[go: up one dir, main page]

JP6718666B2 - Heat transfer tube for heat exchanger and heat exchanger using the same - Google Patents

Heat transfer tube for heat exchanger and heat exchanger using the same Download PDF

Info

Publication number
JP6718666B2
JP6718666B2 JP2015202050A JP2015202050A JP6718666B2 JP 6718666 B2 JP6718666 B2 JP 6718666B2 JP 2015202050 A JP2015202050 A JP 2015202050A JP 2015202050 A JP2015202050 A JP 2015202050A JP 6718666 B2 JP6718666 B2 JP 6718666B2
Authority
JP
Japan
Prior art keywords
tube
pipe
heat exchanger
heat transfer
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015202050A
Other languages
Japanese (ja)
Other versions
JP2017075711A (en
Inventor
木村 直樹
直樹 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Corp
Original Assignee
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Corp filed Critical UACJ Corp
Priority to JP2015202050A priority Critical patent/JP6718666B2/en
Publication of JP2017075711A publication Critical patent/JP2017075711A/en
Application granted granted Critical
Publication of JP6718666B2 publication Critical patent/JP6718666B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、熱交換器用伝熱管及びそれを用いた熱交換器に係り、特に、管の内側を流れる第一の流体と管の外側を流れる第二の流体との間で熱交換を行なうようにした熱交換器用伝熱管、及びそれを用いた熱交換器に関するものである。中でも、本発明は、管の内側を流れる第一の流体側の、より一層の伝熱促進を図った熱交換器用伝熱管と、それを用いた熱交換器の改良を図るものであって、特に、第一の流体が水である給湯用熱交換器に対して、有利に適用せしめ得るものである。 The present invention relates to a heat transfer tube for a heat exchanger and a heat exchanger using the same, and more particularly, to perform heat exchange between a first fluid flowing inside the tube and a second fluid flowing outside the tube. The present invention relates to a heat transfer tube for a heat exchanger, and a heat exchanger using the same. Among them, the present invention, the first fluid side flowing through the inside of the tube, the heat transfer tube for heat exchanger for further heat transfer promotion, and to improve the heat exchanger using the same, In particular, it can be advantageously applied to a heat exchanger for hot water supply in which the first fluid is water.

従来より、第一の流体を流通させる第一の伝熱管と、第二の流体を流通させる第二の伝熱管との2つの伝熱管を組み合わせて、それら第一の流体と第二の流体との間で熱交換を行うように構成した熱交換器が各種用いられてきており、そのような熱交換器の一つが、特開2002−228370号公報(特許文献1)にも明らかにされている。そこでは、水が流通する芯管の外周に、冷媒が流通する冷媒管を螺旋状に巻き付けたり、芯管と冷媒管とを管軸方向に平行に配置して伝熱接合してなる形態において、それら水と冷媒との間の熱交換が行われるようになっている。 Conventionally, two heat transfer tubes, a first heat transfer tube that allows a first fluid to flow and a second heat transfer tube that causes a second fluid to flow, have been combined to produce a first fluid and a second fluid. Various heat exchangers configured to perform heat exchange between them have been used, and one of such heat exchangers is disclosed in Japanese Patent Laid-Open No. 2002-228370 (Patent Document 1). There is. There, in a form in which a refrigerant tube through which a refrigerant flows is spirally wound around the outer circumference of a core tube through which water flows, or a heat transfer joint is made by arranging the core tube and the refrigerant tube in parallel to the tube axis direction. The heat exchange between the water and the refrigerant is performed.

しかしながら、かかる従来の熱交換器に用いられる伝熱管、特に、内部に水を流通させる伝熱管に、単純な円形断面とされた、内面が平滑な管を用いると、その外部を流通する冷媒等の流体との熱交換性能が充分でないという問題があった。 However, when a heat transfer tube used in such a conventional heat exchanger, in particular, a heat transfer tube for circulating water inside has a tube with a simple circular cross section and an inner surface that is smooth, a refrigerant or the like flowing outside thereof is used. There was a problem that the heat exchange performance with the fluid was insufficient.

そこで、そのような熱交換器においては、その熱交換効率を向上させるべく、従来から様々な工夫が為されてきている。例えば、特開2009−270755号公報(特許文献2)においては、管外面に管軸方向に螺旋状に連続して延びる凹条に対応して、管内面に螺旋状の連続した凸条を設けると共に、その凸条の頂部に複数の突起を所定間隔及び所定の大きさで形成してなる構造の熱交換器用伝熱管が提案されており、また特開2011−12909号公報(特許文献3)においては、管外周面に螺旋状に設けたコルゲート溝に対応した凸条部を管内周面に螺旋状に形成すると共に、かかるコルゲート溝に隣接して設けた複数の窪み部に対応した突起部を管内周面に形成してなる伝熱管が、明らかにされている。 Therefore, in such a heat exchanger, various measures have been conventionally made in order to improve the heat exchange efficiency. For example, in Japanese Unexamined Patent Application Publication No. 2009-270755 (Patent Document 2), a continuous spiral ridge is provided on the inner surface of the pipe in correspondence with the concave ridge that continuously extends spirally in the pipe axial direction on the outer pipe surface. At the same time, a heat transfer tube for a heat exchanger having a structure in which a plurality of projections are formed on the top of the ridge at predetermined intervals and with a predetermined size is proposed, and JP 2011-12909 A (Patent Document 3). In the case of (1), a protruding portion corresponding to a corrugated groove spirally formed on the outer peripheral surface of the pipe is spirally formed on the inner peripheral surface of the pipe, and a protrusion corresponding to a plurality of recesses provided adjacent to the corrugated groove. A heat transfer tube, which is formed on the inner peripheral surface of the tube, has been clarified.

しかしながら、それら特許文献2や特許文献3に明らかにされた熱交換器用伝熱管においても、その熱交換性能は充分であるとは言えず、更なる熱交換性能の向上が求められているのである。また、特許文献2の図7や特許文献3の図3〜6には、特許文献1に示される構成の熱交換器とは異なる、所謂二重管式熱交換器が明らかにされているが、そのような二重管式熱交換器に用いられる伝熱管においても、同様な問題が内在しているのである。 However, even the heat transfer tubes for heat exchangers disclosed in Patent Documents 2 and 3 cannot be said to have sufficient heat exchange performance, and further improvement in heat exchange performance is required. .. Further, in FIG. 7 of Patent Document 2 and FIGS. 3 to 6 of Patent Document 3, a so-called double-tube heat exchanger different from the heat exchanger having the configuration shown in Patent Document 1 is disclosed. The same problem is inherent in the heat transfer tube used in such a double tube heat exchanger.

特開2002−228370号公報JP 2002-228370 A 特開2009−270755号公報JP, 2009-270755, A 特開2011−12909号公報JP, 2011-12909, A

ここにおいて、本発明は、かかる事情を背景にして為されたものであって、その解決課題とするところは、簡単な構造にて、熱交換性能の一層の向上を有利に図ることの出来る熱交換器用伝熱管を提供することにあり、また、他の課題とするところは、そのような熱交換器用伝熱管を用いた、熱交換特性に優れた熱交換器を提供することにもある。 Here, the present invention has been made in view of such circumstances, and the problem to be solved is that the heat exchange performance can be advantageously improved with a simple structure. Another object of the present invention is to provide a heat exchanger tube for a heat exchanger, and another object is to provide a heat exchanger excellent in heat exchange characteristics using such a heat exchanger tube for a heat exchanger.

そして、本発明にあっては、かくの如き課題の解決のために、管内が第一の流路とされて、そこを流通せしめられる第一の流体と、管の外側に第二の流路が形成されて、そこを流通せしめられる第二の流体との間で、熱交換を行うようにした熱交換器用の伝熱管であって、管内面に、V字状の平面形態を呈する複数の突起が、相互に独立して形成されていると共に、それら複数の突起が、それぞれ、そのV字形状が前記第一の流体の流れの上流側に向かって拡開するように、配置されていることを特徴とする熱交換器用伝熱管を、その要旨とするものである。 Then, in the present invention, in order to solve such a problem, the inside of the pipe is made to be the first flow passage, and the first fluid is made to flow therethrough, and the second flow passage is provided outside the pipe. Is a heat transfer tube for a heat exchanger configured to perform heat exchange with a second fluid that is made to flow therethrough, and a plurality of V-shaped planar shapes are formed on the inner surface of the tube. The protrusions are formed independently of each other, and the plurality of protrusions are arranged such that their V-shapes are widened toward the upstream side of the flow of the first fluid. A heat transfer tube for a heat exchanger, which is characterized in that

なお、このような本発明に従う熱交換器用伝熱管の望ましい態様の一つによれば、前記V字状の複数の突起が、管軸方向に所定の距離を隔てて独立して配設されていることであり、また、前記突起のV字形状を為す角度が、30°〜140°となるように構成されていることである。 According to one of the preferable modes of the heat exchanger tube for a heat exchanger according to the present invention, the plurality of V-shaped projections are independently arranged at a predetermined distance in the tube axis direction. In addition, the V-shaped angle of the protrusion is 30° to 140°.

また、本発明にあっては、上述した熱交換器用伝熱管を用い、それを、かかる伝熱管よりも大径の外管内に収容して、伝熱管の内側に第一の流体を流通させる一方、伝熱管の外側には、第二の流体を流通させて、それら2つの流体間にて熱交換を行うように構成してなる二重管式熱交換器をも、その要旨とするものである。 Further, in the present invention, the heat exchanger tube for a heat exchanger described above is used, and it is accommodated in an outer tube having a diameter larger than that of the heat exchanger tube, and a first fluid is circulated inside the heat exchanger tube. A double-tube heat exchanger constituted by circulating a second fluid outside the heat transfer tube and performing heat exchange between the two fluids is also included in the gist of the present invention. is there.

さらに、本発明にあっては、管内が第一の流路とされる大径管と、該大径管の外周面に密接されて配設され、管内が第二の流路とされる、該大径管よりも細径の小径管の1本又は複数本とからなる熱交換器において、かかる大径管として、前述した熱交換器用伝熱管を用いてなる構造の熱交換器をも、その要旨とするものである。 Furthermore, in the present invention, a large-diameter pipe in which the inside of the pipe serves as a first flow passage, and the pipe is arranged in close contact with the outer peripheral surface of the large-diameter pipe, and the inside of the pipe serves as a second flow passage. In a heat exchanger composed of one or a plurality of small-diameter pipes having a smaller diameter than the large-diameter pipe, as the large-diameter pipe, a heat exchanger having a structure using the above-mentioned heat transfer pipe for heat exchanger, This is the summary.

従って、このような本発明に従う構成とされた熱交換器用伝熱管によれば、第一の流体の流れに対して上流側に拡開した形態のV字状突起の複数が、管内面に設けられているこ
とによって、その管内を流通せしめられる水等の第一の流体は、管内面に設けられたV字状突起によって効果的に撹乱されて、流体から伝熱管への熱の伝達が有利に促進されることとなるのであり、これによって、熱交換性能が効果的に向上せしめられることとなるのである。
Therefore, according to the heat transfer tube for a heat exchanger configured according to the present invention, a plurality of V-shaped projections that are expanded to the upstream side with respect to the flow of the first fluid are provided on the inner surface of the tube. By virtue of this, the first fluid such as water circulated in the pipe is effectively disturbed by the V-shaped protrusions provided on the inner surface of the pipe, and the heat transfer from the fluid to the heat transfer pipe is advantageous. Therefore, the heat exchange performance can be effectively improved.

なお、伝熱管の内面側の第一の流体が外面側の第二の流体から熱を受けるような熱交換器において、撹乱された第一の流体は、温度が上昇したかたちで、管内表面の極近傍を下流側に流れることとなるが、この下流側における伝熱管内面においては、接触する第一の流体の温度が上昇していることによって、熱交換効率は上流側より低下することになる。しかしながら、本発明に従う伝熱管においては、温度が上昇した第一の流体が、管内面に設けられたV字状突起の上流側の開口部から突起に沿って下流側のV字の角部(基部)に集められると共に、V字の角部において突起を乗り越え、管内表面から管の中心軸方向への流れが形成される。これと同時に、管の中心近傍より温度の低い第一の流体(フレッシュな流体)がV字角部の下流側へ流れ込み、この温度の低い第一の流体との熱交換によって、下流側における管内面での熱交換効率が高められることとなる。そして、更に、その下流側に設けられた別のV字状突起により、上記と同様の第一の流体の流れが惹起され、管の長手方向(上流から下流に向かった第一の流体の流れ方向)において、熱交換効率の向上効果をもたらすようになるのである。 In a heat exchanger in which the first fluid on the inner surface side of the heat transfer tube receives heat from the second fluid on the outer surface side, the disturbed first fluid is Although it will flow to the downstream side in the immediate vicinity, on the inner surface of the heat transfer tube on the downstream side, the temperature of the first fluid in contact with it will increase, so the heat exchange efficiency will be lower than on the upstream side. .. However, in the heat transfer tube according to the present invention, the first fluid whose temperature has risen is the V-shaped corner portion (downstream) along the projection from the upstream opening of the V-shaped projection provided on the inner surface of the tube. At the corner of the V-shape, the projections are crossed over and the flow is formed from the inner surface of the tube toward the central axis of the tube. At the same time, the first fluid (fresh fluid) having a lower temperature than the vicinity of the center of the pipe flows into the downstream side of the V-shaped corner portion, and heat exchange with the first fluid having a lower temperature causes the inside of the pipe on the downstream side to flow. Therefore, the heat exchange efficiency in the aspect can be improved. Further, the flow of the first fluid similar to the above is induced by another V-shaped projection provided on the downstream side thereof, and the longitudinal direction of the pipe (the flow of the first fluid from the upstream to the downstream). Direction), the heat exchange efficiency is improved.

また、本発明にあっては、そのような熱交換性能向上効果が得られる構造が、単純な構造とされているところから、管内を流通せしめられる第一の流体の圧力損失が効果的に低減され得る利点も有していることに加えて、本発明に従う構成とされた熱交換器用伝熱管にあっては、管外周面に対して転造加工を施す等の比較的簡単な加工によって、目的とするV字状突起を容易に形成することが出来るところから、伝熱管の生産コストを、有利に低減することも可能となるのである。 Further, in the present invention, since the structure capable of obtaining such heat exchange performance improving effect is a simple structure, the pressure loss of the first fluid circulated in the pipe is effectively reduced. In addition to having the advantage that can be done, in the heat exchanger heat exchanger tube configured according to the present invention, by relatively simple processing such as rolling the outer peripheral surface of the tube, Since the desired V-shaped projection can be easily formed, it is possible to advantageously reduce the production cost of the heat transfer tube.

さらに、上述せる如き本発明に従う熱交換器用伝熱管を用いた熱交換器にあっては、伝熱管の熱伝達効率が高いために、伝熱管の内部を流通せしめられる第一の流体と伝熱管の外部に形成された流路を流通せしめられる第二の流体との間の熱伝達を、効果的に向上させることが可能となって、熱交換器として高い熱交換性能を発揮することが出来る特徴を有しているのである。しかも、そのような熱交換器用伝熱管は、比較的単純な構造とされており、そのために低いコストで製作し得るところから、熱交換器の生産コストも有利に低減され得て、その生産性を、効果的に高めることが出来る特徴も有しているのである。 Further, in the heat exchanger using the heat transfer tube for a heat exchanger according to the present invention as described above, since the heat transfer efficiency of the heat transfer tube is high, the first fluid and the heat transfer tube that can be circulated inside the heat transfer tube It is possible to effectively improve the heat transfer with the second fluid that is made to flow through the flow path formed outside the heat exchanger, and it is possible to exhibit high heat exchange performance as a heat exchanger. It has features. Moreover, since such a heat transfer tube for a heat exchanger has a relatively simple structure and therefore can be manufactured at a low cost, the production cost of the heat exchanger can be advantageously reduced and its productivity can be improved. It also has a feature that can effectively increase the

本発明に従う熱交換器用伝熱管の一例を示す説明図であって、(a)は、その外観の部分説明図であり、(b)は、その展開図において、管外面側を示す説明図であり、(c)は、管内面に突出形成されたV字状突起の一つを示す管内面拡大斜視部分説明図であり、(d)は、(b)におけるD−D断面の拡大説明図であり、(e)は、(b)におけるE−E断面の拡大説明図である。It is explanatory drawing which shows an example of the heat exchanger tube for heat exchangers according to this invention, (a) is a partial explanatory view of the external appearance, (b) is explanatory drawing which shows the pipe outer surface side in the expansion view. Yes, (c) is an enlarged perspective partial explanatory view of the pipe inner surface showing one of the V-shaped projections formed on the inner surface of the pipe, and (d) is an enlarged explanatory view of the DD cross section in (b). And (e) is an enlarged explanatory view of the EE cross section in (b). V字状突起についての平面説明図であって、(a)及び(b)は、それぞれ、異なる例を示すものである。It is a plane explanatory view about a V-shaped projection, and (a) and (b) show a different example, respectively. 本発明に従うV字状突起の異なる形態を示す説明図であって、(a)は、V字状突起の変形例の一つを示す平面説明図であり、(b)は、(a)におけるB−B断面説明図であり、(c)及び(d)は、それぞれ、V字状突起の他の異なる形態を示す拡大平面説明図である。It is explanatory drawing which shows the different form of V-shaped projection according to this invention, (a) is a plane explanatory drawing which shows one of the modified examples of V-shaped projection, (b) is in (a). It is a BB sectional explanatory view, and (c) and (d) are expanded plane explanatory views showing other different forms of a V-shaped projection, respectively. V字状突起の断面形状について明らかにする説明図であって、(a)は、V字状突起の一つの自由端側部位を示す平面部分図であり、(b)は、(a)におけるA−A断面形状の一例を示す拡大断面説明図であり、(c)は、V字状突起の横断面の異なる形状を示す、(b)に相当する断面説明図である。It is explanatory drawing which clarifies about the cross-sectional shape of a V-shaped projection, (a) is a plane partial view which shows one free end side part of a V-shaped projection, (b) is in (a). It is an expanded sectional explanatory view showing an example of an AA sectional shape, and (c) is a sectional explanatory view equivalent to (b) which shows a cross-sectional shape where V-shaped projection differs. V字状突起の配設形態を示す説明図であって、(a)、(b)及び(c)は、それぞれ、複数のV字状突起が管軸方向及び/又は管周方向において異なる形態において配設されている例を示す展開説明図である。It is explanatory drawing which shows the arrangement|positioning form of a V-shaped projection, Comprising: (a), (b), and (c), a plurality of V-shaped projections differ in a pipe axial direction and/or a pipe peripheral direction, respectively. FIG. 3 is a development explanatory view showing an example arranged in FIG. 本発明に従う熱交換器用伝熱管を製造する転造加工装置の一例を、管軸に直角な横断面形態において示す断面説明図である。It is sectional explanatory drawing which shows an example of the rolling processing apparatus which manufactures the heat exchanger tube for heat exchangers according to this invention in the cross-sectional form orthogonal to a pipe axis. V字状突起の形成される形態を示す説明図であって、(a)は、図6に示される転造加工装置における転造用工具によるV字状突起の加工形態を示す縦断面部分説明図であり、(b)は、V字状突起を管軸方向に形成する形態を示す、(a)に対応する説明図である。It is explanatory drawing which shows the form in which V-shaped protrusion is formed, (a) is a longitudinal cross-section partial description which shows the processing form of V-shaped protrusion by the rolling tool in the rolling processing apparatus shown in FIG. It is a figure and (b) is explanatory drawing corresponding to (a) which shows the form which forms a V-shaped protrusion in a pipe axis direction. 本発明に従う熱交換器用伝熱管を用いて構成した熱交換器の一例を示す部分説明図であって、(a)は、大径管の外周面に小径管が螺旋状に巻き付けられて、固定せしめてなる構造の外巻き式熱交換器の一例を示す一部断面部分説明図であり、(b)は、二重管式の熱交換器の一例を示す断面部分説明図である。It is a partial explanatory view showing an example of a heat exchanger constituted by using a heat exchanger tube for a heat exchanger according to the present invention, in which (a) is a small diameter tube spirally wound around an outer peripheral surface of a large diameter tube and fixed. It is a partial cross section partial explanatory view which shows an example of the outer winding type heat exchanger of the structure which is made up, and (b) is a cross section partial explanatory diagram which shows an example of a double pipe type heat exchanger.

以下、本発明を更に具体的に明らかにするために、本発明の実施の形態について、図面を参照しつつ、詳細に説明することとする。 Hereinafter, in order to more specifically clarify the present invention, embodiments of the present invention will be described in detail with reference to the drawings.

先ず、図1には、本発明に従う熱交換器用伝熱管の一実施形態が示されている。そこにおいて、伝熱管10には、(a)や(b)から明らかな如く、その外面に、平面形態がV字形状を呈する凹所12の複数(ここでは3個)が、管軸方向に所定距離隔てて配設されており、それによって、そのようなV字状の凹所12に対応して、管内面には、(c)、(d)及び(e)に示される如く、V字状の平面形態を呈する突起14の複数(ここでは3個)が、相互に独立して設けられている。そして、それら複数のV字状突起14は、伝熱管10の管内にて与えられる第一の流路を流通せしめられる第一の流体の流れの上流側に向かって、換言すれば、図1の(a)において右方に向かって拡開するように配置され、これによって、熱交換効率の効果的な向上が図られ得るようになっている。 First, FIG. 1 shows an embodiment of a heat exchanger tube for a heat exchanger according to the present invention. There, as is clear from (a) and (b), the heat transfer tube 10 has a plurality of recesses 12 (three in this case) having a V-shaped planar shape on the outer surface thereof in the axial direction of the tube. The pipes are arranged at a predetermined distance, so that, corresponding to such a V-shaped recess 12, the inner surface of the pipe is provided with V as shown in (c), (d) and (e). A plurality of (here, three) projections 14 having a V-shaped planar shape are provided independently of each other. The plurality of V-shaped projections 14 are directed toward the upstream side of the flow of the first fluid that is made to flow through the first flow path provided in the heat transfer tube 10, that is, in FIG. In (a), it is arranged so as to widen to the right, whereby the heat exchange efficiency can be effectively improved.

すなわち、そのようなV字状の突起14を内面に設けてなる伝熱管10にあっては、管内表面の極近傍を流れる、温度が上昇した第一の流体が、管内面に設けられたV字状突起14の拡開した上流側の開口部から、V字に沿って、下流側のV字の角部(基部)に収束せしめられるようになると共に、そのV字の角部において、突起14を乗り越えるような流れとなることによって、管内表面から管の中心側への流れが形成されるようになる。そして、これと同時に、管の中心側より、温度の低い第一の流体(フレッシュな流体)が、V字状突起14のV字角部の下流側へ流れ込み、これによって、かかる温度の低い第一の流体が、下流側における管内面での熱交換効率を高めることとなるのである。そして、更に、その下流側に設けられた別のV字状突起14によって、上記と同様な第一の流体の流れが惹起され、以て管の長手方向、換言すれば上流から下流に向かう第一の流体の流れ方向において、熱交換効率の有効な向上効果が惹起されることとなるのである。 That is, in the heat transfer tube 10 having such V-shaped projections 14 provided on the inner surface thereof, the first fluid, which has a temperature increased and flows in the immediate vicinity of the inner surface of the tube, has the V formed on the inner surface of the tube. From the expanded upstream side opening of the V-shaped projection 14, the V-shaped projection 14 can be converged to the downstream V-shaped corner (base) along the V-shape, and the projection is formed at the V-shaped corner. The flow over 14 causes the flow from the inner surface of the pipe to the center side of the pipe. At the same time, the first fluid having a low temperature (fresh fluid) flows into the downstream side of the V-shaped corner portion of the V-shaped projection 14 from the center side of the pipe, whereby the first fluid having a low temperature is applied. The one fluid enhances the heat exchange efficiency on the inner surface of the pipe on the downstream side. Further, another V-shaped projection 14 provided on the downstream side thereof causes the same flow of the first fluid as described above, and thus, the longitudinal direction of the pipe, in other words, from the upstream to the downstream. In the flow direction of the one fluid, the effective improvement effect of the heat exchange efficiency is brought about.

そして、そのような複数のV字状突起14による第一の流体の攪乱による熱伝達効率の向上効果は、外径(D)が9.52〜30mm程度、肉厚(t)が0.5〜1.0mm程度の伝熱管10において、長さ(l):0.5〜3.0mm、幅(w):0.5〜2.0mm、高さ(h):0.2〜1.0mm、角度(α):30〜140°の寸法を有するV字状突起14を、管軸方向のピッチ(p)が4〜8mm程度において、配設することが有利に採用されることとなる。特に、角度(α)を30°以上とすることによって、V字形状内に流体を効果的に受けることが出来るようになるのである。なお、そのような伝熱管10の内部を流通せしめられる第一の流体を水とした場合において、その流量は、一般に、0.5〜2.0L/min程度の割合とされることとなる。 The effect of improving the heat transfer efficiency due to the disturbance of the first fluid by the plurality of V-shaped protrusions 14 is that the outer diameter (D) is about 9.52 to 30 mm and the wall thickness (t) is 0.5. In the heat transfer tube 10 of about 1.0 mm, the length (l): 0.5 to 3.0 mm, the width (w): 0.5 to 2.0 mm, the height (h): 0.2 to 1. It is advantageous to arrange the V-shaped projections 14 having a size of 0 mm and an angle (α) of 30 to 140° at a pitch (p) in the tube axis direction of about 4 to 8 mm. .. In particular, by setting the angle (α) to 30° or more, it becomes possible to effectively receive the fluid in the V-shape. When water is used as the first fluid that can be circulated inside the heat transfer tube 10, the flow rate is generally set to about 0.5 to 2.0 L/min.

ところで、本発明に従って、伝熱管10内面に形成されるV字状突起14は、図2(a)に示される如く、一般的には、中心線Aに対して左右対称の形状とされている。即ち、かかるV字状突起14を構成する左右二つの斜辺部14a,14bの長さ:l1 ,l2 、幅:w1 ,w2 、高さ:h1 ,h2 が、それぞれ同一の寸法とされている(l1 =l2 、w1 =w2 、h1 =h2 )と共に、中心線Aに対して左右の斜辺部14a,14bの為す角度:α1 ,α2 も、同一の角度とされている(α1 =α2 )。 By the way, according to the present invention, the V-shaped projections 14 formed on the inner surface of the heat transfer tube 10 are generally bilaterally symmetrical with respect to the center line A, as shown in FIG. .. That is, the lengths l 1 , l 2 , widths w 1 , w 2 and heights h 1 , h 2 of the two right and left hypotenuse parts 14 a, 14 b constituting the V-shaped projection 14 are the same, respectively. In addition to the dimensions (l 1 =l 2 , w 1 =w 2 , h 1 =h 2 ), the angles α 1 and α 2 formed by the left and right hypotenuse parts 14 a and 14 b with respect to the center line A are also: The angles are the same (α 12 ).

しかしながら、本発明は、そのような左右対称形状を呈するV字状突起14に限定されるものでは決してなく、図2(b)に示される如く、左右非対称の斜辺部14a,14bからなるV字状突起14とすることも可能である。そこでは、角度:αは、左右の斜辺部の中心線Aに対して為す角度α1 ,α2 の和として表され(α=α1 +α2 )、そしてそれらα1 ,α2 が、それぞれ、中心線Aに対して、0°よりも大きく、70°以下の角度を為すように設けられ、そしてその長さ:l1 ,l2 において、短い方の長さ(ここではl1 )は、少なくとも0.5mm以上とされ、またそれら斜辺部14a,14bのうち、低い方の高さは、少なくとも0.2mm以上とされ、更にその幅:w1 ,w2 は、少なくとも0.5mm以上とされることとなる。なお、二つの角度α1 ,α2 に関して、その小さい方の角度(ここではα1 )は、流体をV字で受けるように、少なくとも0°よりも大きくする必要があり、また流体を有効に受ける上において、V字は、流体の流れに対して、その上流側に開いており、そしてV字形状の角部(基部)側に流体をスムーズに導くべく、大きい方の角度(ここではα2 )は、70°以下とすることが望ましいのである。 However, the present invention is by no means limited to the V-shaped protrusion 14 having such a left-right symmetrical shape, and as shown in FIG. 2B, the V-shaped protrusion 14a, 14b is asymmetrical. It is also possible to use the projections 14. There, the angle α is expressed as the sum of the angles α 1 and α 2 formed with respect to the center line A of the left and right hypotenuses (α=α 12 ), and these α 1 and α 2 are respectively , The angle with respect to the center line A is greater than 0° and less than or equal to 70°, and in the lengths: l 1 and l 2 , the shorter length (here, l 1 ) is , At least 0.5 mm or more, and the lower height of the hypotenuse parts 14a, 14b is at least 0.2 mm, and the width: w 1 , w 2 is at least 0.5 mm or more. Will be said. Regarding the two angles α 1 and α 2 , the smaller angle (here, α 1 ) needs to be at least larger than 0° so that the fluid receives the V-shape, and the fluid is effective. In receiving, the V-shape is open to the upstream side with respect to the flow of the fluid, and in order to smoothly guide the fluid to the corner (base) side of the V-shape, the larger angle (here α 2 ) is preferably 70° or less.

また、かかるV字状突起14は、図3(a)〜(e)に示される如き、各種のV字状平面形態と為され得るものである。即ち、図3(a)においては、V字の角部(基部)となる左右2つの斜辺部14a,14bの連結部の高さが、図3(b)に示される如く、低くされて(h1’ <h1 )、これによって左右2つの斜辺部14a,14bにて案内されて収束せしめられる流体の流れが、かかるV字の角部において乗り越え易くして、下流側に流され易くなっている。なお、かかる左右両側の斜辺部14a,14bの連結部の高さ:h1’ が低くなり過ぎると、第一の流体の管表面から管中心方向への有効な流れが惹起され難くなるところから、かかるh1’ は、0.2mm以上とされることが望ましい。また、図3(c)においては、V字状突起14におけるV字の角部が湾曲形状とされているのであり、更に図3(d)においては、そのようなV字の角部が、屈曲部の形態ではなく、湾曲した形状において、左右の斜辺部14a,14bが連結されて、全体としてV字形状を呈する形態とされている。 Further, the V-shaped projection 14 can be formed into various V-shaped plane shapes as shown in FIGS. 3(a) to 3(e). That is, in FIG. 3A, the height of the connecting portion of the two left and right hypotenuse portions 14a and 14b, which are the V-shaped corner portions (base portions), is lowered as shown in FIG. 3B. h 1 '<h 1 ), whereby the flow of the fluid guided and converged by the two right and left hypotenuses 14a and 14b is easily flowed over at the corners of the V-shape and easily flowed downstream. ing. Incidentally, such left and right sides of the inclined portion 14a, 14b connection portion of the height of: when h 1 'is too low, from where the effective flow from the tube surface of the first fluid into the tube center direction is not easily caused , H 1 ′ is preferably 0.2 mm or more. Further, in FIG. 3(c), the V-shaped corners of the V-shaped projection 14 are curved, and in FIG. 3(d), such V-shaped corners are Instead of the bent portion, in the curved shape, the left and right hypotenuse portions 14a and 14b are connected to each other to have a V-shape as a whole.

さらに、V字状突起14を構成する左右の斜辺部14a,14bの横断面形状にあっても、図1に示される如き角張った形状の他、図4に示される如き丸みのついた形状とすることも可能である。即ち、図4(b)に示される如く、円弧形状の横断面形態や、図4(c)に示される如く、台形形状の角部を湾曲形状としてなる横断面形態とすることも、可能である。 Further, even in the lateral cross-sectional shape of the left and right hypotenuse parts 14a and 14b forming the V-shaped projection 14, in addition to the angular shape as shown in FIG. 1 and the rounded shape as shown in FIG. It is also possible to do so. That is, an arc-shaped cross-sectional shape as shown in FIG. 4(b) or a trapezoidal-shaped corner portion as a curved cross-sectional shape as shown in FIG. 4(c) is also possible. is there.

更にまた、本発明に従って伝熱管10の内面に形成される複数のV字状突起14の配設形態についても、図1に示される如く、管軸方向に1列に相互に独立して配設される場合のみならず、図5(a)〜(c)に示される如き、各種の配設形態とすることが可能である。具体的には、図5(a)に示される例にあっては、管軸方向に所定のピッチ(間隔):pで配設される複数のV字状突起14が、管周方向に、所定大きさのずれ:xをもって、配設されているのである。この場合において、流体の流れが乱されることなく、連続的に良好な熱交換特性を得る上において、x/pが0.3以下であることが好ましい。また、図5(b)に示される例にあっては、管軸方向に所定ピッチで配列されてなる複数のV字状突起14の列が、管周方向に間隔:d及びV字形状の斜辺部の先端間の間隔:yをもって、複数列において設けられているものである。そして、その場合において、かかるV字状突起14の斜辺部の先端部間の間隔:yは0.3mm以上とされることが望ましく、これによって、V字形状間の流体の流れが良好となり、良い熱交換特性を得ることが出来る。更に、図5(c)に示される例は、管周方向に複数列のV字状突起14が配列されていると共に、隣り合う列のV字状突起14が、管軸方向にずれ量:eをもって配設されてなる形態において、構成されている。 Furthermore, regarding the arrangement of the plurality of V-shaped projections 14 formed on the inner surface of the heat transfer tube 10 according to the present invention, as shown in FIG. 1, they are arranged independently in one row in the tube axis direction. In addition to the above case, various arrangements as shown in FIGS. 5A to 5C are possible. Specifically, in the example shown in FIG. 5A, a plurality of V-shaped projections 14 arranged at a predetermined pitch (pitch): p in the tube axis direction are arranged in the tube circumferential direction. They are arranged with a predetermined deviation: x. In this case, x/p is preferably 0.3 or less in order to continuously obtain good heat exchange characteristics without disturbing the fluid flow. Further, in the example shown in FIG. 5B, a row of a plurality of V-shaped protrusions 14 arranged at a predetermined pitch in the tube axis direction has a space of d in the tube circumferential direction and V-shaped projections. It is provided in a plurality of rows with a distance y between the tips of the oblique sides. Then, in that case, it is desirable that the distance y between the tip ends of the hypotenuses of the V-shaped projections 14 is 0.3 mm or more, which improves the flow of fluid between the V-shaped portions. Good heat exchange characteristics can be obtained. Further, in the example shown in FIG. 5C, a plurality of rows of V-shaped projections 14 are arranged in the pipe circumferential direction, and the V-shaped projections 14 of adjacent rows are displaced in the tube axial direction by: It is configured in such a form that it is provided with e.

ところで、上述の如き構成とされた本発明に従う伝熱管10は、以下に示すように、公知の転造加工法に従って、例えば図6に示されるような転造加工装置20を用いて、製作されることとなる。 By the way, the heat transfer tube 10 according to the present invention configured as described above is manufactured by a known rolling method, for example, by using a rolling apparatus 20 as shown in FIG. 6 as described below. The Rukoto.

すなわち、転造加工装置20は、回転駆動軸24に、V字加工部27が外周面に所定間隔で設けられてなるV字状突起形成ディスク26が取り付けられた突起転造用工具22の1つと、回転駆動軸24に、外周面が平坦な当接面とされた管保持用ディスク28が取り付けられた保持用工具30の2つとが、図6に示される如く、目的とする伝熱管10を与える大きさとされた素管32の周りに、略120°の位相差をもって配置されて、構成されている。なお、それぞれの回転軸24は、素管32の管軸に対して、伝熱管10の表面に螺旋状に位置するように形成される窪み(V字状凹所12)のリード角(螺旋角度:β)に相当する角度をもって、それぞれ、位置せしめられている。 That is, the rolling device 20 includes one of the projection rolling tools 22 in which the V-shaped projection forming disks 26 each having the V-shaped processed portions 27 provided on the outer peripheral surface thereof at predetermined intervals are attached to the rotary drive shaft 24. As shown in FIG. 6, one of the holding tools 30 has a rotary drive shaft 24 and a tube holding disk 28 having a flat outer peripheral surface serving as a contact surface. Is arranged and arranged with a phase difference of about 120° around the tube 32 sized to give In addition, each of the rotary shafts 24 has a lead angle (spiral angle) of a recess (V-shaped recess 12) formed so as to be positioned spirally on the surface of the heat transfer tube 10 with respect to the tube axis of the raw tube 32. : Β), respectively.

そして、このような転造加工装置20によって、素管32を一定の速度で送りながら、かかる素管32の外表面に対して、突起転造用工具22のV字状突起形成ディスク26を回転させつつ押し当てることによって、素管32の外表面に、V字状突起形成ディスク26の外周面のV字加工部27に対応した窪み(V字状凹所12)が形成されるようにするのである。なお、2つの保持用工具30,30の管保持用ディスク28,28の外周面が、V字状突起形成ディスク26の素管32に対する当接位置とはそれぞれ120°の位相差をもって(図6参照)、素管32の外周面に当接せしめられて、回転駆動軸24,24にて回転させられるようになっているところから、V字状突起形成ディスク26による押圧力が、それら2つの管保持用ディスク28,28にて効果的に受け止められて、素管32の直線的な走行を有利に確保し得るようになっている。 Then, the V-shaped projection forming disk 26 of the projection rolling tool 22 is rotated with respect to the outer surface of the raw pipe 32 while the raw pipe 32 is fed at a constant speed by the rolling processing device 20. By pressing them while making them, the hollow (V-shaped recess 12) corresponding to the V-shaped processed portion 27 on the outer peripheral surface of the V-shaped projection forming disk 26 is formed on the outer surface of the raw tube 32. Of. The outer peripheral surfaces of the tube holding disks 28, 28 of the two holding tools 30, 30 have a phase difference of 120° with respect to the contact position of the V-shaped projection forming disk 26 with the base tube 32 (see FIG. 6). Since it is adapted to be brought into contact with the outer peripheral surface of the raw pipe 32 and to be rotated by the rotary drive shafts 24, 24, the pressing force by the V-shaped projection forming disk 26 is The pipes 28, 28 are effectively received by the pipe holding disks 28, 28 so that the straight running of the raw pipe 32 can be advantageously ensured.

また、このようにして、素管32の外周面に、転造加工によって、所定の窪み(V字状凹所12)の複数が、それぞれ相互に独立して、螺旋状に形成されることにより、素管32の内周面には、かかる窪み(V字状凹所12)に対応したV字状突起(14:図1等参照)が螺旋状に位置するように形成されることとなり、これによって、本発明の対象とする伝熱管10を得ることが出来るのである。 Further, in this manner, a plurality of predetermined depressions (V-shaped recesses 12) are formed in a spiral shape on the outer peripheral surface of the raw pipe 32 by rolling, independently of each other. , V-shaped projections (14: see FIG. 1, etc.) corresponding to the recesses (V-shaped recesses 12) are formed on the inner peripheral surface of the raw pipe 32 in a spiral shape. As a result, the heat transfer tube 10 that is the object of the present invention can be obtained.

なお、図6に示される転造加工装置20は、図7(a)の如く、素管32に対して、窪み(V字状凹所12)を螺旋状に形成するためのものであるが、そのような転造加工を、図7(b)に示される如く、素管32の軸方向に平行な方向に実施するようにすれば、図1や図5等に示されるV字状突起14を、管軸方向に容易に配列形成することも可能である。その場合においては、V字状突起形成ディスク26は、素管32の外周面に対して、管軸方向に平行な方向に、相対的に押圧移動せしめられることとなる。 The rolling apparatus 20 shown in FIG. 6 is for forming a hollow (V-shaped recess 12) in the raw pipe 32 in a spiral shape as shown in FIG. 7A. If such a rolling process is carried out in a direction parallel to the axial direction of the raw pipe 32 as shown in FIG. 7B, the V-shaped projection shown in FIG. 1 or FIG. It is also possible to easily form the 14 in the axial direction of the tube. In that case, the V-shaped projection forming disk 26 is relatively pressed and moved with respect to the outer peripheral surface of the raw tube 32 in a direction parallel to the tube axis direction.

このように、本発明に従う構造とされた伝熱管10は、管内外周面が平滑な管体に対して、その管外周面に転造加工を施す等の、比較的簡単な加工によって作製することが出来るところから、その優れた熱交換性能に加えて、かかる伝熱管10の生産コストを、有利に低減することが可能となったのである。 As described above, the heat transfer tube 10 having the structure according to the present invention is produced by a relatively simple process such as rolling the outer peripheral surface of the tube having a smooth inner and outer peripheral surface. In addition to the excellent heat exchange performance, the production cost of the heat transfer tube 10 can be advantageously reduced.

ところで、本発明にあっては、上述のような伝熱管10を用いて、2つの流体間で熱交換を行う熱交換器をも、その対象とするものであって、例えば、図8の(a)や(b)に示されるような熱交換器を挙げることができる。 By the way, in the present invention, a heat exchanger for exchanging heat between two fluids using the heat transfer tube 10 as described above is also an object of the present invention. The heat exchanger as shown in a) or (b) can be mentioned.

具体的には、図8(a)に示される熱交換器40は、管内が第一の流路とされる大径管42と、この大径管42の外周面に密接されて配設され、管内が第二の流路とされる、大径管42よりも細径の小径管44の1本又は複数本とからなる、外巻き式熱交換器であって、そこでは、大径管42として、本発明に従う伝熱管10が用いられているのである。そして、大径管42(伝熱管10)内には、第一の流体として低温の水が流通せしめられる一方、細径管44には、第二の流体として高温の冷媒が流通せしめられて、それら低温の水と高温の冷媒との間において、熱交換が行われるようになっているのである。なお、ここでは、大径管42に対して、小径管44が、所定のピッチ:p0をもって螺旋状に巻き付けられていると共に、それら大径管42と小径管44とが、ろう付け等の接合手法に従って接合されることにより、密接して配設されている。 Specifically, the heat exchanger 40 shown in FIG. 8A is arranged in close contact with the large-diameter pipe 42 whose inside is the first flow path and the outer peripheral surface of the large-diameter pipe 42. An outer-winding type heat exchanger comprising one or a plurality of small-diameter pipes 44 having a smaller diameter than the large-diameter pipe 42, in which the inside of the pipe serves as a second flow passage. As 42, the heat transfer tube 10 according to the present invention is used. Then, low-temperature water is circulated as the first fluid in the large-diameter pipe 42 (heat transfer pipe 10), while high-temperature refrigerant is circulated as the second fluid in the small-diameter pipe 44. Heat is exchanged between the low temperature water and the high temperature refrigerant. Here, the small diameter pipe 44 is spirally wound around the large diameter pipe 42 with a predetermined pitch: p0, and the large diameter pipe 42 and the small diameter pipe 44 are joined by brazing or the like. They are closely arranged by being joined according to the method.

また、図8(b)に示される熱交換器50は、大径の外管52と、その管内に同軸的に収容された小径の内管54とからなる二重管式の熱交換器であって、かかる内管54に、本発明に従う伝熱管10が用いられて、その管内が、第一の流路とされる一方、内管54と外管52との間に所定の間隔が設けられて、第二の流路が形成されている。そして、ここでは、内管54と同軸的に配置された外管52の両端部を縮径するように絞り込むことによって、外管52の端部を内管54の外周面に密着させて、それら内管54の外周面と外管52の内周面との間の間隙に、密閉された第二の流路が形成されていると共に、外管52の一方の端部付近に水入口(図示せず)を形成する一方、他方の端部付近に水出口56を形成することによって、水入口から導入される低温の水等の流体が、第二の流路を流通せしめられる一方、内管54内には、高温の水が流通せしめられることにより、それら低温水と高温水との間での熱交換が、行われるようになっている。 Further, the heat exchanger 50 shown in FIG. 8(b) is a double-tube heat exchanger including a large-diameter outer pipe 52 and a small-diameter inner pipe 54 accommodated coaxially in the pipe. The heat transfer tube 10 according to the present invention is used for the inner tube 54, and the inside of the tube serves as a first flow path, while a predetermined space is provided between the inner tube 54 and the outer tube 52. The second flow path is formed. Then, here, by narrowing both ends of the outer pipe 52 arranged coaxially with the inner pipe 54 so as to reduce the diameter, the ends of the outer pipe 52 are brought into close contact with the outer peripheral surface of the inner pipe 54, and A sealed second flow path is formed in the gap between the outer peripheral surface of the inner pipe 54 and the inner peripheral surface of the outer pipe 52, and a water inlet (Fig. On the other hand, by forming a water outlet 56 near the other end, a fluid such as low-temperature water introduced from the water inlet is made to flow through the second flow path, while the inner pipe is formed. By circulating high-temperature water in 54, heat exchange between the low-temperature water and the high-temperature water is performed.

以上、本発明の代表的な実施形態について詳述してきたが、それは、あくまでも例示に過ぎないものであって、本発明は、そのような実施形態に係る具体的な記述によって、何等限定的に解釈されるものではないことが、理解されるべきである。 Although the representative embodiments of the present invention have been described above in detail, the embodiments are merely examples, and the present invention is not limited to the specific description according to the embodiments. It should be understood that it should not be construed.

本発明は、当業者の知識に基づいて、種々なる変更、修正、改良等を加えた態様において実施され得るものであり、またそのような実施の態様が、本発明の趣旨を逸脱しない限りにおいて、何れも、本発明の範疇に属するものであることは、言うまでもないところである。 The present invention can be carried out in various modifications, modifications, improvements, and the like based on the knowledge of those skilled in the art, and such an embodiment does not depart from the spirit of the present invention. Needless to say, all of them belong to the category of the present invention.

以下に、本発明の代表的な実施例を示し、本発明の特徴を更に明確にすることとするが、また、本発明が、そのような実施例の記載によって、何等の制約をも受けるものでないことは、言うまでもないところである。 Hereinafter, representative examples of the present invention will be shown to further clarify the characteristics of the present invention, but the present invention is subject to any restrictions due to the description of such examples. Not to mention that.

先ず、本発明に従う構造を有する伝熱管(10)を形成するために、外径(D):10mm、肉厚(t):0.7mmのりん脱酸銅(JIS−H−3300−C1220)からなる、断面が単純な円形の平滑管(32)を準備した。そして、この準備された平滑管(32)に対して、図7(b)に示される如く、V字状突起形成ディスク(26)を平滑管(32)に押し当て、その軸方向に相対的に回転移動せしめることにより、かかる平滑管(32)の内面に、互いに独立した複数のV字状突起(14)を、管軸と平行に、且つ1列に、ピッチ(p):6.0mmにおいて、転造加工した。なお、その形成されたV字状突起(14)のサイズは、図2(a)の如き左右対称の形態において、長さ(l1 =l2 ):2.0mm、幅(w1 =w2 ):1.0mm、高さ(h1 =h2 ):0.8mm、角度(α1 =α2 ):45°(α=α1 +α2 =90°)であった。 First, in order to form the heat transfer tube (10) having the structure according to the present invention, phosphorus deoxidized copper (JIS-H-3300-C1220) having an outer diameter (D) of 10 mm and a wall thickness (t) of 0.7 mm. A circular smooth tube (32) having a simple cross section was prepared. Then, as shown in FIG. 7(b), the V-shaped projection forming disk (26) is pressed against the prepared smooth tube (32), and the V-shaped projection forming disk (26) is relatively moved in the axial direction. The plurality of V-shaped protrusions (14) independent from each other are formed on the inner surface of the smooth tube (32) in parallel with the tube axis and in a row at a pitch (p) of 6.0 mm. In, it was rolled. The size of the formed V-shaped projection (14) is 2.0 mm in length (l 1 =l 2 ), and width (w 1 =w) in the bilaterally symmetrical form as shown in FIG. 2A. 2 ): 1.0 mm, height (h 1 =h 2 ):0.8 mm, angle (α 12 ):45° (α=α 12 =90°).

このようにして得られた伝熱管(10)を、図8(a)における大径管(42)として用いて、その外周面に、外径:6mm、肉厚:0.7mmのりん脱酸銅(JIS−H−3300−C1220)からなる、断面が単純な円形の小径管(44)の2本を、巻付けピッチ(p0 ):6.0mmにおいて巻き付け、ろう付け固定することにより、外巻き式熱交換器(40)を作成した。 The heat transfer tube (10) thus obtained was used as a large-diameter tube (42) in FIG. 8(a), and its outer peripheral surface was covered with phosphorus deoxidized with an outer diameter of 6 mm and a wall thickness of 0.7 mm. Two small circular tubes (44) made of copper (JIS-H-3300-C1220) with a simple cross section are wound at a winding pitch (p 0 ) of 6.0 mm and fixed by brazing. An outer wound heat exchanger (40) was created.

次いで、かかる得られた外巻き式熱交換器(40)を用いて、その大径の伝熱管(10)内には、17℃の低温水を1.7L/minの流量で流通させる一方、細径の小径管(44)には、80℃の二酸化炭素冷媒を、管1本あたり11L/minの流量で、上記低温水の流れに対して対向的に流通せしめることにより、それら低温水と二酸化炭素冷媒との間の熱交換を行い、その熱交換性能について評価した。なお、熱交換性能の評価は、小径管(44)内を流通せしめられる二酸化炭素冷媒の温度が80℃から20℃に変化したときに、大径管(10)内の水の温度が17℃から何度まで上昇するかを測定し、その温度差と熱容量から熱量を求めて、熱交換性能とした。 Then, using the obtained outer-winding heat exchanger (40), low-temperature water of 17° C. is circulated at a flow rate of 1.7 L/min in the large-diameter heat transfer tube (10), The small-diameter small-diameter pipe (44) is supplied with a carbon dioxide refrigerant at 80° C. at a flow rate of 11 L/min per pipe, which is opposed to the flow of the low-temperature water, so that the low-temperature water is removed. Heat exchange was performed with the carbon dioxide refrigerant, and the heat exchange performance was evaluated. The heat exchange performance is evaluated by measuring the temperature of water in the large diameter pipe (10) at 17°C when the temperature of the carbon dioxide refrigerant flowing in the small diameter pipe (44) changes from 80°C to 20°C. The heat exchange performance was determined by measuring the heat quantity from the temperature difference and the heat capacity.

一方、比較例として、大径管(42)に、上記の伝熱管(10)と同じ外径、肉厚、材質であって、内面にV字状突起(14)が設けられていない内面平滑管を用いて、図8(a)に示される如き外巻き式熱交換器(40)を製作して、上記と同様な熱交換性能の評価を行なった。なお、冷媒や水の流量等の条件は、上記した熱交換性能の評価の場合と同様とされている。 On the other hand, as a comparative example, the large-diameter pipe (42) has the same outer diameter, wall thickness, and material as those of the heat transfer pipe (10) described above, and has a smooth inner surface without the V-shaped projection (14) provided on the inner surface. An outer-wound heat exchanger (40) as shown in FIG. 8(a) was manufactured using the tube, and the same heat exchange performance as above was evaluated. The conditions such as the flow rates of the refrigerant and water are the same as those in the above-described evaluation of the heat exchange performance.

その結果、かかる比較例において、外巻き式熱交換器の大径管(42)として、内面平滑管を用いた場合における熱交換性能を100としたとき、本発明に従う管内面にV字状突起(14)が形成されてなる上記した伝熱管(10)を用いた外巻き式熱交換器の熱交換性能は、108となった。このことから、伝熱管(10)の内面に設けたV字状突起(14)によって、熱交換性能の有効な向上効果が実現され得ることを、確認することが出来た。 As a result, in such a comparative example, when the heat exchange performance when the inner surface smooth tube was used as the large diameter tube (42) of the outer wound heat exchanger was 100, the V-shaped protrusion was formed on the inner surface of the tube according to the present invention. The heat exchange performance of the outer-wound heat exchanger using the heat transfer tube (10) having (14) formed was 108. From this, it was possible to confirm that the V-shaped projections (14) provided on the inner surface of the heat transfer tube (10) could realize an effective improvement effect of the heat exchange performance.

10 伝熱管 12 凹所
14 突起 14a,14b 斜辺部
20 転造加工装置 22 突起転造用工具
24 回転駆動軸 26 V字状突起形成ディスク
27 V字加工部 28 管保持用ディスク
30 保持用工具 32 素管
40 熱交換器 42 大径管
44 小径管 50 熱交換器
52 外管 54 内管
56 水出口
10 Heat Transfer Tube 12 Recess 14 Protrusion 14a, 14b Oblique Side 20 Roll Forming Machine 22 Protrusion Rolling Tool 24 Rotation Drive Shaft 26 V-Shaped Protrusion Forming Disk 27 V-Shaped Section 28 Pipe Holding Disk 30 Holding Tool 32 Base pipe 40 Heat exchanger 42 Large diameter pipe 44 Small diameter pipe 50 Heat exchanger 52 Outer pipe 54 Inner pipe 56 Water outlet

Claims (6)

管内が第一の流路とされて、そこを流通せしめられる第一の流体と、管の外側に第二の流路が形成されて、そこを流通せしめられる第二の流体との間で、熱交換を行うようにした熱交換器用の伝熱管であって、
管内面に、V字状の平面形態を呈する複数の突起が、管軸方向において4〜8mmのピッチにて、相互に独立して形成されていると共に、該V字状の突起が、かかるV字の角部となる左右2つの斜辺部の連結部の高さがそれら斜辺部の高さよりも低くなるように且つ0.2mm以上の高さとなるように、形成されており、そしてそれら複数の突起が、それぞれ、そのV字形状が前記第一の流体の流れの上流側に向かって拡開するように、配置されている一方、管外面には、かかる突起に対応して、V字状凹所の複数が、相互に独立して形成されていることを特徴とする熱交換器用伝熱管。
The inside of the pipe is the first flow path, between the first fluid that is made to flow therethrough, and the second flow path is formed outside the pipe, and between the second fluid that is made to flow therethrough, A heat transfer tube for a heat exchanger configured to perform heat exchange,
On the inner surface of the pipe, a plurality of protrusions having a V-shaped planar shape are formed independently of each other at a pitch of 4 to 8 mm in the pipe axis direction, and the V-shaped protrusions are V-shaped. The left and right hypotenuses, which are the corners of the letter, are formed such that the heights of the connecting parts are lower than the heights of the hypotenuses and are 0.2 mm or more. The protrusions are arranged so that their V-shapes are widened toward the upstream side of the flow of the first fluid, while the outer surface of the pipe has a V-shape corresponding to the protrusions. A heat transfer tube for a heat exchanger, wherein a plurality of recesses are formed independently of each other.
前記突起のV字形状を為す角度が、30°〜140°である請求項1に記載の熱交換器用伝熱管。 The heat transfer tube for a heat exchanger according to claim 1, wherein an angle forming the V-shape of the protrusion is 30° to 140°. 前記V字状の複数の突起が、管周方向に所定間隔をもって位置せしめられると共に、管周方向において隣接するV字状突起の斜辺部の先端部間の間隔が0.3mm以上となるように、配設されている請求項1又は請求項に記載の熱交換器用伝熱管。 The plurality of V-shaped projections are positioned at a predetermined interval in the tube circumferential direction, and the distance between the tip ends of the hypotenuses of the adjacent V-shaped projections in the tube circumferential direction is 0.3 mm or more. The heat transfer tube for a heat exchanger according to claim 1 or 2, which is provided. 管外径が9.52〜30mm、管肉厚が0.5〜1.0mmである伝熱管であって、前記V字状の突起が、そのV字を形成する左右2つの斜辺部の長さ:0.5〜3.0mm、該斜辺部の幅:0.5〜2.0mm、及び該斜辺部の高さ:0.2〜1.0mmにおいて、形成されている請求項1乃至請求項の何れか1項に記載の熱交換器用伝熱管。 A heat transfer tube having an outer diameter of 9.52 to 30 mm and a wall thickness of 0.5 to 1.0 mm, wherein the V-shaped projections have a length of two right and left hypotenuses forming the V-shape. Thickness: 0.5 to 3.0 mm, width of the hypotenuse portion: 0.5 to 2.0 mm, and height of the hypotenuse portion: 0.2 to 1.0 mm. Item 6. A heat transfer tube for a heat exchanger according to any one of items 3 . 外管とその管内に収容された内管とからなる二重管式熱交換器において、かかる内管として、請求項1乃至請求項の何れか1項に記載の伝熱管が用いられていることを特徴とする二重管式熱交換器。 In a double-tube heat exchanger composed of an outer tube and an inner tube housed in the tube, the heat transfer tube according to any one of claims 1 to 4 is used as the inner tube. A double-tube heat exchanger characterized by the above. 管内が第一の流路とされる大径管と、該大径管の外周面に密接されて配設され、管内が第二の流路とされる、該大径管よりも細径の小径管の1本又は複数本とからなる熱交換器において、かかる大径管として、請求項1乃至請求項の何れか1項に記載の伝熱管が用いられていることを特徴とする熱交換器。 A large-diameter pipe whose inside is a first flow path, and a large-diameter pipe that is disposed in close contact with the outer peripheral surface of the large-diameter pipe and has a second flow path inside the pipe, which has a smaller diameter than the large-diameter pipe. A heat exchanger comprising one or a plurality of small-diameter pipes, wherein the heat transfer pipe according to any one of claims 1 to 4 is used as the large-diameter pipe. Exchanger.
JP2015202050A 2015-10-13 2015-10-13 Heat transfer tube for heat exchanger and heat exchanger using the same Expired - Fee Related JP6718666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015202050A JP6718666B2 (en) 2015-10-13 2015-10-13 Heat transfer tube for heat exchanger and heat exchanger using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015202050A JP6718666B2 (en) 2015-10-13 2015-10-13 Heat transfer tube for heat exchanger and heat exchanger using the same

Publications (2)

Publication Number Publication Date
JP2017075711A JP2017075711A (en) 2017-04-20
JP6718666B2 true JP6718666B2 (en) 2020-07-08

Family

ID=58550072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015202050A Expired - Fee Related JP6718666B2 (en) 2015-10-13 2015-10-13 Heat transfer tube for heat exchanger and heat exchanger using the same

Country Status (1)

Country Link
JP (1) JP6718666B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3073611B1 (en) * 2017-07-31 2019-10-11 Valeo Systemes Thermiques HEAT EXCHANGER TUBE WITH VARIABLE GEOMETRY DISTURB DEVICE
FR3069628A1 (en) * 2017-07-31 2019-02-01 Valeo Systemes Thermiques HEAT EXCHANGER TUBE WITH PERTURBATION DEVICE
FR3073612B1 (en) * 2017-07-31 2019-10-25 Valeo Systemes Thermiques HEAT EXCHANGER TUBE WITH PERTURBATION DEVICE
CN111565861A (en) * 2017-07-31 2020-08-21 法雷奥热系统公司 Tubes for heat exchangers with disturbance devices
WO2020013292A1 (en) * 2018-07-13 2020-01-16 カルソニックカンセイ株式会社 Heat exchange tube, method for manufacturing heat exchange tube, and heat exchanger
CN112944989B (en) * 2019-12-10 2025-04-01 珠海格力电器股份有限公司 Heat exchange tube, heat exchanger and air conditioner
CN114857984A (en) * 2022-05-30 2022-08-05 南通中船机械制造有限公司 A longitudinal vortex strengthening element and heat exchange tube

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5791405A (en) * 1995-07-14 1998-08-11 Mitsubishi Shindoh Co., Ltd. Heat transfer tube having grooved inner surface
JP3145277B2 (en) * 1995-08-01 2001-03-12 三菱伸銅株式会社 Heat transfer tube with internal groove
JPH1163877A (en) * 1997-08-07 1999-03-05 Daikin Ind Ltd Heat transfer tube with internal groove
JP2000161886A (en) * 1998-11-25 2000-06-16 Hitachi Cable Ltd Heat transfer tube with inner groove
DE10127084B4 (en) * 2000-06-17 2019-05-29 Mahle International Gmbh Heat exchanger, in particular for motor vehicles
JP2002228370A (en) * 2001-01-30 2002-08-14 Daikin Ind Ltd Heat exchanger
DE102011008119A1 (en) * 2011-01-07 2012-07-12 Arup Alu-Rohr Und -Profil Gmbh Double pipe for double pipe heat exchanger for motor vehicle engine, has recesses and projections that are formed in outer pipe wall and inner pipe wall respectively and are radially inserted into annular gap

Also Published As

Publication number Publication date
JP2017075711A (en) 2017-04-20

Similar Documents

Publication Publication Date Title
JP6718666B2 (en) Heat transfer tube for heat exchanger and heat exchanger using the same
US10563924B2 (en) Heat exchanger and method for manufacturing plate-shaped fins for heat exchanger
JP5106453B2 (en) Plate heat exchanger and refrigeration air conditioner
JP2008232449A (en) Double tube type heat exchanger and its manufacturing method
JP6032585B2 (en) Triple tube structure and heat exchanger
US20160273840A1 (en) Tube heat exchanger with optimized thermo-hydraulic characteristics
JP3947158B2 (en) Heat exchanger
JP2006090697A (en) Twisted tube type heat exchanger
JP2011106746A (en) Heat transfer tube, heat exchanger, and processed product of heat transfer tube
JP6211313B2 (en) Triple tube heat exchanger
JP2020016393A (en) Heat exchanger
JP5404589B2 (en) Twisted tube heat exchanger
JP2008190787A (en) Spiral tube and heat exchanger using the same
JP6991567B2 (en) Double tube heat exchanger
JP5289088B2 (en) Heat exchanger and heat transfer tube
JP2010091266A (en) Twisted tube type heat exchanger
WO2000031486A1 (en) Internally grooved heat exchanger pipe and metal bar working roll for internally grooved heat exchanger pipes
CN210773619U (en) Internal thread tube structure, heat exchanger and air conditioner
JP2009243863A (en) Internally grooved pipe for heat pipe, and heat pipe
JP5431210B2 (en) Heat transfer tube and heat exchanger
JPH085196A (en) Condenser and manufacturing method thereof
JP4630571B2 (en) ROLLING APPARATUS AND METHOD FOR MANUFACTURING MODIFICATIONS PRODUCT
JP6016350B2 (en) Manufacturing method of heat exchanger for hot water supply
JP2013068358A (en) Twisted tube type heat exchanger with different diameter
JP2011017476A (en) Double tube type heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190813

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200615

R150 Certificate of patent or registration of utility model

Ref document number: 6718666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees