[go: up one dir, main page]

JP6713106B2 - Lead-free solder alloy, solder material and joint structure - Google Patents

Lead-free solder alloy, solder material and joint structure Download PDF

Info

Publication number
JP6713106B2
JP6713106B2 JP2016504153A JP2016504153A JP6713106B2 JP 6713106 B2 JP6713106 B2 JP 6713106B2 JP 2016504153 A JP2016504153 A JP 2016504153A JP 2016504153 A JP2016504153 A JP 2016504153A JP 6713106 B2 JP6713106 B2 JP 6713106B2
Authority
JP
Japan
Prior art keywords
mass
solder alloy
solder
lead
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016504153A
Other languages
Japanese (ja)
Other versions
JPWO2015125855A1 (en
Inventor
淳 入澤
淳 入澤
理枝 和田
理枝 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Co Ltd
Original Assignee
Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koki Co Ltd filed Critical Koki Co Ltd
Publication of JPWO2015125855A1 publication Critical patent/JPWO2015125855A1/en
Application granted granted Critical
Publication of JP6713106B2 publication Critical patent/JP6713106B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • C22C13/02Alloys based on tin with antimony or bismuth as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3463Solder compositions in relation to features of the printed circuit board or the mounting process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13298Fillers
    • H01L2224/13299Base material
    • H01L2224/133Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13301Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13311Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13601Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13611Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/1362Antimony [Sb] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13639Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13655Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13657Cobalt [Co] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8138Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/81399Material
    • H01L2224/814Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/81438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/81447Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

関連出願の相互参照Cross-reference of related applications

本願は、日本国特願2014−33234号の優先権を主張し、引用によって本願明細書の記載に組み込まれる。 This application claims the priority of Japanese Patent Application No. 2014-33234, and is incorporated into the description of the present specification by reference.

本発明は、電子部品のはんだ付けに用いられる鉛フリーはんだ合金、これを含むはんだ材料及び前記鉛フリーはんだ合金を含む接合構造体に関する。 The present invention relates to a lead-free solder alloy used for soldering an electronic component, a solder material containing the same, and a joint structure containing the lead-free solder alloy.

近年、環境問題の観点から鉛をほとんど含まない鉛フリーはんだが、プリント配線板等の電子回路基板に電子部品を実装するために用いられている。
一方、実装基板及び配線の微細化に伴い、部品の微小化も進み、その結果、はんだ接合部の微小化も進んでいる。
In recent years, lead-free solder containing almost no lead has been used for mounting electronic components on electronic circuit boards such as printed wiring boards from the viewpoint of environmental problems.
On the other hand, with the miniaturization of the mounting board and wiring, the miniaturization of components is also progressing, and as a result, the miniaturization of solder joints is also progressing.

かかるはんだ接合部の微小化に伴い、エレクトロマイグレーション(electromigration)の発生によるはんだ接合部におけるボイド、さらには、断線が問題になってきている。そこで、鉛フリーはんだにおいてエレクトロマイグレーションを抑制するための技術が種々検討されている。 With the miniaturization of such solder joints, voids in the solder joints due to occurrence of electromigration and further disconnection have become a problem. Therefore, various techniques for suppressing electromigration in lead-free solder have been studied.

例えば、特許文献1には、接続端子表面にAg−Sn金属からなる保護層を設けることが記載されている。しかし、このように接続端子表面に保護層を設ける場合には、接続構造そのものを変更する必要が生じ、大幅に製造工程の見直しが必要になる。また、保護層を設ける工程が必要になり、製造工程が煩雑になる。そこで、はんだ合金の組成を調整することで、エレクトロマイグレーションを抑制することが検討されている。例えば、特許文献2には、Cu及びInを特定の含有量含み残部がSnである鉛フリーはんだ合金が記載されている。また、特許文献3には、Pd、Mn、Zn、Al、Sb、In等の金属を含む鉛フリーはんだ合金が記載されている。
しかし、特許文献2及び3に記載のはんだ合金では、エレクトロマイグレーションを抑制する効果が不十分である。
For example, Patent Document 1 describes that a protective layer made of Ag—Sn metal is provided on the surface of the connection terminal. However, when the protective layer is provided on the surface of the connection terminal as described above, it is necessary to change the connection structure itself, and the manufacturing process needs to be significantly revised. In addition, the step of providing the protective layer is required, which complicates the manufacturing process. Therefore, it has been considered to suppress electromigration by adjusting the composition of the solder alloy. For example, Patent Document 2 describes a lead-free solder alloy in which Cu and In are contained in specific contents and the balance is Sn. Further, Patent Document 3 describes a lead-free solder alloy containing a metal such as Pd, Mn, Zn, Al, Sb, and In.
However, the solder alloys described in Patent Documents 2 and 3 are insufficient in the effect of suppressing electromigration.

日本国特開2013−135014号Japanese Patent Laid-Open No. 2013-135014 日本国特開2013−252548号Japanese Patent Laid-Open No. 2013-252548 日本国特開2014−27122号Japanese Unexamined Patent Publication No. 2014-27122

本発明は、前記のような従来技術の問題点に鑑みてなされたものであり、はんだ接合部におけるエレクトロマイグレーションの発生を十分に抑制しうる鉛フリーはんだ合金、はんだ材料及び接合構造体を提供することを課題とする。 The present invention has been made in view of the above-mentioned problems of the prior art, and provides a lead-free solder alloy, a solder material, and a bonding structure capable of sufficiently suppressing the occurrence of electromigration in a solder bonding portion. This is an issue.

本発明の鉛フリーはんだ合金は、Sbを3.0質量%超10質量%以下含み、残部としてSnを含む。 The lead-free solder alloy of the present invention contains more than 3.0% by mass and 10% by mass or less of Sb, and Sn as the balance.

本発明の鉛フリーはんだ合金は、残部としてさらにAg、Cu、Ni、Co及びGeからなる群から選択される少なくとも一種の金属を含んでいてもよい。 The lead-free solder alloy of the present invention may further contain at least one metal selected from the group consisting of Ag, Cu, Ni, Co and Ge as the balance.

本発明の鉛フリーはんだ合金は、前記Agを4.0質量%以下含んでいてもよい。 The lead-free solder alloy of the present invention may contain the Ag in an amount of 4.0 mass% or less.

本発明の鉛フリーはんだ合金は、前記Cuを1.0質量%以下含んでいてもよい。 The lead-free solder alloy of the present invention may contain 1.0% by mass or less of the Cu.

本発明の鉛フリーはんだ合金は、前記Ni、Co及びGeを合計で0.1質量%以下含んでいてもよい。 The lead-free solder alloy of the present invention may contain 0.1% by mass or less of Ni, Co and Ge in total.

本発明のはんだ材料は、前記鉛フリーはんだ合金と、フラックスとを含む。 The solder material of the present invention contains the lead-free solder alloy and a flux.

本発明の接合構造体は、電極を有する基板と半導体素子とがはんだ接合部を介して接合された接合構造体であって、前記はんだ接合部は、前記鉛フリーはんだ合金を含む。 The joint structure of the present invention is a joint structure in which a substrate having an electrode and a semiconductor element are joined via a solder joint, and the solder joint includes the lead-free solder alloy.

テストピースの概略を示すSEM写真。The SEM photograph which shows the outline of a test piece. エレクトロマイグレーション試験に用いた装置の概要を示す該略図。The schematic diagram showing the outline of the apparatus used for the electromigration test.

以下に、本発明に係る鉛フリーはんだ合金、はんだ材料及び接合構造体について説明する。 The lead-free solder alloy, the solder material, and the joint structure according to the present invention will be described below.

まず、本実施形態の鉛フリーはんだ合金は、Sb(アンチモン)を3.0質量%超10質量%以下含み、残部がSn(錫)である鉛フリーはんだ合金である。
尚、本実施形態において残部とはSb以外の成分を意味する。
First, the lead-free solder alloy of the present embodiment is a lead-free solder alloy that contains more than 3.0% by mass and 10% by mass or less of Sb (antimony) and the balance is Sn (tin).
In the present embodiment, the balance means a component other than Sb.

本実施形態の鉛フリーはんだ合金は、JIS Z 3282に定める鉛フリーはんだに用いられるはんだ合金をいう。 The lead-free solder alloy of this embodiment is a solder alloy used for lead-free solder defined in JIS Z3282.

本実施形態の鉛フリーはんだ合金(以下、単にはんだ合金ともいう。)は、Sbを3.0質量%超10質量%以下、好ましくは3.3質量%以上5質量%以下含む。
本実施形態のはんだ合金はSnを主成分とする鉛フリーはんだ合金である。
かかるSnを主成分とするはんだ合金において、Sbを前記範囲含むことにより、はんだ合金をはんだ接合に用いた場合に、エレクトロマイグレーションを十分に抑制することができる。
尚、本実施形態において、3.0質量%超とは、3.0質量%よりも大きい質量%を意味する。以下、「超」は同様の意味で用いられる。
The lead-free solder alloy (hereinafter, also simply referred to as a solder alloy) of the present embodiment contains Sb in excess of 3.0% by mass and 10% by mass or less, preferably 3.3% by mass or more and 5% by mass or less.
The solder alloy of this embodiment is a lead-free solder alloy containing Sn as a main component.
By including Sb in the above range in the solder alloy containing Sn as a main component, electromigration can be sufficiently suppressed when the solder alloy is used for solder joining.
In addition, in this embodiment, more than 3.0 mass% means mass% larger than 3.0 mass %. Hereinafter, “super” is used with the same meaning.

エレクトロマイグレーションは、金属中に高密度電流が流れた際に、金属電子が移動する現象であり、かかる、金属電子の移動によって金属部分に欠落部分(ボイド)が生じることになる。特に、実装部品の微細化によってはんだ接合部が微小になると、電流が少なくても電流密度が高くなるため、エレクトロマイグレーションが発生しやすくなる。例えば、半導体素子とインターポーザー基板とを電気的に接続するインナーバンプのようなはんだ接合部等のように、従来のプリント基板の部品実装におけるはんだ接合部に比べて極めて微小なはんだ接合部においては、はんだ接合部に高密度電流が流れてエレクトロマイグレーションが発生し、ボイド、あるいは、断線等が生じる虞がある。かかるエレクトロマイグレーションは、通常、10kA/cm以上のような高密度電流で発生しやすくなるが、はんだ接合部が球状のバンプである場合には、バンプ径が80μmのバンプの場合には31.4mA程度の電流でも電流集中部において10kA/cm以上の高密度電流が流れる可能性がある。よって、はんだ接合部が小さくなるほどより小さい電流でもエレクトロマイグレーションが発生しやすくなる。Electromigration is a phenomenon in which metal electrons move when a high-density current flows in the metal, and the movement of the metal electrons causes a missing portion (void) in the metal portion. In particular, if the solder joints become minute due to the miniaturization of mounted components, the current density becomes high even if the current is small, so that electromigration easily occurs. For example, in solder joints such as inner bumps that electrically connect a semiconductor element and an interposer substrate, extremely small solder joints as compared with solder joints in conventional component mounting of printed circuit boards. A high-density current may flow in the solder joint to cause electromigration, resulting in voids or disconnection. Such electromigration usually tends to occur at a high-density current such as 10 kA/cm 2 or more, but when the solder joint is a spherical bump, 31. When the bump diameter is 80 μm. Even with a current of about 4 mA, a high-density current of 10 kA/cm 2 or more may flow in the current concentrating portion. Therefore, as the solder joint becomes smaller, electromigration easily occurs even with a smaller current.

本実施形態のはんだ合金は、エレクトロマイグレーションが発生しにくいため、特に、半導体素子とインターポーザー基板とを電気的に接続するインナーバンプのような微小はんだ接合部に好適に用いられる。 Since the solder alloy of the present embodiment is unlikely to cause electromigration, it is particularly suitable for use in minute solder joints such as inner bumps that electrically connect a semiconductor element and an interposer substrate.

本実施形態のはんだ合金は、例えば、溶融開始温度である固相線温度が220℃〜240℃、好ましくは230℃〜236℃、凝固開始温度である液相線温度が221℃〜250℃、好ましくは230℃〜245℃の範囲である。
前記範囲の固相線温度及び液相線温度であることで、エレクトロマイグレーションを抑制しつつ、はんだ合金の流動性を適切な範囲に維持でき、且つはんだ接合後の溶融を抑制することができる。
The solder alloy of the present embodiment has, for example, a solidus temperature that is a melting start temperature of 220° C. to 240° C., preferably 230° C. to 236° C., and a liquidus temperature that is a solidification start temperature of 221° C. to 250° C. It is preferably in the range of 230°C to 245°C.
When the solidus temperature and the liquidus temperature are within the above ranges, the fluidity of the solder alloy can be maintained in an appropriate range while suppressing electromigration, and melting after soldering can be suppressed.

一般的にSnを主成分とする鉛フリーはんだ合金は、Snよりも溶融温度の低い鉛を含まないため、溶融温度が高いことが知られている。そこでSnよりも溶融温度の低い金属を含む合金とすることではんだ合金の溶融温度を調整することができる。一方、溶融温度が低くなりすぎると、例えば、前述のようなインナーバンプに用いられた場合に、マザーボードとなる基板に部品を実装する際に、インナーバンプが溶融してしまうという問題が起きる。よって、インナーバンプに用いられるはんだ合金は液相線温度が例えば、汎用鉛フリーはんだ(Sn3Ag0.5Cu)の液相線温度である220℃以上であることが好ましい。
本実施形態のはんだ合金は溶融温度が前記範囲であることで、エレクトロマイグレーションを抑制しつつ、はんだ合金の流動性を適切な範囲に維持でき、且つはんだ接合後の溶融を抑制することができる。
It is known that a lead-free solder alloy containing Sn as a main component generally has a high melting temperature because it does not contain lead having a lower melting temperature than Sn. Therefore, the melting temperature of the solder alloy can be adjusted by using an alloy containing a metal having a lower melting temperature than Sn. On the other hand, if the melting temperature becomes too low, for example, when used for the inner bump as described above, the inner bump melts when the component is mounted on the substrate to be the motherboard. Therefore, it is preferable that the liquidus temperature of the solder alloy used for the inner bump is, for example, 220° C. or higher which is the liquidus temperature of general-purpose lead-free solder (Sn3Ag0.5Cu).
When the melting temperature of the solder alloy of the present embodiment is within the above range, the fluidity of the solder alloy can be maintained in an appropriate range while suppressing electromigration, and melting after solder joining can be suppressed.

本実施形態のはんだ合金は、残部としてSn以外に、Ag(銀)、Cu(銅)、Ni(ニッケル)、Co(コバルト)及びGe(ゲルマニウム)からなる群から選択される少なくとも一種の金属をさらに含んでいてもよい。
これらの金属をさらに含むことで、よりエレクトロマイグレーションを抑制できる。
In addition to Sn, the solder alloy of the present embodiment contains at least one metal selected from the group consisting of Ag (silver), Cu (copper), Ni (nickel), Co (cobalt), and Ge (germanium) as the balance. It may further include.
By further containing these metals, electromigration can be further suppressed.

残部中の各金属の好ましい含有量は、特に限定されるものではないが、たとえば、Snは94.9質量%以上100質量%以下、好ましくは、96質量%以上100質量%以下である。
また、Ag、Cu、Ni、Co及びGeの総量は、残部のうちの0.001質量%以上5.1質量%以下、好ましくは、0.5質量%以上4.0質量%以下である。
The preferred content of each metal in the balance is not particularly limited, but for example, Sn is 94.9% by mass or more and 100% by mass or less, preferably 96% by mass or more and 100% by mass or less.
The total amount of Ag, Cu, Ni, Co and Ge is 0.001 mass% or more and 5.1 mass% or less of the balance, and preferably 0.5 mass% or more and 4.0 mass% or less.

各成分のより具体的な含有量は、例えば、以下のとおりである。
本実施形態のはんだ合金は、Snを84.4質量%以上97.0質量%以下含んでいてもよい。
本実施形態のはんだ合金は、Agを0.1質量%以上4.5質量%以下、好ましくは1.0質量%以上3.5質量%以下含んでいてもよい。
Agを前記範囲含むことで、よりエレクトロマイグレーションを抑制できる。
More specific contents of each component are as follows, for example.
The solder alloy of the present embodiment may contain Sn in an amount of 84.4% by mass or more and 97.0% by mass or less.
The solder alloy of the present embodiment may contain Ag in an amount of 0.1% by mass or more and 4.5% by mass or less, preferably 1.0% by mass or more and 3.5% by mass or less.
By including Ag in the above range, electromigration can be further suppressed.

本実施形態のはんだ合金が、Cuを含む場合には、0.1質量%以上1.2質量%以下、好ましくは0.5質量%以上0.7質量%以下含んでいてもよい。
本実施形態のはんだ合金が、Niを含む場合には、0.01質量%以上0.1質量%以下、好ましくは0.03質量%以上0.07質量%以下含んでいてもよい。
本実施形態のはんだ合金は、Coを含む場合には、0.01質量%以上0.1質量%以下、好ましくは0.03質量%以上0.07質量%以下含んでいてもよい。
本実施形態のはんだ合金は、Geを含む場合には、0.001質量%以上0.1質量%以下、好ましくは0.005質量%以上0.01質量%以下含んでいてもよい。
尚、Ni、Co、Geの合計の含有量としては、0質量%超0.1質量%以下であってもよい。
この場合、Ni、Co、Geの合計の含有量とは、Ni、Co及びGeからなる群から選択される少なくとも一種の金属の合計量を意味し、一種のみの場合にはその金属の含有量を意味する。
Cu、Ni、Co、Geを前記範囲含むことで、よりエレクトロマイグレーションを抑制できる。
When the solder alloy of the present embodiment contains Cu, it may be contained in an amount of 0.1% by mass or more and 1.2% by mass or less, preferably 0.5% by mass or more and 0.7% by mass or less.
When the solder alloy of the present embodiment contains Ni, it may be contained in an amount of 0.01% by mass or more and 0.1% by mass or less, preferably 0.03% by mass or more and 0.07% by mass or less.
When the solder alloy of the present embodiment contains Co, it may contain 0.01 mass% or more and 0.1 mass% or less, preferably 0.03 mass% or more and 0.07 mass% or less.
In the case where Ge contains Ge, the solder alloy of the present embodiment may contain 0.001% by mass or more and 0.1% by mass or less, preferably 0.005% by mass or more and 0.01% by mass or less.
The total content of Ni, Co, and Ge may be more than 0 mass% and 0.1 mass% or less.
In this case, the total content of Ni, Co and Ge means the total content of at least one metal selected from the group consisting of Ni, Co and Ge, and in the case of only one, the content of the metal. Means
By including Cu, Ni, Co, and Ge in the above range, electromigration can be further suppressed.

すなわち、本実施形態のはんだ合金の一例としては、Sbを3.0質量%超10質量%以下と、残部としてのSnとからなる鉛フリーはんだ合金が挙げられる。
この場合、残部はSn100質量%である。
That is, as an example of the solder alloy of the present embodiment, there is a lead-free solder alloy containing Sb in excess of 3.0% by mass and 10% by mass or less, and the balance Sn.
In this case, the balance is 100 mass% Sn.

また、本実施形態のはんだ合金の他の一例としては、Sbを3.0質量%超10質量%以下含み、残部がSnと、Ag、Cu、Ni、Co及びGeからなる群から選択される少なくとも一種の金属とからなる鉛フリーはんだ合金が挙げられる。
この場合、残部は、Snが84.69質量%以上96.999質量%以下、Ag、Cu、Ni、Co及びGeからなる群から選択される少なくとも一種の金属の合計量が3.001質量%以上15.31質量%以下である。
Further, as another example of the solder alloy of the present embodiment, Sb is contained in an amount of more than 3.0% by mass and 10% by mass or less, with the balance being Sn, and selected from the group consisting of Ag, Cu, Ni, Co and Ge. A lead-free solder alloy composed of at least one kind of metal can be used.
In this case, the balance of Sn is 84.69 mass% or more and 96.999 mass% or less, and the total amount of at least one metal selected from the group consisting of Ag, Cu, Ni, Co and Ge is 3.001 mass %. The above is 15.31% by mass or less.

尚、本実施形態のはんだ合金は、残部として不可避不純物を含んでいてもよい。
この場合には、本実施形態のはんだ合金の一例としては、Sbを3.0質量%超10質量%以下と、残部としてのSn及び不可避不純物とからなる鉛フリーはんだ合金である。
また、本実施形態のはんだ合金の他の一例としては、Sbを3.0質量%超10質量%以下含み、残部がSnと、Ag、Cu、Ni、Co及びGeからなる群から選択される少なくとも一種の金属と不可避不純物とからなる鉛フリーはんだ合金である。
The solder alloy of this embodiment may contain unavoidable impurities as the balance.
In this case, an example of the solder alloy of the present embodiment is a lead-free solder alloy containing Sb in excess of 3.0% by mass and 10% by mass or less, and the balance Sn and inevitable impurities.
Further, as another example of the solder alloy of the present embodiment, Sb is contained in an amount of more than 3.0% by mass and 10% by mass or less, with the balance being Sn, and selected from the group consisting of Ag, Cu, Ni, Co and Ge. It is a lead-free solder alloy composed of at least one metal and unavoidable impurities.

尚、本実施形態において前記各金属の含有量は、スパーク放電発光分光分析を用いて、JIS Z 3910に記載の方法によって測定した値をいう。 In addition, in this embodiment, the content of each metal means a value measured by a method described in JIS Z 3910 using spark discharge optical emission spectroscopy.

次に、前述のような本実施形態のはんだ合金を用いたはんだ材料について説明する。
本実施形態のはんだ材料は、前記鉛フリーはんだ合金と、フラックスとを含むはんだ材料である。
Next, a solder material using the solder alloy of the present embodiment as described above will be described.
The solder material of the present embodiment is a solder material containing the lead-free solder alloy and flux.

フラックスは、特に限定されるものでなく、公知のフラックスを用いることができるが、例えば、ロジン系、合成樹脂系等、公知のはんだ材料に用いられるものが挙げられる。 The flux is not particularly limited, and a known flux can be used, and examples thereof include those used for known solder materials such as rosin-based and synthetic resin-based fluxes.

本実施形態のはんだ材料における、はんだ合金及びフラックスの含有量は特に限定されるものではないが、例えば、はんだ合金85質量%以上95質量%以下、好ましくは88質量%以上90質量%以下、フラックス5質量%以上15質量%以下、好ましくは10質量%以上12質量%以下である。 In the solder material of the present embodiment, the content of the solder alloy and the flux is not particularly limited, for example, the solder alloy 85 mass% or more 95 mass% or less, preferably 88 mass% 90 mass% or less, the flux It is 5% by mass or more and 15% by mass or less, preferably 10% by mass or more and 12% by mass or less.

本実施形態のはんだ材料に用いるはんだ合金は粉末状であることが好ましい。粉末状のはんだ合金である場合には、前記フラックスと混合することで、ペースト状のはんだ材料(ソルダーペースト)とすることが容易にできる。 The solder alloy used in the solder material of this embodiment is preferably in powder form. In the case of a powdered solder alloy, it can be easily made into a paste-like solder material (solder paste) by mixing with the flux.

尚、本実施形態のはんだ合金は、前述のように粉末状にしてフラックスと混合してソルダーペースト等として使用する以外にも、棒状、帯状、あるいは球状等の種々の形状に成形して使用してもよい。 The solder alloy of the present embodiment is used in the form of various shapes such as rod-shaped, band-shaped, or spherical, in addition to being used in the form of powder as described above and mixed with flux to be used as a solder paste or the like. May be.

次に、前述のような本実施形態のはんだ合金及びはんだ材料が用いられた接合構造体について説明する。
本実施形態のはんだ接合体は、電極を有する基板と半導体素子とがはんだ接合部を介して接合された接合構造体であって、前記はんだ接合部は、前述の本実施形態の鉛フリーはんだ合金を含んでいる。
Next, a joint structure using the solder alloy and the solder material of the present embodiment as described above will be described.
The solder joint of the present embodiment is a joint structure in which a substrate having electrodes and a semiconductor element are joined via a solder joint, and the solder joint is the lead-free solder alloy of the present embodiment described above. Is included.

本実施形態の接合構造体は、電極を有する基板と半導体素子とがはんだ接合部を介して接合された接合構造体であって、前記はんだ接合部は、前述の鉛フリーはんだ合金を含む接合構造体である。 The bonding structure of the present embodiment is a bonding structure in which a substrate having an electrode and a semiconductor element are bonded via a solder bonding part, and the solder bonding part includes a bonding structure containing the lead-free solder alloy described above. It is the body.

電極を有する基板と半導体素子とがはんだ接合部を介して接合された接合構造体とは、例えば、フリップチップ実装によって形成された半導体パッケージが挙げられる。
フリップチップ実装によって形成された半導体パッケージは、半導体素子の下面にはんだバンプを形成し、基板上の電極とはんだ接合によって接続するもので、リード線を半導体素子の横に引き出す必要がなく、半導体素子のサイズに近い微小な半導体パッケージを得ることができる。
一方、かかる接合構造体におけるはんだ接合部は、極めて微小なサイズになるため、高密度電流が流れやすくエレクトロマイグレーションが発生しやすくなる。
さらに、かかる接合構造体のはんだ接合部は、接合構造体をさらにマザーボードとなる基板に実装する際にも熱にさらされることになるため、一度半導体素子を実装した後には容易に溶融しないことが要求される。
Examples of the bonding structure in which the substrate having the electrodes and the semiconductor element are bonded via the solder bonding portion include a semiconductor package formed by flip chip mounting.
The semiconductor package formed by flip-chip mounting is one in which solder bumps are formed on the lower surface of the semiconductor element and connected to the electrodes on the substrate by solder bonding, and it is not necessary to pull out the lead wire to the side of the semiconductor element. It is possible to obtain a minute semiconductor package close to the size of
On the other hand, since the solder joint portion in such a joint structure has an extremely small size, a high-density current easily flows and electromigration easily occurs.
Further, since the solder joint portion of the joint structure is exposed to heat when the joint structure is further mounted on the substrate that will be the mother board, it may not be easily melted once the semiconductor element is mounted. Required.

本実施形態の接合構造体において、前述のような本実施形態のはんだ材料を用いた場合には、エレクトロマイグレーションを十分に抑制できると同時に、半導体素子を接合する際には適切な温度で溶融し、接合構造体を基板に実装する際には溶融することはない。 In the joint structure of the present embodiment, when the solder material of the present embodiment as described above is used, electromigration can be sufficiently suppressed and, at the same time, when the semiconductor element is joined, it melts at an appropriate temperature. When the bonding structure is mounted on the substrate, it does not melt.

尚、本実施形態のはんだ合金は、電極を有する基板と半導体素子とがはんだ接合部を介して接合された接合構造体のはんだ接合部に使用される以外にも、通常の電子部品とプリント基板の電極との接合部に用いてもよい。 The solder alloy of the present embodiment is used for a normal electronic component and a printed circuit board, in addition to being used for a solder joint portion of a joint structure in which a substrate having electrodes and a semiconductor element are joined via a solder joint portion. You may use it for the junction part with the electrode of.

本実施形態にかかるはんだ合金、はんだ材料および接合構造体は以上のとおりであるが、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は前記説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 Although the solder alloy, the solder material, and the bonding structure according to the present embodiment are as described above, the embodiments disclosed this time are to be considered as illustrative in all points and not restrictive. .. The scope of the present invention is shown not by the above description but by the scope of the claims, and is intended to include meanings equivalent to the scope of the claims and all modifications within the scope.

本発明の鉛フリーはんだ合金は、Sbを3.0質量%超10質量%以下含み、残部としてSnを含むため、接合部のはんだ材料として用いた場合にも、エレクトロマイグレーションを十分に抑制することができる。
よって、本発明によれば、はんだ接合部におけるエレクトロマイグレーションの発生を十分に抑制しうる鉛フリーはんだ合金、はんだ材料及び接合構造体を提供することができる。
Since the lead-free solder alloy of the present invention contains more than 3.0% by mass and 10% by mass or less of Sb and Sn as the balance, it is possible to sufficiently suppress electromigration even when used as a solder material for a joint. You can
Therefore, according to the present invention, it is possible to provide a lead-free solder alloy, a solder material, and a joint structure capable of sufficiently suppressing the occurrence of electromigration in a solder joint.

次に、本発明の実施例について比較例と併せて説明する。なお、本発明は下記の実施例に限定して解釈されるものではない。 Next, examples of the present invention will be described together with comparative examples. The present invention should not be construed as being limited to the following examples.

(はんだ合金)
表1に記載の組成の各はんだ合金を準備した。
(Solder alloy)
Each solder alloy having the composition shown in Table 1 was prepared.

Figure 0006713106
Figure 0006713106

(エレクトロマイグレーション耐性試験)
図1にエレクトロマイグレーション耐性を測定するためのテストピースの概略を示す。
テストピース(試験片)は、銅電極の間に、こて先200μmのはんだこて(UNIX−JBC、ジャパンユニックス社製)を用いて各はんだ合金をはんだ付けすることで作製した。はんだ接合部の厚みは9μmになるように調整した。
また、銅電極表面は#2000の耐水研磨紙を用いて研磨してから、#4000の耐水研磨紙を用いて仕上げ研磨した。
各テストピースを用いて、図2に示す装置でエレクトロマイグレーションを測定した。測定方法は、銅電極にプローブを接触させて、平均電流密度50kA/cmで通電して電圧値を測定した。テストピースは、セラミックヒータ上に載置して60℃に加熱しながら通電した。
電圧値が測定不能になった時間を破断時間として表1に示す。
また、同様の測定方法で、実施例1,4及び比較例1について平均電流密度100kA/cmで、200kA/cmで通電して電圧値を測定し、電圧値が測定不能になった時間を破断時間として表2に示す。
さらに、実施例4及び比較例1については平均電流密度10kA/cmで通電して電圧値を測定し、電圧値が測定不能になった時間を破断時間として表2に示す。
(Electromigration resistance test)
FIG. 1 shows an outline of a test piece for measuring electromigration resistance.
The test piece (test piece) was produced by soldering each solder alloy between the copper electrodes using a soldering iron having a tip of 200 μm (UNIX-JBC, manufactured by Japan Unix Co., Ltd.). The thickness of the solder joint was adjusted to be 9 μm.
The surface of the copper electrode was polished with #2000 water-resistant abrasive paper and then finish-polished with #4000 water-resistant abrasive paper.
Using each test piece, electromigration was measured by the device shown in FIG. As a measuring method, a probe was brought into contact with a copper electrode, and a voltage value was measured by energizing the probe with an average current density of 50 kA/cm 2 . The test piece was placed on a ceramic heater and energized while being heated to 60°C.
The time when the voltage value cannot be measured is shown in Table 1 as the breaking time.
Further, in the same measurement method, an average current density of 100 kA / cm 2 for Example 1, 4 and Comparative Example 1, to measure the voltage value and current at 200 kA / cm 2, the time in which the voltage value becomes unmeasurable Is shown in Table 2 as the breaking time.
Further, in Example 4 and Comparative Example 1, the voltage value was measured by energizing with an average current density of 10 kA/cm 2 , and the time when the voltage value became unmeasurable is shown in Table 2 as the breaking time.

Figure 0006713106
Figure 0006713106

(溶融性能試験)
各はんだ合金の溶融性能を測定した。
各はんだ合金の固相線温度及び液相線温度を示差走査熱量測定 (Differential scanning calorimetry;DSC法)で昇温速度10K/minにて測定した。
結果を表1に示す。
(Melting performance test)
The melting performance of each solder alloy was measured.
The solidus temperature and the liquidus temperature of each solder alloy were measured by a differential scanning calorimetry (DSC method) at a heating rate of 10 K/min.
The results are shown in Table 1.

表1に示すように、実施例はいずれも破断時間が150時間以上であり、エレクトロマイグレーションの発生が抑制されていたことが明らかである。
また、実施例は固相線温度が230℃以上であり且つ液相線温度が240℃であった。すなわち、実施例では溶融性能が適切な範囲に調整されていた。
As shown in Table 1, in each of the examples, the breaking time was 150 hours or more, and it is clear that the occurrence of electromigration was suppressed.
In the examples, the solidus temperature was 230°C or higher and the liquidus temperature was 240°C. That is, in the example, the melting performance was adjusted to an appropriate range.

さらに、表2に示すように、比較例1では、平均電流密度10kA/cmにおいても破断時間が短く、すなわち、エレクトロマイグレーションが生じていた。一方、実施例1及び4では、平均電流密度10kA/cm、及びより高い平均電流密度である50kA/cm、100kA/cm、200kA/cmにおいても、比較例1に比べて破断時間が長く、すなわち、エレクトロマイグレーションの発生がより抑制されていた。
以上より、各実施例では、幅広い電流密度の範囲において確実にエレクトロマイグレーションの発生が抑制されていたことが明らかである。


Furthermore, as shown in Table 2, in Comparative Example 1, the breaking time was short even at the average current density of 10 kA/cm 2 , that is, electromigration occurred. On the other hand, in Examples 1 and 4, the average current density of 10 kA / cm 2, and more a higher average current density 50kA / cm 2, 100kA / cm 2, even at 200 kA / cm 2, rupture time compared with Comparative Example 1 Was long, that is, the occurrence of electromigration was further suppressed.
From the above, it is clear that in each of the examples, the occurrence of electromigration was reliably suppressed in a wide current density range.


Claims (5)

Sb:3.0質量%超10質量%以下、
Ag:0.1質量%以上4.5質量%以下、
Cu:0質量%以上1.2質量%以下、
Ni:0質量%以上0.1質量%以下、
Co:0質量%以上0.1質量%以下、
Ge:0.001質量%以上0.1質量%以下、並びに、
残部:Sn及び不可避的不純物、
からなり、
前記Ni、Co及びGeを合計で0質量%超0.1質量%以下含む鉛フリーはんだ合金。
Sb: more than 3.0% by mass and 10% by mass or less,
Ag: 0.1% by mass or more and 4.5% by mass or less,
Cu: 0 mass% or more and 1.2 mass% or less,
Ni: 0 mass% or more and 0.1 mass% or less,
Co: 0 mass% or more and 0.1 mass% or less,
Ge: 0.001 mass% or more and 0.1 mass% or less, and
Remainder: Sn and inevitable impurities,
Consists of
A lead-free solder alloy containing the total of Ni, Co and Ge in an amount of more than 0 mass% and 0.1 mass% or less.
前記Agを0.1質量%以上4.0質量%以下含む請求項1に記載の鉛フリーはんだ合金。 The lead-free solder alloy according to claim 1, wherein the Ag content is 0.1% by mass or more and 4.0% by mass or less. 前記Cuを0.1質量%以上1.0質量%以下含む請求項1又は2に記載の鉛フリーはんだ合金。 The lead-free solder alloy according to claim 1 or 2, wherein the Cu content is 0.1% by mass or more and 1.0% by mass or less. 請求項1乃至3のいずれか一項に記載の鉛フリーはんだ合金と、フラックスとを含むはんだ材料。 A solder material containing the lead-free solder alloy according to any one of claims 1 to 3 and a flux. 電極を有する基板と半導体素子とがはんだ接合部を介して接合された接合構造体であって、前記はんだ接合部は、請求項1乃至4のいずれか一項に記載の鉛フリーはんだ合金からなる接合構造体。 A joint structure in which a substrate having electrodes and a semiconductor element are joined via a solder joint, wherein the solder joint comprises the lead-free solder alloy according to any one of claims 1 to 4. Junction structure.
JP2016504153A 2014-02-24 2015-02-19 Lead-free solder alloy, solder material and joint structure Active JP6713106B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014033234 2014-02-24
JP2014033234 2014-02-24
PCT/JP2015/054581 WO2015125855A1 (en) 2014-02-24 2015-02-19 Lead-free solder alloy, solder material, and joined structure

Publications (2)

Publication Number Publication Date
JPWO2015125855A1 JPWO2015125855A1 (en) 2017-03-30
JP6713106B2 true JP6713106B2 (en) 2020-06-24

Family

ID=53878354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016504153A Active JP6713106B2 (en) 2014-02-24 2015-02-19 Lead-free solder alloy, solder material and joint structure

Country Status (5)

Country Link
US (1) US9764430B2 (en)
EP (1) EP3112080A4 (en)
JP (1) JP6713106B2 (en)
CN (1) CN106061669A (en)
WO (1) WO2015125855A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6275178B2 (en) * 2016-03-22 2018-02-07 株式会社タムラ製作所 Lead-free solder alloy, electronic circuit board and electronic control device
MX2018011176A (en) 2016-03-22 2019-03-28 Tamura Seisakusho Kk Lead-free solder alloy, flux composition, solder paste composition, electronic circuit board and electronic control device.
DE112017000184B4 (en) * 2016-06-16 2024-12-05 Fuji Electric Co., Ltd. solder joint
WO2018168858A1 (en) * 2017-03-17 2018-09-20 富士電機株式会社 Solder material
US10456872B2 (en) 2017-09-08 2019-10-29 Tamura Corporation Lead-free solder alloy, electronic circuit substrate, and electronic device
EP3476520B1 (en) * 2017-09-14 2022-06-22 Tamura Corporation Lead-free solder alloy, electronic circuit board, and electronic control device
JP6292342B1 (en) * 2017-09-20 2018-03-14 千住金属工業株式会社 Solder alloy for joining Cu pipe and / or Fe pipe, preform solder, cored solder and solder joint
US11815957B2 (en) 2019-12-10 2023-11-14 Asahi Kasei Kabushiki Kaisha Conductive film and roll thereof
CN111843279A (en) * 2020-07-22 2020-10-30 昆山市宏嘉焊锡制造有限公司 High-temperature oxidation-resistant SnSbCu lead-free solder

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527422B2 (en) * 1972-08-19 1977-03-02
JPS526468A (en) * 1975-07-04 1977-01-18 Sumitomo Metal Mining Co Ltd Brazing material
JPS5461050A (en) * 1977-10-24 1979-05-17 Nippon Almit Kk Metal brazing alloy
JPS6186091A (en) * 1984-10-03 1986-05-01 Furukawa Electric Co Ltd:The Sn-sb alloy solder
JPS6188996A (en) * 1984-10-05 1986-05-07 Furukawa Electric Co Ltd:The Sn-sb alloy solder
JP2669825B2 (en) 1987-07-03 1997-10-29 東芝エンジニアリング株式会社 Valve locking device
JPH0416897A (en) 1990-05-10 1992-01-21 Mitsubishi Electric Corp Multiwindow display system
JP3027441B2 (en) * 1991-07-08 2000-04-04 千住金属工業株式会社 High temperature solder
US5405577A (en) * 1993-04-29 1995-04-11 Seelig; Karl F. Lead-free and bismuth-free tin alloy solder composition
JPH07284983A (en) * 1994-04-20 1995-10-31 Tanaka Denshi Kogyo Kk Solder material and manufacturing method thereof
JPH08174276A (en) * 1994-12-21 1996-07-09 Tanaka Denshi Kogyo Kk Composite solder material and manufacturing method thereof
JP3353640B2 (en) * 1997-04-16 2002-12-03 富士電機株式会社 Solder alloy
US6179935B1 (en) * 1997-04-16 2001-01-30 Fuji Electric Co., Ltd. Solder alloys
JP3353662B2 (en) * 1997-08-07 2002-12-03 富士電機株式会社 Solder alloy
JP3815865B2 (en) * 1997-09-02 2006-08-30 千住金属工業株式会社 Lead-free solder alloy
JPH11291083A (en) * 1998-04-14 1999-10-26 Murata Mfg Co Ltd Solder alloy
JP2001244622A (en) * 2000-03-01 2001-09-07 Hitachi Ltd Electronic circuit device
US6784086B2 (en) 2001-02-08 2004-08-31 International Business Machines Corporation Lead-free solder structure and method for high fatigue life
TW592872B (en) * 2001-06-28 2004-06-21 Senju Metal Industry Co Lead-free solder alloy
JP3700668B2 (en) * 2002-03-27 2005-09-28 株式会社村田製作所 Solder and soldered articles
JP4016897B2 (en) 2003-06-27 2007-12-05 トヨタ自動車株式会社 Charge / discharge control device for power storage device and automobile
TW200603932A (en) * 2004-03-19 2006-02-01 Senju Metal Industry Co Lead free solder fall
JP4635715B2 (en) * 2005-05-20 2011-02-23 富士電機システムズ株式会社 Solder alloy and semiconductor device using the same
JP2008221330A (en) * 2007-03-16 2008-09-25 Fuji Electric Holdings Co Ltd Solder alloy
CN102196881B (en) * 2008-10-24 2014-06-04 三菱电机株式会社 Semiconductor device
JP4554713B2 (en) * 2009-01-27 2010-09-29 株式会社日本フィラーメタルズ Lead-free solder alloy, fatigue-resistant solder joint material including the solder alloy, and joined body using the joint material
JP5584427B2 (en) * 2009-04-14 2014-09-03 新日鉄住金マテリアルズ株式会社 Electronic member having lead-free solder alloy, solder ball and solder bump
JP5240938B2 (en) * 2009-06-25 2013-07-17 三井金属鉱業株式会社 Sn-Sb solder alloy
JP5463845B2 (en) * 2009-10-15 2014-04-09 三菱電機株式会社 Power semiconductor device and manufacturing method thereof
JP5486281B2 (en) * 2009-12-08 2014-05-07 荒川化学工業株式会社 Solder paste
JP5486282B2 (en) * 2009-12-08 2014-05-07 荒川化学工業株式会社 Solder paste flux and solder paste
JP2011138968A (en) * 2009-12-28 2011-07-14 Senju Metal Ind Co Ltd Method for soldering surface-mount component, and surface-mount component
KR101436714B1 (en) * 2010-06-01 2014-09-01 센주긴조쿠고교 가부시키가이샤 No-clean lead-free solder paste
JP5756933B2 (en) * 2010-09-29 2015-07-29 株式会社弘輝 flux
JP5490258B2 (en) * 2010-12-10 2014-05-14 三菱電機株式会社 Lead-free solder alloy, semiconductor device, and manufacturing method of semiconductor device
JP6165411B2 (en) 2011-12-26 2017-07-19 富士通株式会社 Electronic components and electronic equipment
JP5545316B2 (en) 2012-04-11 2014-07-09 大日本印刷株式会社 Print production apparatus and print production method
JP2013252548A (en) 2012-06-08 2013-12-19 Nihon Almit Co Ltd Solder paste for joining micro component
JP5893528B2 (en) 2012-07-27 2016-03-23 新日鉄住金マテリアルズ株式会社 Lead-free solder bump bonding structure
JP2014157858A (en) * 2013-02-14 2014-08-28 Fuji Electric Co Ltd Semiconductor device manufacturing method

Also Published As

Publication number Publication date
US9764430B2 (en) 2017-09-19
CN106061669A (en) 2016-10-26
EP3112080A4 (en) 2017-11-29
WO2015125855A1 (en) 2015-08-27
US20160368104A1 (en) 2016-12-22
EP3112080A1 (en) 2017-01-04
JPWO2015125855A1 (en) 2017-03-30

Similar Documents

Publication Publication Date Title
JP6713106B2 (en) Lead-free solder alloy, solder material and joint structure
JP6842500B2 (en) Lead-free solder paste and its manufacturing method
CN103561903B (en) Lead-free solder alloy
JP5664664B2 (en) Bonding method, electronic device manufacturing method, and electronic component
KR101332532B1 (en) Electronic device manufacturing method, substrate for mounting electronic component and method for manufacturing substrate for mounting semicomductor device
JP2014008523A (en) Solder alloy, solder paste and electronic circuit board
JP6828880B2 (en) Solder paste, solder alloy powder
WO2013132942A1 (en) Bonding method, bond structure, and manufacturing method for same
JP6387522B2 (en) Mounting structure
JP4722751B2 (en) Powder solder material and bonding material
JP6060199B2 (en) Solder alloy, solder paste and electronic circuit board
WO2019069788A1 (en) Solder alloy, solder junction material, and electronic circuit substrate
JP2006294600A (en) Conductive adhesive
CN113677477B (en) Solder alloy, solder paste, solder preform, solder ball, wire-like solder, cored solder, solder joint, electronic circuit board, and multilayer electronic circuit board
JP3782743B2 (en) Solder composition, soldering method and electronic component
JP5051633B2 (en) Solder alloy
JP6969070B2 (en) Solder materials, solder pastes, foam solders and solder fittings
JP2004122223A (en) Electronic component and manufacturing method
JP2020142300A (en) Formed solder, its manufacturing method and solder welding method
JP6234488B2 (en) Lead-free solder
JP7068370B2 (en) Solder alloys, solder balls and solder fittings
JP2015136735A (en) BALL-SHAPED Au-Sn-Ag TYPE SOLDER ALLOY, ELECTRONIC PART SEALED BY USING BALL-SHAPED Au-Sn-Ag TYPE SOLDER ALLOY AND ELECTRONIC PART MOUNTING DEVICE
JP2004114124A (en) Electronic part and its manufacturing method
JP2008091801A (en) Semiconductor device, and its manufacturing method
KR20170097283A (en) Lead-free solder composition and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180117

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200409

R150 Certificate of patent or registration of utility model

Ref document number: 6713106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250