[go: up one dir, main page]

JP6728906B2 - Heat exchanger descaling method - Google Patents

Heat exchanger descaling method Download PDF

Info

Publication number
JP6728906B2
JP6728906B2 JP2016076011A JP2016076011A JP6728906B2 JP 6728906 B2 JP6728906 B2 JP 6728906B2 JP 2016076011 A JP2016076011 A JP 2016076011A JP 2016076011 A JP2016076011 A JP 2016076011A JP 6728906 B2 JP6728906 B2 JP 6728906B2
Authority
JP
Japan
Prior art keywords
hydrochloric acid
solution
heat exchanger
iron
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016076011A
Other languages
Japanese (ja)
Other versions
JP2017186611A5 (en
JP2017186611A (en
Inventor
柿本 稔
稔 柿本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016076011A priority Critical patent/JP6728906B2/en
Publication of JP2017186611A publication Critical patent/JP2017186611A/en
Publication of JP2017186611A5 publication Critical patent/JP2017186611A5/ja
Application granted granted Critical
Publication of JP6728906B2 publication Critical patent/JP6728906B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

本発明は、熱交換器に付着したスケールの除去方法に関する。より詳しくは、鉄を含む塩化ニッケル水溶液から鉄を除去する脱鉄工程から得られる脱鉄終液を冷却するために用いられる熱交換器に付着したスケールの除去方法に関する。 The present invention relates to a method for removing scale attached to a heat exchanger. More specifically, the present invention relates to a method for removing scale adhering to a heat exchanger used for cooling a deferred iron final solution obtained from a deironing step of removing iron from an aqueous nickel chloride solution containing iron.

ニッケル製錬においては、ニッケル鉱石やニッケル精鉱を溶鉱炉や電気炉等の乾式炉で溶解処理する乾式製錬法、ニッケル鉱石やニッケル精鉱中のニッケルを水溶液中に浸出して、不純物を除去した後、ニッケルを回収する湿式製錬法があり、目的や用途に応じて最適な方法が工業化されている。 In nickel smelting, a dry smelting method in which nickel ore or nickel concentrate is dissolved in a dry furnace such as a blast furnace or an electric furnace, nickel in ore or nickel concentrate is leached into an aqueous solution to remove impurities. After that, there is a hydrometallurgical method for recovering nickel, and the most suitable method is industrialized according to the purpose and application.

その中で、湿式製錬法では、例えば特許文献1に記載されているように、塩素ガスの酸化作用を利用してニッケルマットや混合硫化物を浸出し、浸出されたニッケルイオンおよびコバルトイオンを電解採取によって電気ニッケル及び電気コバルトとして製品化する塩素浸出プロセスが実用化されている。 Among them, in the hydrometallurgical method, for example, as described in Patent Document 1, nickel matte and mixed sulfides are leached by utilizing the oxidizing action of chlorine gas, and the leached nickel ions and cobalt ions are removed. The chlorine leaching process, which is commercialized as electrolytic nickel and electrolytic cobalt by electrowinning, has been put to practical use.

塩素浸出プロセスのうちの塩素浸出工程では、混合硫化物と後述するセメンテーション残渣を塩化物水溶液にレパルプした後、そのスラリーに塩素ガスを吹込むことによりニッケルおよびコバルトを塩化物水溶液中に浸出する。 In the chlorine leaching step of the chlorine leaching process, the mixed sulfide and cementation residue described below are repulped into a chloride aqueous solution, and then chlorine gas is blown into the slurry to leach nickel and cobalt into the chloride aqueous solution. ..

次に、セメンテーション工程では、塩素浸出工程で得られた酸化剤としての2価の銅クロロ錯イオンを含んだ塩素浸出液に、粉砕したNiと金属ニッケルを主成分とするニッケルマットを接触させて銅とニッケルの置換反応を行うことにより、ニッケルマット中のニッケルが液に置換浸出され、銅イオンはCuSまたはCu(金属銅)の形態となって固体(セメンテーション残渣の一部)となる。 Next, in the cementation step, a crushed Ni 3 S 2 and nickel matte containing metallic nickel as a main component was added to a chlorine leaching solution containing a divalent copper chloro complex ion as an oxidizing agent obtained in the chlorine leaching step. By bringing them into contact with each other to carry out a substitution reaction of copper and nickel, nickel in the nickel mat is leached by substitution into the liquid, and copper ions become a form of Cu 2 S or Cu 0 (metal copper), which is a solid (cementation residue). Part).

そのセメンテーション終液と、ニッケルマットの置換浸出残渣と前記CuSまたはCu(金属銅)の形態となって沈澱した固体とからなるセメンテーション残渣は、固液分離された後、セメンテーション終液は次の浄液工程へ、固体のセメンテーション残渣は前記塩素浸出工程へ送られる。 The cementation final solution, the cement leaching residue consisting of the substitution leaching residue of the nickel matt and the solid precipitated in the form of Cu 2 S or Cu 0 (metallic copper) are subjected to solid-liquid separation, and then the cementation. The final solution is sent to the next purification step, and the solid cementation residue is sent to the chlorine leaching step.

ここで、セメンテーション終液には、回収対象金属であるニッケルやコバルトの他にも、銅、鉄、鉛、亜鉛等の不純物が含有されているため、コバルトを分離回収し、不純物を除去し、電解採取に適した高純度塩化ニッケル水溶液を得るために、浄液工程が構成されている。セメンテーション終液は、脱鉄工程、コバルト分離工程、脱鉛工程、脱亜鉛工程を経て処理されることにより不純物が除去され、電解採取工程に供給される。 Here, since the cementation final solution contains impurities such as copper, iron, lead, and zinc in addition to nickel and cobalt that are the recovery target metals, cobalt is separated and recovered to remove impurities. In order to obtain a high-purity nickel chloride aqueous solution suitable for electrowinning, a purification process is configured. The cementation final solution is processed through a deironing step, a cobalt separating step, a deleading step, and a dezincing step to remove impurities, and is supplied to the electrowinning step.

脱鉄工程では、例えば酸化剤としての塩素ガスと中和剤としての炭酸塩を用いる酸化中和法が用いられている。酸化中和法は、鉄等の一部の重金属が、高次の酸化状態のイオンになると、低いpH領域でも水酸化物になり易い性質を利用したものであり、湿式製錬の浄液工程をはじめ、重金属を含む排水処理等に汎用されている方法である。 In the iron removal step, for example, an oxidative neutralization method using chlorine gas as an oxidizing agent and carbonate as a neutralizing agent is used. The oxidative neutralization method utilizes the property that some heavy metals such as iron easily become hydroxides even in a low pH range when they become ions in a higher oxidation state. It is a method that is widely used for wastewater treatment including heavy metals.

コバルト分離工程では、例えば溶媒抽出法が用いられている。塩化浴中においてはアミン系抽出剤を用いた溶媒抽出法が一般的に実施されているが、これは、水溶液中の塩化物イオン濃度が十分に高い場合、コバルトはクロロ錯イオンを形成するが、ニッケルはクロロ錯イオンを形成しないことを利用したものである。溶媒抽出工程でコバルトを含む塩化ニッケル水溶液から分離されたコバルトは、逆抽出操作によって塩化コバルト水溶液となり、さらに塩化コバルト浄液工程にて不純物が除去された後、電解採取工程にて製品である電気コバルトとなる。 In the cobalt separation step, for example, a solvent extraction method is used. Solvent extraction methods using amine-based extractants are commonly practiced in chloride baths, although cobalt forms chloro complex ions when the chloride ion concentration in the aqueous solution is sufficiently high. , Nickel takes advantage of the fact that it does not form chloro complex ions. The cobalt separated from the nickel chloride aqueous solution containing cobalt in the solvent extraction step becomes a cobalt chloride aqueous solution by the back extraction operation, and after impurities are removed in the cobalt chloride purification step, the product is electro-produced in the electrolytic extraction step. Becomes cobalt.

脱鉛工程、脱亜鉛工程は、必要に応じて、適宜公知の方法が選択されている。 For the lead removal step and the zinc removal step, known methods are appropriately selected as necessary.

上記浄液工程を経た塩化ニッケル水溶液はpH調整の後、電解採取工程に送られ、電解採取工程にて電気ニッケルとなる。 The pH of the nickel chloride aqueous solution that has been subjected to the above-mentioned purification process is adjusted, and then sent to the electrowinning process to become electric nickel in the electrowinning process.

この塩素浸出プロセスでは、上記セメンテーション工程における反応効率を上げるため、高温で反応が操作される。よって、次工程の脱鉄工程で処理されるセメンテーション終液は高温であり、脱鉄後の脱鉄終液も高温となる。 In this chlorine leaching process, the reaction is operated at high temperature in order to increase the reaction efficiency in the cementation step. Therefore, the cementation final solution treated in the subsequent deironing step has a high temperature, and the deironization final solution after deironing also has a high temperature.

ところが、次の溶媒抽出工程では、有機溶媒の蒸発、有機溶媒の分解、装置材質の耐熱性等を鑑みて、ある一定温度以下で操作される必要があり、脱鉄終液は熱交換器により冷却される。 However, in the next solvent extraction step, in consideration of the evaporation of the organic solvent, the decomposition of the organic solvent, the heat resistance of the material of the apparatus, etc., it is necessary to operate at a certain temperature or lower, and the deferred iron final solution is treated by a heat exchanger. To be cooled.

しかしながら、脱鉄終液は高濃度の塩化ニッケル水溶液であることから、脱鉄終液を冷却するために用いられる熱交換器の伝熱面の脱鉄終液流路側には、カルシウムを含んだスケールが徐々に析出、成長してくる。このスケールによって、通液量の減少が引き起され、操業の継続が困難となるため、定期的に熱交換器への脱鉄終液の通液を停止して、伝熱面に付着したスケールの除去作業を行う必要があった。 However, since the deironization final solution is a high-concentration nickel chloride aqueous solution, calcium was contained on the deironization final solution flow path side of the heat transfer surface of the heat exchanger used for cooling the deironization final solution. Scale gradually precipitates and grows. This scale causes a decrease in the amount of liquid passing through, making it difficult to continue operation.Therefore, the flow of deferred iron final liquid to the heat exchanger is stopped periodically to prevent the scale from adhering to the heat transfer surface. Had to be removed.

しかし、スケールの除去作業は多大な手間と時間を要する。通常、複数基の熱交換器を並列に配置することで、スケールの除去作業時でも残りの熱交換器を稼働させ脱鉄終液の通液を継続できる構成とはしているが、それでもスケールの除去作業時間が長引けば、脱鉄終液の流量低下によって電気ニッケルが減産となる可能性もあった。 However, the scale removal work requires a great deal of labor and time. Normally, by arranging multiple heat exchangers in parallel, the remaining heat exchangers can be operated and the deferred iron final solution can continue to flow even during scale removal work. If the removal work time is prolonged, the production of electrolytic nickel may be reduced due to the decrease in the flow rate of the final iron removal solution.

特許文献2には、配管のスケーリング防止方法が開示されているが、液組成、pH等の条件が異なるため、ニッケル製錬における塩素浸出プロセスの脱鉄終液に適用できるのもでは無い。 Patent Document 2 discloses a method for preventing scaling of piping, but since conditions such as liquid composition and pH are different, it cannot be applied to the final iron removal liquid in the chlorine leaching process in nickel smelting.

特開2012−026027号公報JP 2012-026027 A 特開平10−202213号公報Japanese Patent Laid-Open No. 10-202213

そこで、本発明は、上記従来技術の問題点に鑑みて考案されたものであり、鉄を含む塩化ニッケル水溶液から鉄を除去する脱鉄工程から得られる脱鉄終液を冷却するために用いられる熱交換器において、多大な手間と時間を要さずに当該熱交換器に付着したスケールの除去を行うことができる熱交換器のスケール除去方法を提供するものである。 Therefore, the present invention has been devised in view of the above-mentioned problems of the prior art, and is used to cool the final deironization solution obtained from the deironing step of removing iron from an aqueous nickel chloride solution containing iron. It is intended to provide a scale removing method for a heat exchanger, which can remove the scale adhering to the heat exchanger without requiring a lot of trouble and time.

本発明者は、上記目的を達成すべく、特に、スケールの溶解方法について鋭意検討を重ねた結果、熱交換器に5〜10重量%の濃度の塩酸水溶液を通液することにより、スケールが除去できることを見出し、本発明を完成させるに至った。 In order to achieve the above object, the present inventor has conducted extensive studies especially on a method for dissolving scale, and as a result, the scale was removed by passing an aqueous hydrochloric acid solution having a concentration of 5 to 10 wt% into a heat exchanger. The inventors have found out what can be done and have completed the present invention.

第1発明の熱交換器のスケール除去方法は、鉄を含む塩化ニッケル水溶液から、水酸化鉄(III)沈澱を生成させ、該水酸化鉄(III)を含有した塩化ニッケル水溶液スラリーを固液分離する脱鉄工程から得られる脱鉄終液を冷却するプレート式熱交換器のスケール除去方法であって、脱鉄終液および冷却の通液を停止した状態で、塩酸タンクに貯えられた5〜10重量%の濃度の塩酸水溶液を前記熱交換器との間で循環させて通液し、塩酸タンクにて通液する塩酸水溶液の塩酸濃度を調整することにより、前記熱交換器が備える、前記脱鉄終液を冷却するための、純チタン製もしくは耐食チタン合金製の伝熱面の脱鉄終液流路側に付着したスケールを除去する、ことを特徴とする。 A method for removing scale of a heat exchanger according to a first aspect of the present invention comprises forming an iron(III) hydroxide precipitate from a nickel chloride aqueous solution containing iron, and solid-liquid separating a nickel chloride aqueous solution slurry containing the iron(III) hydroxide. A method for removing scale of a plate-type heat exchanger for cooling the deironization final solution obtained from the deironing step, comprising: A hydrochloric acid aqueous solution having a concentration of 10% by weight is circulated between the heat exchanger and liquid to pass therethrough, and the hydrochloric acid concentration of the hydrochloric acid aqueous solution to be passed through the hydrochloric acid tank is adjusted to provide the heat exchanger. It is characterized in that the scale adhering to the deironization final liquid flow path side of the heat transfer surface made of pure titanium or corrosion resistant titanium alloy for cooling the deironization final liquid is removed.

第2発明の熱交換器のスケール除去方法は、第1発明において、前記塩酸水溶液の濃度は5〜6重量%であることを特徴とする。 The scale removing method of the heat exchanger of the second invention is characterized in that, in the first invention, the concentration of the hydrochloric acid aqueous solution is 5 to 6% by weight.

本発明の熱交換器のスケール除去方法によれば、つぎの効果を奏する。
a)鉄を含む塩化ニッケル水溶液から鉄を除去する脱鉄工程の熱交換器において、多大な手間と時間を要さずに熱交換器に付着したスケールの除去を行うことができる。このため、流量低下によって電気ニッケルが減産となる可能性も無くなる。
b)塩酸濃度の低下に伴う濃度再調整は塩酸タンクにて行える。
c)脱鉄終液および冷却水の通液を停止するので、塩酸水溶液を循環使用できる。
According to the scale removing method of the heat exchanger of the present invention, the following effects can be obtained.
a) In a heat exchanger in a deironing step of removing iron from an aqueous nickel chloride solution containing iron, it is possible to remove scale attached to the heat exchanger without requiring a great deal of trouble and time . For this reason , there is no possibility that the production of electrolytic nickel will be reduced due to the decrease in the flow rate.
b) The readjustment of the hydrochloric acid concentration can be done in the hydrochloric acid tank.
c) Since the deferred iron final solution and the passage of cooling water are stopped, the hydrochloric acid aqueous solution can be circulated and used.

本発明に係る脱鉄工程の概略フロー図である。It is a schematic flow diagram of the iron removal process according to the present invention. 実施例および比較例におけるチタン試験片の重量変化を示した図である。It is a figure showing the weight change of the titanium test piece in an example and a comparative example.

本発明は、鉄を含む塩化ニッケル水溶液から、水酸化鉄(III)沈澱を生成させ、該水酸化鉄(III)を含有した塩化ニッケル水溶液スラリーを固液分離する脱鉄工程から得られる脱鉄終液を冷却する熱交換器のスケール除去方法であって、5〜10重量%の濃度の塩酸水溶液を前記熱交換器に通液することにより、前記熱交換器が備える、前記脱鉄終液を冷却するための、純チタン製もしくは耐食チタン合金製の伝熱面の脱鉄終液流路側に付着したスケールを除去することを特徴とするものである。 The present invention relates to a deferred iron obtained from a deironing step of producing an iron(III) hydroxide precipitate from a nickel chloride aqueous solution containing iron and solid-liquid separating a nickel chloride aqueous solution slurry containing the iron(III) hydroxide. A method for removing scale of a heat exchanger for cooling a final liquid, wherein the deironization final liquid provided in the heat exchanger by passing an aqueous hydrochloric acid solution having a concentration of 5 to 10% by weight through the heat exchanger. It is characterized in that the scale adhering to the deironization final liquid flow path side of the heat transfer surface made of pure titanium or corrosion resistant titanium alloy for cooling is removed.

そこで、ここでは、本発明の一実施形態として、ニッケルを回収する湿式製錬法である、塩素ガスの酸化作用を利用してニッケルマットや混合硫化物を浸出し、浸出されたニッケルイオンおよびコバルトイオンを電解採取によって電気ニッケル及び電気コバルトとして製品化する塩素浸出プロセスにおいて、脱鉄工程から得られる脱鉄終液を冷却するために用いられる熱交換器への適用を例にとって、以下に説明する。 Therefore, here, as one embodiment of the present invention, a nickel smelt and a mixed sulfide are leached by utilizing the oxidizing action of chlorine gas, which is a hydrometallurgical method for recovering nickel, and the leached nickel ions and cobalt are used. In the chlorine leaching process for producing ions as electro-nickel and electro-cobalt by electrowinning, the application to a heat exchanger used for cooling the de-ironing final solution obtained from the de-ironing step will be described below as an example. ..

1.塩素浸出プロセス
塩素浸出プロセスにおいて、原料とされるニッケルマットとは、乾式製錬から産出されたニッケル硫化物を指し、混合硫化物とは、低品位ラテライト鉱石から硫酸浸出によって産出されたニッケル・コバルト混合硫化物を指している。塩素浸出プロセスのうちの塩素浸出工程では、混合硫化物と後述するセメンテーション残渣を塩化物水溶液にレパルプした後、そのスラリーに塩素ガスを吹込むことによりニッケルおよびコバルトを塩化物水溶液中に浸出する。
1. Chlorine leaching process In the chlorine leaching process, the nickel matte used as a raw material refers to nickel sulfide produced from dry smelting, and mixed sulfide is nickel-cobalt produced from sulfuric acid leaching from low-grade laterite ore. Refers to mixed sulfides. In the chlorine leaching step of the chlorine leaching process, the mixed sulfide and cementation residue described below are repulped into an aqueous chloride solution, and then chlorine gas is blown into the slurry to leach nickel and cobalt into the aqueous chloride solution. ..

次に、セメンテーション工程では、塩素浸出工程で得られた酸化剤としての2価の銅クロロ錯イオンを含んだ塩素浸出液に、粉砕したNiと金属ニッケルを主成分とするニッケルマットを接触させて銅とニッケルの置換反応を行うことにより、ニッケルマット中のニッケルが液に置換浸出され、銅イオンはCuSまたはCu(金属銅)の形態となって固体(セメンテーション残渣の一部)となる。 Next, in the cementation step, a crushed Ni 3 S 2 and nickel matte containing metallic nickel as a main component was added to a chlorine leaching solution containing a divalent copper chloro complex ion as an oxidizing agent obtained in the chlorine leaching step. By carrying out the substitution reaction of copper and nickel by bringing them into contact with each other, nickel in the nickel mat is displacement-leached into the liquid, and the copper ion becomes a form of Cu 2 S or Cu 0 (metal copper), which is a solid (cementation residue). Part).

そのセメンテーション終液と、ニッケルマットの置換浸出残渣と前記CuSまたはCu(金属銅)の形態となって沈澱した固体とからなるセメンテーション残渣は、固液分離された後、セメンテーション終液は次の浄液工程へ、固体のセメンテーション残渣は前記塩素浸出工程へ送られる。 The cementation final solution, the substitution leaching residue of the nickel matte, and the solidification residue composed of the solid precipitated in the form of Cu 2 S or Cu 0 (metallic copper) are subjected to solid-liquid separation, and then the cementation. The final solution is sent to the next purification step, and the solid cementation residue is sent to the chlorine leaching step.

ここで、セメンテーション終液には、回収対象金属であるニッケルやコバルトの他にも、銅、鉄、鉛、亜鉛等の不純物が含有されているため、コバルトを分離回収し、不純物を除去し、電解採取に適した高純度塩化ニッケル水溶液を得るために、浄液工程が構成されている。 Here, since the cementation final solution contains impurities such as copper, iron, lead, and zinc in addition to nickel and cobalt that are the recovery target metals, cobalt is separated and recovered to remove impurities. In order to obtain a high-purity nickel chloride aqueous solution suitable for electrowinning, a purification process is configured.

セメンテーション終液は、脱鉄工程、コバルト分離工程、脱鉛工程、脱亜鉛工程を経て処理されることにより不純物が除去され、電解採取工程に供給される。 The cementation final solution is processed through a deironing step, a cobalt separating step, a deleading step, and a dezincing step to remove impurities, and is supplied to the electrowinning step.

2.脱鉄工程の概要
図1は、本発明に係る脱鉄工程の概略フロー図である。脱鉄工程は、セメンテーション終液に、塩素ガスを吹き込んで酸化還元電位(Ag/AgCl電極基準)を900〜1000mVに調整し、炭酸ニッケルを添加してpHを1.5〜3.0に調整して、水酸化鉄(III)沈澱を生成させ、該水酸化鉄(III)を含有した塩化ニッケル水溶液スラリーを固液分離することによって、脱鉄終液と脱鉄澱物を得るものである。
2. Outline of Iron Removal Step FIG. 1 is a schematic flow chart of the iron removal step according to the present invention. In the deferring step, chlorine gas was blown into the cementation final solution to adjust the redox potential (Ag/AgCl electrode reference) to 900 to 1000 mV, and nickel carbonate was added to adjust the pH to 1.5 to 3.0. A ferrous hydroxide (III) hydroxide precipitate is produced, and a nickel chloride aqueous solution slurry containing the iron (III) hydroxide is subjected to solid-liquid separation to obtain a deferred iron final solution and a deferred iron precipitate. is there.

脱鉄工程で処理されるセメンテーション終液の温度は約70℃と高温であり、脱鉄後の脱鉄終液も65〜70℃となる。 The temperature of the cementation final solution treated in the deironing step is as high as about 70°C, and the deironization final solution after deironing is also 65 to 70°C.

脱鉄工程の次工程であるコバルト分離工程では、高温の脱鉄終液が送液されると有機溶媒の蒸発量が増加して保有有機溶媒量が減少する。保有有機溶媒量の減少によって、油水分離性の悪化によるコバルトを抽出した有機溶媒へのニッケル混入量の増加等のプロセス上の問題や、有機溶媒の補充量の増加等のコスト上の問題が発生する。さらには、有機溶媒の蒸発量が増加すると、臭気の発生のような安全、保安上の問題も発生する。また、高温の脱鉄終液が送液されると有機溶媒の分解が促進されるため、逆抽出液に分解生成物が混入することによる排水のCOD負荷上昇の懸念も生じる。また、溶媒抽出設備には、ポリ塩化ビニルやFRP等の樹脂材料が多用されているため、高温による軟化、変形等、さらにはそのことによる液漏れの問題も発生する。 In the cobalt separation step, which is the next step of the iron removal step, when the hot deironization final solution is fed, the evaporation amount of the organic solvent increases and the retained organic solvent amount decreases. Due to the decrease in the amount of organic solvent retained, process problems such as an increase in the amount of nickel mixed into the organic solvent from which cobalt was extracted due to the deterioration of oil-water separability, and cost problems such as an increase in the amount of organic solvent replenishment have occurred. To do. Furthermore, when the evaporation amount of the organic solvent increases, safety and security problems such as generation of odor also occur. Further, since the decomposition of the organic solvent is promoted when the hot deironization final solution is fed, there is a concern that the COD load of the wastewater may increase due to the inclusion of decomposition products in the back extraction solution. Further, since resin materials such as polyvinyl chloride and FRP are often used in the solvent extraction equipment, problems such as softening and deformation due to high temperature, and liquid leakage due to such softening occur.

そこで、脱鉄終液は、熱交換器によって約55℃まで冷却される必要がある。熱交換方式については、例えばシェルアンドチューブ方式の熱交換器等、脱鉄終液を冷却することができるものであれば、特に制限されない。その中では、プレート式熱交換器であることが好ましい。そのために、本発明の一実施形態として、プレートクーラーによる水を冷媒とした冷却を行う。また、冷媒についても、手近で冷却効率も高い水が最適であるが、例えば冷風を用いても、エチレングリコール等の特殊な冷媒を用いても、特に制限されない。 Therefore, the deironization final solution needs to be cooled to about 55° C. by the heat exchanger. The heat exchange method is not particularly limited as long as it can cool the deferred iron final solution, such as a shell and tube heat exchanger. Among them, the plate heat exchanger is preferable. Therefore, as one embodiment of the present invention, cooling is performed by using a plate cooler with water as a coolant. Further, as the refrigerant, water is most suitable because it is convenient and has a high cooling efficiency, but it is not particularly limited whether cold air is used or a special refrigerant such as ethylene glycol is used.

3.熱交換器のスケール除去方法
上記したように、水等を冷媒としてプレートクーラーによる、脱鉄終液の冷却を継続すると、このプレートクーラーの伝熱面の脱鉄終液流路側に、カルシウムを含んだスケールが徐々に析出、成長してくる。このスケールによって、脱鉄終液の通液量の減少が引き起され、操業の継続が困難となるため、定期的に熱交換器への通液を停止して、付着したスケールの除去作業を行う必要があった。
3. Scale removal method of heat exchanger As described above, when cooling the deironing final solution with a plate cooler using water or the like as a coolant, the deironing final solution flow path side of the heat transfer surface of this plate cooler contains calcium. The scale gradually precipitates and grows. This scale causes a decrease in the amount of final deironization solution passed, making it difficult to continue operation.Therefore, stop the passing of heat to the heat exchanger regularly to remove the adhered scale. Had to do.

そのために、通常、複数基の熱交換器を並列に配置することで、スケールの除去作業時でも残りの熱交換器を稼働させ脱鉄終液の通液を継続できる構成としているが、それでもスケールの除去作業時間が長引けば、脱鉄終液の流量低下によって電気ニッケルが減産となる可能性もあった。図1では、2基のプレートクーラーが並列に配置されており、スケールの除去作業時は、スケールの除去作業を行っていない1基のみに脱鉄終液を通液するようにしている。 Therefore, normally, by arranging multiple heat exchangers in parallel, the remaining heat exchangers can be operated and the deferred iron final liquid can continue to flow even during scale removal work. If the removal work time is prolonged, the production of electrolytic nickel may be reduced due to the decrease in the flow rate of the final iron removal solution. In FIG. 1, two plate coolers are arranged in parallel, and during the scale removing work, the deironization final solution is passed through only one of the scales which is not performing the scale removing work.

従来のスケールの除去作業では、プレートクーラーを分解して、1枚1枚のプレートを丹念に掃除していたため、多大な手間と時間を要すると共に、高度な整備技術も要していた。また、プレートクーラーを分解するため、プレート間をシールしているガスケットを、分解の都度、更新する必要があり、その整備コストも高いものとなっていた。さらに、プレートクーラーの分解整備作業には、分解したプレートクーラーを再度組立てる作業を伴うため、常に通液開始時の液漏れリスクが付きまとっていた。 In the conventional scale removing work, since the plate cooler is disassembled and each plate is carefully cleaned, it takes a lot of time and labor and requires a high level maintenance technique. Further, in order to disassemble the plate cooler, the gasket that seals between the plates needs to be renewed each time it is disassembled, resulting in a high maintenance cost. Further, since the disassembly and maintenance work of the plate cooler involves the work of reassembling the disassembled plate cooler, there is always a risk of liquid leakage at the start of liquid passage.

ところで、調査の結果、このスケールの主成分は石膏(CaSO・2HO)であることが分かった。そこで、本発明では、塩酸を用いてスケールの溶解を行う。 Meanwhile, results of the investigation, the main component of the scale was found to be gypsum (CaSO 4 · 2H 2 O) . Therefore, in the present invention, hydrochloric acid is used to dissolve the scale.

本発明のスケール除去作業は、脱鉄終液および冷却水の通液を停止して、脱鉄終液流路側に5〜10重量%の塩酸水溶液を通液する。また、この時、上記塩酸水溶液は循環使用することが好ましい。必要な設備としては、塩酸タンクと塩酸をプレートクーラーに送り込むためのポンプ、および行きと帰りの配管や切替えバルブとなる。塩酸タンクにて通液する塩酸水溶液の塩酸濃度を調整し、塩酸濃度が低下した場合には、再調整を行えば良い。 In the scale removing operation of the present invention, the deferred iron final solution and the cooling water are stopped to be passed, and a 5 to 10 wt% hydrochloric acid aqueous solution is passed to the deferred final solution flow path side. In addition, at this time, it is preferable that the hydrochloric acid aqueous solution be circulated. Necessary equipment includes a hydrochloric acid tank, a pump for feeding hydrochloric acid into the plate cooler, and outgoing and return piping and a switching valve. The hydrochloric acid concentration of the hydrochloric acid aqueous solution passed through the hydrochloric acid tank may be adjusted, and when the hydrochloric acid concentration decreases, readjustment may be performed.

塩酸によるスケールの溶解は、(式1)で示した反応に従う。
CaSO・2HO+2HCl→CaCl+HSO+2HO (式1)
Dissolution of the scale with hydrochloric acid follows the reaction shown in (Equation 1).
CaSO 4 .2H 2 O+2HCl→CaCl 2 +H 2 SO 4 +2H 2 O (Formula 1)

プレートクーラーの伝熱面をなすプレートは純チタンであるため、高濃度の塩酸を使用した場合、プレートの腐食による減耗が生じる。プレートは極めて薄く作られており、そのことが高い伝熱係数を担保するものとなるが、プレートに穴が開いてしまうと、冷却水側に塩化ニッケル水溶液がリークしてしまい、環境上の問題も発生する。 Since the plate that forms the heat transfer surface of the plate cooler is pure titanium, when high-concentration hydrochloric acid is used, wear is caused by corrosion of the plate. The plate is made extremely thin, which ensures a high heat transfer coefficient, but if holes are made in the plate, the nickel chloride aqueous solution will leak to the cooling water side, which is an environmental problem. Also occurs.

そこで、プレートクーラー伝熱面の脱鉄終液流路側に通液する塩酸水溶液の濃度は、5〜10重量%とする。5重量%未満ではスケール除去効果が低下し、10重量%を超えるとチタン材が腐食する恐れがある。さらに、塩酸水溶液の濃度は、5〜6重量%であることがより好ましい。 Therefore, the concentration of the hydrochloric acid aqueous solution that is passed to the deironization final solution flow path side of the plate cooler heat transfer surface is set to 5 to 10% by weight. If it is less than 5% by weight, the scale removing effect is reduced, and if it exceeds 10% by weight, the titanium material may be corroded. Furthermore, the concentration of the hydrochloric acid aqueous solution is more preferably 5 to 6% by weight.

本発明の熱交換器のスケール除去方法によれば、熱交換器を分解掃除する必要が無いため、多大な手間と時間を要さずに熱交換器に付着したスケールの除去を行うことができ、脱鉄終液の流量低下によって電気ニッケルが減産となる可能性も無くなる。また、分解した熱交換器を再度組立てる作業が発生しないため、脱鉄終液の通液開始時の液漏れリスクも無い。さらに、プレート式熱交換器の場合、分解、再組立ての作業が無いため、ガスケットを交換する必要も無く、コストが掛からない。 According to the scale removing method of the heat exchanger of the present invention, since it is not necessary to disassemble and clean the heat exchanger, it is possible to remove the scale adhering to the heat exchanger without requiring much labor and time. , There is no possibility that the production of electrolytic nickel will be reduced due to the decrease in the final iron removal solution flow rate. Further, since the work of reassembling the disassembled heat exchanger does not occur, there is no risk of liquid leakage at the start of the passage of the deferred iron final liquid. Furthermore, in the case of the plate heat exchanger, there is no need to disassemble and reassemble, so there is no need to replace the gasket, and there is no cost.

以下、実施例および比較例により、本発明を詳細に説明するが、本実施例および比較例の記載により本発明の範囲が特別に限定されるものでは無い。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the scope of the present invention is not particularly limited by the description of the Examples and Comparative Examples.

(実施例1)
実操業における脱鉄工程の脱鉄終液冷却用のプレートクーラーに付着したスケールを採取し、10gのスケールを、塩酸濃度5重量%に調整した塩酸水溶液200mL中に投入し、常温で20時間浸漬した時の塩酸水溶液中のカルシウム濃度を測定した。
(Example 1)
The scale adhering to the plate cooler for cooling the final de-ironing solution in the de-ironing process in actual operation is sampled, 10 g of the scale is put into 200 mL of hydrochloric acid aqueous solution adjusted to a hydrochloric acid concentration of 5% by weight, and immersed at room temperature for 20 hours. The calcium concentration in the hydrochloric acid aqueous solution at that time was measured.

(実施例2)
実施例1と同じスケール10gを、塩酸濃度10重量%に調整した塩酸水溶液200mL中に投入し、常温で20時間浸漬した時の塩酸水溶液中のカルシウム濃度を測定した。
(Example 2)
10 g of the same scale as in Example 1 was put into 200 mL of an aqueous hydrochloric acid solution adjusted to have a hydrochloric acid concentration of 10% by weight, and the calcium concentration in the aqueous hydrochloric acid solution when immersed for 20 hours at room temperature was measured.

(比較例1)
実施例1と同じスケール10gを、塩酸濃度18重量%に調整した塩酸水溶液200mL中に投入し、常温で20時間浸漬した時の塩酸水溶液中のカルシウム濃度を測定した。
(Comparative Example 1)
10 g of the same scale as in Example 1 was placed in 200 mL of an aqueous hydrochloric acid solution adjusted to a hydrochloric acid concentration of 18% by weight, and the calcium concentration in the aqueous hydrochloric acid solution when immersed for 20 hours at room temperature was measured.

実施例1、実施例2、比較例1では、カルシウム濃度の測定は、ICP発光分光分析装置により行った。実施例1、実施例2、比較例1の結果を表1に示した。

Figure 0006728906
In Example 1, Example 2, and Comparative Example 1, the calcium concentration was measured by an ICP emission spectroscopic analyzer. The results of Example 1, Example 2 and Comparative Example 1 are shown in Table 1.
Figure 0006728906

実施例1、実施例2、比較例1より、常温で20時間浸漬することにより、5重量%塩酸および10重量%塩酸では、約4gのスケールを溶解することができた。18重量%塩酸では、逆にスケールの溶解量は減少した。18重量%塩酸では、石膏の溶解によって生成した硫酸による逆反応が生じた可能性がある。 From Example 1, Example 2, and Comparative Example 1, it was possible to dissolve about 4 g of scale with 5 wt% hydrochloric acid and 10 wt% hydrochloric acid by immersing at room temperature for 20 hours. On the contrary, with 18% by weight hydrochloric acid, the amount of scale dissolved decreased. With 18% by weight hydrochloric acid, there is a possibility that a reverse reaction due to sulfuric acid generated by dissolution of gypsum occurred.

(実施例3)
約21.8gの純チタンの試験片を、塩酸濃度5重量%に調整した塩酸水溶液に浸漬し、常温下で60日間放置して、重量変化について調査した。
(Example 3)
About 21.8 g of a pure titanium test piece was immersed in an aqueous hydrochloric acid solution adjusted to a hydrochloric acid concentration of 5% by weight, and allowed to stand at room temperature for 60 days to examine the weight change.

(実施例4)
約21.8gの純チタンの試験片を、塩酸濃度10重量%に調整した塩酸水溶液に浸漬し、常温下で60日間放置して、重量変化について調査した。
(Example 4)
About 21.8 g of a pure titanium test piece was immersed in a hydrochloric acid aqueous solution adjusted to a hydrochloric acid concentration of 10% by weight, and allowed to stand at room temperature for 60 days to examine the weight change.

(比較例2)
約21.7gの純チタンの試験片を、塩酸濃度35重量%に調整した塩酸水溶液に浸漬し、常温下で60日間放置して、重量変化について調査した。実施例3、実施例4、比較例2の結果を図2に示した。
(Comparative example 2)
About 21.7 g of a pure titanium test piece was immersed in an aqueous hydrochloric acid solution adjusted to have a hydrochloric acid concentration of 35% by weight, and allowed to stand at room temperature for 60 days to examine the weight change. The results of Example 3, Example 4, and Comparative Example 2 are shown in FIG.

図2より、5重量%塩酸および10重量%塩酸では、60日間浸漬しても大きな重量変化は無かったが、35重量%塩酸では約1g減少した。 From FIG. 2, with 5% by weight hydrochloric acid and 10% by weight hydrochloric acid, there was no large change in weight even after immersion for 60 days, but with 35% by weight hydrochloric acid, there was a decrease of about 1 g.

これにより、純チタン製の伝熱面の脱鉄終液流路側に付着したスケールを除去する場合、5〜10重量%の濃度の塩酸水溶液を用いれば、チタン材の腐食がないことが確認された。 Thus, when removing the scale attached to the deironization final solution flow path side of the heat transfer surface made of pure titanium, it was confirmed that the titanium material was not corroded by using the hydrochloric acid aqueous solution having a concentration of 5 to 10% by weight. It was

Claims (2)

鉄を含む塩化ニッケル水溶液から、水酸化鉄(III)沈澱を生成させ、該水酸化鉄(III)を含有した塩化ニッケル水溶液スラリーを固液分離する脱鉄工程から得られる脱鉄終液を冷却するプレート式熱交換器のスケール除去方法であって、
脱鉄終液および冷却の通液を停止した状態で、塩酸タンクに貯えられた5〜10重量%の濃度の塩酸水溶液を前記熱交換器との間で循環させて通液し、
塩酸タンクにて通液する塩酸水溶液の塩酸濃度を調整することにより、
前記熱交換器が備える、前記脱鉄終液を冷却するための、純チタン製もしくは耐食チタン合金製の伝熱面の脱鉄終液流路側に付着したスケールを除去する、
ことを特徴とする熱交換器のスケール除去方法
An iron (III) hydroxide precipitate is formed from a nickel chloride aqueous solution containing iron, and a deironization final solution obtained from a deironing step of solid-liquid separating a nickel chloride aqueous solution slurry containing the iron(III) hydroxide is cooled. A method for removing scale of a plate heat exchanger, comprising:
With the deferred iron final solution and the cooling solution being stopped, a hydrochloric acid aqueous solution having a concentration of 5 to 10% by weight stored in a hydrochloric acid tank is circulated between the heat exchanger and the solution ,
By adjusting the hydrochloric acid concentration of the hydrochloric acid aqueous solution that is passed through the hydrochloric acid tank ,
The heat exchanger is provided, for cooling the deironization final solution, to remove scale attached to the deironization final solution flow path side of the heat transfer surface made of pure titanium or a corrosion resistant titanium alloy,
Descaling method for a heat exchanger, characterized in that.
前記塩酸水溶液の濃度は5〜6重量%であることを特徴とする請求項1に記載の熱交換器のスケール除去方法 The method according to claim 1, wherein the hydrochloric acid aqueous solution has a concentration of 5 to 6% by weight .
JP2016076011A 2016-04-05 2016-04-05 Heat exchanger descaling method Expired - Fee Related JP6728906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016076011A JP6728906B2 (en) 2016-04-05 2016-04-05 Heat exchanger descaling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016076011A JP6728906B2 (en) 2016-04-05 2016-04-05 Heat exchanger descaling method

Publications (3)

Publication Number Publication Date
JP2017186611A JP2017186611A (en) 2017-10-12
JP2017186611A5 JP2017186611A5 (en) 2019-05-16
JP6728906B2 true JP6728906B2 (en) 2020-07-22

Family

ID=60046311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016076011A Expired - Fee Related JP6728906B2 (en) 2016-04-05 2016-04-05 Heat exchanger descaling method

Country Status (1)

Country Link
JP (1) JP6728906B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5028051A (en) * 1973-07-19 1975-03-22
JPS60262984A (en) * 1984-06-11 1985-12-26 Mitsubishi Heavy Ind Ltd Chemical cleaning liquid for titanium heat exchanger
JP4924754B2 (en) * 2010-06-21 2012-04-25 住友金属鉱山株式会社 Method for removing copper ions from copper-containing nickel chloride solution and method for producing electrolytic nickel
JP6085211B2 (en) * 2012-06-04 2017-02-22 株式会社神戸製鋼所 Titanium alloy material excellent in scale adhesion control and formability, its manufacturing method, and heat exchanger or seawater evaporator
JP6250971B2 (en) * 2013-08-02 2017-12-20 東北電力株式会社 Cleaning apparatus and cleaning method for plate heat exchanger
JP6176491B2 (en) * 2014-03-26 2017-08-09 住友金属鉱山株式会社 Method for removing copper from aqueous nickel chloride solution

Also Published As

Publication number Publication date
JP2017186611A (en) 2017-10-12

Similar Documents

Publication Publication Date Title
US9889421B2 (en) Process for the recovery of metals and hydrochloric acid
JP6799160B2 (en) How to recover iron from zinc sulphate solution
JP6759882B2 (en) Method for producing a solution containing nickel and cobalt
JP6168000B2 (en) Method for producing nickel sulfate solution
JP5439997B2 (en) Method for recovering copper from copper-containing iron
JP2005015272A (en) Method for recovering nickel salt from nickel-containing waste liquid sludge
CN112458280A (en) Method for extracting valuable metals by leaching low grade nickel matte with acidic etching solution
JP6233478B2 (en) Purification method of bismuth
CN100554453C (en) A kind of leaching method of materials after nickelous oxide mine chloridization oxidation treatment
JP2007270291A (en) Method of producing metallic nickel from crude nickel sulfate
US10227675B2 (en) Wet smelting method for nickel oxide ore
WO2018138917A1 (en) Bismuth purification method
JP6728906B2 (en) Heat exchanger descaling method
JP2008208441A (en) Solvent extraction method for chloride aqueous solution
CN104651880B (en) The method that a kind of decopper(ing) point cyanogen simultaneous PROCESS FOR TREATMENT silver smelts the lean solution containing cyanogen
CN110629042A (en) A kind of tartaric acid system leaching antimony oxide material and method for electrowinning metal antimony
JP5842684B2 (en) Hydrometallurgical process
CN113355701A (en) Method for separating and recovering silver and gallium
JP6891757B2 (en) Solvent extraction equipment and solvent extraction method
JP5145843B2 (en) Wet copper refining method for copper raw materials containing copper sulfide minerals
JP6429990B2 (en) Method for separating molybdenum and method for treating copper-containing molybdenum ore
JP6750454B2 (en) Method for removing impurities from bismuth electrolyte
JP2021050378A (en) Method for recovering scandium, and ion exchange treatment method
CN105132706A (en) Method for removing impurities in electrolytic silver powder
CN116656960A (en) Preheating method of zinc waste electrolyte and oxygen pressure leaching method of zinc sulfide concentrate

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200615

R150 Certificate of patent or registration of utility model

Ref document number: 6728906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees