することができる。また、隣接する各集電束が相互に障害にならずに効果的に集電を行うことができる。
In the positive electrode current collecting
The
With such a configuration, the current collecting structure on the positive electrode (negative electrode) side can be formed by one positive electrode (negative electrode) current collecting terminal regardless of the number of current collecting bundles 80 and 90. Further, it is possible to effectively collect current without the adjacent current collecting bundles interfering with each other.
次に、積層型電極体の正(負)極集電体露出部をいくつかに分割して複数の集電束を形成する場合における好適な集電束数の決定方法について説明する。
上述した図2中の符号HおよびWは、それぞれ、正極集電体の蓋体と直交する方向(即ち図中の縦方向)の辺長:H(mm)およびセパレータの蓋体と平行になる方向(即ち図中の横方向)の辺長:W(mm)を示している。
本発明者は、積層型電極体50の幅広面の形状(具体的にはH/W比)および電極体50の厚み(図2中のD:mm)を様々に変更したものを試験サンプルとし、位置ずれに対する耐性と、正負極集電体露出部の積層方向における分割数(即ち集電束数)との関係を調べた。具体的には、試験電極体に対して所定加速度の振動入力を与え集電束間に位置ずれが生じるか否かを詳細に調べた。図7は、その結果を示すグラフである。
Next, a description will be given of a suitable method for determining the number of current collection fluxes when the positive (negative) pole current collector exposed portion of the laminated electrode body is divided into a plurality of current collection fluxes.
The symbols H and W in FIG. 2 described above are respectively parallel to the side length: H (mm) in the direction orthogonal to the lid of the positive electrode current collector (that is, the vertical direction in the figure) and the lid of the separator. The side length in the direction (that is, the lateral direction in the drawing): W (mm) is shown.
The present inventor has variously changed the shape (specifically, H/W ratio) of the wide surface of the
図7に示す結果から明らかなように、幅広面が矩形状の積層型電極体に関し、同じ電極体厚み(D:mm)であっても、H/W比が異なることにより、所定加速度の振動入力を付与したときの位置ずれを生じない集電体露出部の分割数(集電束数)が異なる。例えば、H/W比が0.25である電極体では、電極体厚みが40mm(50mm)の場合、分割数(集電束数)を、6つ(8つ)以上にしないと、位置ずれが生じ得ることが判る。
一方、H/W比が1である電極体では、電極体厚みが40mm(50mm)の場合、分割数(集電束数)を、3つ(5つ)以上にすればよいことが判る。
As is clear from the results shown in FIG. 7, regarding the laminated electrode body having a wide rectangular surface, even if the electrode body has the same thickness (D: mm), the vibration of a predetermined acceleration is caused by the difference in H/W ratio. The number of divisions (the number of current collection bundles) of the exposed portion of the current collector that does not cause a positional shift when an input is applied is different. For example, in the case of an electrode body having an H/W ratio of 0.25, when the electrode body thickness is 40 mm (50 mm), misalignment is required unless the number of divisions (the number of current collection fluxes) is 6 (8) or more. It can be seen that
On the other hand, in the case of an electrode body having an H/W ratio of 1, it can be seen that when the electrode body thickness is 40 mm (50 mm), the number of divisions (the number of collecting fluxes) should be three (5) or more.
次に、上記結果をベースに、位置ずれに対して耐性を示す一の集電束に属する区画された電極体積層部分の厚み(mm)とH/W比との関係についてプロットしたグラフを作成した。結果を図8に示す。
図8に示す結果から明らかなように、位置ずれに対して耐性を示す一の集電束に属する区画された電極体積層部分の厚みの最大値、即ち、区画電極体最大許容厚みM(mm)は、積層型電極体におけるH/W比との関係において相関があることが判った。即ち、図8に示す結果より、以下の式(1)が導き出される。
M=18.7×H/W+1.4 (1)
ここで、式中のMは、区画電極体最大許容厚み(mm)であり、Hは、正極集電体の蓋体と直交する方向の辺長(mm)であり、Wは、セパレータの蓋体と平行になる方向の辺長(mm)である。
なお、好ましくは、上記セパレータの蓋体と平行になる方向の辺長W(mm)は、上記正極活物質層および負極活物質層の同方向における何れか長い方の長さとほぼ等しい。これにより、上記式(1)におけるWを、正極活物質層および負極活物質層のうちの蓋体と平行になる方向のいずれか長い方の辺長(W’:mm)と置き換えることもできる。
Next, based on the above results, a graph is created that plots the relationship between the H/W ratio and the thickness (mm) of the section of the electrode body stacked that belongs to one current collecting flux that is resistant to displacement. did. The results are shown in Fig. 8.
As is clear from the results shown in FIG. 8, the maximum value of the thickness of the divided electrode body laminated portion belonging to one current collecting flux that is resistant to the positional deviation, that is, the maximum allowable thickness M (mm) of the divided electrode body ) Has a correlation with the H/W ratio in the laminated electrode body. That is, the following expression (1) is derived from the result shown in FIG.
M=18.7×H/W+1.4 (1)
Here, M in the formula is the maximum allowable thickness (mm) of the partition electrode body, H is the side length (mm) in the direction orthogonal to the lid of the positive electrode current collector, and W is the lid of the separator. It is the side length (mm) in the direction parallel to the body.
Preferably, the side length W (mm) in the direction parallel to the lid of the separator is substantially equal to the longer length of the positive electrode active material layer and the negative electrode active material layer in the same direction. Thereby, W in the above formula (1) can be replaced with the longer side length (W': mm) of the positive electrode active material layer and the negative electrode active material layer in the direction parallel to the lid. ..
かかる式(1)に基づき、各集電束に属する区画された電極体積層部分の厚みが上記Mを上回らないようにすることにより、隣接する集電束に属する区画された電極体積層部分間の相対的な位置ずれ(シートずれ)が生じるのを抑制することができる。したがって、積層型電極体の機械的特性及び/又は電気的特性に悪影響を及ぼす矩形シート状の正負極およびセパレータの相対的な位置ずれが抑制され、且つ、高容量化およびハイレート充放電を良好に実現し得る集電構造(即ち、ここで開示される集電部材を備える集電構造)を備える角型二次電池を提供することができる。
なお、各集電束に属する区画された電極体積層部分の厚みは、上記M値を上回らない限りにおいて、均等である必要はない。この場合、好ましくは、図9(a)(b)に示す電極体のように、区画電極体積層部分の厚みが相対的に薄い正負極集電束80,90が存在する場合は、それらを積層方向の外側に配置する方がより高い位置ずれ耐性を発揮し得るため、好ましい。
Based on the formula (1), by keeping the thickness of the divided electrode body laminated portion belonging to each current collecting flux from exceeding the above M, the distance between the divided electrode body laminated portions belonging to the adjacent current collecting flux is increased. It is possible to suppress the occurrence of relative positional deviation (sheet deviation). Therefore, the relative displacement between the positive and negative electrodes and the separator in the form of a rectangular sheet, which adversely affects the mechanical characteristics and/or the electrical characteristics of the laminated electrode assembly, is suppressed, and high capacity and high rate charge/discharge are favorably performed. It is possible to provide a prismatic secondary battery including a current collection structure that can be realized (that is, a current collection structure including the current collection member disclosed herein).
It should be noted that the thickness of the partitioned electrode body laminated portion belonging to each current collection flux does not need to be uniform unless it exceeds the above M value. In this case, preferably, when there are positive and negative electrode current collecting bundles 80 and 90 having a relatively thin sectioned electrode body laminated portion, such as the electrode body shown in FIGS. It is preferable to dispose it on the outer side in the stacking direction because higher positional displacement resistance can be exhibited.
以上、本発明の好適な実施形態を説明したが、かかる説明した形態に本発明の技術思想は限定されない。例えば、上記式(1)の利用によって、好適な区画電極体積層部分の厚みとなるように分割して集電束数を決定すればよく、セパレータ(好適にはポリオレフィン製多孔質シート)の表面に接着材を付与した接着材付きセパレータを使用してもよい。かかる接着材を有することにより、積層する正極シートおよび負極シートの少なくともいずれか一方(または両方)との接着力をより増大させることができる。 Although the preferred embodiment of the present invention has been described above, the technical idea of the present invention is not limited to the described embodiment. For example, by using the above formula (1), the number of current collection fluxes may be determined by dividing so as to have a suitable thickness of the sectioned electrode body laminated portion. You may use the separator with an adhesive which added the adhesive to. By having such an adhesive, the adhesive force with at least one (or both) of the positive electrode sheet and the negative electrode sheet to be laminated can be further increased.
また、使用する正負極集電端子は、上述したプレート状の集電部を備えるものに限定されない。以下、正負極集電端子のさらに好適な一実施形態として、集電束の収束部分を挿入し溶接可能とするスリットを集電部として複数備える正負極集電端子について図面を参照しつつ説明する。 Further, the positive and negative electrode current collector terminals used are not limited to those provided with the plate-shaped current collectors described above. Hereinafter, as a further preferred embodiment of the positive and negative electrode current collector terminal, a positive and negative electrode current collector terminal including a plurality of slits as current collectors for inserting and welding a convergent portion of a current collecting flux will be described with reference to the drawings. ..
図10に示す本実施形態に係る正負極用の集電端子61A,61B,61Cは、大まかにいって、蓋体16のケース内面側に配置される接続部63と、蓋体16のケース外面側に配置される外部接続端子である上記正負極端子20,18と接続(嵌合)される接続突起65と、対応する集電束80,90の収束部分81,91と溶接により接合されるスリット64が形成された接合プレート62とを備えている。
かかるスリット64が本実施形態に係る集電部に相当する。即ち、図10の(a)〜(c)に示すように、対応する集電束80,90の数に対応する数(ここでは6つ、4つ、3つ)のスリット64が正負極積層方向と直交し且つ電極体50の短辺方向に形成されている。具体的には、複数のスリット64が形成された接合プレート62は、櫛歯状に形成されている。各スリット64は、各収束部分81の配置間隔に対応する間隔にて形成されている。各スリット64の開口幅は、収束部分81,91を挿入するために当該収束部分81,91の厚み以上の幅にそれぞれ形成されている。
そして、各スリット64に対応する集電束80,90の各収束部分81,91を挿入する。このとき、各収束部分81,91の先端が各スリット64から少し突出した状態になるようにすることが好ましい。そして、各収束部分81,91の先端部分と接合プレート62(具体的には、スリット64の周縁部分)とを超音波溶接等により溶接し、各収束部分81,91と集電端子61Aとを接合する。即ち、正負極それぞれ、各収束部分81,91と集電端子61Aとを電気的に接続する。
The
The
Then, the respective converging
以上に説明した実施形態では、複数のスリット(例えば図10に示すように、6つ、4つまたは3つ)が1つの接合プレート62に形成されているので、集電束80,90の数に限定なく、一つの正極(負極)集電端子によって、当該正極(負極)側の集電構造を形成することができる。また、隣接する各集電束が相互に障害にならずに効果的に集電を行うことができる。
さらに上述の図9に示すような集電束数や収束部分の間隔が正負極間で相互に異なる場合でも、対応する数のスリットを所定の間隔で有する集電端子を使用することで、当該集電端子自体が占める容積を増大させることなく容易に集電構造を構築することができる。 本実施形態に係るリチウムイオン二次電池10の集電構造を構成する正極集電端子および負極集電端子は、スリットの数を調整することによって、集電端子全体の形状やサイズを変化(例えば大型化)させることなく、積層型電極体の正負極集電体露出部の積層方向における分割数に容易に対応することができる。このため、正負極集電体露出部の積層方向における分割数が増加しても、正負極集電端子の重量が増加することがない。逆に、分割数が増加すると、スリットの数が増えるため、その分、正負極集電端子の重量が軽くなるともいえる。したがって、角型二次電池(例えばリチウムイオン二次電池)の大型化、重量増大を抑止することができる。
In the embodiment described above, since a plurality of slits (for example, six, four, or three as shown in FIG. 10) are formed in one
Furthermore, even when the number of current collection fluxes and the intervals of the converging portions are different between the positive and negative electrodes as shown in FIG. 9 described above, by using the current collection terminals having the corresponding number of slits at predetermined intervals, The current collecting structure can be easily constructed without increasing the volume occupied by the current collecting terminal itself. The positive electrode current collector terminal and the negative electrode current collector terminal forming the current collector structure of the lithium ion
また、図11(a)(b)に示すように、正負極集電端子61Aの接合プレート62が正負極集電体露出部52A,56Aと重なる範囲は、当該接合プレート62の厚みと実質同じといえる。
したがって、正負極集電体露出部をあまり大きくすることなく集電構造を構成することができる。即ち、図11(a)に示すように、正負極集電端子61Aと正負極集電体露出部52A,56Aとを接合するために必要な面積は、接合プレート62の厚みに相当する大きさのみでよい。このため、比較的コンパクトなサイズの正負極集電体露出部52A,56A(ひいては集電束)を形成すればよいから、正負極活物質層の面積を長辺方向に広げることができる。これにより、電池容量を増加させることができる。
Further, as shown in FIGS. 11A and 11B, the range in which the
Therefore, the current collecting structure can be configured without enlarging the exposed portion of the positive and negative electrode current collectors. That is, as shown in FIG. 11A, the area required for joining the positive and negative electrode
上述のとおり、ここで開示されるリチウムイオン二次電池等の角型二次電池は、電池の高容量化およびハイレート充放電を良好に実現し得る集電構造を備える。このため、車両駆動用電源(車両搭載用二次電池)として好適に利用することができる。 As described above, the prismatic secondary battery such as the lithium ion secondary battery disclosed herein has a current collecting structure that can favorably realize high capacity and high rate charge/discharge of the battery. Therefore, it can be suitably used as a vehicle driving power source (vehicle mounted secondary battery).
10 リチウムイオン二次電池
12 電池ケース
14 ケース本体
16 蓋体
18 負極端子
20 正極端子
32,32A、32B、32C 正極集電端子
33 集電部
34 接続部
35 接続突部
36 負極集電端子
37 集電部
50 積層型電極体
51 正極シート
52 正極集電体
52A 正極集電体露出部
55 負極シート
56 負極集電体
56A 負極集電体露出部
58 セパレータ
61A,61B,61C 集電端子
62 接合プレート
63 接続部
64 スリット(集電部)
65 接続突部
80 正極集電束
81 収束部分
90 負極集電束
91 収束部分
S 溶接部分
10 lithium-ion
65
Claims (3)
矩形シート状の正極集電体と該集電体上に形成された正極活物質層とを有する正極と、矩形シート状の負極集電体と該集電体上に形成された負極活物質層とを有する負極とが、矩形シート状のセパレータを間に介在させつつ交互に積層された構造の積層型電極体と、
を備えた角型のリチウムイオン二次電池であって、
前記ケースの内部には、外部接続端子と電気的に接続された正極集電端子および負極集電端子がそれぞれ設けられており、
前記積層された正極それぞれの前記蓋体と平行になる方向の一方の端部には、前記正極活物質層を有しない正極集電体露出部が前記蓋体と直交する方向に沿って形成されており、
前記積層された負極それぞれの前記蓋体と平行になる方向の一方の端部には、前記負極活物質層を有しない負極集電体露出部が前記蓋体と直交する方向に沿って形成されており、
前記蓋体と平行になる方向の一方の端部に前記正極集電体露出部が積層され、且つ、該方向の他方の端部に前記負極集電体露出部が積層されており、
前記積層された正極集電体露出部および負極集電体露出部は、それぞれ、該積層方向に2つ以上に分割されて束ねられた複数の集電束を構成しており、且つ、該複数の集電束のそれぞれは、個々別々に同じ極側の前記集電端子と接合されており、
ここで、前記積層型電極体の厚みは10mm以上50mm以下であり、
前記正負極側それぞれの集電束の数は、各集電束に属する区画された電極体積層部分の厚みが、いずれも以下の式(1)で求められる区画電極体最大許容厚みM(mm):
M=18.7×H/W+1.4 (1)
(式中のHは、前記正極集電体の前記蓋体と直交する方向の辺長(mm)であり、
Wは、前記セパレータの前記蓋体と平行になる方向の辺長(mm)である。)
を超えないように設定されていることを特徴とする、角型リチウムイオン二次電池。 It is composed of a bottomed rectangular parallelepiped case body having a pair of wide surfaces and an opening formed in one of the side surfaces adjacent to the wide surfaces, and a rectangular plate-shaped lid closing the opening. Square battery case,
A positive electrode having a rectangular sheet-shaped positive electrode current collector and a positive electrode active material layer formed on the current collector, a rectangular sheet-shaped negative electrode current collector, and a negative electrode active material layer formed on the current collector A negative electrode having and a laminated electrode body having a structure in which rectangular sheet-shaped separators are alternately laminated while interposing a rectangular sheet-shaped separator therebetween,
A prismatic lithium-ion secondary battery comprising:
Inside the case, a positive electrode current collector terminal and a negative electrode current collector terminal that are electrically connected to an external connection terminal are provided,
A positive electrode current collector exposed portion having no positive electrode active material layer is formed at one end of each of the laminated positive electrodes in a direction parallel to the lid, along a direction orthogonal to the lid. And
A negative electrode current collector exposed portion having no negative electrode active material layer is formed at one end of each of the laminated negative electrodes in a direction parallel to the lid, along a direction orthogonal to the lid. And
The positive electrode current collector exposed portion is laminated at one end portion in the direction parallel to the lid body, and the negative electrode current collector exposed portion is laminated at the other end portion in the direction,
The positive electrode current collector exposed portion and the negative electrode current collector exposed portion that are stacked together constitute a plurality of current collecting bundles that are divided into two or more in the stacking direction and are bundled. Each of the current collecting flux of, is individually and separately joined to the current collecting terminal of the same pole side,
Here, the thickness of the laminated electrode body is 10 mm or more and 50 mm or less,
The number of the current collecting fluxes on each of the positive and negative electrode sides is the maximum allowable thickness M (mm) of the partitioned electrode body obtained by the following formula (1) when the thickness of the partitioned electrode body laminated portion belonging to each current collecting flux is ):
M=18.7×H/W+1.4 (1)
(H in the formula is a side length (mm) of the positive electrode current collector in a direction orthogonal to the lid body,
W is a side length (mm) in a direction parallel to the lid of the separator. )
A prismatic lithium-ion secondary battery characterized by being set so as not to exceed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017018511A JP6731157B2 (en) | 2017-02-03 | 2017-02-03 | Square rechargeable battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017018511A JP6731157B2 (en) | 2017-02-03 | 2017-02-03 | Square rechargeable battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018125239A JP2018125239A (en) | 2018-08-09 |
JP6731157B2 true JP6731157B2 (en) | 2020-07-29 |
Family
ID=63110549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017018511A Active JP6731157B2 (en) | 2017-02-03 | 2017-02-03 | Square rechargeable battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6731157B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6846490B1 (en) * | 2019-09-25 | 2021-03-24 | 積水化学工業株式会社 | Power storage element and manufacturing method of power storage element |
WO2021193407A1 (en) * | 2020-03-24 | 2021-09-30 | 日本碍子株式会社 | Zinc secondary battery |
WO2023037641A1 (en) * | 2021-09-08 | 2023-03-16 | ビークルエナジージャパン株式会社 | Battery and method for producing battery |
-
2017
- 2017-02-03 JP JP2017018511A patent/JP6731157B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018125239A (en) | 2018-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5732687B2 (en) | Pouch type case and battery pack including the same | |
JP7484992B2 (en) | Energy storage element | |
US10056577B2 (en) | Battery cell of novel structure | |
US10811721B2 (en) | Accumulator device | |
EP3486967A1 (en) | Battery cell comprising electrode lead facing outer surface of electrode assembly | |
US11189886B2 (en) | Stack-type nonaqueous electrolyte secondary battery | |
KR101590259B1 (en) | Electrode assembly, battery and device comprising the same | |
CN108023061B (en) | Secondary battery | |
CN108123073B (en) | Laminated battery for series connection and battery pack | |
JP5699955B2 (en) | Power storage device and vehicle | |
KR20200043402A (en) | Lead tab for battery terminal | |
JP6731157B2 (en) | Square rechargeable battery | |
KR20170053434A (en) | End Plate for Battery Module | |
KR102002511B1 (en) | Battery | |
US20210151722A1 (en) | Battery pack | |
US10991985B2 (en) | Secondary battery | |
US10693120B2 (en) | Energy storage device | |
JP2019061892A (en) | Power storage element | |
KR20210072999A (en) | Battery Pack Having High Energy Density And High-Efficiency of radiating heat | |
KR102113156B1 (en) | The battery module | |
KR20120038075A (en) | Fixing apparatus for pouch type supercapacitor | |
JP2018125238A (en) | Square secondary battery | |
JP2021044081A (en) | Power storage element | |
JP7522718B2 (en) | Secondary battery | |
EP3582293A1 (en) | Battery cell and method for manufacturing electrode lead |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190423 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200114 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200116 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200313 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200604 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200617 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6731157 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |