JP6719101B2 - Nickel-hydrogen battery and manufacturing method thereof - Google Patents
Nickel-hydrogen battery and manufacturing method thereof Download PDFInfo
- Publication number
- JP6719101B2 JP6719101B2 JP2019506930A JP2019506930A JP6719101B2 JP 6719101 B2 JP6719101 B2 JP 6719101B2 JP 2019506930 A JP2019506930 A JP 2019506930A JP 2019506930 A JP2019506930 A JP 2019506930A JP 6719101 B2 JP6719101 B2 JP 6719101B2
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- opening
- positive electrode
- nickel
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052739 hydrogen Inorganic materials 0.000 title claims description 69
- 239000001257 hydrogen Substances 0.000 title claims description 69
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 238000003860 storage Methods 0.000 claims description 55
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 53
- 239000000956 alloy Substances 0.000 claims description 44
- 229910045601 alloy Inorganic materials 0.000 claims description 44
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 29
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical group [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 27
- 239000008151 electrolyte solution Substances 0.000 claims description 20
- -1 polypropylene Polymers 0.000 claims description 16
- 239000007773 negative electrode material Substances 0.000 claims description 14
- 239000004743 Polypropylene Substances 0.000 claims description 12
- 229910052759 nickel Inorganic materials 0.000 claims description 12
- 229920001155 polypropylene Polymers 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 7
- 238000004804 winding Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 5
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 239000011295 pitch Substances 0.000 description 29
- 230000002093 peripheral effect Effects 0.000 description 22
- 208000028659 discharge Diseases 0.000 description 20
- 239000007864 aqueous solution Substances 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 17
- 239000000203 mixture Substances 0.000 description 16
- 239000010410 layer Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 229910052987 metal hydride Inorganic materials 0.000 description 8
- 238000007789 sealing Methods 0.000 description 8
- 239000003792 electrolyte Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000002002 slurry Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 230000005484 gravity Effects 0.000 description 6
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 6
- 238000006277 sulfonation reaction Methods 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- 239000006258 conductive agent Substances 0.000 description 5
- 229910021503 Cobalt(II) hydroxide Inorganic materials 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- ASKVAEGIVYSGNY-UHFFFAOYSA-L cobalt(ii) hydroxide Chemical compound [OH-].[OH-].[Co+2] ASKVAEGIVYSGNY-UHFFFAOYSA-L 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000004745 nonwoven fabric Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 229920003048 styrene butadiene rubber Polymers 0.000 description 4
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 239000002174 Styrene-butadiene Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000011246 composite particle Substances 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 150000002816 nickel compounds Chemical class 0.000 description 3
- 229910000652 nickel hydride Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000002562 thickening agent Substances 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 239000011162 core material Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000003411 electrode reaction Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 150000004681 metal hydrides Chemical class 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910004247 CaCu Inorganic materials 0.000 description 1
- 229910020191 CeNi Inorganic materials 0.000 description 1
- 229910001122 Mischmetal Inorganic materials 0.000 description 1
- 229910018007 MmNi Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910018661 Ni(OH) Inorganic materials 0.000 description 1
- 229910018095 Ni-MH Inorganic materials 0.000 description 1
- 229910002640 NiOOH Inorganic materials 0.000 description 1
- 229910018477 Ni—MH Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- OWXLRKWPEIAGAT-UHFFFAOYSA-N [Mg].[Cu] Chemical compound [Mg].[Cu] OWXLRKWPEIAGAT-UHFFFAOYSA-N 0.000 description 1
- OSOVKCSKTAIGGF-UHFFFAOYSA-N [Ni].OOO Chemical compound [Ni].OOO OSOVKCSKTAIGGF-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- 229940044175 cobalt sulfate Drugs 0.000 description 1
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 229910000483 nickel oxide hydroxide Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Cell Separators (AREA)
Description
本発明は、捲回式の電極群を備えるニッケル水素電池に関する。 The present invention relates to a nickel-hydrogen battery including a wound electrode group.
捲回式のニッケル水素電池の電極群は、水酸化ニッケルを主体とする帯状の正極と、水素吸蔵合金を主体とする帯状の負極とを、これらの間にセパレータを介在させて渦巻き状に捲回して構成されている。電極群は、電解液であるアルカリ水溶液とともに電池ケース内に収容される。負極は、複数の貫通孔を有する負極集電体に水素吸蔵合金を含む組成物を充填して形成されている。通常、電極群の最外周は負極により構成されている。最外周を構成する負極は、電池反応への寄与が少ないため、その厚みを他の部分よりも薄くすることが提案されている(特許文献1)。 The electrode group of the wound-type nickel-hydrogen battery has a strip-shaped positive electrode mainly composed of nickel hydroxide and a strip-shaped negative electrode mainly composed of a hydrogen-absorbing alloy, and a separator interposed between them to form a spiral coil. It is composed by turning. The electrode group is housed in a battery case together with an alkaline aqueous solution which is an electrolytic solution. The negative electrode is formed by filling a negative electrode current collector having a plurality of through holes with a composition containing a hydrogen storage alloy. Usually, the outermost periphery of the electrode group is composed of a negative electrode. Since the negative electrode forming the outermost periphery has a small contribution to the battery reaction, it has been proposed to make the thickness thinner than other portions (Patent Document 1).
電極群における電池反応を均一に進行させるには、電極群に十分量のアルカリ水溶液が電解液として含浸されていることが望ましく、アルカリ水溶液の濃度も均一であることが望ましい。一方、ニッケル水素電池内では、以下のように、複数の反応が進行する。 In order to uniformly proceed the battery reaction in the electrode group, it is desirable that the electrode group be impregnated with a sufficient amount of alkaline aqueous solution as an electrolytic solution, and that the concentration of the alkaline aqueous solution is also uniform. On the other hand, in the nickel-hydrogen battery, a plurality of reactions proceed as follows.
正極では、以下の充電反応が進行する。放電反応は逆方向の反応である。
Ni(OH)2 + OH- → NiOOH + H2O + e- (1)At the positive electrode, the following charging reaction proceeds. The discharge reaction is a reverse reaction.
Ni(OH) 2 + OH − → NiOOH + H 2 O + e − (1)
ただし、充電末期もしくは過充電時の正極では、以下の水分解反応が進行し、酸素が発生する。
OH- → 1/4O2 + 1/2H2O + e- (2)However, in the positive electrode at the end of charging or at the time of overcharging, the following water splitting reaction proceeds and oxygen is generated.
OH - → 1 / 4O 2 + 1 / 2H 2 O + e - (2)
負極では、以下の充電反応が進行する。放電反応は逆方向の反応である。
M + H2O + e- → MH + OH- (3)At the negative electrode, the following charging reaction proceeds. The discharge reaction is a reverse reaction.
M + H 2 O + e − → MH + OH − (3)
また、負極では、以下の水分解反応が進行し、水素が発生する。
H2O + e- → 1/2H2 + OH- (4)Further, in the negative electrode, the following water splitting reaction proceeds, and hydrogen is generated.
H 2 O + e − → 1/2H 2 + OH − (4)
発生した水素は、以下のように負極の水素吸蔵合金に吸収され、金属水素化物が生成する。
M + 1/2H2 → MH (5)The generated hydrogen is absorbed by the hydrogen storage alloy of the negative electrode as described below to generate a metal hydride.
M + 1/2H 2 → MH (5)
金属水素化物は、以下のように正極で生成した酸素と反応する。
MH + 1/4O2 → M + 1/2H2O (6)The metal hydride reacts with oxygen generated at the positive electrode as follows.
MH + 1/4O 2 → M + 1/2H 2 O (6)
式(2)、(4)の副反応で生成した酸素および水素は電池内圧の上昇の要因となるため、負極における式(5)、(6)の反応を速やかに進行させ、ガスを水に戻すことが望まれる。 Oxygen and hydrogen generated by the side reactions of the formulas (2) and (4) cause a rise in the internal pressure of the battery, so that the reactions of the formulas (5) and (6) at the negative electrode are rapidly advanced to convert the gas into water. It is desired to bring it back.
電極群の最外周を構成する負極は、電池反応への寄与が少ないため、充電時の水の消費量が少ない一方で、電池内で生成したガス吸収への寄与が大きく、より多くの水を生成する。従って、最外周の負極の近辺では、アルカリ水溶液の濃度が低下しやすい傾向にある。また、最外周の負極は、その厚みが他の部分よりも薄いため、含浸されるアルカリ水溶液量が少なく、濃度低下の影響が大きくなりやすい。 The negative electrode forming the outermost periphery of the electrode group has a small contribution to the battery reaction, and therefore consumes less water during charging, but also has a large contribution to absorbing the gas generated in the battery, and thus more water can be collected. To generate. Therefore, the concentration of the alkaline aqueous solution tends to decrease near the outermost negative electrode. Moreover, since the outermost peripheral negative electrode is thinner than the other portions, the amount of the alkaline aqueous solution impregnated is small, and the influence of the concentration decrease is likely to be large.
また、最外周の負極を薄くする場合、水素吸蔵合金を負極集電体の貫通孔に均一に充填することが難しく、貫通孔が完全に組成物で埋まらないことがある。そこで、最外周の負極を薄くする場合には、負極集電体の貫通孔の開口径を小さくするか、貫通孔の密度を減少させることが望ましいと考えられている。従って、電極群の最外周では、電解質の流動性が低くなりがちである。 Further, when the outermost peripheral negative electrode is thinned, it is difficult to uniformly fill the through holes of the negative electrode current collector with the hydrogen storage alloy, and the through holes may not be completely filled with the composition. Therefore, when making the outermost negative electrode thin, it is considered desirable to reduce the opening diameter of the through holes of the negative electrode current collector or to reduce the density of the through holes. Therefore, the fluidity of the electrolyte tends to be low at the outermost periphery of the electrode group.
上記環境では、電極の場所によってアルカリ水溶液の濃度が不均一になりやすく、正極の充電状態にばらつきが生じ、部分的に深く充電された部分が生じる。深く充電された部分は、正極の自己分解の反応が起きやすいため、電極全体が均一に充電された場合に比べて、自己放電(特に短期的な自己放電)が促進される傾向がある。 In the above environment, the concentration of the alkaline aqueous solution tends to be non-uniform depending on the location of the electrode, the charge state of the positive electrode varies, and a partially deeply charged portion occurs. In the deeply charged portion, the reaction of self-decomposition of the positive electrode is likely to occur, so that self-discharging (particularly short-term self-discharging) tends to be promoted as compared with the case where the entire electrode is uniformly charged.
上記に鑑み、本開示の一側面のニッケル水素電池は、帯状の正極と、帯状の負極と、前記正極と前記負極との間に介在するセパレータとが、前記負極が最外周を構成するように捲回された電極群と、電解液と、前記電極群および前記電解液を収容する電池ケースと、を具備する。前記負極は、複数の貫通孔を有する多孔質な負極集電体と、前記負極集電体の両方の表面に形成された水素吸蔵合金を含む負極活物質層と、を備える。前記正極の最外周の内側に隣接する前記負極の第1部分における前記貫通孔の開口を第1開口、前記正極の最外周の外側に隣接する前記負極の第2部分における前記貫通孔の開口を第2開口とするとき、前記第2部分の単位面積当たりに含まれる前記水素吸蔵合金量が、前記第1部分の単位面積当たりに含まれる前記水素吸蔵合金量より少ない。さらに、前記第1開口の面積S1と、前記第1開口と前記第2開口とが重複する部分の面積S2とが、0.4<S2/S1を満たす。 In view of the above, the nickel-hydrogen battery according to one aspect of the present disclosure has a strip-shaped positive electrode, a strip-shaped negative electrode, and a separator interposed between the positive electrode and the negative electrode such that the negative electrode forms the outermost periphery. It is provided with a wound electrode group, an electrolytic solution, and a battery case accommodating the electrode group and the electrolytic solution. The negative electrode includes a porous negative electrode current collector having a plurality of through holes, and a negative electrode active material layer containing a hydrogen storage alloy formed on both surfaces of the negative electrode current collector. The opening of the through hole in the first portion of the negative electrode adjacent to the inside of the outermost periphery of the positive electrode is the first opening, and the opening of the through hole in the second portion of the negative electrode adjacent to the outside of the outermost periphery of the positive electrode is the opening. When forming the second opening, the amount of the hydrogen storage alloy contained per unit area of the second portion is smaller than the amount of the hydrogen storage alloy contained per unit area of the first portion. Further, the area S1 of the first opening and the area S2 of the portion where the first opening and the second opening overlap each other satisfy 0.4<S2/S1.
本開示の別の側面のニッケル水素電池の製造方法は、(i)帯状の正極を準備する工程と、(ii)帯状の負極を準備する工程と、(iii)前記正極と前記負極とを、前記正極と前記負極との間にセパレータを介在させて、前記負極が最外周を構成するように捲回して、電極群を構成する工程と、(iv)前記電極群を電解液とともに電池ケースに収容する工程と、を具備する。前記工程(ii)で準備される前記負極は、複数の貫通孔を有する多孔質な負極集電体と、前記負極集電体の両方の表面に形成された水素吸蔵合金を含む負極活物質層と、を備える。前記正極の最外周の内側に隣接する前記負極の第1部分における前記貫通孔の開口を第1開口、前記正極の最外周の外側に隣接する前記負極の第2部分における前記貫通孔の開口を第2開口とするとき、前記第2部分の単位面積当たりに含まれる前記水素吸蔵合金量が、前記第1部分の単位面積当たりに含まれる前記水素吸蔵合金量より少ない。さらに、前記第1開口の面積S1と、前記第1開口と前記第2開口とが重複する部分の面積S2とが、0.4<S2/S1を満たすように前記電極群を構成する。 A method of manufacturing a nickel-hydrogen battery according to another aspect of the present disclosure includes (i) a step of preparing a strip-shaped positive electrode, (ii) a step of preparing a strip-shaped negative electrode, and (iii) the positive electrode and the negative electrode. A step of forming an electrode group by interposing a separator between the positive electrode and the negative electrode and winding so that the negative electrode forms the outermost periphery, and (iv) the electrode group together with an electrolytic solution in a battery case. And a step of accommodating. The negative electrode prepared in the step (ii) is a porous negative electrode current collector having a plurality of through holes, and a negative electrode active material layer containing a hydrogen storage alloy formed on both surfaces of the negative electrode current collector. And The opening of the through hole in the first portion of the negative electrode adjacent to the inside of the outermost periphery of the positive electrode is the first opening, and the opening of the through hole in the second portion of the negative electrode adjacent to the outside of the outermost periphery of the positive electrode is the opening. When forming the second opening, the amount of the hydrogen storage alloy contained per unit area of the second portion is smaller than the amount of the hydrogen storage alloy contained per unit area of the first portion. Further, the electrode group is configured such that the area S1 of the first opening and the area S2 of the portion where the first opening and the second opening overlap each other satisfy 0.4<S2/S1.
本開示によれば、電極群の最外周における電解質の流動性が改善するため、電解液の濃度が電極群内で均一化され、ニッケル水素電池の自己放電が抑制される。 According to the present disclosure, the fluidity of the electrolyte at the outermost periphery of the electrode group is improved, so that the concentration of the electrolytic solution is made uniform in the electrode group, and the self-discharge of the nickel hydrogen battery is suppressed.
本発明の実施形態に係るニッケル水素電池は、捲回型の電極群を具備する。捲回型の電極群は、帯状の正極と、帯状の負極と、正極と負極との間に介在するセパレータとを、負極が最外周を構成するように捲回して形成されている。電極群は電解液とともに電池ケースに収容されている。 The nickel-hydrogen battery according to the embodiment of the present invention includes a wound electrode group. The wound electrode group is formed by winding a strip-shaped positive electrode, a strip-shaped negative electrode, and a separator interposed between the positive electrode and the negative electrode so that the negative electrode forms the outermost periphery. The electrode group is housed in the battery case together with the electrolytic solution.
負極は、複数の貫通孔を有する負極集電体と、負極集電体の両方の表面に形成された負極活物質層とを備える。負極活物質層は、水素吸蔵合金を含む。ただし、正極の最外周の外側に隣接する負極の第2部分の単位面積当たりに含まれる水素吸蔵合金量(Wo)は、正極の最外周の内側に隣接する負極の第1部分の単位面積当たりに含まれる水素吸蔵合金量(Wi)より少なくなっている。Woは、負極の第2部分に含まれる水素吸蔵合金の総量を、第2部分を平坦に展開して負極をその厚み方向から見たときの投影面積で除した量であり、Wiは、負極の第1部分に含まれる水素吸蔵合金の総量を、第1部分を平坦に展開して負極をその厚み方向に見たときの投影面積で除した量である。 The negative electrode includes a negative electrode current collector having a plurality of through holes and a negative electrode active material layer formed on both surfaces of the negative electrode current collector. The negative electrode active material layer contains a hydrogen storage alloy. However, the amount of hydrogen storage alloy (Wo) contained per unit area of the second portion of the negative electrode adjacent to the outside of the outermost periphery of the positive electrode is the unit area of the first portion of the negative electrode adjacent to the inside of the outermost periphery of the positive electrode. Is less than the amount of hydrogen storage alloy (Wi) contained in. Wo is the total amount of the hydrogen storage alloy contained in the second portion of the negative electrode divided by the projected area when the second portion is flattened and the negative electrode is viewed from the thickness direction, and Wi is the negative electrode. The total amount of the hydrogen storage alloy contained in the first part is divided by the projected area when the first part is developed flat and the negative electrode is viewed in the thickness direction.
典型的には、負極は、負極の外端から長さL3の領域に設けられた薄肉部と、薄肉部に隣接する長さL2のテーパ部と、それ以外の長さL1の本体部とを備える。本体部の厚みt1と、薄肉部の厚みt3は、t1>t3を満たす。本体部の厚みt1は、例えば、0.1〜0.6mmであることが好ましい。 Typically, the negative electrode includes a thin portion provided in a region having a length L3 from the outer end of the negative electrode, a tapered portion having a length L2 adjacent to the thin portion, and a main body having a length L1 other than the thin portion. Prepare The thickness t1 of the main body and the thickness t3 of the thin portion satisfy t1>t3. The thickness t1 of the main body is preferably 0.1 to 0.6 mm, for example.
薄肉部の厚みt3は、t1>t3を満たせばよい。薄肉部の長さL3は、例えば、負極の最外周の長さの50〜115%であり、70〜110%または80〜105%であることが好ましい。 The thickness t3 of the thin portion may satisfy t1>t3. The length L3 of the thin portion is, for example, 50 to 115%, preferably 70 to 110% or 80 to 105% of the length of the outermost periphery of the negative electrode.
テーパ部の厚みt2は、本体部から薄肉部に向かって傾斜的に小さくなっている。テーパ部の長さL2は、負極の最外周の長さの1/6よりも長いことが好ましく、1/5以上または1/4以上であってもよい。テーパ部の長さL2は、負極の最外周の長さの1/2以下であることが好ましい。 The thickness t2 of the tapered portion is gradually reduced from the main body portion toward the thin portion. The length L2 of the tapered portion is preferably longer than ⅙ of the outermost circumference of the negative electrode, and may be ⅕ or more or ¼ or more. The length L2 of the tapered portion is preferably 1/2 or less of the length of the outermost circumference of the negative electrode.
正極の最外周の内側に隣接する負極の第1部分における貫通孔の開口を第1開口、正極の最外周の外側に隣接する負極の第2部分における貫通孔の開口を第2開口とするとき、第1開口の面積S1と、第1開口と第2開口とが重複する部分の面積S2とが、0.4<S2/S1を満たす。このように第1開口と第2開口とが重複する部分を多くすることで、電極群の最外周における電解質の流動性が改善する。ニッケル水素電池の正極は、芯材も含めて多孔質であり、正極の厚み方向における電解質の流通が可能である。よって、第1開口と第2開口との重複部分では、負極の第1部分と第2部分との間に連通した通路が形成される。これにより最外周近辺で生成した水は速やかに内周側に拡散できるとともに、内周側のイオンは速やかに最外周側に拡散できる。よって、電極群の全体でアルカリ水溶液の濃度のムラが減少し、充電反応のばらつきが抑制され、自己放電が抑制される。 When the opening of the through hole in the first portion of the negative electrode adjacent to the inner side of the outermost periphery of the positive electrode is the first opening and the opening of the through hole in the second portion of the negative electrode adjacent to the outermost periphery of the positive electrode is the second opening. The area S1 of the first opening and the area S2 of the portion where the first opening and the second opening overlap satisfy 0.4<S2/S1. By increasing the overlapping portion of the first opening and the second opening in this way, the fluidity of the electrolyte at the outermost periphery of the electrode group is improved. The positive electrode of the nickel-hydrogen battery, including the core material, is porous, and the electrolyte can flow in the thickness direction of the positive electrode. Therefore, in the overlapping portion of the first opening and the second opening, a passage communicating with the first portion and the second portion of the negative electrode is formed. As a result, the water generated near the outermost circumference can be quickly diffused to the inner circumference side, and the ions on the inner circumference side can be quickly diffused to the outermost circumference side. Therefore, unevenness in the concentration of the alkaline aqueous solution is reduced in the entire electrode group, variation in charging reaction is suppressed, and self-discharge is suppressed.
なお、第1開口とは、負極の第1部分における複数の貫通孔の開口の総称であり、個々の貫通孔の開口の面積をS1と称するものではない。また、第2開口とは、負極の第2部分における複数の貫通孔の開口の総称であり、個々の貫通孔の開口の面積をS2と称するものではない。第1部分と第2部分との境界に分断される開口は、第1部分に入る一部だけが第1開口となり、残部は第2開口となる。同様に、第1部分と、より内周側の本体部との境界に分断される開口は、第1部分に入る一部だけが第1開口となる。同様に、第2部分と、より外周側の薄肉部との境界に分断される開口は、第2部分に入る一部だけが第2開口となる。 The first opening is a general term for the openings of the plurality of through holes in the first portion of the negative electrode, and the area of the openings of the individual through holes is not referred to as S1. The second opening is a general term for the openings of the plurality of through holes in the second portion of the negative electrode, and the area of the openings of the individual through holes is not called S2. Regarding the opening divided into the boundary between the first portion and the second portion, only a part that enters the first portion becomes the first opening, and the remaining portion becomes the second opening. Similarly, the opening divided into the boundary between the first portion and the main body portion on the inner peripheral side is the first opening only in a part that enters the first portion. Similarly, the opening divided into the boundary between the second portion and the thin-walled portion on the outer peripheral side is the second opening only in a part that enters the second portion.
負極集電体の貫通孔は、負極強度を維持するとともに、負極活物質層の脱落を抑制する観点から、かなり小さく設計されている。また、正極の内周側に隣接する第1部分と外周側に隣接する第2部分とでは、曲率および周囲長が相違する。そのため、偶然に100%重複する第1開口と第2開口とが存在した場合でも、これらに隣接する第1開口と第2開口では重複部分は小さくなり、通常、S2/S1比は0.4未満になる。 The through hole of the negative electrode current collector is designed to be considerably small from the viewpoint of maintaining the strength of the negative electrode and suppressing the falling of the negative electrode active material layer. Further, the first portion adjacent to the inner peripheral side and the second portion adjacent to the outer peripheral side of the positive electrode have different curvatures and peripheral lengths. Therefore, even if the first opening and the second opening that 100% overlap accidentally exist, the overlapping portion becomes small between the first opening and the second opening adjacent to them, and the S2/S1 ratio is usually 0.4. Less than
S2/S1比を0.4より大きくするには、第1開口および第2開口の大きさ、貫通孔の縦方向(負極集電体の幅方向)および横方向(負極集電体の長さ方向)におけるピッチ、電極およびセパレータの厚み等を厳密に設計するとともに、電極群を構成する際に第1開口と第2開口との位置合わせを行う必要がある。このような作業によれば、S2/S1比を0.5以上もしくは0.6以上に大きくすることも可能である。 To make the S2/S1 ratio larger than 0.4, the sizes of the first opening and the second opening, the vertical direction of the through hole (width direction of the negative electrode current collector) and the horizontal direction (length of the negative electrode current collector) are set. It is necessary to strictly design the pitch in the direction), the thickness of the electrodes and the separator, and to align the first opening and the second opening when forming the electrode group. According to such work, it is possible to increase the S2/S1 ratio to 0.5 or more or 0.6 or more.
複数の貫通孔を有する負極集電体としては、一般にパンチングメタルと称される貫通孔が面内に所定のパターンで配列された金属箔を用いることが好ましい。貫通孔とは、シート状の集電体の一方の表面から他方の表面に貫通する孔である。貫通孔の集電体の厚み方向に垂直な断面の形状は、例えば、円形、楕円形、角がR形状の多角形などであればよい。これらの形状は歪んでいてもよい。 As the negative electrode current collector having a plurality of through holes, it is preferable to use a metal foil in which through holes, which are generally called punching metal, are arranged in a plane in a predetermined pattern. The through hole is a hole that penetrates from one surface of the sheet-shaped current collector to the other surface. The shape of the cross section of the through hole perpendicular to the thickness direction of the current collector may be, for example, a circle, an ellipse, a polygon having an R-shaped corner, or the like. These shapes may be distorted.
貫通孔の負極集電体面内での配列パターンとしては、負極集電体の任意の貫通孔(ただし負極集電体の端部近辺における貫通孔を除く)の六方に貫通孔が隣接しているパターンが好ましい。中でも、7個の貫通孔の中心が、正六角形の中心と、その6つの頂点に配置されるパターンが好ましい。このような配列は千鳥配置とも称される。 The arrangement pattern of the through holes on the surface of the negative electrode current collector is such that the through holes are adjacent to six arbitrary holes of the negative electrode current collector (except for the through holes near the end of the negative electrode current collector). Patterns are preferred. Above all, a pattern in which the centers of the seven through holes are arranged at the center of the regular hexagon and the six vertices thereof is preferable. Such an arrangement is also called a staggered arrangement.
最外周が薄い負極の作製を容易にし、貫通孔の重複部分を多くするためには、貫通孔の最大径(開口が円形の場合は直径もしくは開口径)は、負極の第1部分および第2部分において、それぞれ0.5〜2.0mmが好ましく、0.8〜1.5mmがより好ましい。 In order to facilitate the production of a negative electrode having a thin outermost periphery and increase the number of overlapping portions of the through holes, the maximum diameter of the through holes (the diameter or the opening diameter when the opening is circular) is set to the first portion and the second portion of the negative electrode. In each part, 0.5 to 2.0 mm is preferable, and 0.8 to 1.5 mm is more preferable.
負極集電体の無地部を除いた空隙率(開口率)は、25〜50%が好ましく、30〜45%がより好ましい。上記最大径の貫通孔を、上記空隙率となるように所定のパターンで配列する場合、隣接する貫通孔同士の間隔(すなわち開口の重心間のピッチ)が適正化され、貫通孔の重複部分を多くするのに有利となる。 The porosity (opening ratio) of the negative electrode current collector excluding the uncoated portion is preferably 25 to 50%, more preferably 30 to 45%. When the through holes having the maximum diameter are arranged in a predetermined pattern so as to have the porosity, the interval between adjacent through holes (that is, the pitch between the centers of gravity of the openings) is optimized, and the overlapping portion of the through holes is reduced. It is advantageous to increase the number.
開口の重心間の縦方向(負極集電体の幅方向)にけるピッチは、例えば1.1〜1.8mmが好ましく、1.2〜1.75mmがより好ましい。また、開口の重心間の横方向(負極集電体の長さ方向)におけるピッチは、例えば0.55〜1.0mmが好ましく、0.66〜0.90mmがより好ましい。 The pitch in the vertical direction (the width direction of the negative electrode current collector) between the centers of gravity of the openings is preferably 1.1 to 1.8 mm, more preferably 1.2 to 1.75 mm. Further, the pitch in the lateral direction (the lengthwise direction of the negative electrode current collector) between the centers of gravity of the openings is preferably 0.55 to 1.0 mm, more preferably 0.66 to 0.90 mm.
なお、ピッチが大きくなり、貫通孔の開口が小さくなるほど、第1開口と第2開口との重複割合は減少する。よって、上記条件を満たす負極集電体を用いずに0.4<S2/S1を満たすことは容易ではない。ここで、図1には、捲回される前の正極、または捲回した正極を展ばしたときの正極において、1周分の長さ分を平面視した状態を示し、正極の最外周の内側に隣接する負極の第1部分の第1開口11bと、正極の最外周の外側に隣接する負極の第2部分の第2開口11aとの関係の一例を示す。例えば、貫通孔の開口径およびピッチがいずれも1.4mmの場合、第1開口11bの配置は、図1(b)のようになる。また、負極の第2部分の周囲長が41mm、第1部分の周囲長が38mmの場合、第2部分の周囲長を38mmに換算(縮小)した際の貫通孔の第2開口11aの配置は、図1(a)のようになる。よって、捲回型の電極群において、第1開口11bと第2開口11aとの重複関係は、図1(c)に示すようになる。このように、第1開口11bと第2開口11aとの重複部分は小さくなりやすいため、0.4<S2/S1を満たすためには、そのための設計が必要である。 The larger the pitch and the smaller the openings of the through holes, the smaller the overlapping ratio of the first openings and the second openings. Therefore, it is not easy to satisfy 0.4<S2/S1 without using the negative electrode collector satisfying the above conditions. Here, FIG. 1 shows a state in which the length of one circumference is viewed in a plan view in the positive electrode before being wound or when the wound positive electrode is unfolded. An example of the relationship between the first opening 11b of the first portion of the negative electrode adjacent to the inner side and the second opening 11a of the second portion of the negative electrode adjacent to the outermost outermost periphery of the positive electrode is shown. For example, when the opening diameter and the pitch of the through holes are both 1.4 mm, the arrangement of the first openings 11b is as shown in FIG. 1(b). When the perimeter of the second portion of the negative electrode is 41 mm and the perimeter of the first portion is 38 mm, the arrangement of the second openings 11a of the through holes when the perimeter of the second portion is converted (reduced) to 38 mm is , As shown in FIG. Therefore, in the wound electrode group, the overlapping relationship between the first opening 11b and the second opening 11a is as shown in FIG. 1(c). As described above, since the overlapping portion of the first opening 11b and the second opening 11a tends to be small, in order to satisfy 0.4<S2/S1, a design for that is necessary.
例えば、負極集電体の空隙率(開口率)および開口径が同じでも、縦方向または横方向のピッチを変更させることによって、S2/S1を増減することが可能である。図2(a)に、横方向のピッチを縦方向のピッチよりも小さくした貫通孔の配列パターンを示す。図2(b)は、横方向のピッチと縦方向のピッチとが同じ場合を示し、図2(c)は、横方向のピッチを縦方向のピッチよりも大きくした場合である。これらのうちでは、図2(a)のパターンを用いた場合に、S2/S1を最も大きくすることができる。横方向のピッチP1を縦方向のピッチP2よりも小さくする場合、横方向のピッチP1に対する縦方向のピッチP2の比:P2/P1は、1より大きければよく、例えば1.05以上としてもよい。 For example, even if the porosity (opening ratio) and the opening diameter of the negative electrode current collector are the same, it is possible to increase/decrease S2/S1 by changing the pitch in the vertical direction or the horizontal direction. FIG. 2A shows an arrangement pattern of through holes in which the horizontal pitch is smaller than the vertical pitch. FIG. 2B shows the case where the horizontal pitch and the vertical pitch are the same, and FIG. 2C shows the case where the horizontal pitch is larger than the vertical pitch. Among these, when the pattern of FIG. 2A is used, S2/S1 can be maximized. When the pitch P1 in the horizontal direction is made smaller than the pitch P2 in the vertical direction, the ratio of the pitch P2 in the vertical direction to the pitch P1 in the horizontal direction: P2/P1 may be larger than 1, and may be 1.05 or more, for example. ..
負極が0.4<S2/S1を満たしやすくする観点から、負極の第1部分および第2部分において、配列のパターンを互いに異ならせてもよく、例えば、貫通孔の最大径、空隙率および開口の重心間のピッチの少なくとも一つを互いに異ならせてもよい。 From the viewpoint of making it easier for the negative electrode to satisfy 0.4<S2/S1, the arrangement patterns may be different in the first portion and the second portion of the negative electrode. For example, the maximum diameter of the through holes, the porosity, and the opening may be different. At least one of the pitches between the centers of gravity may be different from each other.
負極集電体の貫通孔以外の部位(骨格)の厚みは、例えば20〜100μmが好ましく、30〜70μmがより好ましい。 The thickness of the portion (skeleton) other than the through holes of the negative electrode current collector is, for example, preferably 20 to 100 μm, more preferably 30 to 70 μm.
負極集電体の材質としては、例えば、ステンレス鋼、ニッケル、ニッケル合金などが挙げられる。 Examples of the material of the negative electrode current collector include stainless steel, nickel, nickel alloy and the like.
セパレータの少なくとも一部が、ポリプロピレンで形成されている場合、ポリプロピレンの少なくとも一部が、スルホン化されていることが好ましい。スルホン化されたポリプロピレン(SPP)は、アルカリ水溶液との親和性が高いため、SPPを用いることで電極群内における電解質の流動性が更に改善しやすくなる。 When at least a part of the separator is made of polypropylene, it is preferable that at least a part of the polypropylene is sulfonated. Since sulfonated polypropylene (SPP) has a high affinity with an alkaline aqueous solution, the use of SPP makes it easier to further improve the fluidity of the electrolyte in the electrode group.
負極の第2部分の単位面積当たりに含まれる水素吸蔵合金量(Wo)は、負極の第1部分の単位面積当たりに含まれる水素吸蔵合金量(Wi)の40〜80質量%が好ましく、50〜70質量%がより好ましい。負極の第2部分の大半もしくは全体は、通常、薄肉部である。薄肉部の合金量を上記範囲内に制限することで、ガス吸収に使用され、水の生成を促す合金量を適度に維持することができる。また、最外周領域おけるセパレータの体積が相対的に大きくなるため、最外周領域に十分量の電解液を確保すやすくなり、充電反応が均一化されやすくなる。 The hydrogen storage alloy amount (Wo) contained per unit area of the second portion of the negative electrode is preferably 40 to 80 mass% of the hydrogen storage alloy amount (Wi) contained per unit area of the first portion of the negative electrode, and 50 ˜70% by mass is more preferred. Most or all of the second portion of the negative electrode is usually a thin portion. By limiting the amount of alloy in the thin portion within the above range, the amount of alloy used for gas absorption and promoting the generation of water can be appropriately maintained. Further, since the volume of the separator in the outermost peripheral region is relatively large, it is easy to secure a sufficient amount of the electrolytic solution in the outermost peripheral region, and the charging reaction is easily made uniform.
水素吸蔵合金は、一般に、水素親和性の高いA元素および水素親和性の低いB元素を含む。水素親和性の低いB元素は、水素の吸蔵および放出により合金が膨張収縮する際に、顕著な結晶欠陥を生成させないような働きを担う。その一方で、水素親和性の高いA元素に対する水素親和性の低いB元素の比率(B/A比)が大きくなると、水素吸蔵能が低くなるため、放電容量を大きくすることが難しくなる。 Hydrogen storage alloys generally include an A element having a high hydrogen affinity and a B element having a low hydrogen affinity. The element B, which has a low hydrogen affinity, plays a role of preventing significant crystal defects from being generated when the alloy expands and contracts due to the absorption and desorption of hydrogen. On the other hand, when the ratio of the B element having a low hydrogen affinity to the A element having a high hydrogen affinity (B/A ratio) becomes large, the hydrogen storage capacity becomes low and it becomes difficult to increase the discharge capacity.
水素吸蔵合金としては、例えばA2B7型(Ce2Ni7型、Gd2Co7型など)、A5B19型(Pr5Co19型、Ce5Co19型など)、AB5型(CaCu5型もしくはMmNi5型など)、AB3型(CeNi3型)、AB2型(MgCu2型など)などの結晶構造を有するもの、もしくはこれらの混合物を利用できる。なお、Mmはミッシュメタルを示す。中でも、高容量化に適する点でA2B7型、A5B19型合金が好ましい。Examples of hydrogen storage alloys include A 2 B 7 type (Ce 2 Ni 7 type, Gd 2 Co 7 type, etc.), A 5 B 19 type (Pr 5 Co 19 type, Ce 5 Co 19 type, etc.), AB 5 type Those having a crystal structure such as (CaCu 5 type or MmNi 5 type), AB 3 type (CeNi 3 type), AB 2 type (MgCu 2 type, etc.), or a mixture thereof can be used. In addition, Mm shows misch metal. Among them, A 2 B 7 type and A 5 B 19 type alloys are preferable because they are suitable for high capacity.
使用される合金、または合金の混合物において、A元素は、Mg、Zrおよび希土類元素よりなる群から選択される少なくとも1種であり、B元素は、A元素以外の元素であり、例えばNi、Al、Mn、Coなどである。A元素のモル数に対するB元素のモル数の比:B/Aは、3.3〜3.8とすることが、負極を効率よく高容量化できる点で好ましい。合金が高容量化できれば、電極群に占めるセパレータもしくは電解液の体積を増加させやすく、充電反応の均一化に有利になる。 In the alloy or mixture of alloys used, the A element is at least one selected from the group consisting of Mg, Zr and rare earth elements, and the B element is an element other than the A element, such as Ni and Al. , Mn, Co and the like. The ratio of the number of moles of element B to the number of moles of element A: B/A is preferably 3.3 to 3.8 in order to efficiently increase the capacity of the negative electrode. If the capacity of the alloy can be increased, it is easy to increase the volume of the separator or the electrolytic solution in the electrode group, which is advantageous for uniformizing the charging reaction.
以下、必要に応じて、図面を参照しながら、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings as necessary.
[円筒形ニッケル水素電池]
図3に、円筒形ニッケル水素電池(以下、円筒形電池と称する。)の一例の構成を模式的に示す。円筒形電池は、負極端子を兼ねる有底円筒形の電池ケース4と、電池ケース4内に収容された電極群と、図示しない電解液とを含む。電極群では、帯状の負極1と、帯状の正極2と、これらの間に介在す帯状のセパレータ3とが、渦巻き状に捲回されている。電池ケース4の開口部には、絶縁ガスケット8を介して、安全弁6を備える封口板7が配置され、電池ケース4の開口端部が内側にかしめられることにより、円筒形電池が密閉されている。封口板7は、正極端子を兼ねており、正極集電板9を介して、正極2と電気的に接続されている。[Cylindrical Ni-MH battery]
FIG. 3 schematically shows an example of the configuration of a cylindrical nickel-hydrogen battery (hereinafter referred to as a cylindrical battery). The cylindrical battery includes a bottomed cylindrical battery case 4 also serving as a negative electrode terminal, an electrode group housed in the battery case 4, and an electrolyte solution (not shown). In the electrode group, the strip-shaped negative electrode 1, the strip-shaped positive electrode 2, and the strip-shaped separator 3 interposed therebetween are spirally wound. A sealing plate 7 having a safety valve 6 is arranged in the opening of the battery case 4 via an insulating gasket 8, and the opening end of the battery case 4 is caulked inward to seal the cylindrical battery. .. The sealing plate 7 also functions as a positive electrode terminal, and is electrically connected to the positive electrode 2 via the positive electrode current collector plate 9.
図4は、図3の円筒形電池を模式的に示す横断面図である。図5には、負極1および正極2の外端近傍(つまり、図4のIIIで示される円で囲まれた部分)の拡大図を示す。負極1が電極群の最外周を構成している。ニッケル水素電池では、過充電時に水素ガスや酸素ガスが発生するが、薄肉部の外周側に正極と対向していない負極活物質層を設けることで、過充電時に発生するガスを効率よく吸収させるとともに水に変換することができる。なお、負極1の最外周は、電池ケース4と接触させることにより、電気的に接続させることが好ましい。 FIG. 4 is a cross-sectional view schematically showing the cylindrical battery of FIG. FIG. 5 shows an enlarged view of the vicinity of the outer ends of the negative electrode 1 and the positive electrode 2 (that is, the portion surrounded by the circle indicated by III in FIG. 4). The negative electrode 1 constitutes the outermost circumference of the electrode group. In a nickel-hydrogen battery, hydrogen gas and oxygen gas are generated during overcharge, but by providing a negative electrode active material layer that does not face the positive electrode on the outer peripheral side of the thin portion, the gas generated during overcharge can be efficiently absorbed. With it can be converted to water. In addition, it is preferable that the outermost periphery of the negative electrode 1 is electrically connected by contacting with the battery case 4.
負極の捲回数は、円筒形電池のサイズに応じて選択できるが、例えば、円筒形電池の外径が6〜24mmである場合、2〜10とすることができ、3〜6としてもよい。 The number of windings of the negative electrode can be selected according to the size of the cylindrical battery. For example, when the outer diameter of the cylindrical battery is 6 to 24 mm, it can be set to 2 to 10 and may be set to 3 to 6.
図4では、電極群は、正極2の外端が、セパレータ3を介して、テーパ部1bと重なるように配されている。正極の外端の端面の位置は、テーパ部の長さ方向の中心付近になるように正極および負極を配することが好ましい。例えば、正極の外端の端面が、テーパ部の長さ方向の中心を挟んで、±0.2×L2の領域(好ましくは±0.1×L2の領域)に位置するように、正極の外端をテーパ部と重ねることが好ましい。 In FIG. 4, the electrode group is arranged such that the outer end of the positive electrode 2 overlaps the tapered portion 1 b with the separator 3 interposed therebetween. It is preferable to dispose the positive electrode and the negative electrode so that the position of the end face of the outer end of the positive electrode is near the center in the length direction of the tapered portion. For example, the positive electrode of the positive electrode may be positioned such that the end face of the outer end of the positive electrode is located in a region of ±0.2×L2 (preferably a region of ±0.1×L2) with the center of the taper portion in the longitudinal direction sandwiched therebetween. It is preferable to overlap the outer end with the tapered portion.
正極2の外端とテーパ部1bとの間には、多孔質シート3aが配されている。多孔質シート3aは、正極2の外端を保護するように、正極2の外端と重ねて配することが好ましい。このような構成により、電極群を電池ケースに容易に挿入することができるとともに、内部短絡の発生を抑制できる。多孔質シート3aの長さは、例えば、L2の50〜200%であり、80〜100%であってもよい。多孔質シート3aは、図示例のように、負極のテーパ部とセパレータとの間に配してもよく、正極の外端とセパレータとの間に配してもよい。 A porous sheet 3a is arranged between the outer end of the positive electrode 2 and the tapered portion 1b. It is preferable that the porous sheet 3a is disposed so as to overlap the outer end of the positive electrode 2 so as to protect the outer end of the positive electrode 2. With such a configuration, the electrode group can be easily inserted into the battery case, and the occurrence of an internal short circuit can be suppressed. The length of the porous sheet 3a is, for example, 50 to 200% of L2, and may be 80 to 100%. The porous sheet 3a may be arranged between the tapered portion of the negative electrode and the separator as in the illustrated example, or may be arranged between the outer end of the positive electrode and the separator.
以下に、円筒形電池の構成要素についてより具体的に説明する。 The constituent elements of the cylindrical battery will be described more specifically below.
(負極)
負極は、本体部と、テーパ部と、電極群の最外周を構成する薄肉部とを有している。最外周に薄肉部を設けると、電極反応に利用されない負極活物質量を低減でき、それに要する容積も低減できるため有利である。また、過充電時に発生する水素ガスや酸素ガスを吸収させることができる。本体部は、電極群の中心側(または内周側)に位置し、両方の表面が正極と対向して、電極反応を主として担う領域である。ただし、本体部のうち、負極の最内周の正極と対向していない領域では、必要に応じて、負極活物質層の厚みを部分的に小さくしてもよい。(Negative electrode)
The negative electrode has a main body portion, a taper portion, and a thin portion that forms the outermost periphery of the electrode group. Providing a thin portion on the outermost circumference is advantageous because it is possible to reduce the amount of the negative electrode active material that is not used in the electrode reaction and also reduce the volume required for it. Further, hydrogen gas or oxygen gas generated during overcharge can be absorbed. The main body is a region located on the center side (or inner peripheral side) of the electrode group, both surfaces facing the positive electrode, and mainly responsible for the electrode reaction. However, the thickness of the negative electrode active material layer may be partially reduced in the region of the main body portion that does not face the positive electrode at the innermost periphery of the negative electrode, if necessary.
図4に示されるように、正極2の最外周の内側に隣接する負極1の第1部分の大半は、本体部1aからなり、正極2の最外周の外側に隣接する負極1の第2部分の大半は、薄肉部1cからなる。正極2の外端の端面の位置がテーパ部1bの長さ方向の中心付近に位置しているため、テーパ部1bは第1部分と第2部分に分配される。 As shown in FIG. 4, most of the first portion of the negative electrode 1 adjacent to the inner side of the outermost periphery of the positive electrode 2 is composed of the main body portion 1 a, and the second portion of the negative electrode 1 adjacent to the outermost side of the outermost periphery of the positive electrode 2. Most of the thin-walled portion 1c consists of the thin portion 1c. Since the position of the end surface of the outer end of the positive electrode 2 is located near the center in the length direction of the tapered portion 1b, the tapered portion 1b is divided into the first portion and the second portion.
負極活物質層は、少なくとも負極活物質を含んでいればよく、結着剤、導電剤、増粘剤などを含む負極合剤層であってもよい。 The negative electrode active material layer only needs to contain at least the negative electrode active material, and may be a negative electrode mixture layer containing a binder, a conductive agent, a thickener, and the like.
結着剤としては、樹脂材料、例えば、スチレン−ブタジエン共重合ゴム(SBR)などのゴム状材料、ポリオレフィン樹脂、ポリフッ化ビニリデンなどのフッ素樹脂、アクリル樹脂(そのNaイオン架橋体も含む)などが例示できる。増粘剤としては、例えば、カルボキシメチルセルロース(CMC)およびその塩、ポリビニルアルコール、ポリエチレンオキサイドなどが挙げられる。導電剤としては、例えば、カーボンブラック、導電性繊維、有機導電性材料などが挙げられる。 As the binder, a resin material, for example, a rubber-like material such as styrene-butadiene copolymer rubber (SBR), a polyolefin resin, a fluororesin such as polyvinylidene fluoride, an acrylic resin (including its Na ion crosslinked body), etc. It can be illustrated. Examples of the thickener include carboxymethyl cellulose (CMC) and salts thereof, polyvinyl alcohol, polyethylene oxide and the like. Examples of the conductive agent include carbon black, conductive fibers, and organic conductive materials.
負極は、例えば、負極活物質層の構成成分を含むスラリーを負極集電体に塗布し、厚み方向に圧縮し、必要により適当な段階で乾燥することにより形成される。 The negative electrode is formed, for example, by applying a slurry containing the components of the negative electrode active material layer to a negative electrode current collector, compressing it in the thickness direction, and, if necessary, drying it at an appropriate stage.
(正極)
正極としては、焼結式正極、ペースト式正極のどちらを用いてもよい。焼結式正極は、ニッケル焼結基板(正極集電体)にニッケル化合物を含浸させることで製造される。ペースト式正極は、ニッケル化合物を含む正極合剤ペーストを発泡ニッケル基板(正極集電体)に充填することで製造される。正極合剤は、正極活物質に加え、導電剤、結着剤、増粘剤などを含んでもよい。正極は、公知の方法により得ることができる。(Positive electrode)
As the positive electrode, either a sintered positive electrode or a paste positive electrode may be used. The sintered positive electrode is manufactured by impregnating a nickel sintered substrate (positive electrode current collector) with a nickel compound. The paste-type positive electrode is manufactured by filling a positive electrode mixture paste containing a nickel compound into a foamed nickel substrate (positive electrode current collector). The positive electrode mixture may contain a conductive agent, a binder, a thickener and the like in addition to the positive electrode active material. The positive electrode can be obtained by a known method.
ニッケル化合物としては、水酸化ニッケル、オキシ水酸化ニッケルなどが使用される。導電剤として、水酸化コバルト、オキシ水酸化コバルトなどの導電性コバルト酸化物を用いてもよい。 As the nickel compound, nickel hydroxide, nickel oxyhydroxide or the like is used. A conductive cobalt oxide such as cobalt hydroxide or cobalt oxyhydroxide may be used as the conductive agent.
(セパレータ)
セパレータとしては、微多孔膜、不織布などが使用できる。微多孔膜または不織布の材質は、適宜選択すればよいが、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂、ポリアミド樹脂などが例示できる。セパレータには、コロナ放電処理、プラズマ処理、スルホン化処理などの親水化処理を施してもよい。スルホン化処理により、セパレータにスルホン酸基が導入される。中でも、セパレータの少なくとも一部をポリプロピレンで形成する場合、ポリプロピレンの少なくとも一部をスルホン化することが好ましい。スルホン化されたポリプロピレン(SPP)を用いることで電極群内における電解液の流動性が更に改善しやすくなる。セパレータの厚みは、例えば、10〜300μmであり、15〜200μmでもよい。なお、多孔質シートは、特に限定されないが、セパレータと同様の材質で形成することが好ましい。(Separator)
As the separator, a microporous film, a non-woven fabric or the like can be used. The material of the microporous membrane or the non-woven fabric may be appropriately selected, and examples thereof include polyolefin resins such as polyethylene and polypropylene, fluororesins, and polyamide resins. The separator may be subjected to hydrophilic treatment such as corona discharge treatment, plasma treatment and sulfonation treatment. A sulfonic acid group is introduced into the separator by the sulfonation treatment. Especially, when forming at least one part of a separator with polypropylene, it is preferable to sulfonate at least one part of polypropylene. By using sulfonated polypropylene (SPP), the fluidity of the electrolytic solution in the electrode group can be further improved. The thickness of the separator is, for example, 10 to 300 μm, and may be 15 to 200 μm. The porous sheet is not particularly limited, but is preferably formed of the same material as the separator.
セパレータのスルホン化度は、例えば、1×10-3以上であればよく、好ましくは1.5×10-3以上、さらに好ましくは1.9×10-3以上である。また、セパレータのスルホン化度は、例えば、4.3×10-3以下であり、好ましくは4.1×10-3以下、さらに好ましくは4×10-3以下である。なお、セパレータのスルホン化度は、セパレータ中に含まれる炭素原子に対する硫黄原子の比率で表される。The sulfonation degree of the separator may be, for example, 1×10 −3 or more, preferably 1.5×10 −3 or more, more preferably 1.9×10 −3 or more. The degree of sulfonation of the separator is, for example, 4.3×10 −3 or less, preferably 4.1×10 −3 or less, and more preferably 4×10 −3 or less. The degree of sulfonation of the separator is represented by the ratio of sulfur atom to carbon atom contained in the separator.
(電解液)
電解液としては、アルカリ水溶液が使用される。電解液の比重は、例えば1.03〜1.55である。アルカリとしては、水酸化リチウム、水酸化カリウム、水酸化ナトリウムなどのアルカリ金属水酸化物が例示できる。充電効率を高める観点から、アルカリ金属水酸化物の75モル%以上が水酸化ナトリウムであることが好ましい。これにより、自己放電が更に抑制されやすくなる。(Electrolyte)
An alkaline aqueous solution is used as the electrolytic solution. The specific gravity of the electrolytic solution is, for example, 1.03 to 1.55. Examples of the alkali include alkali metal hydroxides such as lithium hydroxide, potassium hydroxide and sodium hydroxide. From the viewpoint of improving charging efficiency, it is preferable that 75 mol% or more of the alkali metal hydroxide is sodium hydroxide. As a result, self-discharge becomes easier to be suppressed.
電解液の水酸化物イオン濃度は、5.0〜8.5mol/Lが好ましい。水酸化ナトリウムを含む電解液は、上記濃度域では導電率が高く、かつ上記濃度域内においては、水酸化物濃度が高くなるにつれて緩やかに導電率が減少する。ただし、そのような導電率の減少は非常に緩やかであり、十分に高い値を維持できる。一方、最外周領域で水が生成して水酸化物濃度が低くなると、最外周領域の導電率が緩やかに上昇するため、水酸化物濃度の低下による影響が緩和されやすい。 The hydroxide ion concentration of the electrolytic solution is preferably 5.0 to 8.5 mol/L. The electrolyte containing sodium hydroxide has a high conductivity in the above concentration range, and within the above concentration range, the conductivity gradually decreases as the hydroxide concentration increases. However, such a decrease in conductivity is very gradual, and a sufficiently high value can be maintained. On the other hand, when water is generated in the outermost peripheral region and the hydroxide concentration is lowered, the conductivity in the outermost peripheral region is gradually increased, so that the influence due to the decrease in the hydroxide concentration is easily mitigated.
以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.
実施例1
下記の手順で、容量2400mAhの単3形の円筒形ニッケル水素蓄電池を作製した。Example 1
According to the following procedure, an AA cylindrical nickel-metal hydride storage battery having a capacity of 2400 mAh was produced.
(1)負極の作製
負極集電体として、表面にニッケルメッキを施した鉄製パンチングメタルを準備した。貫通孔の集電体の厚み方向に垂直な断面の形状は、円形とした。貫通孔の配列パターンは、7個の貫通孔の中心が、正六角形の中心と、その6つの頂点に配置される千鳥配置とした。貫通孔の最大径(開口の直径)は、1mmとした。負極集電体の空隙率(開口率)は、35%とした。開口の重心(中心)間のピッチは、縦方向で1.42mm、横方向で0.79mmとした。負極集電体の骨格の厚みは、35μmとした。(1) Preparation of Negative Electrode An iron punching metal having a surface plated with nickel was prepared as a negative electrode current collector. The shape of the cross section of the through hole perpendicular to the thickness direction of the current collector was circular. The arrangement pattern of the through holes was a zigzag arrangement in which the centers of the seven through holes were arranged at the center of the regular hexagon and the six vertices thereof. The maximum diameter of the through hole (diameter of the opening) was 1 mm. The porosity (opening ratio) of the negative electrode current collector was 35%. The pitch between the centers of gravity (centers) of the openings was 1.42 mm in the vertical direction and 0.79 mm in the horizontal direction. The thickness of the skeleton of the negative electrode current collector was 35 μm.
水素吸蔵合金粉末(La0.40Ce0.60Ni3.63Co0.76Mn0.42Al0.29、平均粒径=約45μm)100質量部に対して、結着剤としてのSBR0.7質量部、増粘剤としてのCMC0.15質量部、導電剤としてのケッチェンブラック0.3質量部、酸化抑制剤としての酸化イットリウム0.7質量部を加え、さらに適量の水を添加して混合することにより、負極合剤スラリーを調製した。なお、SBRは、水分散液の形態で使用した。To 100 parts by mass of hydrogen storage alloy powder (La 0.40 Ce 0.60 Ni 3.63 Co 0.76 Mn 0.42 Al 0.29 , average particle size=about 45 μm), 0.7 parts by mass of SBR as a binder and CMC0. 15 parts by mass, 0.3 part by mass of Ketjen Black as a conductive agent, and 0.7 part by mass of yttrium oxide as an oxidation inhibitor were added, and an appropriate amount of water was added and mixed to prepare a negative electrode mixture slurry. Prepared. The SBR was used in the form of an aqueous dispersion.
得られた負極合剤スラリーを、負極集電体の両面に塗布した。このとき、両面の負極活物質層の厚みが、本体部とテーパ部と薄肉部とで異なるように、負極合剤スラリーの塗布量を負極集電体の長さ方向において変化させた。負極合剤スラリーの塗膜は、95℃で10分間乾燥させた後、塗膜を負極集電体とともにローラでプレスすることにより、負極を形成した。 The obtained negative electrode mixture slurry was applied to both surfaces of the negative electrode current collector. At this time, the coating amount of the negative electrode mixture slurry was changed in the lengthwise direction of the negative electrode current collector so that the thicknesses of the negative electrode active material layers on both surfaces of the main body portion, the tapered portion, and the thin portion were different. The coating film of the negative electrode mixture slurry was dried at 95° C. for 10 minutes, and then the coating film was pressed by a roller together with the negative electrode current collector to form a negative electrode.
負極の第2部分の単位面積当たりに含まれる水素吸蔵合金量Woの、第1部分の単位面積当たりに含まれる水素吸蔵合金量Wiに対する割合(Wo/Wi)は、60質量%となるようにした。 The ratio (Wo/Wi) of the hydrogen storage alloy amount Wo contained per unit area of the second portion of the negative electrode to the hydrogen storage alloy amount Wi contained per unit area of the first portion is set to 60% by mass. did.
(2)正極の作製
下記の手順で、ペースト式正極を作製した。(2) Production of Positive Electrode A paste type positive electrode was produced by the following procedure.
まず、共沈成分として亜鉛2.5質量%およびコバルト1.0質量%を含有する水酸化ニッケル粉末を、硫酸コバルト水溶液に添加した。得られた混合物を撹拌しながら、水酸化ナトリウム水溶液(水酸化ナトリウム濃度:1mol/L)を徐々に滴下してpHを11に調整した後、さらに所定時間撹拌を続けた。得られた混合物から、沈殿物をろ別した。ろ別した沈殿物を、水洗し、真空乾燥することにより、水酸化ニッケル粒子の表面が5質量%の水酸化コバルトで被覆された粉末を得た。 First, nickel hydroxide powder containing 2.5% by mass of zinc and 1.0% by mass of cobalt as coprecipitated components was added to the aqueous cobalt sulfate solution. While stirring the obtained mixture, an aqueous sodium hydroxide solution (sodium hydroxide concentration: 1 mol/L) was gradually added dropwise to adjust the pH to 11, and then the stirring was continued for a predetermined time. The precipitate was filtered off from the obtained mixture. The precipitate separated by filtration was washed with water and vacuum dried to obtain a powder in which the surface of the nickel hydroxide particles was coated with 5% by mass of cobalt hydroxide.
上記で得られた粉末1質量部に対して、水酸化ナトリウム水溶液(水酸化ナトリウム濃度:48質量%)10質量部を添加した。得られた混合物を、撹拌下、85℃で8時間加熱処理し、その後、水洗して、65℃で乾燥した。この加熱処理により、水酸化ニッケル粒子表面の水酸化コバルトを含む層において、水酸化コバルトの一部が高次化されてオキシ水酸化コバルトに変換されるとともに、ナトリウムが導入される。水酸化ニッケル粒子の表面に、オキシ水酸化コバルトおよび1質量%のナトリウムを含有する被覆層が形成された複合体粒子を得た。 To 1 part by mass of the powder obtained above, 10 parts by mass of an aqueous sodium hydroxide solution (sodium hydroxide concentration: 48% by mass) was added. The obtained mixture was heated at 85° C. for 8 hours under stirring, then washed with water and dried at 65° C. By this heat treatment, in the layer containing cobalt hydroxide on the surface of the nickel hydroxide particles, a part of the cobalt hydroxide is converted to a higher order and converted into cobalt oxyhydroxide, and sodium is introduced. Composite particles were obtained in which a coating layer containing cobalt oxyhydroxide and 1% by mass of sodium was formed on the surface of the nickel hydroxide particles.
得られた複合体粒子と、酸化亜鉛との混合粉末100質量部に、結着剤としてのCMCを含む水溶液(CMC濃度:1質量%)25質量部を添加して混合することにより、正極合剤スラリーを調製した。なお、混合粉末中の複合体粒子と酸化亜鉛との質量比は、100:2であった。 To 100 parts by mass of the mixed powder of the obtained composite particles and zinc oxide, 25 parts by mass of an aqueous solution containing CMC as a binder (CMC concentration: 1% by mass) was added and mixed to obtain a positive electrode mixture. An agent slurry was prepared. The mass ratio of the composite particles and zinc oxide in the mixed powder was 100:2.
得られた正極合剤スラリーを、正極集電体としてのニッケル発泡体(面密度(目付)約325g/m2、厚み約1.2mm)の空孔内に充填し、乾燥させた。乾燥物を、厚みが0.66mmとなるように圧延することにより正極(長さ118mm、幅44.7mm、厚み0.66μm)を得た。なお、正極集電体の長さ方向の一端部には、活物質を保持しない芯材の露出部を設け、この露出部に、正極リードを接続した。The obtained positive electrode mixture slurry was filled into the pores of a nickel foam (area density (area weight) about 325 g/m 2 , thickness about 1.2 mm) as a positive electrode current collector, and dried. The dried product was rolled to a thickness of 0.66 mm to obtain a positive electrode (length 118 mm, width 44.7 mm, thickness 0.66 μm). An exposed portion of the core material that does not hold the active material was provided at one end of the positive electrode current collector in the lengthwise direction, and the positive electrode lead was connected to this exposed portion.
(3)ニッケル水素蓄電池の作製
上記(1)で得られた負極と、上記(2)で得られた正極との間に、セパレータ(長さ325mm、幅46.7mm、厚み82μm)を配し、これらを、渦巻状に捲回することにより、電極群を作製した。このとき、負極の本体部が内周側、薄肉部が外周側となり、正極の外端が負極のテーパ部と重なるように捲回した。また、正極の外端とテーパ部との間で、かつテーパ部とセパレータとの間に、セパレータと同じ材料から切り出した多孔質シート(長さ10mm、幅46.7mm、厚み82μm)を配した。多孔質シートは、長さ方向の中心近傍に正極の外周側の端面が来るように配置した。電極群における負極の捲回数は、6であった。(3) Production of nickel-hydrogen storage battery A separator (length 325 mm, width 46.7 mm, thickness 82 μm) was placed between the negative electrode obtained in (1) above and the positive electrode obtained in (2) above. Then, an electrode group was prepared by winding these into a spiral shape. At this time, the negative electrode was wound such that the main body was on the inner peripheral side, the thin portion was on the outer peripheral side, and the outer end of the positive electrode overlapped with the tapered portion of the negative electrode. Further, a porous sheet (length 10 mm, width 46.7 mm, thickness 82 μm) cut out from the same material as the separator was arranged between the outer end of the positive electrode and the tapered portion and between the tapered portion and the separator. .. The porous sheet was arranged so that the end face on the outer peripheral side of the positive electrode was located near the center in the length direction. The number of windings of the negative electrode in the electrode group was 6.
セパレータおよび多孔質シートとしては、スルホン化処理したポリプロピレン製の不織布(以下、SPP、スルホン化度1.90×10-3、厚み82μm、単位面積当たりの質量50g/m2)を用いた。As the separator and the porous sheet, a non-woven fabric made of sulfonated polypropylene (hereinafter, SPP, degree of sulfonation of 1.90×10 −3 , thickness of 82 μm, mass per unit area of 50 g/m 2 ) was used.
負極の第1部分における貫通孔の開口を第1開口、負極の第2部分における貫通孔の開口を第2開口とするとき、第1開口の面積S1と、第1開口と第2開口とが重複する部分の面積S2は、S2/S1=0.50を満たすように設計した。 When the opening of the through hole in the first portion of the negative electrode is the first opening and the opening of the through hole in the second portion of the negative electrode is the second opening, the area S1 of the first opening and the first opening and the second opening are The area S2 of the overlapping portion was designed so as to satisfy S2/S1=0.50.
得られた電極群を、開口部側にリング状の溝部を有する単3形の有底円筒形の金属製電池ケース(外径14.60mm)に挿入し、最外周の負極(薄肉部)を電池ケースの内面に接触させた。また、正極に接続した正極リードを、封口体の蓋板の内底面に溶接した。なお、封口体は、中央に円形のガス抜き孔を有する蓋板と、蓋板の周縁に装着された絶縁パッキンと、蓋板の頂面の中央部に、ガス抜き孔を塞ぐように配された弁体と、弁体を覆う突出部を有するキャップ状の正極端子とを備えている。 The obtained electrode group was inserted into an AA-shaped bottomed cylindrical metal battery case (outer diameter 14.60 mm) having a ring-shaped groove on the opening side, and the outermost negative electrode (thin portion) was inserted. The inner surface of the battery case was contacted. Further, the positive electrode lead connected to the positive electrode was welded to the inner bottom surface of the lid cover plate. The sealing body is provided with a lid plate having a circular gas vent hole in the center, an insulating packing attached to the peripheral edge of the lid plate, and a central portion of the top surface of the lid plate so as to close the gas vent hole. And a cap-shaped positive electrode terminal having a protruding portion that covers the valve body.
次いで、電池ケース内に、電解液としてアルカリ水溶液を注入し、電池ケースの開口部を、封口体で覆い、絶縁パッキンを介してかしめることにより、封口した。電池ケースの周面を外側から押圧することにより縮径した。そして、電池ケースを、高さ方向に押圧することにより、電池総高が50.25mmとなるように電池ケースの開口部側に形成された溝部を圧着した。 Next, an alkaline aqueous solution was injected into the battery case as an electrolytic solution, the opening of the battery case was covered with a sealing body, and caulking was performed with an insulating packing to seal the battery case. The diameter was reduced by pressing the peripheral surface of the battery case from the outside. Then, by pressing the battery case in the height direction, the groove formed on the opening side of the battery case was pressure-bonded so that the total battery height was 50.25 mm.
アルカリ水溶液としては、5.0mol/Lの水酸化ナトリウム水溶液を用いた。 As the alkaline aqueous solution, a 5.0 mol/L sodium hydroxide aqueous solution was used.
封口体の上部に、ドーナツ状の絶縁部材を、正極端子の突出部を絶縁部材の中央の孔から突出させた状態で配置した。次いで、封口体の周縁部(封口体上に配された絶縁部材の周縁部)と、電池ケースの周面と、電池ケースの底面の周縁部とを覆うように、外装ラベルを装着することにより、ニッケル水素蓄電池(A1)を得た。同様の手順で、合計50個の電池A1を作製した。 A donut-shaped insulating member was placed on the top of the sealing body in a state where the protruding portion of the positive electrode terminal was projected from the central hole of the insulating member. Then, by attaching an outer label so as to cover the peripheral portion of the sealing body (the peripheral portion of the insulating member arranged on the sealing body), the peripheral surface of the battery case, and the peripheral portion of the bottom surface of the battery case. A nickel hydrogen storage battery (A1) was obtained. A total of 50 batteries A1 were produced by the same procedure.
(4)評価(自己放電指数)
20℃にて、240mAで16時間充電、2400mAで30分放電、240mAで11時間充電、2400mAで30分放電を行い、その後45℃で72時間保存し、負極の活性化処理を行った。20℃まで冷却後、2400mAで1.0Vまで放電を行った。次に、240mAで16時間充電後、2400mAで1.0Vまで放電するサイクルを3回繰り返し、3サイクル目の放電容量を保存前の容量とした。次に、240mAで16時間充電後、45℃で7日間放置し、その後、2400mAで1.0Vまで放電し、保存後の容量を求めた。(4) Evaluation (self-discharge index)
At 20° C., it was charged at 240 mA for 16 hours, discharged at 2400 mA for 30 minutes, charged at 240 mA for 11 hours, discharged at 2400 mA for 30 minutes, and then stored at 45° C. for 72 hours to activate the negative electrode. After cooling to 20° C., discharge was performed at 2400 mA to 1.0 V. Next, after charging for 16 hours at 240 mA, a cycle of discharging at 2400 mA to 1.0 V was repeated three times, and the discharge capacity at the third cycle was taken as the capacity before storage. Next, the battery was charged at 240 mA for 16 hours, left at 45° C. for 7 days, and then discharged at 2400 mA to 1.0 V to determine the capacity after storage.
50個の電池について保存前の容量と保存後の容量との差を自己放電量として求め、50個の平均値を求め、それを指数化した。具体的には、(保存前の容量−保存後の容量)/(保存前の容量)×100より求めた自己放電率の平均値を、実施例A2の電池の自己放電率が基準値100となるように規格化して、自己放電指数とした。結果を表1に示す。 The difference between the capacity before storage and the capacity after storage was determined as the self-discharge amount for 50 cells, and the average value of 50 cells was determined and indexed. Specifically, the average value of the self-discharge rate obtained from (capacity before storage−capacity after storage)/(capacity before storage)×100 was used as the reference value 100 for the self-discharge rate of the battery of Example A2. It was standardized so as to be a self-discharge index. The results are shown in Table 1.
実施例2
開口径および開口率は実施例1と同じとし、電池の高さ方向(縦方向)における開口の中心間のピッチと、横方向における開口の中心間のピッチを変更して、第1開口の面積S1と、第1開口と第2開口とが重複する部分の面積S2とがS2/S1=0.40を満たすようにしたこと以外は、実施例1と同様にして、ニッケル水素蓄電池(A2)を50個作製し、評価を行った。Example 2
The opening diameter and the opening ratio are the same as in Example 1, and the pitch between the centers of the openings in the height direction (longitudinal direction) of the battery and the pitch between the centers of the openings in the horizontal direction are changed to determine the area of the first opening. Nickel-metal hydride storage battery (A2) in the same manner as in Example 1 except that S1 and the area S2 of the portion where the first opening and the second opening overlap satisfy S2/S1=0.40. 50 were prepared and evaluated.
実施例3
開口径および開口率は実施例1と同じとし、電池の高さ方向における開口の中心間のピッチと、横方向における開口の中心間のピッチを変更して、第1開口の面積S1と、第1開口と第2開口とが重複する部分の面積S2とがS2/S1=0.60を満たすようにしたこと以外は、実施例1と同様にして、ニッケル水素蓄電池(A3)を50個作製し、評価を行った。Example 3
The opening diameter and the opening ratio are the same as in Example 1, and the pitch between the centers of the openings in the height direction of the battery and the pitch between the centers of the openings in the lateral direction are changed to change the area S1 of the first opening to Fifty nickel-metal hydride storage batteries (A3) were produced in the same manner as in Example 1 except that the area S2 of the portion where the first opening and the second opening overlap each other was set to satisfy S2/S1=0.60. And evaluated.
実施例4
開口径および開口率は実施例1と同じとし、第1開口における電池の高さ方向における開口の中心間のピッチと横方向における開口の中心間のピッチ、並びに、第2開口における電池の高さ方向における開口の中心間のピッチと横方向における開口の中心間のピッチを異なる値に変更した。これにより、第1開口の面積S1と、第1開口と第2開口とが重複する部分の面積S2とがS2/S1=0.80を満たすようにしたこと以外は、実施例1と同様にして、ニッケル水素蓄電池(A4)を50個作製し、評価を行った。Example 4
The opening diameter and the opening ratio are the same as in Example 1, the pitch between the centers of the openings in the height direction of the battery in the first opening and the pitch between the centers of the openings in the lateral direction, and the height of the battery in the second opening. The pitch between the centers of the openings in the direction and the pitch between the centers of the openings in the lateral direction were changed to different values. Thus, the same as Example 1 except that the area S1 of the first opening and the area S2 of the portion where the first opening and the second opening overlap satisfy S2/S1=0.80. Then, 50 nickel-hydrogen storage batteries (A4) were produced and evaluated.
比較例1
開口径および開口率は実施例1と同じとし、電池の高さ方向における開口の中心間のピッチと、横方向における開口の中心間のピッチを変更して、第1開口の面積S1と、第1開口と第2開口とが重複する部分の面積S2とがS2/S1=0.35を満たすようにしたこと以外は、実施例1と同様にして、ニッケル水素蓄電池(B1)を50個作製し、評価を行った。Comparative Example 1
The opening diameter and the opening ratio are the same as in Example 1, and the pitch between the centers of the openings in the height direction of the battery and the pitch between the centers of the openings in the lateral direction are changed to change the area S1 of the first opening to Fifty nickel-metal hydride storage batteries (B1) were produced in the same manner as in Example 1 except that the area S2 of the portion where the first opening and the second opening overlap satisfied S2/S1=0.35. And evaluated.
比較例2
セパレータの材質をコロナ放電により親水化処理を施したポリプロピレン製の不織布(以下、PP、厚み82μm、単位面積当たりの質量50g/m2)に変更したこと以外は、比較例1と同様にして、ニッケル水素蓄電池(B2)を50個作製し、評価を行った。Comparative example 2
In the same manner as in Comparative Example 1 except that the material of the separator was changed to a polypropylene non-woven fabric hydrophilized by corona discharge (hereinafter, PP, thickness 82 μm, mass per unit area 50 g/m 2 ), Fifty nickel hydride storage batteries (B2) were produced and evaluated.
実施例5
負極の第2部分の単位面積当たりに含まれる水素吸蔵合金量Woの、第1部分の単位面積当たりに含まれる水素吸蔵合金量Wiに対する割合(Wo/Wi)が、80質量%となるようにしたこと以外は、実施例1と同様にして、ニッケル水素蓄電池(A5)を50個作製し、評価を行った。Example 5
The ratio (Wo/Wi) of the hydrogen storage alloy amount Wo contained per unit area of the second portion of the negative electrode to the hydrogen storage alloy amount Wi contained per unit area of the first portion is set to 80% by mass. 50 nickel-metal hydride storage batteries (A5) were produced and evaluated in the same manner as in Example 1 except for the above.
実施例6
負極の第2部分の単位面積当たりに含まれる水素吸蔵合金量Woの、第1部分の単位面積当たりに含まれる水素吸蔵合金量Wiに対する割合(Wo/Wi)が、40質量%となるようにしたこと以外は、実施例1と同様にして、ニッケル水素蓄電池(A6)を50個作製し、評価を行った。Example 6
The ratio (Wo/Wi) of the hydrogen storage alloy amount Wo contained per unit area of the second portion of the negative electrode to the hydrogen storage alloy amount Wi contained per unit area of the first portion is set to 40% by mass. 50 nickel-metal hydride storage batteries (A6) were prepared and evaluated in the same manner as in Example 1 except for the above.
実施例7
水素吸蔵合金を、A2B7型を主相とする合金Zr0.01La0.44Nd0.45Mg0.10Ni3.15Al0.15Co0.20に変更し、セパレータの厚みを92μmに変更したこと以外は、実施例1と同様にして、ニッケル水素蓄電池(A7)を50個作製し、評価を行った。Example 7
Example 1 except that the hydrogen storage alloy was changed to an alloy Zr 0.01 La 0.44 Nd 0.45 Mg 0.10 Ni 3.15 Al 0.15 Co 0.20 having an A 2 B 7 type main phase and the separator thickness was changed to 92 μm. Similarly, 50 nickel-hydrogen storage batteries (A7) were produced and evaluated.
実施例8
アルカリ水溶液の水酸化物イオン濃度を7.0mol/Lの濃度で含む水溶液を用いたこと以外は、実施例1と同様にして、ニッケル水素蓄電池(A8)を50個作製し、評価を行った。Example 8
Fifty nickel hydride storage batteries (A8) were prepared and evaluated in the same manner as in Example 1 except that an aqueous solution containing a hydroxide ion concentration of the alkaline aqueous solution of 7.0 mol/L was used. ..
実施例9
アルカリ水溶液の水酸化物イオン濃度を8.5mol/Lの濃度で含む水溶液を用いたこと以外は、実施例1と同様にして、ニッケル水素蓄電池(A9)を50個作製し、評価を行った。Example 9
Fifty nickel hydride storage batteries (A9) were prepared and evaluated in the same manner as in Example 1 except that an aqueous solution containing a hydroxide ion concentration of the alkaline aqueous solution of 8.5 mol/L was used. ..
実施例および比較例の結果を表1に示す。表1に示されるように、比較例1の電池では、自己放電指数が高い値であるのに対し、S2/S1比が大きくなるほど、自己放電指数が低くなることが理解できる。また、他の構成を更に改良することで、自己放電指数を93まで低減することができている。なお、自己放電指数が低いほど、自己放電が進行しにくいことを示す。 The results of Examples and Comparative Examples are shown in Table 1. As shown in Table 1, it can be understood that the battery of Comparative Example 1 has a high self-discharge index, whereas the larger the S2/S1 ratio, the lower the self-discharge index. In addition, the self-discharge index can be reduced to 93 by further improving other configurations. Note that the lower the self-discharge index, the more difficult the self-discharge progresses.
次に、評価後の電池をそれぞれ開封し、正極の最外周の内側に隣接する負極の第1部分と、正極の最外周の外側に隣接する負極の第2部分とに、それずれマーキングを施した。その後、電極群を分解し、第1部分における第1開口の配置と、第2部分における第2開口の配置と、第1開口の面積S1とを測定した。次に、第2部分の周囲長を第1部分の周囲長に換算して横方向に縮小させたときの第開口の配置を算出し、そのときの第1開口と第2開口とが重複する部分の面積S2を求め、S2/S1を確認した。その結果、いずれの実施例においても50個中、45個以上の電池のS2/S1値は、設計されたS2/S1値と±3%の誤差しかなく、事実上、設計値と同じと見なすことができた。以上より、50個以上の電池において90%以上の電池のS2/S1値が0.4<S2/S1を満たす場合、それらの電池は、本発明に係る製造方法によって製造されたものと見なすことができる。 Next, each of the evaluated batteries was unsealed, and deviated marking was made on the first portion of the negative electrode adjacent to the inside of the outermost periphery of the positive electrode and the second portion of the negative electrode adjacent to the outside of the outermost periphery of the positive electrode. did. After that, the electrode group was disassembled, and the arrangement of the first openings in the first portion, the arrangement of the second openings in the second portion, and the area S1 of the first opening were measured. Next, the perimeter of the second portion is converted into the perimeter of the first portion, and the arrangement of the first openings when the lateral length is reduced is calculated, and the first opening and the second opening at that time overlap. The area S2 of the portion was obtained and S2/S1 was confirmed. As a result, in any of the examples, the S2/S1 value of 45 or more batteries out of 50 batteries has an error of ±3% from the designed S2/S1 value, and is considered to be practically the same as the design value. I was able to do it. From the above, when 90% or more of the 50 or more batteries have an S2/S1 value of 0.4<S2/S1, those batteries are considered to have been manufactured by the manufacturing method according to the present invention. You can
なお、S2/S1値は、負極集電体の貫通孔の配列パターンと、電池の断面画像(例えばCT画像)から計測される第1開口と第2開口との対応関係から直接計算してもよい。 The S2/S1 value may be calculated directly from the correspondence pattern between the arrangement pattern of the through holes of the negative electrode current collector and the first opening and the second opening measured from the cross-sectional image (for example, CT image) of the battery. Good.
本発明に係るニッケル水素電池は、自己放電が抑制されているため、例えばメモリのバックアップ電源や車両用電源として有用である。 Since the nickel-hydrogen battery according to the present invention suppresses self-discharge, it is useful as, for example, a backup power source for memory or a vehicle power source.
1 :負極
1a :本体部
1b :テーパ部
1c :薄肉部
2 :正極
3 :セパレータ
3a :多孔質シート
4 :電池ケース
6 :安全弁
7 :封口板
8 :絶縁ガスケット
9 :正極集電板
11 :負極集電体
11b:第1開口
11a:第2開口1: Negative electrode 1a: Body part 1b: Tapered part 1c: Thin part 2: Positive electrode 3: Separator 3a: Porous sheet 4: Battery case 6: Safety valve 7: Sealing plate 8: Insulation gasket 9: Positive electrode current collector plate 11: Negative electrode Current collector 11b: First opening 11a: Second opening
Claims (6)
前記負極は、複数の貫通孔を有する負極集電体と、前記負極集電体の両方の表面に形成された水素吸蔵合金を含む負極活物質層と、を備え、
前記正極の最外周の内側に隣接する前記負極の第1部分における前記貫通孔の開口を第1開口、前記正極の最外周の外側に隣接する前記負極の第2部分における前記貫通孔の開口を第2開口とするとき、
前記第2部分の単位面積当たりに含まれる前記水素吸蔵合金量が、前記第1部分の単位面積当たりに含まれる前記水素吸蔵合金量より少なく、前記第1開口の面積S1と、前記第1開口と前記第2開口とが重複する部分の面積S2とが、0.4<S2/S1を満たす、ニッケル水素電池。A strip-shaped positive electrode, a strip-shaped negative electrode, and a separator interposed between the positive electrode and the negative electrode, an electrode group wound such that the negative electrode constitutes the outermost periphery, an electrolytic solution, and the electrode group And a battery case accommodating the electrolytic solution,
The negative electrode includes a negative electrode current collector having a plurality of through holes, and a negative electrode active material layer containing a hydrogen storage alloy formed on both surfaces of the negative electrode current collector,
The opening of the through hole in the first portion of the negative electrode adjacent to the inside of the outermost periphery of the positive electrode is the first opening, and the opening of the through hole in the second portion of the negative electrode adjacent to the outside of the outermost periphery of the positive electrode is When making the second opening,
The amount of the hydrogen storage alloy contained per unit area of the second portion is smaller than the amount of the hydrogen storage alloy contained per unit area of the first portion, and the area S1 of the first opening and the first opening A nickel-hydrogen battery in which an area S2 of a portion where the and the second opening overlap satisfies 0.4<S2/S1.
A元素は、Mg、Zrおよび希土類元素よりなる群から選択される少なくとも1種であり、
B元素は、A元素以外の元素であり、
A元素のモル数に対するB元素のモル数の比:B/Aが、3.3〜3.8である、請求項1または2に記載のニッケル水素電池。The hydrogen storage alloy contains an element A and an element B,
The A element is at least one selected from the group consisting of Mg, Zr and rare earth elements,
B element is an element other than A element,
The nickel-hydrogen battery according to claim 1 or 2, wherein the ratio of the number of moles of element B to the number of moles of element A: B/A is 3.3 to 3.8.
前記ポリプロピレンの少なくとも一部が、スルホン化されている、請求項1〜3のいずれか1項に記載のニッケル水素電池。At least a part of the separator is formed of polypropylene,
The nickel hydrogen battery according to any one of claims 1 to 3, wherein at least a part of the polypropylene is sulfonated.
前記アルカリ金属水酸化物の75モル%以上が水酸化ナトリウムであり、
前記電解液の水酸化物イオン濃度が、5.0〜8.5mol/Lである、請求項1〜4のいずれか1項に記載のニッケル水素電池。The electrolytic solution contains an alkali metal hydroxide,
75 mol% or more of the alkali metal hydroxide is sodium hydroxide,
The nickel-hydrogen battery according to any one of claims 1 to 4, wherein the electrolyte solution has a hydroxide ion concentration of 5.0 to 8.5 mol/L.
(ii)帯状の負極を準備する工程と、
(iii)前記正極と前記負極とを、前記正極と前記負極との間にセパレータを介在させて、前記負極が最外周を構成するように捲回して、電極群を構成する工程と、
(iv)前記電極群を電解液とともに電池ケースに収容する工程と、を具備し、
前記工程(ii)で準備される前記負極は、複数の貫通孔を有する負極集電体と、前記負極集電体の両方の表面に形成された水素吸蔵合金を含む負極活物質層と、を備え、
前記正極の最外周の内側に隣接する前記負極の第1部分における前記貫通孔の開口を第1開口、前記正極の最外周の外側に隣接する前記負極の第2部分における前記貫通孔の開口を第2開口とするとき、
前記第2部分の単位面積当たりに含まれる前記水素吸蔵合金量が、前記第1部分の単位面積当たりに含まれる前記水素吸蔵合金量より少なく、前記第1開口の面積S1と、前記第1開口と前記第2開口とが重複する部分の面積S2とが、0.4<S2/S1を満たすように前記電極群を構成する、ニッケル水素電池の製造方法。(I) a step of preparing a strip-shaped positive electrode,
(Ii) a step of preparing a strip-shaped negative electrode,
(Iii) a step of forming an electrode group by winding the positive electrode and the negative electrode with a separator interposed between the positive electrode and the negative electrode, and winding the negative electrode so as to form the outermost periphery.
(Iv) housing the electrode group in a battery case together with an electrolytic solution,
The negative electrode prepared in the step (ii) includes a negative electrode current collector having a plurality of through holes, and a negative electrode active material layer containing a hydrogen storage alloy formed on both surfaces of the negative electrode current collector. Prepare,
The opening of the through hole in the first portion of the negative electrode adjacent to the inside of the outermost periphery of the positive electrode is the first opening, and the opening of the through hole in the second portion of the negative electrode adjacent to the outside of the outermost periphery of the positive electrode is When making the second opening,
The amount of the hydrogen storage alloy contained per unit area of the second portion is smaller than the amount of the hydrogen storage alloy contained per unit area of the first portion, and the area S1 of the first opening and the first opening The method for manufacturing a nickel-hydrogen battery, wherein the electrode group is configured such that an area S2 of a portion where the first opening and the second opening overlap satisfy 0.4<S2/S1.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017057774 | 2017-03-23 | ||
JP2017057774 | 2017-03-23 | ||
PCT/JP2017/037437 WO2018173345A1 (en) | 2017-03-23 | 2017-10-17 | Nickel hydrogen cell and method for manufacturing same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2018173345A1 JPWO2018173345A1 (en) | 2019-11-07 |
JP6719101B2 true JP6719101B2 (en) | 2020-07-08 |
Family
ID=63584312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019506930A Active JP6719101B2 (en) | 2017-03-23 | 2017-10-17 | Nickel-hydrogen battery and manufacturing method thereof |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6719101B2 (en) |
CN (1) | CN110419138B (en) |
WO (1) | WO2018173345A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022138530A (en) * | 2021-03-10 | 2022-09-26 | Fdk株式会社 | Electrode for alkaline secondary battery and alkaline secondary battery |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19645836B4 (en) * | 1995-11-08 | 2005-10-06 | Hitachi Maxell, Ltd., Ibaraki | Cell with spirally wound electrodes |
JP2000228189A (en) * | 1999-02-05 | 2000-08-15 | Matsushita Electric Ind Co Ltd | Negative electrode for alkaline storage battery and alkaline storage battery using it |
JP2001093511A (en) * | 1999-09-22 | 2001-04-06 | Honda Motor Co Ltd | Wound cylindrical battery |
JP2004063339A (en) * | 2002-07-30 | 2004-02-26 | Yuasa Corp | Negative electrode for alkaline storage battery and alkaline storage battery using it |
JP2005056675A (en) * | 2003-08-04 | 2005-03-03 | Sanyo Electric Co Ltd | Cylindrical alkaline battery |
JP4179943B2 (en) * | 2003-08-04 | 2008-11-12 | 三洋電機株式会社 | Cylindrical alkaline storage battery |
JP5384162B2 (en) * | 2009-03-27 | 2014-01-08 | Jmエナジー株式会社 | Lithium ion capacitor |
JP5370755B2 (en) * | 2009-07-06 | 2013-12-18 | トヨタ自動車株式会社 | battery |
JP5754802B2 (en) * | 2011-06-09 | 2015-07-29 | Fdk株式会社 | Negative electrode for nickel hydride secondary battery and nickel hydride secondary battery using the negative electrode |
JP5822094B2 (en) * | 2012-02-24 | 2015-11-24 | 株式会社Gsユアサ | Electrode plate, wound electrode group and cylindrical battery |
US9356294B2 (en) * | 2012-03-02 | 2016-05-31 | Samsung Sdi Co., Ltd. | Secondary battery including collectors with pores and manufacturing method thereof |
JP6282007B2 (en) * | 2014-03-31 | 2018-02-21 | Fdk株式会社 | Nickel metal hydride secondary battery |
CN104993177B (en) * | 2015-07-29 | 2017-09-15 | 深圳市量能科技有限公司 | A kind of high-temperature Ni/H 2 battery |
-
2017
- 2017-10-17 WO PCT/JP2017/037437 patent/WO2018173345A1/en active Application Filing
- 2017-10-17 JP JP2019506930A patent/JP6719101B2/en active Active
- 2017-10-17 CN CN201780088402.3A patent/CN110419138B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN110419138A (en) | 2019-11-05 |
WO2018173345A1 (en) | 2018-09-27 |
JPWO2018173345A1 (en) | 2019-11-07 |
CN110419138B (en) | 2022-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017090219A1 (en) | Cylindrical battery | |
JP2002134161A (en) | Spiral electrode group for battery and battery | |
WO2017168963A1 (en) | Nickel-hydrogen battery | |
JP2006156135A (en) | Sealed battery, method of manufacturing the same, and assembled battery composed of a plurality of sealed batteries | |
JP2001023681A (en) | Battery having winding structure electrode body | |
JPH09283133A (en) | Nickel electrodefor alkaline storage battery and manufacture thereof | |
JP6719101B2 (en) | Nickel-hydrogen battery and manufacturing method thereof | |
JP5110889B2 (en) | Nickel metal hydride secondary battery | |
CN109037600A (en) | Non-sintered type anode and the alkaline secondary cell for having non-sintered type anode | |
JPH11307116A (en) | Cadmium negative electrode for alkaline storage battery | |
JP5456333B2 (en) | Sealed alkaline storage battery | |
JP4162570B2 (en) | Secondary battery | |
JP2989877B2 (en) | Nickel hydride rechargeable battery | |
JP7421038B2 (en) | Alkaline storage battery and method for manufacturing an alkaline storage battery | |
EP4478473A1 (en) | Zinc battery | |
JPS5834902B2 (en) | battery electrode | |
JPH11162447A (en) | Cylindrical battery with spiral electrode body and its manufacture | |
JP3973115B2 (en) | Battery having an electrode body with a wound structure | |
JP2005056675A (en) | Cylindrical alkaline battery | |
JPH043403Y2 (en) | ||
JPH11297353A (en) | Manufacture of nickel-hydrogen secondary battery | |
JP3267156B2 (en) | Nickel hydride rechargeable battery | |
JP2000260416A (en) | Manufacture of battery | |
JPH11288726A (en) | Electrode for alkaline storage battery, its manufacture, and alkaline storage battery | |
JPS63259963A (en) | Enclosed type alkaline storage battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190529 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200526 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200601 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6719101 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |