JP6714973B2 - Separator for water-based electrolyte storage battery, and water-based electrolyte storage battery using the same - Google Patents
Separator for water-based electrolyte storage battery, and water-based electrolyte storage battery using the same Download PDFInfo
- Publication number
- JP6714973B2 JP6714973B2 JP2015053941A JP2015053941A JP6714973B2 JP 6714973 B2 JP6714973 B2 JP 6714973B2 JP 2015053941 A JP2015053941 A JP 2015053941A JP 2015053941 A JP2015053941 A JP 2015053941A JP 6714973 B2 JP6714973 B2 JP 6714973B2
- Authority
- JP
- Japan
- Prior art keywords
- separator
- storage battery
- nonwoven fabric
- electrolyte storage
- aqueous electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003860 storage Methods 0.000 title claims description 73
- 239000003792 electrolyte Substances 0.000 title claims description 67
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title description 20
- 239000004745 nonwoven fabric Substances 0.000 claims description 137
- 239000011148 porous material Substances 0.000 claims description 73
- 239000000835 fiber Substances 0.000 claims description 66
- 239000008151 electrolyte solution Substances 0.000 claims description 19
- 230000015572 biosynthetic process Effects 0.000 claims description 14
- 238000009826 distribution Methods 0.000 claims description 12
- 229920005992 thermoplastic resin Polymers 0.000 claims description 9
- 238000003490 calendering Methods 0.000 claims description 7
- 239000002253 acid Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 description 30
- 239000007788 liquid Substances 0.000 description 26
- -1 polypropylene Polymers 0.000 description 22
- 229920001155 polypropylene Polymers 0.000 description 21
- 239000004743 Polypropylene Substances 0.000 description 20
- 230000014759 maintenance of location Effects 0.000 description 19
- 238000005259 measurement Methods 0.000 description 19
- 230000010220 ion permeability Effects 0.000 description 16
- 238000012360 testing method Methods 0.000 description 12
- 229920001410 Microfiber Polymers 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 238000007654 immersion Methods 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 7
- 229910003471 inorganic composite material Inorganic materials 0.000 description 7
- 239000010954 inorganic particle Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 239000002002 slurry Substances 0.000 description 7
- 238000009987 spinning Methods 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000010292 electrical insulation Methods 0.000 description 6
- 239000004744 fabric Substances 0.000 description 6
- 239000010419 fine particle Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 239000004734 Polyphenylene sulfide Substances 0.000 description 5
- 230000004927 fusion Effects 0.000 description 5
- 229920000069 polyphenylene sulfide Polymers 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 4
- 238000010294 electrolyte impregnation Methods 0.000 description 4
- 238000004049 embossing Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000004750 melt-blown nonwoven Substances 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000009736 wetting Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 229920002292 Nylon 6 Polymers 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 238000009832 plasma treatment Methods 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229920005604 random copolymer Polymers 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- MRNHPUHPBOKKQT-UHFFFAOYSA-N indium;tin;hydrate Chemical compound O.[In].[Sn] MRNHPUHPBOKKQT-UHFFFAOYSA-N 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000012086 standard solution Substances 0.000 description 2
- 238000006277 sulfonation reaction Methods 0.000 description 2
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Chemical compound O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 2
- GVNWZKBFMFUVNX-UHFFFAOYSA-N Adipamide Chemical compound NC(=O)CCCCC(N)=O GVNWZKBFMFUVNX-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000004831 Hot glue Substances 0.000 description 1
- 229920010126 Linear Low Density Polyethylene (LLDPE) Polymers 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 108010020346 Polyglutamic Acid Proteins 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 229910052586 apatite Inorganic materials 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 description 1
- 229910001632 barium fluoride Inorganic materials 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000010450 olivine Substances 0.000 description 1
- 229910052609 olivine Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920002643 polyglutamic acid Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920005630 polypropylene random copolymer Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 229920001384 propylene homopolymer Polymers 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 239000002888 zwitterionic surfactant Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Cell Separators (AREA)
Description
本発明は、水系電解液蓄電池用セパレータ、及びこれを用いた水系電解液蓄電池に関する。 The present invention relates to an aqueous electrolyte storage battery separator and an aqueous electrolyte storage battery using the same.
近年、電子機器の多様化に伴い、各種蓄電池に対する高性能化が求められている。中でも水系電解液を使った蓄電池は多種多様に存在し、硫酸水溶液系を使用する鉛蓄電池、アルカリ水溶液系を使用するニカド電池、ニッケル水素電池等のアルカリ電池類が挙げられ、高容量化、高寿命化、小型化等が要求されている。 In recent years, with the diversification of electronic devices, higher performance has been demanded for various storage batteries. Of these storage batteries using aqueous electrolyte is present in a wide variety of lead-acid batteries using sulfuric acid aqueous, nickel-cadmium batteries that use A alkaline aqueous systems include alkaline batteries such as nickel-hydrogen batteries, high capacity, Longer life and smaller size are required.
従来から蓄電池用セパレータとしては、不織布、微多孔膜等が広く用いられてきた。セパレータの機能としては、電極間の物理的接触、短絡を防ぐために電気絶縁性を有していること、電解液に対する濡れ性、保液性に優れること、電解液に対して化学的安定性を有していること、適度な強度を有すること等、が挙げられる。例えば、アルカリ電池用セパレータでは、ポリオレフィン系の湿式不織布が用いられている。 Nonwoven fabrics, microporous membranes, etc. have been widely used as storage battery separators. The functions of the separator are physical contact between electrodes, electrical insulation to prevent short circuit, excellent wettability to electrolyte, excellent liquid retention, and chemical stability to electrolyte. It has, has an appropriate strength, and the like. For example, in alkaline battery separators, a polyolefin-based wet non-woven fabric is used.
以下の特許文献1には、「(1)繊維径が3μm以下の極細繊維、(2)繊維径(円形換算値)が3〜5μm(3μmは含まない)で、横断面形状が非円形である準極細異形繊維、及び(3)表面に融着成分を備えた、引張り強さが4.5cN/dtex以上の複合高強度ポリプロピレン系繊維を含み、前記複合高強度ポリプロピレン系繊維の融着成分が融着した不織布を含む、電池用セパレータであって、セパレータの最大孔径が25μm以下である、前記の電池用セパレータ」が開示されている。 In Patent Document 1 below, “(1) fiber diameter is 3 μm or less, ultrafine fibers, (2) fiber diameter (circular conversion value) is 3 to 5 μm (3 μm is not included), and cross-sectional shape is non-circular. A quasi-ultrafine shaped fiber, and (3) a composite high-strength polypropylene fiber having a tensile strength of 4.5 cN/dtex or more, which is provided with a fusion component on the surface, and the fusion component of the composite high-strength polypropylene fiber Is a battery separator containing a fused non-woven fabric, wherein the separator has a maximum pore diameter of 25 μm or less.
また、以下の特許文献2には、「耐アルカリ性セルロース繊維と、耐アルカリ性合成繊維と、バインダ成分とからなる多層構造を有する湿式不織布からなるアルカリ電池用セパレータであって、前記湿式不織布の平均孔径が10μm以下であることを特徴とするアルカリ電池用セパレータ」が開示されている。 In addition, in Patent Document 2 below, "an alkaline battery separator comprising a wet-laid nonwoven fabric having a multilayer structure composed of an alkali-resistant cellulose fiber, an alkali-resistant synthetic fiber, and a binder component, wherein the wet-laid nonwoven fabric has an average pore diameter Of 10 μm or less” is disclosed.
しかしながら、特許文献1に記載の電池用セパレータは、ポリプロピレン系不織布を含む電池用セパレータであり、最大孔径が25μm以下であることを特徴のひとつとしているが、最小孔径については何ら記載されていない。本願発明者らの検討により、不織布の孔径が小さすぎると緻密になり過ぎ、イオン透過性が悪くなるため内部抵抗が高くなり、また、イオン透過性に影響を及ぼすとされる容量維持率も低下することが明らかとなった。また、本願発明者らは、特許文献1に記載の電池用セパレータに用いられている不織布は、湿式法により形成された短繊維不織布であるため、電解液中での基布強度が不安定であり、物理的振動、環境変動、及び経時変動に対して、電池特性を維持することが困難で、サイクル寿命が短くなる傾向があることを見出した。 However, the battery separator described in Patent Document 1 is a battery separator containing a polypropylene-based nonwoven fabric and has one of the characteristics that the maximum pore size is 25 μm or less, but there is no description about the minimum pore size. According to the study by the inventors of the present application, if the pore size of the nonwoven fabric is too small, the nonwoven fabric becomes too dense and the ion permeability deteriorates, so that the internal resistance increases, and the capacity retention ratio, which is considered to affect the ion permeability, also decreases. It became clear to do. Further, since the non-woven fabric used in the battery separator described in Patent Document 1 is a short fiber non-woven fabric formed by a wet method, the present inventors have found that the base fabric strength in the electrolytic solution is unstable. Therefore, it has been found that it is difficult to maintain the battery characteristics and the cycle life tends to be shortened against physical vibration, environmental changes, and temporal changes.
また、特許文献2に記載の電池用セパレータは、湿式法により形成された短繊維不織布であり、融着成分、バインダ成分等を含むことによって、電解液中での寸法安定性に優れ、良好なイオン透過性を示す緻密なセパレータであると記載されているが、長時間経過すると、電解液中に融着成分、バインダ成分等が溶出して、蓄電池のサイクル寿命が短くなることが、本願発明者らの検討により明らかとなった。 Further, the battery separator described in Patent Document 2 is a short fiber non-woven fabric formed by a wet method, and by including a fusion component, a binder component, etc., is excellent in dimensional stability in an electrolytic solution and is excellent. Although it is described as a dense separator exhibiting ion permeability, the fusion component, the binder component, etc. are eluted into the electrolytic solution after a long time, which shortens the cycle life of the storage battery. It became clear by the examination of the people.
かかる状況下、本発明が解決しようとする課題は、優れたイオン透過性、電解液の濡れ性及び保液性、かつ、電気絶縁性を有する水系電解液電池用セパレータ、並びに、高容量及び低抵抗で、サイクル寿命が長く、かつ、信頼性の高い水系電解液蓄電池を提供することである。 Under such circumstances, the problems to be solved by the present invention include excellent ion permeability, wettability and liquid retention of an electrolytic solution, and a separator for an aqueous electrolyte battery having electrical insulation, and high capacity and low capacity. An object of the present invention is to provide a water-based electrolytic solution storage battery having resistance, long cycle life, and high reliability.
本願発明者らは、上記課題を解決すべく鋭意検討し実験を重ねた結果、以下の構成により上記課題を解決することができることを予想外に見出し、本発明を完成するに至ったものである。すなわち、本発明は以下のとおりのものである。
[1]下記式(1)〜(4):
Dmax≦20μm ...(1)
0.1μm≦Dmin ...(2)
Dmax/Dave<3.00 ...(3)
Dmax/Dmin<5.00 ...(4)
{式中、Dmaxは最大孔径(μm)であり、Daveは平均孔径(μm)であり、Dminは最小孔径(μm)である。}を満たす孔径分布を有する、平均繊維径0.1μm以上5.0μm以下、繊維長150mm以上の極細繊維から構成され、かつ、地合変動係数が100以下である不織布から構成される、鉛蓄電池又はアルカリ電池のいずれかの水系電解液蓄電池用セパレータ。
[2]前記不織布の平均孔径(Dave)が10μm以下である、前記[1]に記載の水系電解液蓄電池用セパレータ。
[3]前記不織布の最小孔径(Dmin)が5μm以下である、前記[1]又は[2]に記載の水系電解液蓄電池用セパレータ。
[4]前記不織布が熱可塑性樹脂繊維から構成される不織布である、前記[1]〜[3]のいずれかに記載の水系電解液蓄電池用セパレータ。
[5]前記不織布が親水化加工された不織布である、前記[1]〜[4]のいずれかに記載の水系電解液蓄電池用セパレータ。
[6]前記不織布の厚みが10〜300μm、かつ、目付が5〜100g/m2である、前記[1]〜[5]のいずれかに記載の水系電解液蓄電池用セパレータ。
[7]前記不織布の空隙率が30〜95%である、前記[1]〜[6]のいずれかに記載の水系電解液蓄電池用セパレータ。
[8]前記不織布にさらに不織布が積層されている少なくとも2層の不織布層を有する積層不織布であって、下記式(1)〜(4):
Dmax≦20μm ...(1)
0.1μm≦Dmin ...(2)
Dmax/Dave<3.00 ...(3)
Dmax/Dmin<5.00 ...(4)
{式中、Dmaxは最大孔径(μm)であり、Daveは平均孔径(μm)であり、Dminは最小孔径(μm)である。}を満たす孔径分布を有し、かつ、地合変動係数が100以下であるものから構成される、前記[1]〜[7]のいずれかに記載の水系電解液蓄電池用セパレータ。
[9]前記不織布が、カレンダー加工された不織布又は積層不織布である、前記[1]〜[8]のいずれかに記載の水系電解液蓄電池用セパレータ。
[10]前記[1]〜[9]のいずれかに記載の水系電解液蓄電池用セパレータを有する水系電解液蓄電池。
[11]前記[1]〜[9]のいずれかに記載の水系電解液蓄電池用セパレータを有するアルカリ二次電池。
As a result of intensive studies and experiments to solve the above problems, the inventors of the present invention unexpectedly found that the above problems can be solved by the following constitutions, and completed the present invention. .. That is, the present invention is as follows.
[1] The following formulas (1) to (4):
Dmax≦20 μm. . . (1)
0.1 μm≦Dmin. . . (2)
Dmax/Dave<3.00. . . (3)
Dmax/Dmin<5.00. . . (4)
{In the formula, Dmax is the maximum pore diameter (μm), Dave is the average pore diameter (μm), and Dmin is the minimum pore diameter (μm). ] A lead-acid battery composed of a non-woven fabric having a pore size distribution satisfying the following conditions and having an average fiber diameter of 0.1 μm or more and 5.0 μm or less and a fiber length of 150 mm or more, and having a formation variation coefficient of 100 or less. Alternatively, a separator for an aqueous electrolyte storage battery, which is either an alkaline battery.
[2] The separator for an aqueous electrolyte storage battery according to [1], wherein the nonwoven fabric has an average pore diameter (Dave) of 10 μm or less.
[3] The separator for an aqueous electrolyte storage battery according to the above [1] or [2], wherein the nonwoven fabric has a minimum pore diameter (Dmin) of 5 μm or less.
[4] The separator for an aqueous electrolyte storage battery according to any of [1] to [3], wherein the non-woven fabric is a non-woven fabric composed of thermoplastic resin fibers.
[5] The separator for an aqueous electrolyte storage battery according to any of [1] to [4], wherein the nonwoven fabric is a hydrophilically treated nonwoven fabric.
[6] The separator for an aqueous electrolyte storage battery according to any one of [1] to [5], wherein the nonwoven fabric has a thickness of 10 to 300 μm and a basis weight of 5 to 100 g/m 2 .
[7] The separator for an aqueous electrolyte storage battery according to any of [1] to [6], wherein the nonwoven fabric has a porosity of 30 to 95%.
[8] A laminated non-woven fabric having at least two non-woven fabric layers in which a non-woven fabric is further laminated on the non-woven fabric , the following formulas (1) to (4):
Dmax≦20 μm. . . (1)
0.1 μm≦Dmin. . . (2)
Dmax/Dave<3.00. . . (3)
Dmax/Dmin<5.00. . . (4)
{In the formula, Dmax is the maximum pore diameter (μm), Dave is the average pore diameter (μm), and Dmin is the minimum pore diameter (μm). } The pore size distribution which satisfy|fills}, and the formation variation coefficient is 100 or less, and is comprised, The separator for aqueous electrolyte storage batteries in any one of said [1]-[7].
[9] The separator for an aqueous electrolyte storage battery according to any one of [1] to [8], wherein the nonwoven fabric is a calendered nonwoven fabric or a laminated nonwoven fabric.
[10] A water-based electrolyte storage battery having the water-based electrolyte storage battery separator according to any one of [1] to [9].
[11] An alkaline secondary battery including the separator for an aqueous electrolyte solution storage battery according to any one of [1] to [9].
本発明の水系電解液蓄電池用セパレータは、孔径分布が高度に制御されているので、優れたイオン透過性、保液性、電気絶縁性、化学的安定性を有する。また、本発明の水系電解液蓄電池は、本発明の水系電解液蓄電池用セパレータを有することにより、安定した生産工程で、且つ歩留りが良く、低コストで生産でき、高容量且つ低抵抗で、サイクル寿命が長く、信頼性が高い。なお、上述の記載は、本発明の全ての実施形態及び本発明に関する全ての利点を開示したものではない。 Since the pore size distribution of the separator for an aqueous electrolyte storage battery of the present invention is highly controlled, it has excellent ion permeability, liquid retention, electrical insulation, and chemical stability. Further, the water-based electrolyte storage battery of the present invention, by having the separator for the water-based electrolyte storage battery of the present invention, in a stable production process, good yield, can be produced at low cost, high capacity and low resistance, cycle Long life and high reliability. It should be noted that the above description does not disclose all the embodiments of the present invention and all advantages related to the present invention.
以下、本発明の代表的な実施形態を例示する目的でより詳細に説明するが、本発明はこれらの実施形態に限定されない。
本実施形態の水系電解液蓄電池用セパレータは、下記式(1)〜(4):
Dmax≦20μm ...(1)
0.1μm≦Dmin ...(2)
Dmax/Dave<3.00 ...(3)
Dmax/Dmin<5.00 ...(4)
{式中、Dmaxは最大孔径(μm)であり、Daveは平均孔径(μm)であり、Dminは最小孔径(μm)である。}を満たす孔径分布を有する不織布から構成される水系電解液蓄電池用セパレータである。
Hereinafter, more detailed description will be given for the purpose of illustrating representative embodiments of the present invention, but the present invention is not limited to these embodiments.
The separator for an aqueous electrolyte storage battery of the present embodiment has the following formulas (1) to (4):
Dmax≦20 μm. . . (1)
0.1 μm≦Dmin. . . (2)
Dmax/Dave<3.00. . . (3)
Dmax/Dmin<5.00. . . (4)
{In the formula, Dmax is the maximum pore diameter (μm), Dave is the average pore diameter (μm), and Dmin is the minimum pore diameter (μm). } It is a separator for water-based electrolyte solution storage batteries comprised from the nonwoven fabric which has the pore size distribution which satisfy|fills.
本実施形態の水系電解液蓄電池用セパレータを構成する不織布の最大孔径(Dmax)は、20μm以下である。最大孔径が20μm以下であると短絡が起きる可能性を低減できる。最大孔径(Dmax)の上限値は、20μm以下であればよく、短絡の可能性を低減する観点から、好ましくは18μm以下、15μm以下、10μm以下、又は5μm以下とすることができる。最大孔径(Dmax)の下限値は、限定されないが、電解液含浸性及びイオン透過性の点から、例えば、1μm以上、2μm以上、又は3μm以上とすることができる。最大孔径(Dmax)の範囲は、例えば、1μm以上20μm以下、好ましくは2μm以上18μm以下、より好ましくは3μm以上15μm以下とすることができる。 The maximum pore diameter (Dmax) of the nonwoven fabric that constitutes the separator for an aqueous electrolyte storage battery of the present embodiment is 20 μm or less. When the maximum pore diameter is 20 μm or less, the possibility of short circuit can be reduced. The upper limit of the maximum pore diameter (Dmax) may be 20 μm or less, and from the viewpoint of reducing the possibility of short circuit, it is preferably 18 μm or less, 15 μm or less, 10 μm or less, or 5 μm or less. The lower limit of the maximum pore diameter (Dmax) is not limited, but from the viewpoint of electrolyte impregnation and ion permeability, for example, it can be 1 μm or more, 2 μm or more, or 3 μm or more. The range of the maximum pore diameter (Dmax) can be, for example, 1 μm or more and 20 μm or less, preferably 2 μm or more and 18 μm or less, and more preferably 3 μm or more and 15 μm or less.
本実施形態の水系電解液蓄電池用セパレータを構成する不織布の最小孔径(Dmin)は、0.1μm以上である。最小孔径が0.1μm以上であると、イオン透過性が良く、内部抵抗が低くなり、イオン透過性に影響を及ぼすとされる容量維持率が向上する。最小孔径(Dmin)の下限値は、0.1μm以上であればよく、電解液含浸性及びイオン透過性の観点から、好ましくは0.3μm以上、0.5μm以上、又は1.0μm以上とすることができる。最小孔径(Dmin)の上限値は、限定されないが、短絡の可能性を低減する観点から、例えば、5μm以下、4μm以下、3μm以下、又は2μm以下とすることができる。最小孔径(Dmin)の範囲は、例えば、0.1μm以上5μm以下、好ましくは0.3μm以上4μm以下、より好ましくは1μm以上3μm以下とすることができる。 The minimum pore diameter (Dmin) of the nonwoven fabric that constitutes the separator for an aqueous electrolyte storage battery of the present embodiment is 0.1 μm or more. When the minimum pore diameter is 0.1 μm or more, the ion permeability is good, the internal resistance is low, and the capacity retention ratio, which is considered to affect the ion permeability, is improved. The lower limit of the minimum pore diameter (Dmin) may be 0.1 μm or more, and is preferably 0.3 μm or more, 0.5 μm or more, or 1.0 μm or more from the viewpoint of electrolyte impregnation property and ion permeability. be able to. The upper limit of the minimum pore diameter (Dmin) is not limited, but from the viewpoint of reducing the possibility of short circuit, for example, it can be 5 μm or less, 4 μm or less, 3 μm or less, or 2 μm or less. The range of the minimum pore diameter (Dmin) can be, for example, 0.1 μm or more and 5 μm or less, preferably 0.3 μm or more and 4 μm or less, and more preferably 1 μm or more and 3 μm or less.
本実施形態の水系電解液蓄電池用セパレータを構成する不織布の平均孔径(Dave)は、10μm以下であることが好ましい。10μm以下であると、短絡の可能性を低減できる。平均孔径(Dave)の上限値は、10μm以下であればよく、短絡の可能性をより効果的に低減する観点から、例えば、8μm以下、5μm以下、4μm以下、3μm以下、又は2μm以下とすることができる。平均孔径(Dave)の下限値は、限定されないが、電解液含浸性及びイオン透過性の観点から、例えば、0.1μm以上、0.5μm以上、1.0μm以上、1.5μm以上、又は2.0μm以上とすることができる。 The average pore diameter (Dave) of the nonwoven fabric that constitutes the separator for an aqueous electrolyte storage battery of the present embodiment is preferably 10 μm or less. When it is 10 μm or less, the possibility of short circuit can be reduced. The upper limit of the average pore diameter (Dave) may be 10 μm or less, and from the viewpoint of more effectively reducing the possibility of short circuit, for example, 8 μm or less, 5 μm or less, 4 μm or less, 3 μm or less, or 2 μm or less. be able to. The lower limit of the average pore diameter (Dave) is not limited, but from the viewpoint of electrolyte impregnation and ion permeability, for example, 0.1 μm or more, 0.5 μm or more, 1.0 μm or more, 1.5 μm or more, or 2 It can be 0.0 μm or more.
本実施形態の水系電解液蓄電池用セパレータを構成する不織布の平均孔径(Dave)に対する最大孔径(Dmax)の比(Dmax/Dave)は、3.00未満である。Dmax/Daveが3.00未満であると、孔径分布が均一になり、セパレータ内のイオン透過性が均一になり、部分的な析出物の発生による容量維持率の低下や短絡の可能性を低減することができる。Dmax/Daveの上限値は、3.00未満であればよく、容量維持率の低下や短絡の可能性をより効果的に低減するという観点から、2.75未満、2.50未満、2.10未満、2.00未満、1.90未満、1.80未満、又は1.70未満とすることができる。 The ratio (Dmax/Dave) of the maximum pore diameter (Dmax) to the average pore diameter (Dave) of the nonwoven fabric that constitutes the separator for an aqueous electrolyte solution storage battery of this embodiment is less than 3.00. When Dmax/Dave is less than 3.00, the pore size distribution becomes uniform, the ion permeability in the separator becomes uniform, and the capacity retention rate and the possibility of short circuit due to partial precipitation are reduced. can do. The upper limit of Dmax/Dave may be less than 3.00, and is less than 2.75, less than 2.50, and less than 2.50 from the viewpoint of more effectively reducing the possibility of a decrease in capacity retention rate and short circuit. It can be less than 10, less than 2.00, less than 1.90, less than 1.80, or less than 1.70.
本実施形態の水系電解液蓄電池用セパレータを構成する不織布の最小孔径(Dmin)に対する最大孔径(Dmax)の比(Dmax/Dmin)は、5.00未満である。5.00未満であると、孔径分布が均一になり、容量維持率の低下や短絡の可能性を低減することができる。Dmax/Dminの上限値は、5.00未満であればよく、容量維持率の低下や短絡の可能性をより効果的に低減する観点から、4.50未満、4.25未満、4.00未満、3.50未満、又は3.00未満とすることができる。 The ratio (Dmax/Dmin) of the maximum pore diameter (Dmax) to the minimum pore diameter (Dmin) of the nonwoven fabric that constitutes the separator for an aqueous electrolyte solution storage battery of the present embodiment is less than 5.00. When it is less than 5.00, the pore size distribution becomes uniform, and the reduction in capacity retention rate and the possibility of short circuit can be reduced. The upper limit of Dmax/Dmin may be less than 5.00, and is less than 4.50, less than 4.25, 4.00 from the viewpoint of more effectively reducing the possibility of a decrease in capacity retention rate and short circuit. Can be less than, less than 3.50, or less than 3.00.
本実施形態の水系電解液蓄電池用セパレータは、不織布が平均繊維径0.1μm以上5.0μm以下の極細繊維から構成されることが好ましい。0.1μm以上であると不織布の強度が高くなり、緻密になり過ぎないため、電解液の浸透性及びイオン透過性が良く、内部抵抗を低くすることができる。一方、5.0μm以下であると、局所的な緻密性のばらつきが低減され、優れた電気絶縁性を有することができ、短絡の可能性を低減することができる。極細繊維の平均繊維径は、例えば、0.2μm以上3μm以下、0.3μm以上2μm以下、0.3μm以上2.5μm以下、又は0.3μm以上2.0μm以下とすることができる。 In the separator for a water-based electrolyte storage battery of the present embodiment, it is preferable that the nonwoven fabric is made of ultrafine fibers having an average fiber diameter of 0.1 μm or more and 5.0 μm or less. When the thickness is 0.1 μm or more, the strength of the nonwoven fabric becomes high and it does not become too dense, so that the permeability of the electrolytic solution and the ion permeability are good, and the internal resistance can be lowered. On the other hand, when the thickness is 5.0 μm or less, local variations in the compactness are reduced, excellent electrical insulation can be obtained, and the possibility of short circuit can be reduced. The average fiber diameter of the ultrafine fibers may be, for example, 0.2 μm or more and 3 μm or less, 0.3 μm or more and 2 μm or less, 0.3 μm or more and 2.5 μm or less, or 0.3 μm or more and 2.0 μm or less.
本実施形態の水系電解液蓄電池用セパレータは、不織布が、繊維長150mm以上の極細繊維から構成されることが好ましい。極細繊維の繊維長が150mm以上であると不織布の強度、工程性等が良好になる。より好ましくは、極細繊維の繊維長は200mm以上である。 In the separator for an aqueous electrolyte storage battery of the present embodiment, it is preferable that the non-woven fabric is made of ultrafine fibers having a fiber length of 150 mm or more. When the fiber length of the ultrafine fibers is 150 mm or more, the strength and processability of the nonwoven fabric are improved. More preferably, the fiber length of the ultrafine fibers is 200 mm or more.
本実施形態の水系電解液蓄電池用セパレータは、不織布が連続長繊維から構成されていることが好ましい。本明細書中、連続長繊維とは、JIS−L0222で規定される繊維をいう。本実施形態の水系電解液蓄電池用セパレータは、不織布が極細繊維の連続長繊維から構成されていることがより好ましい。 In the separator for an aqueous electrolyte storage battery of the present embodiment, it is preferable that the non-woven fabric is composed of continuous long fibers. In the present specification, the continuous continuous fiber refers to a fiber defined by JIS-L0222. In the separator for a water-based electrolyte storage battery of the present embodiment, it is more preferable that the non-woven fabric is composed of continuous filaments of ultrafine fibers.
本実施形態の水系電解液蓄電池用セパレータは、不織布が熱可塑性樹脂繊維から構成されていることが好ましい。熱可塑性樹脂としては、限定されないが、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリフェニレンサルファイド系樹脂、ポリ塩化ビニル、ポリイミド、エチレン・酢酸ビニル共重合体、ポリアクリロニトリル、ポリカーボネート、ポリスチレン、アイオノマー、ポリフェニレンサルファイド(PPS)、及びこれらの混合物が挙げられる。ポリオレフィン系樹脂としては、例えば、エチレン、プロピレン、1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、1−オクテン等のα−オレフィンの単独重合体又は共重合体;高圧法低密度ポリエチレン、線状低密度ポリエチレン(LLDPE)、高密度ポリエチレン、ポリプロピレン(プロピレン単独重合体)、ポリプロピレンランダム共重合体、ポリ1−ブテン、ポリ4−メチル−1−ペンテン、エチレン・プロピレンランダム共重合体、エチレン−1−ブテンランダム共重合体、プロピレン−1−ブテンランダム共重合体等が挙げられる。ポリエステル系樹脂としては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート等が挙げられる。ポリアミド系樹脂としては、ナイロン−6(Ny)、ナイロン−66、ポリメタキシレンアジパミド等が挙げられる。 In the separator for a water-based electrolyte storage battery of the present embodiment, it is preferable that the non-woven fabric is composed of thermoplastic resin fibers. The thermoplastic resin is not limited, polyolefin resin, polyester resin, polyamide resin, polyphenylene sulfide resin, polyvinyl chloride, polyimide, ethylene vinyl acetate copolymer, polyacrylonitrile, polycarbonate, polystyrene, ionomer, Included are polyphenylene sulfide (PPS), and mixtures thereof. Examples of the polyolefin resin include homopolymers or copolymers of α-olefins such as ethylene, propylene, 1-butene, 1-hexene, 4-methyl-1-pentene and 1-octene; high pressure low density polyethylene. , Linear low density polyethylene (LLDPE), high density polyethylene, polypropylene (propylene homopolymer), polypropylene random copolymer, poly 1-butene, poly 4-methyl-1-pentene, ethylene/propylene random copolymer, Examples thereof include ethylene-1-butene random copolymer and propylene-1-butene random copolymer. Examples of polyester resins include polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate. Examples of the polyamide-based resin include nylon-6 (Ny), nylon-66, polymeta-xylene adipamide and the like.
熱可塑性樹脂繊維は、電解液の浸透性、化学的安定性、及び電気絶縁性等の観点から、好ましくは、ポリプロピレン(PP)、ナイロン−6(Ny)、ポリフェニレンサルファイド(PPS)、及びポリエチレンテレフタレート(PET)からなる群から選択される少なくとも一つである。中でも、熱可塑性樹脂繊維は、耐溶液性の観点から、ポリプロピレン(PP)、及びナイロン−6(Ny)からなる群から選択される少なくとも一つであることが好ましい。 The thermoplastic resin fiber is preferably polypropylene (PP), nylon-6 (Ny), polyphenylene sulfide (PPS), and polyethylene terephthalate from the viewpoints of electrolyte permeability, chemical stability, electrical insulation, and the like. It is at least one selected from the group consisting of (PET). Among them, the thermoplastic resin fiber is preferably at least one selected from the group consisting of polypropylene (PP) and nylon-6 (Ny) from the viewpoint of solution resistance.
本実施形態の水系電解液蓄電池用セパレータは、不織布に親水化加工が施されていることが好ましい。不織布に親水化加工が施されていると、不織布の空隙部分に電解液を含浸させやすくなるため、より多くの電解液をセパレータ内に取り込むことができ、イオン透過性及び電解液の保液性に優れた水系電解液蓄電池用セパレータを提供することができ、これを用いてより高性能な水系電解液蓄電池を提供することができるため、好ましい。親水化加工の方法としては、物理的な加工方法、例えば、コロナ処理又はプラズマ処理による親水化;化学的な加工方法、例えば表面官能基の導入、例えば、酸化処理等によりスルホン酸基、カルボン酸基等を導入すること;水溶性高分子、例えば、PVA、ポリスチレンスルホン酸、若しくはポリグルタミン酸、及び/又は界面活性剤、例えば、ノニオン性界面活性剤、陰イオン性界面活性剤、陽イオン性界面活性剤、若しくは両イオン性界面活性剤等の処理剤による加工;を採用することができる。当業者であれば、電解液との親和性を考慮して、適切な親水化加工方法及び条件、例えば、処理剤の使用量及び官能基の導入量等を選択することができる。 In the aqueous electrolyte storage battery separator of the present embodiment, it is preferable that the nonwoven fabric is subjected to hydrophilic treatment. When the non-woven fabric is hydrophilized, it becomes easier to impregnate the voids of the non-woven fabric with the electrolytic solution, so more electrolyte can be taken into the separator, and the ion permeability and liquid retention of the electrolytic solution can be improved. It is preferable because it is possible to provide an excellent separator for a water-based electrolyte storage battery, which can be used to provide a higher-performance water-based electrolyte storage battery. Examples of the hydrophilic treatment method include a physical treatment method, for example, hydrophilic treatment by corona treatment or plasma treatment; and a chemical treatment method, for example, introduction of a surface functional group, for example, sulfonic acid group or carboxylic acid by oxidative treatment. Introducing a group or the like; a water-soluble polymer such as PVA, polystyrene sulfonic acid, or polyglutamic acid, and/or a surfactant such as a nonionic surfactant, an anionic surfactant, a cationic surfactant. Processing with a treatment agent such as an activator or a zwitterionic surfactant can be employed. A person skilled in the art can select an appropriate hydrophilization processing method and conditions, for example, the usage amount of the treating agent and the introduction amount of the functional group in consideration of the affinity with the electrolytic solution.
本実施形態の水系電解液蓄電池用セパレータは、不織布の厚みが10〜300μmであることが好ましい。不織布の厚みがこの範囲であると、不織布の強度、ハンドリング性、電気抵抗値をより低減することができるため好ましい。不織布の厚みは、例えば、20〜250μm、30〜225μm、40〜200μm、50〜200μm、又は50超〜200μmとすることができる。 In the aqueous electrolyte storage battery separator of the present embodiment, the thickness of the nonwoven fabric is preferably 10 to 300 μm. When the thickness of the non-woven fabric is in this range, the strength, handling property and electric resistance value of the non-woven fabric can be further reduced, which is preferable. The thickness of the non-woven fabric can be, for example, 20 to 250 μm, 30 to 225 μm, 40 to 200 μm, 50 to 200 μm, or more than 50 to 200 μm.
本実施形態の水系電解液蓄電池用セパレータは、不織布の目付が5〜100g/m2であることが好ましい。不織布の目付がこの範囲であると、不織布の強度、電気抵抗値、イオン透過性等の観点から好ましい。不織布の目付は、例えば、7〜90g/m2、10〜80g/m2、又は10〜50g/m2とすることができる。 In the separator for an aqueous electrolyte storage battery of the present embodiment, the basis weight of the nonwoven fabric is preferably 5 to 100 g/m 2 . When the basis weight of the nonwoven fabric is within this range, it is preferable from the viewpoint of strength, electric resistance value, ion permeability and the like of the nonwoven fabric. The basis weight of the nonwoven fabric can be, for example, 7 to 90 g/m 2 , 10 to 80 g/m 2 , or 10 to 50 g/m 2 .
本実施形態の水系電解液蓄電池用セパレータは、不織布の空隙率が30〜95%であることが好ましい。不織布の空隙率がこの範囲であると、電解液の浸透性、イオン透過性、保液量、サイクル寿命、短絡防止の観点から好ましい。不織布の空隙率は、例えば、40〜90%、45〜85%、50〜80%とすることができる。 In the separator for a water-based electrolyte storage battery of the present embodiment, it is preferable that the non-woven fabric has a porosity of 30 to 95%. When the porosity of the non-woven fabric is in this range, it is preferable from the viewpoint of permeability of the electrolytic solution, ion permeability, liquid retention amount, cycle life, and prevention of short circuit. The porosity of the nonwoven fabric may be, for example, 40 to 90%, 45 to 85%, 50 to 80%.
本実施形態の水系電解液蓄電池用セパレータは、セパレータの斑の低減、短絡防止、電池性能の安定性、不良率低下等の観点から不織布の地合係数が100以下であることが好ましい。不織布の地合係数は、例えば、90以下、80以下、70以下、又は60以下とすることができる。 In the separator for a water-based electrolyte storage battery of the present embodiment, it is preferable that the formation coefficient of the nonwoven fabric is 100 or less from the viewpoints of separator unevenness, prevention of short circuit, stability of battery performance, reduction of defective rate and the like. The formation coefficient of the non-woven fabric can be, for example, 90 or less, 80 or less, 70 or less, or 60 or less.
本実施形態の水系電解液蓄電池用セパレータは、電解液の含浸性、電池容量の観点から、不織布の吸い上げ高さが10mm以上であることが好ましい。不織布の吸い上げ高さは、例えば、30mm以上、50mm以上、60mm以上、又は70mm以上とすることができる。 The separator for a water-based electrolyte storage battery of the present embodiment preferably has a non-woven fabric suction height of 10 mm or more from the viewpoint of the electrolyte impregnation property and the battery capacity. The suction height of the nonwoven fabric can be, for example, 30 mm or more, 50 mm or more, 60 mm or more, or 70 mm or more.
本実施形態の水系電解液蓄電池用セパレータは、容量特性、サイクル寿命の観点から、不織布の保液性が150%以上であることが好ましい。不織布の保液性は、例えば、200%以上、250%以上、又は300%以上とすることができる。 From the viewpoint of capacity characteristics and cycle life, the separator for an aqueous electrolyte storage battery of the present embodiment preferably has a liquid retaining property of 150% or more. The liquid retention of the non-woven fabric can be, for example, 200% or more, 250% or more, or 300% or more.
本実施形態の水系電解液蓄電池用セパレータは、ハンドリング性、不良率低減等の観点から、不織布の引張強度が3N/15mm以上であることが好ましい。不織布の引張強度は、例えば、5N/15mm以上、6N/15mm以上、7N/15mm以上、又は10N/15mm以上とすることができる。 In the separator for an aqueous electrolyte storage battery of the present embodiment, it is preferable that the nonwoven fabric has a tensile strength of 3 N/15 mm or more from the viewpoints of handling property, reduction of defective rate and the like. The tensile strength of the nonwoven fabric can be, for example, 5 N/15 mm or more, 6 N/15 mm or more, 7 N/15 mm or more, or 10 N/15 mm or more.
本実施形態の水系電解液蓄電池用セパレータは、短絡防止等の観点から、不織布の体積抵抗が1.0×108Ω・cm以上であることが好ましい。不織布の体積抵抗は、例えば、1.0×1010Ω・cm以上、1.0×1013Ω・cm以上、1.0×1014Ω・cm以上、又は1.0×1015Ω・cm以上とすることができる。 In the separator for an aqueous electrolyte storage battery of the present embodiment, it is preferable that the volume resistance of the non-woven fabric is 1.0×10 8 Ω·cm or more from the viewpoint of prevention of short circuit and the like. The volume resistance of the non-woven fabric is, for example, 1.0×10 10 Ω·cm or more, 1.0×10 13 Ω·cm or more, 1.0×10 14 Ω·cm or more, or 1.0×10 15 Ω·. It can be not less than cm.
本実施形態の水系電解液蓄電池用セパレータでは、不織布がメルトブロー法で形成されていることが好ましい。メルトブロー法とは、一般に、溶融した熱可塑性樹脂をメルトブローン紡口に送り、複数の紡口ノズル孔が1列又は複数列に並べられた紡口ノズル孔から吐出するとともに、紡口ノズル孔の列を挟むように設けられたエアギャップから噴出される高温高速の紡糸ガスによって牽引することで繊維を細化させる。次いで、吸引ファンを下部に有するコレクターネット上に、細化した繊維を集積させることにより、極細且つ均一なメルトブローン不織布を製造することができる。メルトブロー法を採用することにより、本実施形態の水系電解液蓄電池用セパレータにおいて高度に制御された細孔分布を達成しやすくなる。 In the aqueous electrolyte storage battery separator of the present embodiment, it is preferable that the nonwoven fabric is formed by a melt blow method. The melt-blowing method generally involves sending a molten thermoplastic resin to a melt-blown spinneret, discharging a plurality of spinneret nozzle holes from one or a plurality of spinneret nozzle holes arranged in a row, and forming a row of spinneret nozzle holes. The fibers are thinned by being pulled by the high-speed and high-speed spinning gas ejected from the air gap provided so as to sandwich the fiber. Then, by collecting the fine fibers on a collector net having a suction fan at the bottom, an extremely fine and uniform meltblown nonwoven fabric can be manufactured. By adopting the melt blow method, it becomes easy to achieve a highly controlled pore distribution in the separator for an aqueous electrolyte storage battery of the present embodiment.
本実施形態の水系電解液蓄電池用セパレータは、不織布が2層以上の不織布から構成された積層不織布であってもよい。積層不織布の構成としては、メルトブローン不織布をスパンボンド不織布上に積層させた積層体(以下、SMとも表記する。)、2つのスパンボンド不織布層の間にメルトブローン不織布を挟持した積層体(以下、SMSとも表記する。)等が挙げられる。不織布を積層することにより、不織布の分散性、均一性の向上、及び強度の補強が可能となる。また、SM、SMS以外の積層不織布の構成としては、例えば、不織布に編布、織布、フィルム、無機複合材料層等を積層した構成;不織布として、湿式不織布、乾式不織布、乾式パルプ不織布、フラッシュ紡糸不織布、開繊不織布等を積層した構成が挙げられる。積層する方法としては、熱エンボス加工、超音波融着等の熱融着法、ニードルパンチ、ウォータージェット等の機械的交絡法、ホットメルト接着剤、ウレタン系接着剤等の接着剤による方法、押出しラミネート等、種々公知の方法を採用することができる。 The separator for an aqueous electrolyte solution storage battery of the present embodiment may be a laminated non-woven fabric composed of two or more non-woven fabrics. As a constitution of the laminated nonwoven fabric, a laminated body obtained by laminating a meltblown nonwoven fabric on a spunbonded nonwoven fabric (hereinafter also referred to as SM), a laminated body in which a meltblown nonwoven fabric is sandwiched between two spunbonded nonwoven fabric layers (hereinafter, SMS). Will also be referred to as). By stacking the non-woven fabrics, it becomes possible to improve the dispersibility and uniformity of the non-woven fabrics and reinforce the strength. As the constitution of the laminated non-woven fabric other than SM and SMS, for example, a constitution in which a knitted fabric, a woven fabric, a film, an inorganic composite material layer and the like are laminated on the non-woven fabric; Examples include a structure in which spun nonwoven fabric, opened nonwoven fabric, and the like are laminated. As a method for laminating, heat embossing, heat fusion method such as ultrasonic fusion, mechanical entanglement method such as needle punch and water jet, hot melt adhesive, method using adhesive such as urethane adhesive, extrusion Various known methods such as laminating can be adopted.
本実施形態の水系電解液蓄電池用セパレータを構成する不織布としては、カレンダー加工が施された不織布であることが好ましい。不織布層にある繊維同士をカレンダー加工によって熱接着することによって良好に不織布を形成できる。カレンダー加工としては、不織布層を熱ロールで圧着させる方法が挙げられ、この方法は連続一体化した生産ラインで実施できることから、低目付けで均一な不織布を得ることを目的とする場合に適している。熱接着工程は、例えば、熱可塑性樹脂の融点を基準として50℃〜120℃低い温度、及び線圧100〜1000N/cmで行うことができる。カレンダー加工における線圧が上記範囲であると、不織布の強度、繊維の変形の低減、見掛け密度の低減等の観点から好ましく、本実施形態の水系電解液蓄電池用セパレータにおける高度に制御された細孔分布を達成しやすくなる。 The nonwoven fabric that constitutes the separator for an aqueous electrolyte storage battery of the present embodiment is preferably a calendered nonwoven fabric. A non-woven fabric can be favorably formed by heat-bonding the fibers in the non-woven fabric layer by calendering. Examples of calendering include a method in which a non-woven fabric layer is pressure-bonded with a hot roll. This method can be carried out in a continuously integrated production line, and is suitable for the purpose of obtaining a uniform non-woven fabric with a low basis weight. .. The heat-bonding step can be performed, for example, at a temperature 50° C. to 120° C. lower than the melting point of the thermoplastic resin and a linear pressure of 100 to 1000 N/cm. The linear pressure in the calendering is preferably in the above range from the viewpoint of the strength of the nonwoven fabric, the reduction of the deformation of the fibers, the reduction of the apparent density, etc., and the highly controlled pores in the separator for the aqueous electrolyte storage battery of the present embodiment. Distribution is easier to achieve.
カレンダー加工において使用する熱ロールは、エンボスや梨地柄のような、表面に凹凸のあるロールであってもよく、又は平滑なフラットロールであってもよい。表面に凹凸のあるロールの表面柄については、エンボス柄、梨地柄、矩形柄、線柄等、繊維同士を熱により結合できるものであれば限定されない。 The hot roll used in calendering may be a roll having an uneven surface, such as an embossed or satin finished pattern, or a smooth flat roll. The surface pattern of the roll having irregularities on the surface is not limited as long as the fibers can be bonded by heat, such as an embossed pattern, a satin pattern, a rectangular pattern, and a line pattern.
本実施形態の水系電解液蓄電池用セパレータを構成する不織布は、不織布上に無機複合材料層を有してもよい。不織布上に無機複合材料層を有すると、短絡の可能性をより低減できる。無機複合材料層は、無機粒子を含有してもよい。無機複合材料層としては、所定の温度で溶融することで無機複合材料層の細孔を閉塞することができる材料を含む多孔質層を使用することができる。多孔質層は、例えば、不織布の上に多孔質の平面構造物として設けることができる。不織布に無機材料を複合する手法としては、例えば、無機粒子を含むスラリーに不織布を含浸する方法、転写等の塗工が挙げられる。 The nonwoven fabric that constitutes the separator for an aqueous electrolyte storage battery of the present embodiment may have an inorganic composite material layer on the nonwoven fabric. When the inorganic composite material layer is provided on the nonwoven fabric, the possibility of short circuit can be further reduced. The inorganic composite material layer may contain inorganic particles. As the inorganic composite material layer, a porous layer containing a material capable of closing the pores of the inorganic composite material layer by melting at a predetermined temperature can be used. The porous layer can be provided, for example, as a porous planar structure on the nonwoven fabric. Examples of the method of combining the inorganic material with the non-woven fabric include a method of impregnating the non-woven fabric with a slurry containing inorganic particles, and coating such as transfer.
無機粒子としては、例えば、平均粒径0.5〜10μmのAl、Si、及び/又はZr元素の酸化物粒子が挙げられ、具体的には、例えば、酸化鉄、SiO2(シリカ)、Al2O3(アルミナ)、TiO2、BaTiO2、ZrOなどの酸化物微粒子;窒化アルミニウム、窒化ケイ素などの窒化物微粒子;フッ化カルシウム、フッ化バリウム、硫酸バリウムなどの難溶性のイオン結晶微粒子;シリコン、ダイヤモンドなどの共有結合性結晶微粒子;タルク、モンモリロナイトなどの粘土微粒子;ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカなどの鉱物資源由来物質またはそれらの人造物;などが挙げられ、これらを単独又は組み合わせて使用することができる。また、無機粒子としては、例えば、金属微粒子;SnO2、スズ−インジウム酸化物(ITO)などの酸化物微粒子;カーボンブラック、グラファイトなどの炭素質微粒子;などの導電性微粒子の表面を、電気絶縁性を有する材料(例えば、上記の非電気伝導性の無機微粒子を構成する材料)でコーティングすることで電気絶縁性を持たせた微粒子であってもよい。 Examples of the inorganic particles include oxide particles of Al, Si, and/or Zr element having an average particle diameter of 0.5 to 10 μm, and specific examples thereof include iron oxide, SiO 2 (silica), and Al. 2 O 3 (alumina) oxide particles such as TiO 2, BaTiO 2, ZrO; aluminum nitride, nitrides microparticles such as silicon nitride; calcium fluoride, barium fluoride, poorly soluble ionic crystal fine particles such as barium sulfate; Fine particles of covalent bond such as silicon and diamond; Fine particles of clay such as talc and montmorillonite; Mineral resource-derived substances such as boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, mica or their artificial products And the like, and these can be used alone or in combination. Examples of the inorganic particles include metal particles; oxide particles such as SnO 2 and tin-indium oxide (ITO); carbonaceous particles such as carbon black and graphite; The particles may be electrically insulating by being coated with a material having a property (for example, a material forming the above-mentioned non-electrically conductive inorganic particles).
無機複合材料層の形成は、無機粒子、バインダ、熱溶融性微粒子等を溶媒中に分散/溶解させたスラリーを作製し、得られたスラリーを不織布上に塗布及び乾燥することにより行うことができる。溶媒は、無機微粒子や、熱溶融性微粒子などを均一に分散でき、また、バインダを均一に溶解又は分散できるものであればよく、例えば、トルエンなどの芳香族炭化水素、メチルエチルケトン、メチルイソブチルケトンなどのケトン類といった有機溶媒を使用してもよい。バインダが水溶性である場合、エマルジョンとして使用する場合などは、溶媒として水を使用してもよい。なお、これらの溶媒に、アルコール類またはプロピレンオキサイド系グリコールエーテルなどを添加して、界面張力を制御してもよい。 The formation of the inorganic composite material layer can be performed by preparing a slurry in which inorganic particles, a binder, heat-meltable fine particles, etc. are dispersed/dissolved in a solvent, and applying the obtained slurry onto a non-woven fabric and drying. .. The solvent may be any one that can uniformly disperse the inorganic fine particles and the heat-meltable fine particles, and can also dissolve or disperse the binder uniformly. For example, aromatic hydrocarbons such as toluene, methyl ethyl ketone, methyl isobutyl ketone, etc. Organic solvents such as ketones may be used. Water may be used as a solvent when the binder is water-soluble or when it is used as an emulsion. The interfacial tension may be controlled by adding alcohols or propylene oxide-based glycol ethers to these solvents.
本実施形態の水系電解液蓄電池用セパレータは、水系電解液蓄電池、例えば、アルカリ二次電池のセパレータとして用いることができる。 The separator for an aqueous electrolyte storage battery of the present embodiment can be used as a separator for an aqueous electrolyte storage battery, for example, an alkaline secondary battery.
以下、実施例を挙げて本発明を更に具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。以下、特記がない限り、不織布の長さ方向とはMD方向(マシン方向)であり、幅方向とは該長さ方向と垂直の方向である。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Hereinafter, unless otherwise specified, the length direction of the nonwoven fabric is the MD direction (machine direction), and the width direction is the direction perpendicular to the length direction.
〔実施例1〕
以下のメルトブロー法(MB)により不織布を作製した。繊維素材としてポリプロピレン(PP)樹脂を使用した。紡口ノズル径0.30mmの紡口ノズルから、押出機で溶融させたポリプロピレン(PP)樹脂を押出した。押出機におけるポリプロピレン(PP)樹脂の溶融温度、紡糸ガス温度、溶融樹脂の単孔吐出量等を適宜選択し、熱可塑性樹脂を牽引細化することにより、ポリプロピレン(PP)極細繊維の連続長繊維から構成されるメルトブローン不織布(PP−MB)を作製した。さらに、エンボスロールにて、所望の厚みとなるように厚み及び見掛け密度を調整し、PP−MB不織布を作製した。得られたPP−MB不織布に、プラズマ加工により親水化加工を施し、実施例1のセパレータを作製した。プラズマ処理は、プラズマ処理装置内を10〜5Torrまで減圧にした後、酸素ガスを流量10cc/minで供給して実施した。
[Example 1]
A non-woven fabric was produced by the following melt blow method (MB). Polypropylene (PP) resin was used as the fiber material. A polypropylene (PP) resin melted by an extruder was extruded from a spinneret having a spinneret diameter of 0.30 mm. Continuous long fibers of polypropylene (PP) ultrafine fibers are obtained by appropriately selecting the melting temperature of the polypropylene (PP) resin in the extruder, the spinning gas temperature, the single-hole discharge amount of the molten resin, and pulling and thinning the thermoplastic resin. A meltblown nonwoven fabric (PP-MB) composed of Furthermore, the thickness and the apparent density were adjusted with an embossing roll so as to have a desired thickness, and a PP-MB nonwoven fabric was produced. The obtained PP-MB non-woven fabric was subjected to hydrophilic processing by plasma processing to produce the separator of Example 1. The plasma treatment was performed by reducing the pressure in the plasma treatment apparatus to 10 to 5 Torr and then supplying oxygen gas at a flow rate of 10 cc/min.
〔実施例2〜17〕
以下の表1に示すように、繊維素材、不織布構成等を変更し、また、単孔吐出量、ライン速度、及び紡糸ガス条件を適宜選択することにより、さまざまな目付、見かけ密度等を有し、極細繊維の連続長繊維から構成された実施例2〜17のセパレータを作製した。
[Examples 2 to 17]
As shown in Table 1 below, by changing the fiber material, non-woven fabric composition, etc., and by appropriately selecting the single hole discharge rate, line speed, and spinning gas conditions, various basis weights, apparent densities, etc. can be obtained. The separators of Examples 2 to 17 composed of continuous filaments of ultrafine fibers were produced.
実施例7では、得られたPP−MB不織布にスルホン化処理をすることで、親水化加工を施した。スルホン化処理は、三酸化硫黄ガスを含む乾燥空気中で、不織布の硫黄含有率が0.25質量%になるまで実施した。 In Example 7, the obtained PP-MB non-woven fabric was subjected to a sulfonation treatment to give a hydrophilic treatment. The sulfonation treatment was carried out in dry air containing sulfur trioxide gas until the sulfur content of the nonwoven fabric reached 0.25% by mass.
実施例8では、スパンボンド法で作製した連続長繊維不織布(繊維径15μm)上に直接、上記と同じメルトブロー法によりウェブを積層させ、PP−SM構造とした。さらに、エンボスロールにて一体化するとともに、所望の厚みとなるように厚み及び見掛け密度を調整し、PP−SM構造とした。 In Example 8, the web was laminated directly on the continuous long-fiber nonwoven fabric (fiber diameter: 15 μm) produced by the spunbond method by the same melt-blowing method as described above to form a PP-SM structure. Furthermore, the PP-SM structure was obtained by integrating with an embossing roll and adjusting the thickness and apparent density so as to obtain a desired thickness.
実施例13、14、及び17では、スパンボンド法で作製した連続長繊維不織布(繊維径15μm)上に直接、上記と同じメルトブロー法によりウェブを積層させ、さらにその上にスパンボンド法で作製した連続長繊維不織布(繊維径15μm)を積層して、Ny−SMS構造、PPS−SMS構造、又はPET−SMS構造とした。さらに、エンボスロールにて一体化するとともに、所望の厚みとなるように厚み及び見掛け密度を調整し、各積層不織布を得た。 In Examples 13, 14, and 17, the continuous long-fiber nonwoven fabric (fiber diameter: 15 μm) produced by the spunbond method was directly laminated with the web by the same melt-blowing method as described above, and then the spunbond method was used. A continuous long fiber nonwoven fabric (fiber diameter 15 μm) was laminated to obtain a Ny-SMS structure, a PPS-SMS structure, or a PET-SMS structure. Further, they were integrated with an embossing roll, and the thickness and apparent density were adjusted so as to obtain a desired thickness, to obtain each laminated nonwoven fabric.
実施例17では、PET−SMS不織布を作製したあと、以下の方法で作製したスラリーを塗布して100℃で乾燥させることにより、実施例17のセパレータを作製した。スラリーは、水1000g、無機粒子として球状シリカ1000g、及びバインダとしてSBRラテックスを、球状シリカ100質量部に対してSBR固形分が3質量部となるように容器に入れ、スリーワンモーターで1時間攪拌して分散させることにより得た。スラリーの塗布は、スラリー中に不織布を通して引き上げることにより行った。 In Example 17, after producing a PET-SMS nonwoven fabric, the slurry of the following method was applied and dried at 100° C. to produce the separator of Example 17. The slurry was prepared by adding 1000 g of water, 1000 g of spherical silica as inorganic particles, and SBR latex as a binder to a container such that the SBR solid content was 3 parts by mass with respect to 100 parts by mass of spherical silica, and stirring with a three-one motor for 1 hour. It was obtained by dispersing. Application of the slurry was performed by pulling a nonwoven fabric through the slurry.
〔比較例1〕
ポリプロピレン(PP)(日本ポリプロ製)を用い、スパンボンド法(SB)により、紡糸温度300℃で、フィラメントの長繊維群を、移動する捕集ネット上に向けて押し出し、紡糸速度4500m/分で紡糸し、コロナ帯電で3μC/g程度に帯電させて十分に開繊をさせ、PP−SB長繊維ウェブを捕集ネット上に形成した。得られたPP−SB長繊維ウェブを、フラットロールにて熱接着した後、コロナ放電加工を実施し、カレンダーロールにて、所望の厚みとなるように厚みを調整するとともに見掛け密度を調整し、比較例1のセパレータを作製した。
[Comparative Example 1]
Using polypropylene (PP) (manufactured by Nippon Polypro), by the spunbond method (SB), at a spinning temperature of 300° C., filament filaments are extruded onto a moving collection net at a spinning speed of 4500 m/min. The fiber was spun, charged to about 3 μC/g by corona charging, and sufficiently opened to form a PP-SB long fiber web on the collecting net. After thermally bonding the obtained PP-SB long fiber web with a flat roll, corona discharge machining was carried out, and the calender roll was used to adjust the thickness to a desired thickness and to adjust the apparent density. A separator of Comparative Example 1 was produced.
〔比較例2〕
繊維径8.5μm、繊維長5mmのポリプロピレン(PP)短繊維を、抄造法にて、目付50g/m2となるようにネット上に捕集してウェブを得た。このウェブを脱水乾燥後、カレンダーロールにて熱圧着して、比較例2のセパレータを作製した。
[Comparative Example 2]
A polypropylene (PP) short fiber having a fiber diameter of 8.5 μm and a fiber length of 5 mm was collected on a net by a papermaking method so as to have a basis weight of 50 g/m 2 to obtain a web. The web was dehydrated and dried, and then thermocompression-bonded with a calender roll to prepare a separator of Comparative Example 2.
〔比較例3〕
繊維径5.3μm、繊維長5mmのセルロース(Cel)短繊維を用い、目付を80g/m2にしたこと以外は比較例2と同様の方法で、比較例3のセパレータを作製した。
[Comparative Example 3]
A separator of Comparative Example 3 was produced in the same manner as in Comparative Example 2 except that cellulose (Cel) short fibers having a fiber diameter of 5.3 μm and a fiber length of 5 mm were used and the basis weight was 80 g/m 2 .
(1)極細繊維の平均繊維径(μm)の測定
不織布を10cm×10cmにカットし、上下60℃の鉄板に0.30MPaの圧力で90秒間プレスした後、不織布を白金にて蒸着した。SEM装置(JSM−6510 日本電子株式会社製)を用いて、加速電圧15kV、ワーキングディスタンス21mmの条件で撮影した。撮影倍率は、平均繊維径が0.5μm未満の糸は10000倍、平均繊維径が0.5μm以上1.5μm未満の糸は6000倍、1.5μm以上の糸は4000倍とした。それぞれの撮影倍率での撮影視野は、10000倍では12.7μm×9.3μm、6000倍では21.1μm×15.9μm、4000倍では31.7μm×23.9μmとした。ランダムに繊維100本以上を撮影し、全ての繊維径を測長した。ただし、糸長方向で融着している繊維同士は測定対象から除いた。以下の式:
Dw=ΣWi・Di=Σ(Ni・Di2)/(Ni・Di)
{式中、Wi=繊維径Diの重量分率=Ni・Di/ΣNi・Diである。}により求められる重量平均繊維径(Dw)を、平均繊維径(μm)とした。
(1) Measurement of average fiber diameter (μm) of ultrafine fibers A nonwoven fabric was cut into 10 cm×10 cm, pressed on an iron plate at 60° C. above and below at a pressure of 0.30 MPa for 90 seconds, and then the nonwoven fabric was vapor-deposited with platinum. An SEM device (JSM-6510 manufactured by JEOL Ltd.) was used to take an image under the conditions of an accelerating voltage of 15 kV and a working distance of 21 mm. The photographing magnification was 10,000 times for yarns having an average fiber diameter of less than 0.5 μm, 6000 times for yarns having an average fiber diameter of 0.5 μm or more and less than 1.5 μm, and 4000 times for yarns having an average fiber diameter of 1.5 μm or more. The imaging field of view at each imaging magnification was 12.7 μm×9.3 μm at 10000×, 21.1 μm×15.9 μm at 6000×, and 31.7 μm×23.9 μm at 4000×. 100 or more fibers were photographed at random and all fiber diameters were measured. However, the fibers fused in the yarn length direction were excluded from the measurement target. The following formula:
Dw=ΣWi·Di=Σ(Ni·Di 2 )/(Ni·Di)
{Wherein Wi=weight fraction of fiber diameter Di=Ni·Di/ΣNi·Di. }, and the weight average fiber diameter (Dw) determined as the average fiber diameter (μm).
紡口ノズルを1ホールのみ有する単孔紡口ノズルを製作し、単孔紡口ノズルを用いて本発明の領域内で紡糸時の糸挙動の様子を高速度カメラで撮影することにより、不織布を構成する繊維が連続長繊維であることを確認した。これまでのメルトブローン法では、繊維の分繊による細繊化と、延伸による細繊化とが混在していたと考えられるが、上述した紡糸条件によれば、分繊せず1本のまま延伸によって細繊化できることが分かった。分繊では繊維径及び繊維径分布のコントロールが非常に困難であるが、糸が1本のまま細繊化すると、均一性が高く且つ所望の平均繊維径を有する繊維から構成される不織布を得ることが可能となる。そのため、本発明の水系電解液蓄電池用セパレータにおける高度に制御された細孔分布を達成しやすくなる。 A non-woven fabric was produced by producing a single-hole spinneret having only one hole and using a single-hole spinneret to photograph the behavior of the yarn during spinning in the area of the present invention with a high-speed camera. It was confirmed that the constituent fibers were continuous long fibers. In the conventional melt blown method, it is considered that the fineness due to the fiber separation and the fineness due to the drawing are mixed, but according to the above-mentioned spinning conditions, the fiber is not separated but the single fiber is drawn. It turned out that it can be made fine. It is very difficult to control the fiber diameter and the fiber diameter distribution in the separation, but if the fibers are finely made with one thread, a non-woven fabric composed of fibers having high uniformity and a desired average fiber diameter is obtained. It becomes possible. Therefore, it becomes easy to achieve a highly controlled pore distribution in the separator for an aqueous electrolyte storage battery of the present invention.
(2)目付け(g/m2)の測定
JIS L−1906に規定の方法に従い、縦20cm×横25cmの試験片を、試料の幅方向1m当たり3箇所、長さ方向1m当たり3箇所の、計1m×1m当たり9箇所採取して質量を測定し、その平均値を単位面積当たりの質量に換算して求めた。
(2) Measurement of basis weight (g/m 2 ) According to the method specified in JIS L-1906, a test piece measuring 20 cm in length and 25 cm in width is provided at 3 locations per 1 m in the width direction of the sample and 3 locations per 1 m in the length direction. Nine places were sampled per 1 m×1 m in total, the mass was measured, and the average value was converted into the mass per unit area.
(3)厚み(μm)の測定
JIS L−1906に規定の方法に従い、幅1m当たり10箇所の厚みを測定し、その平均値を求めた。
(3) Measurement of Thickness (μm) According to the method specified in JIS L-1906, the thickness at 10 points per 1 m of width was measured, and the average value was obtained.
(4)見掛け密度(g/cm3)の測定
上記(2)にて測定した目付け(g/m2)、上記(3)にて測定した厚み(μm)を用い、以下の式:
見掛け密度=(目付け)/(厚み)
により算出した。
(4) Measurement of apparent density (g/cm 3 ) Using the basis weight (g/m 2 ) measured in ( 2 ) above and the thickness (μm) measured in (3) above, the following formula:
Apparent density=(weight)/(thickness)
It was calculated by
(5)空隙率(%)の測定
上記(4)にて計算した見掛け密度(g/cm3)を用いて、以下の式:
空隙率={1−(見掛け密度)/(樹脂密度)}/100
より算出した。
(5) Measurement of porosity (%) Using the apparent density (g/cm 3 ) calculated in (4) above, the following formula:
Porosity={1-(apparent density)/(resin density)}/100
Calculated from
(6)不織布の最大孔径(Dmax)、最小孔径(Dmin)、及び平均孔径(Dave)の測定
測定装置として、PMI社製のパームポロメーター(型式:CFP−1200AEX)を用いた。本測定装置は、不織布を試料として、あらかじめ表面張力が既知の浸液に不織布を浸し、不織布の全ての細孔を浸液の膜で覆った状態から不織布に圧力をかけ、浸液の液膜が破壊される圧力と浸液の表面張力とから計算される細孔の孔径を測定するものである。浸液としてPMI社製のシルウィックを用い、不織布を浸液に浸して充分に脱気した後、下記の式:
d=C・r/P
{式中、d(単位:μm)はフィルターの孔径であり、r(単位:N/m)は浸液の表面張力であり、P(単位:Pa)はその孔径の液膜が破壊される圧力であり、Cは浸液の濡れ張力、接触角等により定まる定数である。}を用いて孔径を求めた。
(6) Measurement of maximum pore diameter (Dmax), minimum pore diameter (Dmin), and average pore diameter (Dave) of nonwoven fabric A Palm Porometer (model: CFP-1200AEX) manufactured by PMI was used as a measuring device. This measurement device uses a non-woven fabric as a sample, dips the non-woven fabric in an immersion liquid with a known surface tension in advance, and applies pressure to the non-woven fabric from a state in which all pores of the non-woven fabric are covered with the immersion liquid, and the liquid film This is to measure the pore diameter of the pores calculated from the pressure at which is destroyed and the surface tension of the immersion liquid. Using PMI's Silwick as the immersion liquid, the non-woven fabric was immersed in the immersion liquid and sufficiently deaerated, and then the following formula:
d=C·r/P
{In the formula, d (unit: μm) is the pore size of the filter, r (unit: N/m) is the surface tension of the immersion liquid, and P (unit: Pa) is the liquid film of that pore size is destroyed. It is a pressure, and C is a constant determined by the wetting tension of the immersion liquid, the contact angle, and the like. } Was used to determine the pore size.
浸液に浸したフィルターにかける圧力Pを低圧から高圧へと連続的に変化させたときの流量(濡れ流量、単位:L/min)を測定した。初期の圧力では、最も大きな細孔の液膜でも破壊されないので流量は0L/minである。圧力を上げていくと、最も大きな細孔の液膜が破壊され、流量が発生する(バブルポイント)。このバブルポイントでの圧力を上記の式に代入して求められる孔径(μm)を、最大孔径(Dmax)とした。さらに圧力を上げていくと、圧力に応じて流量が増加した。最も小さな細孔の液膜が破壊されたときの圧力における流量は、不織布が乾いた状態の流量(乾き流量)と一致する。したがって、乾き流量と一致したときの圧力の値を代入して求められる孔径(μm)を、最小孔径(Dmin)とした。この測定方法では、ある圧力Pにおける濡れ流量を、同圧力での乾き流量で除した値を累積フィルター流量(単位:%)と呼ぶ。累積フィルター流量が50%となる圧力で破壊される液膜の孔径を、平均流量孔径(μm)と呼ぶ。この平均流量孔径(μm)を平均孔径(Dave)とした。 The flow rate (wetting flow rate, unit: L/min) when the pressure P applied to the filter immersed in the immersion liquid was continuously changed from low pressure to high pressure was measured. At the initial pressure, even the liquid film with the largest pores is not destroyed, so the flow rate is 0 L/min. As the pressure is increased, the liquid film with the largest pores is destroyed and a flow rate is generated (bubble point). The pore diameter (μm) obtained by substituting the pressure at the bubble point into the above formula was defined as the maximum pore diameter (Dmax). When the pressure was further increased, the flow rate increased with the pressure. The flow rate at the pressure when the liquid film of the smallest pores is broken matches the flow rate when the nonwoven fabric is in a dry state (dry flow rate). Therefore, the pore diameter (μm) obtained by substituting the value of the pressure when the dry flow rate was matched was taken as the minimum pore diameter (Dmin). In this measuring method, the value obtained by dividing the wetting flow rate at a certain pressure P by the dry flow rate at the same pressure is called the cumulative filter flow rate (unit: %). The pore size of the liquid film that is destroyed at the pressure at which the cumulative filter flow rate becomes 50% is called the average flow pore size (μm). This average flow pore diameter (μm) was defined as the average pore diameter (Dave).
(7)地合の変動係数の測定
測定装置型式:FMT−MIII 野村商事株式会社製を用いた。試料(不織布)をセットしない状態で、光源点灯時/消灯時の透過光量をCCDカメラでそれぞれ測定した。続いて、A4サイズにカットした不織布をセットした状態で同様に透過光量を測定し、平均透過率、平均吸光度、標準偏差(吸光度のバラツキ)を求めた。地合の変動係数は、標準偏差÷平均吸光度×10で求めた。地合指数は、目視との相関が極めて高く、不織布の地合を端的に表している。また、地合の変動係数は、地合が良い程小さく、悪いもの程大きな値になる。
(7) Measurement of coefficient of variation of formation Measurement device model: FMT-MIII manufactured by Nomura Trading Co., Ltd. was used. With the sample (nonwoven fabric) not set, the amount of transmitted light when the light source was turned on/off was measured with a CCD camera. Subsequently, the amount of transmitted light was measured in the same manner with the non-woven fabric cut into A4 size set, and the average transmittance, the average absorbance, and the standard deviation (variation of the absorbance) were obtained. The coefficient of variation of formation was calculated by standard deviation÷average absorbance×10. The formation index has a very high correlation with visual observation and directly represents the formation of the nonwoven fabric. Further, the coefficient of variation of formation becomes smaller as the formation becomes better and becomes larger as the formation becomes worse.
(8)吸い上げ高さ(mm)の測定
不織布の幅方向1mあたりに3点、試験片(幅約2.5cm×長さ20cm)を採取し、JIS L−1907 繊維製品の吸水性試験方法に記載のバイレック法に準じて測定を行った。吸い上げ溶液として、濡れ指数標準液50mN/mの基準液を使用した。試験片の一端から長さ2cmのところに印をつけ、印をつけた一端を基準液に印まで含侵し(2cm含侵し)、10分間静置した。基準液から試験片を引き上げ、吸い上げ高さ(試験片の印から、吸い上げられた液の端までの長さ)を測定し、その平均値を吸い上げ高さ(mm)とした。
(8) Measurement of suction height (mm) Three points per 1 m in the width direction of the non-woven fabric, a test piece (width of about 2.5 cm x length of 20 cm) were sampled and used for the water absorption test method of JIS L-1907 textile products. The measurement was performed according to the described Bayrec method. A standard solution having a wetting index standard solution of 50 mN/m was used as the wicking solution. A mark was made at a length of 2 cm from one end of the test piece, and one end of the mark was impregnated with the standard liquid up to the mark (2 cm) and allowed to stand for 10 minutes. The test piece was pulled up from the reference liquid, the suction height (the length from the mark of the test piece to the end of the sucked liquid) was measured, and the average value was taken as the suction height (mm).
(9)保液性(%)の測定
不織布の試験片(150mm×150mm)を用意し、その乾燥質量(Wa)を測定した。KOH水溶液中に試験片を広げて浸し、1時間後に水溶液から引き上げ、相対湿度65%の無風室内に10分間放置した後の試験片質量(Wb)を測定し、電解液保液率(%)を下記式:
電解液保液率(%)=(Wa−Wb)/Wa×100
により算出した。
(9) Measurement of liquid retention (%) A non-woven fabric test piece (150 mm x 150 mm) was prepared and its dry mass (Wa) was measured. The test piece was spread and dipped in a KOH aqueous solution, pulled out from the aqueous solution after 1 hour, and allowed to stand in a windless room with a relative humidity of 65% for 10 minutes, and the mass (Wb) of the test piece was measured to determine the electrolyte retention rate (%). The following formula:
Electrolytic solution retention rate (%)=(Wa-Wb)/Wa×100
It was calculated by
(10)引張強力(N/15mm)の測定
不織布の各端部10cmを除き、幅15mm×長さ200mmの試験片を、不織布の幅方向1mにつきそれぞれ5箇所採取した。試験片が破断するまで荷重を加え、MD方向の試験片の最大荷重時の強さの平均値を求めた。
(10) Measurement of Tensile Strength (N/15 mm) Except for 10 cm at each end of the non-woven fabric, test pieces each having a width of 15 mm and a length of 200 mm were sampled at 5 locations per 1 m in the width direction of the non-woven fabric. A load was applied until the test piece broke, and the average value of the strength of the test piece in the MD direction at the maximum load was obtained.
(11)体積抵抗(Ω・cm)の測定
測定装置:HIOKI製 Dital Super Megohmmeter、及びHIOKI製 平板試料用電極 SME−8311を使用した。100mm×100mmの試験片(不織布)を準備し、電圧10V、測定時間:60秒の測定条件で体積抵抗値(Ω・cm)を測定した。
(11) Measurement of volume resistance (Ω·cm) Measuring device: HIOKI's Digital Super Megohmmeter and HIOKI's flat plate sample electrode SME-831 1 were used. A 100 mm×100 mm test piece (nonwoven fabric) was prepared, and the volume resistance value (Ω·cm) was measured under the measurement conditions of voltage 10 V and measurement time: 60 seconds.
〔電極群の作製〕
電池の集電体として発泡ニッケル基材を用いたペースト状ニッケル正極(40mm幅)と、ペースト状水素吸蔵合金負極(40mm)との間に、上記実施例及び比較例のセパレータを介在させて渦巻き状に巻回して、電極群を作製した。
[Production of electrode group]
Spiral with the separator of the above-mentioned Example and Comparative Example interposed between a paste-like nickel positive electrode (40 mm width) using a foamed nickel base material as a current collector of a battery and a paste-like hydrogen storage alloy negative electrode (40 mm) It was wound into a shape and an electrode group was prepared.
〔電池の作製〕
上記のように作製した電極群を円筒型の外装缶に収納して、電解液(10%KOH水溶液)を注入液した。外装缶を封止して円筒型ニッケル水素電池を作製した(容量:1.7Ah)。得られたニッケル水素電池を化成するため、25℃にて0.1Cで15分間充電し、終止電圧0.8Vになるまで充電を5回繰り返した。
[Production of battery]
The electrode group manufactured as described above was housed in a cylindrical outer can, and an electrolytic solution (10% KOH aqueous solution) was injected. The outer can was sealed to produce a cylindrical nickel-hydrogen battery (capacity: 1.7 Ah). In order to form the obtained nickel-hydrogen battery, the battery was charged at 0.1° C. for 15 minutes at 25° C., and charging was repeated 5 times until the final voltage reached 0.8V.
(12)不良率(%)の測定
電池を作製する際に、電極端部のバリにより電極間が導通したもの、及びセパレータが貫通して破断等することにより短絡したものを不良と判断し、1000個あたりの不良の割合を不良率(%)とした。
(12) Measurement of defective rate (%) When manufacturing a battery, it was determined that a battery was electrically connected between electrodes due to a burr at an electrode end and a battery short-circuited due to a separator penetrating and breaking. The rate of defects per 1000 pieces was defined as the defect rate (%).
(13)容量維持率(%)の測定
上記のように得られた化成済みのニッケル水素電池を用いて、1Cで充電した後の放電容量(Ca)と、40℃で7日間保管した後の放電容量(Cb)を測定し、容量維持率(%)を下記式:
容量維持率(%)=(Cb/Ca)×100
により算出した。
(13) Measurement of capacity retention rate (%) Using the formed nickel-hydrogen battery obtained as described above, the discharge capacity (Ca) after charging at 1 C and the storage capacity at 40° C. for 7 days The discharge capacity (Cb) was measured and the capacity retention rate (%) was calculated by the following formula:
Capacity retention rate (%)=(Cb/Ca)×100
It was calculated by
(14)サイクル特性の評価
上記のように得られた化成済みのニッケル水素電池を用いて、0.1Cで充電し、15分間休止させ、終止電圧0.8Vになるまで放電率0.2Cで放電させることを1サイクルとする充放電を繰り返し、初期容量の80%未満になるときのサイクル数を測定した。サイクル数が多いほどサイクル特性に優れることを示す。サイクル数が499回以下を「×」、500回以上を「〇」、800回以上を「◎」とした。
(14) Evaluation of cycle characteristics Using the nickel-metal hydride battery that has been formed and obtained as described above, the battery is charged at 0.1 C, rested for 15 minutes, and discharged at a discharge rate of 0.2 C until the final voltage reaches 0.8 V. Charging and discharging with one cycle of discharging was repeated, and the number of cycles when the initial capacity was less than 80% was measured. It indicates that the larger the number of cycles, the better the cycle characteristics. When the number of cycles was 499 times or less, it was designated as "x", 500 cycles or more was designated as "O", and 800 cycles or more was designated as "A".
本発明の水系電解液蓄電池用セパレータは、イオン透過性、電解液の濡れ性及び保液性、かつ、電気絶縁性に優れるため、これを水系電解液蓄電池用セパレータとして用いることにより、高容量及び低抵抗で、サイクル寿命が長く、かつ、信頼性の高い水系電解液蓄電池を作製することができる。したがって、本発明は、車載用ニッケル水素電池等、幅広い分野に好適に利用可能である。 Aqueous electrolyte storage battery separator of the present invention, ion permeability, electrolyte wettability and liquid retention, and, because it is excellent in electrical insulation, by using it as an aqueous electrolyte storage battery separator, high capacity and It is possible to manufacture a highly reliable aqueous electrolyte storage battery with low resistance, long cycle life, and high reliability. Therefore, the present invention can be suitably used in a wide range of fields such as in-vehicle nickel hydrogen batteries.
Claims (11)
Dmax≦20μm ...(1)
0.1μm≦Dmin ...(2)
Dmax/Dave<3.00 ...(3)
Dmax/Dmin<5.00 ...(4)
{式中、Dmaxは最大孔径(μm)であり、Daveは平均孔径(μm)であり、Dminは最小孔径(μm)である。}を満たす孔径分布を有する、平均繊維径0.1μm以上5.0μm以下、繊維長150mm以上の極細繊維から構成され、かつ、地合変動係数が100以下である不織布から構成される、鉛蓄電池又はアルカリ電池のいずれかの水系電解液蓄電池用セパレータ。 Formulas (1) to (4) below:
Dmax≦20 μm. . . (1)
0.1 μm≦Dmin. . . (2)
Dmax/Dave<3.00. . . (3)
Dmax/Dmin<5.00. . . (4)
{In the formula, Dmax is the maximum pore diameter (μm), Dave is the average pore diameter (μm), and Dmin is the minimum pore diameter (μm). ] A lead-acid battery composed of a non-woven fabric having a pore size distribution satisfying the following conditions and having an average fiber diameter of 0.1 μm or more and 5.0 μm or less and a fiber length of 150 mm or more, and having a formation variation coefficient of 100 or less. Alternatively, a separator for an aqueous electrolyte storage battery, which is either an alkaline battery.
Dmax≦20μm ...(1)
0.1μm≦Dmin ...(2)
Dmax/Dave<3.00 ...(3)
Dmax/Dmin<5.00 ...(4)
{式中、Dmaxは最大孔径(μm)であり、Daveは平均孔径(μm)であり、Dminは最小孔径(μm)である。}を満たす孔径分布を有し、かつ、地合変動係数が100以下であるものから構成される、請求項1〜7のいずれか1項に記載の水系電解液蓄電池用セパレータ。 A laminated non-woven fabric having at least two non-woven fabric layers in which a non-woven fabric is further laminated on the non-woven fabric , the following formulas (1) to (4):
Dmax≦20 μm. . . (1)
0.1 μm≦Dmin. . . (2)
Dmax/Dave<3.00. . . (3)
Dmax/Dmin<5.00. . . (4)
{In the formula, Dmax is the maximum pore diameter (μm), Dave is the average pore diameter (μm), and Dmin is the minimum pore diameter (μm). } The pore size distribution which satisfy|fills}, and the formation variation coefficient is comprised from 100 or less, The separator for aqueous electrolyte storage batteries of any one of Claims 1-7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015053941A JP6714973B2 (en) | 2015-03-17 | 2015-03-17 | Separator for water-based electrolyte storage battery, and water-based electrolyte storage battery using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015053941A JP6714973B2 (en) | 2015-03-17 | 2015-03-17 | Separator for water-based electrolyte storage battery, and water-based electrolyte storage battery using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016173956A JP2016173956A (en) | 2016-09-29 |
JP6714973B2 true JP6714973B2 (en) | 2020-07-01 |
Family
ID=57008283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015053941A Active JP6714973B2 (en) | 2015-03-17 | 2015-03-17 | Separator for water-based electrolyte storage battery, and water-based electrolyte storage battery using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6714973B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6948586B2 (en) * | 2017-03-28 | 2021-10-13 | 株式会社Gsユアサ | Power storage element |
JP6889125B2 (en) | 2018-03-16 | 2021-06-18 | 株式会社東芝 | Separator, electrode group, secondary battery, battery pack, vehicle, and stationary power supply |
JP6442097B1 (en) * | 2018-03-29 | 2018-12-19 | ニッポン高度紙工業株式会社 | Aluminum electrolytic capacitor separator and aluminum electrolytic capacitor using the separator |
KR102067767B1 (en) * | 2018-05-24 | 2020-01-17 | 한국화학연구원 | Preparation method of absorbed glass mat separator by using plasma treatment |
WO2020054099A1 (en) | 2018-09-13 | 2020-03-19 | Kabushiki Kaisha Toshiba | Secondary battery, battery pack, vehicle, and stationary power supply |
US20220080406A1 (en) * | 2019-01-31 | 2022-03-17 | Asahi Kasei Kabushiki Kaisha | Absorbent Pad for Immunochromatographic Diagnosis Kit |
JP7118936B2 (en) | 2019-09-13 | 2022-08-16 | 株式会社東芝 | Separators, electrode groups, secondary batteries, battery packs, vehicle and stationary power supplies |
US11811088B2 (en) | 2019-09-19 | 2023-11-07 | Kabushiki Kaisha Toshiba | Separator, electrode group, secondary battery, battery pack, vehicle, and stationary power supply |
JP7360877B2 (en) * | 2019-09-27 | 2023-10-13 | 旭化成株式会社 | Separators for lead-acid batteries and lead-acid batteries |
CN111398128A (en) * | 2020-04-26 | 2020-07-10 | 安徽科达新材料有限公司 | Method for testing aperture distribution of lithium ion battery pole piece |
JPWO2022014543A1 (en) * | 2020-07-14 | 2022-01-20 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS544337A (en) * | 1977-06-14 | 1979-01-13 | Tokyo Shibaura Electric Co | Zinc alkali storage battery |
JPH07122258A (en) * | 1993-10-27 | 1995-05-12 | Mitsubishi Paper Mills Ltd | Nonwoven fabric for alkaline battery separator and method for producing the same |
JP3917873B2 (en) * | 2002-02-08 | 2007-05-23 | 日本バイリーン株式会社 | Nonwoven fabric and battery using the same |
JP4759239B2 (en) * | 2003-09-17 | 2011-08-31 | ダイワボウホールディングス株式会社 | Battery separator and method for producing the same |
JP5006546B2 (en) * | 2005-01-26 | 2012-08-22 | 日本バイリーン株式会社 | Battery separator and battery using the same |
JP2007087891A (en) * | 2005-09-26 | 2007-04-05 | Mitsubishi Paper Mills Ltd | Battery separator |
WO2008018584A1 (en) * | 2006-08-10 | 2008-02-14 | Mitsui Chemicals, Inc. | Separator for energy device and energy device having the same |
JP4963909B2 (en) * | 2006-09-14 | 2012-06-27 | 旭化成せんい株式会社 | Polyphenylene ether microfiber and its fiber aggregate |
WO2012014501A1 (en) * | 2010-07-29 | 2012-02-02 | 三井化学株式会社 | Non-woven fiber fabric, and production method and production device therefor |
JP2013012431A (en) * | 2011-06-30 | 2013-01-17 | Sanyo Electric Co Ltd | Separator for alkaline storage battery and alkaline storage battery using the separator |
JP2013225381A (en) * | 2012-04-19 | 2013-10-31 | Aion Kk | Alkaline secondary battery separator |
KR101256968B1 (en) * | 2012-10-25 | 2013-04-30 | 톱텍에이치앤에스 주식회사 | Pet non-woven fabric for separator of secondary battery and separator of secondary battery having the same |
JP2014120607A (en) * | 2012-12-17 | 2014-06-30 | Asahi Kasei Fibers Corp | Separator for power storage device |
-
2015
- 2015-03-17 JP JP2015053941A patent/JP6714973B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016173956A (en) | 2016-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6714973B2 (en) | Separator for water-based electrolyte storage battery, and water-based electrolyte storage battery using the same | |
CN104205418B (en) | separator | |
CN108701795B (en) | Nonwoven separator for lead storage battery and lead storage battery using the same | |
JP5706214B2 (en) | Separator | |
EP1459400B1 (en) | A melt blown battery separator | |
KR20180055277A (en) | Membranes having porous ethylene-vinyl acetate copolymer layer and preparation method thereof | |
CN115349194A (en) | Nonwoven fabric for solid electrolyte support and solid electrolyte sheet | |
JP6347690B2 (en) | Electrochemical element separator | |
TWI790958B (en) | Support body for solid electrolyte and solid electrolyte sheet containing same | |
JP2018088375A (en) | Alkaline battery separator | |
JP2019192484A (en) | Separator for alkaline battery | |
JP2016174106A (en) | Separator for electric double layer capacitor, and electric double layer capacitor arranged by use thereof | |
JP2004172372A (en) | Separator for electric double layer capacitor and electric double layer capacitor | |
JP2022017787A (en) | Separator | |
KR20230019490A (en) | non-woven separator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20160405 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180112 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190205 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190402 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191001 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191125 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200602 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200608 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6714973 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |