[go: up one dir, main page]

JP6708579B2 - Member joining apparatus and member joining method - Google Patents

Member joining apparatus and member joining method Download PDF

Info

Publication number
JP6708579B2
JP6708579B2 JP2017061667A JP2017061667A JP6708579B2 JP 6708579 B2 JP6708579 B2 JP 6708579B2 JP 2017061667 A JP2017061667 A JP 2017061667A JP 2017061667 A JP2017061667 A JP 2017061667A JP 6708579 B2 JP6708579 B2 JP 6708579B2
Authority
JP
Japan
Prior art keywords
central axis
tubular
receiving portion
assembly
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017061667A
Other languages
Japanese (ja)
Other versions
JP2018161683A (en
Inventor
康裕 前田
康裕 前田
徹 橋村
徹 橋村
渡辺 憲一
憲一 渡辺
高行 木村
高行 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2017061667A priority Critical patent/JP6708579B2/en
Priority to PCT/JP2018/009926 priority patent/WO2018180489A1/en
Priority to US16/488,560 priority patent/US11052448B2/en
Priority to EP18778101.8A priority patent/EP3603843B1/en
Priority to CN201880021561.6A priority patent/CN110446568B/en
Publication of JP2018161683A publication Critical patent/JP2018161683A/en
Application granted granted Critical
Publication of JP6708579B2 publication Critical patent/JP6708579B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、部材接合装置および部材接合方法に関する。 The present invention relates to a member joining device and a member joining method.

自動車の軽量化や安全性向上のために、ハイテンション鋼と呼ばれる低比重かつ高強度の金属が使用されている。ハイテンション鋼は、軽量化や安全性向上に有効であるが、アルミニウム合金などのさらなる低比重材料と比較すると重い。また、ハイテンション鋼を使用すると、高強度ゆえに、成形性の低下、成形荷重の上昇、および寸法精度の低下などの問題が生じる。これらの問題を解決するために、近年、鋼よりも低比重であるアルミニウム合金の押出材、鋳造品、およびプレス成形品が車両部品に用いられている。このアルミニウム合金は、低比重であるので、軽量化には有効であるが、低強度である。そのため、ハイテンション鋼などの鋼製部品とアルミニウム合金部品と合わせて活用するマルチマテリアル化が行われている。 In order to reduce the weight and improve the safety of automobiles, a metal with low specific gravity and high strength called high tension steel is used. High-tension steel is effective in reducing weight and improving safety, but is heavier than other low-density materials such as aluminum alloys. Further, when high tension steel is used, problems such as deterioration of formability, increase of molding load and deterioration of dimensional accuracy occur due to its high strength. In order to solve these problems, in recent years, aluminum alloy extruded materials, cast products, and press-formed products, which have a lower specific gravity than steel, have been used for vehicle parts. Since this aluminum alloy has a low specific gravity, it is effective for weight reduction, but has low strength. For this reason, multi-materials are being used in which steel parts such as high tension steel and aluminum alloy parts are used together.

マルチマテリアル化で問題となるのは鋼製部品とアルミニウム合金部品のような異種金属の接合である。例えば、特許文献1では、弾性体を利用することによりマルチマテリアル化における異種金属の接合を可能にする部材接合方法が開示されている。詳細には、特許文献1の部材接合方法では、鋼製部品の穴部にアルミパイプを挿通し、アルミパイプの内側にゴム(弾性体)を挿入し、ゴムを加圧することで変形させ、それによってアルミパイプを拡大変形させ、鋼製部品とアルミパイプとをかしめ接合している。 The problem with multi-materials is the joining of dissimilar metals such as steel parts and aluminum alloy parts. For example, Patent Document 1 discloses a member joining method that enables joining of dissimilar metals in multi-materialization by utilizing an elastic body. Specifically, in the member joining method of Patent Document 1, an aluminum pipe is inserted into a hole of a steel part, a rubber (elastic body) is inserted inside the aluminum pipe, and the rubber is deformed by applying pressure to it. The aluminum pipe is expanded and deformed by caulking and joining the steel parts and the aluminum pipe.

特開2016−147309号公報JP, 2016-147309, A

特許文献1の接合方法では、複数箇所を同時に正確にかしめ接合することについて詳細に検討されていない。特に、特許文献1の接合方法では、複数箇所を同時にかしめ接合するとき、複数箇所に配置されたゴムの位置がずれ、それぞれ正確な位置でかしめ接合できないおそれがある。 In the joining method of Patent Document 1, precise caulking and joining at a plurality of locations at the same time have not been studied in detail. In particular, in the joining method of Patent Document 1, when caulking and joining a plurality of places at the same time, the positions of the rubbers arranged at the plurality of places are displaced, and there is a possibility that caulking and joining cannot be performed at correct positions.

本発明は、管体と壁部とを複数箇所で同時に正確にかしめ接合できる部材接合装置および部材接合方法を提供することを課題とする。 An object of the present invention is to provide a member joining device and a member joining method capable of accurately caulking and joining a tubular body and a wall portion simultaneously at a plurality of locations.

本発明の部材接合装置は、第1中心軸を有し、前記第1中心軸方向に直動可能な筒状アセンブリと、前記筒状アセンブリに対して前記第1中心軸方向の位置が固定されている第1押部および第2押部とを含む筒状ユニットと、前記筒状アセンブリ内に挿通され、前記第1中心軸と同方向に延びる第2中心軸を有する固定された軸状アセンブリと、前記軸状アセンブリに対して前記第2中心軸方向の位置が固定されている第1受部および第2受部とを含む軸状ユニットであって、前記第1受部および前記第2受部は前記筒状アセンブリの前記第1中心軸の径方向外側に位置し、前記第1受部は前記第1押部と前記第1および第2中心軸方向に対向し、かつ、前記第2受部は前記第2押部と前記第1および第2中心軸方向に対向している軸状ユニットと、前記第1および第2中心軸方向における前記第1押部と前記第1受部との間であって、前記筒状アセンブリの前記第1中心軸の径方向外側に配置された第1弾性部材と、前記第1および第2中心軸方向における前記第2押部と前記第2受部との間であって、前記筒状アセンブリの前記第1中心軸の径方向外側に配置された第2弾性部材と、前記筒状ユニットを前記軸状ユニットに対して、前記第1および第2中心軸方向に移動させる移動機構とを備える。 A member joining device according to the present invention has a first central axis, and a cylindrical assembly that is linearly movable in the first central axis direction; and a position in the first central axis direction that is fixed with respect to the cylindrical assembly. A fixed shaft assembly having a tubular unit including a first pushing portion and a second pushing portion, and a second central axis inserted into the tubular assembly and extending in the same direction as the first central axis. And a first receiving part and a second receiving part whose position in the second central axis direction is fixed with respect to the axial assembly, the first receiving part and the second receiving part. The receiving portion is located radially outward of the first central axis of the tubular assembly, the first receiving portion faces the first pressing portion in the first and second central axis directions, and The second receiving portion is a shaft-shaped unit that faces the second pushing portion in the first and second central axis directions, the first pushing portion and the first receiving portion in the first and second central axis directions. And a first elastic member disposed radially outside the first central axis of the tubular assembly, the second pressing portion in the first and second central axis directions, and the second A second elastic member disposed between the receiving portion and radially outside the first central axis of the tubular assembly; and the tubular unit with respect to the first and second tubular members. And a moving mechanism for moving in the second central axis direction.

この構成によれば、以下の使用方法に従って、管体と壁部とを複数箇所で同時に正確にかしめ接合できる。まず、複数の壁部の孔部に管体を挿通する。次いで、上記部材接合装置を管体の内部に挿入する。このとき、第1弾性部材および第2弾性部材(以降、単に弾性部材という場合がある)と、各壁部の孔部との第1および第2中心軸(以降、単に中心軸という場合がある)方向における位置を合わせる。そして、移動機構によって筒状ユニットを軸状ユニットに対して中心軸方向に移動させる。上記構成では、第1受部および第2受部(以降、単に受部という場合がある)は中心軸方向に不動であり、第1押部および第2押部(以降、単に押部という場合がある)は中心軸方向に可動である。即ち、筒状ユニットの移動によって、押部を受部に接近させることができ、それにより弾性部材を中心軸方向に圧縮できる。弾性部材は、この圧縮に伴って中心軸の径方向外側に向けてそれぞれ膨張され、それによって管体が拡管され、管体が壁部の孔部にかしめ接合される。ここで、中心軸の径方向とは、中心軸を有する円柱を考えたときの円柱の半径方向を意味する。 According to this configuration, the pipe body and the wall portion can be accurately and simultaneously caulked and joined at a plurality of points according to the following usage method. First, the tubular body is inserted into the holes of the plurality of walls. Next, the member joining device is inserted into the tubular body. At this time, the first elastic member and the second elastic member (hereinafter sometimes referred to simply as elastic members) and the first and second central axes (hereinafter, simply referred to as central axes) between the holes of each wall portion. ) Match the position in the direction. Then, the moving unit moves the tubular unit in the central axis direction with respect to the shaft unit. In the above configuration, the first receiving portion and the second receiving portion (hereinafter sometimes simply referred to as the receiving portion) are immovable in the central axis direction, and the first pressing portion and the second pressing portion (hereinafter simply referred to as the pressing portion). There is) is movable in the central axis direction. That is, by moving the tubular unit, the pushing portion can be brought closer to the receiving portion, and thereby the elastic member can be compressed in the central axis direction. Along with this compression, the elastic members are respectively expanded radially outward of the central axis, whereby the tube body is expanded, and the tube body is caulked and joined to the hole of the wall portion. Here, the radial direction of the center axis means the radial direction of the cylinder when the cylinder having the center axis is considered.

特に、上記構成では、第1押部と第1受部との間に配置された第1弾性部材と、第2押部と第2受部との間に配置された第2弾性部材とによって、管体と壁部とを複数箇所でかしめ接合できる。注意すべきは、接合箇所は、2箇所に限定されず、3箇所以上であってもよいことである。 Particularly, in the above configuration, the first elastic member disposed between the first pressing portion and the first receiving portion and the second elastic member disposed between the second pressing portion and the second receiving portion are used. The pipe body and the wall portion can be caulked and joined at a plurality of points. It should be noted that the number of joints is not limited to two and may be three or more.

また、この構成によれば、第1押部および第2押部は筒状アセンブリに対して中心軸方向の位置が固定されているため、互いに同期して移動する。そのため、この複数箇所でのかしめ接合は同時に実行可能である。 Further, according to this configuration, since the first pressing portion and the second pressing portion are fixed in the position in the central axis direction with respect to the tubular assembly, they move in synchronization with each other. Therefore, the caulking joining at the plurality of points can be simultaneously performed.

また、この構成によれば、弾性部材は受部に支持されているため、かしめ接合の際にも弾性部材の中心軸方向の位置は変化しない。そのため、正確な位置で複数の弾性部材をそれぞれ変形でき、正確な位置で管体の各部を拡管できる。従って、管体のうち拡管不要な部分を拡管することなく、必要な部分のみを正確に拡管できるため、正確にかしめ接合できる。 Further, according to this configuration, since the elastic member is supported by the receiving portion, the position of the elastic member in the central axis direction does not change even when caulking and joining. Therefore, each of the plurality of elastic members can be deformed at an accurate position, and each part of the tubular body can be expanded at the accurate position. Therefore, it is possible to accurately expand only the necessary portion of the tubular body without expanding the portion that does not need to be expanded, so that caulking and joining can be performed accurately.

前記筒状アセンブリには、前記第1中心軸方向に延びるスリットが設けられており、前記第1受部および前記第2受部の少なくとも一方は、前記スリットにて前記筒状アセンブリを貫通して前記筒状アセンブリの前記第1中心軸の径方向外側へ突出していてもよい。 The tubular assembly is provided with a slit extending in the first central axis direction, and at least one of the first receiving portion and the second receiving portion penetrates the tubular assembly at the slit. The cylindrical assembly may protrude outward in the radial direction of the first central axis.

この構成によれば、筒状アセンブリにスリットを設けることで、第1受部および第2受部の少なくとも一方を筒状アセンブリから中心軸の径方向外側へ突出させることができる。また、スリットが中心軸方向に延びているため、筒状アセンブリが軸状アセンブリの外側にて中心軸方向に直動可能な構成を実現できる。即ち、上記のような中心軸方向に不動の第1受部および第2受部と、中心軸方向に可動の第1押部および第2押部とからなる構成を簡易に実現できる。 According to this configuration, by providing the slit in the tubular assembly, at least one of the first receiving portion and the second receiving portion can be projected from the tubular assembly to the radial outside of the central axis. Further, since the slit extends in the central axis direction, it is possible to realize a configuration in which the tubular assembly can be moved linearly in the central axis direction outside the axial assembly. That is, it is possible to easily realize the configuration including the first receiving portion and the second receiving portion that are immovable in the central axis direction and the first pressing portion and the second pressing portion that are movable in the central axis direction as described above.

前記部材接合装置は、前記第1および第2中心軸方向における前記第1受部と前記第1弾性部材との間であって、前記筒状アセンブリの前記第1中心軸の径方向外側に配置された第1環状部材と、前記第1および第2中心軸方向における前記第2受部と前記第2弾性部材との間であって、前記筒状アセンブリの前記第1中心軸の径方向外側に配置された第2環状部材とをさらに備えてもよい。 The member joining device is arranged between the first receiving portion and the first elastic member in the first and second central axis directions and radially outside the first central axis of the tubular assembly. Between the first annular member and the second receiving portion and the second elastic member in the first and second central axis directions, and the radial outer side of the first central axis of the tubular assembly. The second annular member may be further provided.

この構成によれば、第1環状部材によって第1弾性部材を、第2環状部材によって第2弾性部材をそれぞれ均等に支持できる。仮に、第1環状部材および第2環状部材(以降、単に環状部材という場合がある)が設けられていない場合、受部が弾性部材を直接支持することになるが、受部の形状によっては弾性部材の意図しない変形をそれぞれ引き起こす恐れがある。例えば、受部が弾性部材の表面の数箇所のみを不均等に支持する形状である場合、弾性部材のうち不均等に支持された数箇所のみが不均等に変形し、管体を均等に拡管できない。しかし、上記構成のように、環状部材を介して弾性部材を支持すると、弾性部材に対して中心軸の周方向にわたって均等に力を付加できるため、弾性部材の意図しない変形を防止し、安定してかしめ接合できる。 With this configuration, the first annular member can evenly support the first elastic member, and the second annular member can evenly support the second elastic member. If the first annular member and the second annular member (hereinafter sometimes simply referred to as an annular member) are not provided, the receiving portion directly supports the elastic member, but depending on the shape of the receiving portion, the elastic portion may be elastic. Each may cause unintended deformation of the member. For example, if the receiving part has a shape that unevenly supports only a few points on the surface of the elastic member, only a few points of the elastic member that are unevenly supported are deformed unevenly and the tubular body is expanded evenly. Can not. However, if the elastic member is supported via the annular member as in the above-described configuration, a force can be uniformly applied to the elastic member in the circumferential direction of the central axis, so that the elastic member is prevented from being unintentionally deformed and stable. Can be joined by caulking.

前記第1および第2中心軸方向に垂直な断面において、前記第1受部および前記第2受部の少なくとも一方は、前記第1および第2中心軸を中心として点対称に形成されていてもよい。 In a cross section perpendicular to the first and second central axis directions, at least one of the first receiving section and the second receiving section may be formed point-symmetrically about the first and second central axes. Good.

この構成によれば、受部が上記のように点対称に形成されていることで弾性部材に対して均等に力を付加しやすい。即ち、前述のような弾性部材の意図しない変形を引き起こす可能性を低減できる。受部の形状は、上記断面において、例えば十字型またはその他の放射形状等であり得る。 According to this structure, since the receiving portion is formed in point symmetry as described above, it is easy to uniformly apply a force to the elastic member. That is, it is possible to reduce the possibility of causing the above-mentioned unintentional deformation of the elastic member. The shape of the receiving portion may be, for example, a cross shape or another radial shape in the cross section.

前記移動機構は、前記第1および第2中心軸方向以外の方向に作用する力を前記第1および第2中心軸方向の力に変換するカム機構を備えてもよい。 The moving mechanism may include a cam mechanism that converts a force acting in a direction other than the first and second central axis directions into a force in the first and second central axis directions.

この構成によれば、カム機構によって力の作用方向を変換できるため、かしめ接合する管体の配置を任意に選択できる。例えば、通常、圧縮力を付加するプレス機などの加工機は、鉛直方向に圧縮力を付加する。カム機構は、この通常のプレス機などの加工機によって付加される鉛直方向の力を例えば水平方向の力に変換できる。従って、通常のプレス機などの加工機を使用しつつ、かしめ接合する管体を水平方向に配置することもできる。さらに言えば、管体が長尺な部材であるとき、複数の壁部とかしめ接合される可能性があるため、複数箇所で同時に正確にかしめ接合できることは特に有効である。しかし、このように管体が長尺な部材であるとき、鉛直方向に圧縮力を付加する通常のプレス機などの設備では限界ストロークが規定されているため、寸法の制限上かしめ接合できないおそれがある。しかし、上記構成では、カム機構によって力の作用方向を変換できるため、寸法の制限を受けることなく、限界ストロークの影響を受けない任意の配置を選択してかしめ接合できる。 According to this configuration, since the acting direction of the force can be changed by the cam mechanism, the disposition of the pipe body to be caulked and joined can be arbitrarily selected. For example, a processing machine such as a press machine that normally applies a compressive force applies a compressive force in the vertical direction. The cam mechanism can convert the vertical force applied by the processing machine such as the ordinary press machine into, for example, the horizontal force. Therefore, the pipe body to be caulked and joined can be arranged in the horizontal direction while using a processing machine such as an ordinary press machine. Furthermore, when the tubular body is a long member, it may be caulked and joined to a plurality of wall portions, so that it is particularly effective to be able to caulk and join accurately at a plurality of locations at the same time. However, when the pipe body is a long member like this, the limit stroke is specified in equipment such as a normal press that applies a compressive force in the vertical direction, so there is a risk that caulking cannot be performed due to dimensional restrictions. is there. However, in the above configuration, since the acting direction of the force can be changed by the cam mechanism, it is possible to perform caulking and joining by selecting an arbitrary arrangement that is not affected by the limit stroke without being restricted by the size.

前記移動機構は、前記筒状ユニットを押圧する押圧機構であってもよい。 The moving mechanism may be a pressing mechanism that presses the tubular unit.

この構成によれば、押圧機構によって軸状ユニットを押圧して筒状ユニットに対して中心軸方向に移動させ、管体と壁部とを複数箇所で同時に正確にかしめ接合できる。 According to this structure, the axial unit is pressed by the pressing mechanism to move in the central axis direction with respect to the tubular unit, and the tubular body and the wall portion can be accurately and simultaneously caulked and joined at a plurality of locations.

前記移動機構は、前記筒状ユニットを引っ張る引張機構であってもよい。 The moving mechanism may be a pulling mechanism that pulls the tubular unit.

この構成によれば、引張機構によって軸状ユニットを引っ張って筒状ユニットに対して中心軸方向に移動させ、管体と壁部とを複数箇所で同時に正確にかしめ接合できる。特に、軸状ユニットを引っ張ってかしめ接合する場合、軸状ユニットを押圧してかしめ接合する場合に比べて管体および壁部の意図しない移動を抑制できることが多いため、安定してかしめ接合できる。 According to this configuration, the axial unit is pulled by the pulling mechanism to move in the central axis direction with respect to the tubular unit, and the tubular body and the wall portion can be accurately caulked and joined at a plurality of locations at the same time. In particular, when the shaft-shaped unit is pulled and caulked and joined, as compared with the case where the shaft-shaped unit is pressed and caulked and joined, unintentional movement of the tube body and the wall can be suppressed in many cases, so that the caulking and welding can be stably performed.

本発明の部材接合方法は、管体と、孔部が設けられた少なくとも2つの壁部と、請求項1から請求項6のいずれか1項に記載の部材接合装置とを準備し、前記少なくとも2つの壁部の前記孔部に前記管体を挿通し、前記管体の内部に前記部材接合装置を挿入し、前記部材接合装置によって前記第1弾性部材および前記第2弾性部材を前記第1中心軸方向に圧縮して径方向外側に向けて膨張させ、それによって前記管体の少なくとも2箇所を拡大変形させて前記少なくとも2つの壁部の前記孔部にかしめ接合することを含む。 The member joining method of the present invention prepares a tubular body, at least two wall portions provided with holes, and the member joining device according to any one of claims 1 to 6, and The tubular body is inserted into the holes of the two walls, the member joining device is inserted into the tubular body, and the first elastic member and the second elastic member are moved to the first by the member joining device. Compressing in the direction of the central axis and expanding outward in the radial direction, thereby expanding and deforming at least two points of the tubular body and caulking and joining to the holes of the at least two walls.

この方法によれば、前述のように、かしめ接合の際に弾性部材の位置がずれないため、管体と壁部とを複数箇所で同時に正確にかしめ接合できる。 According to this method, as described above, the position of the elastic member does not shift during caulking, so that the tubular body and the wall can be caulked and jointed accurately at a plurality of points at the same time.

本発明によれば、部材接合装置および部材接合方法において、管体と壁部とを複数箇所で同時に正確にかしめ接合できる。 ADVANTAGE OF THE INVENTION According to this invention, in a member joining apparatus and a member joining method, a pipe and a wall part can be accurately crimped and joined simultaneously in multiple places.

管体と壁部とゴム部材とを示す斜視図。The perspective view which shows a tube, a wall part, and a rubber member. 本発明の第1実施形態に係る部材接合装置の斜視図。The perspective view of the member joining device concerning a 1st embodiment of the present invention. 接合後の管体と壁部と示す断面図。Sectional drawing which shows the pipe body and wall part after joining. 管体と壁部とゴム部材とを示す斜視図。The perspective view which shows a tube, a wall part, and a rubber member. 第2実施形態に係る部材接合装置の分解斜視図。The exploded perspective view of the member joining device concerning a 2nd embodiment. 第2実施形態に係る部材接合装置のかしめ接合前の部分断面図。The partial cross section figure before caulking joining of the member joining device concerning a 2nd embodiment. 第2実施形態に係る部材接合装置のかしめ接合後の部分断面図。The partial cross section figure after caulking joining of the member joining device concerning a 2nd embodiment. 移動機構の押圧前の部分断面図。FIG. 6 is a partial cross-sectional view of the moving mechanism before pressing. 移動機構の押圧後の部分断面図。FIG. 7 is a partial cross-sectional view of the moving mechanism after being pressed. 第2実施形態に係る部材接合装置の変形例のかしめ接合前の部分断面図。The partial cross section figure before caulking joining of the modification of the member joining device concerning a 2nd embodiment. 第2実施形態に係る部材接合装置の変形例のかしめ接合後の部分断面図。The partial cross section figure after caulking joining of the modification of the member joining device concerning a 2nd embodiment. 第3実施形態に係る部材接合装置のかしめ接合前の部分断面図。The partial cross section figure before caulking joining of the member joining device concerning a 3rd embodiment. 第3実施形態に係る部材接合装置のかしめ接合後の部分断面図。The partial cross section figure after caulking joining of the member joining device concerning a 3rd embodiment. 移動機構の引張前の部分断面図。The partial cross section figure before pulling of a moving mechanism. 移動機構の引張後の部分断面図。The partial cross-sectional view after the tension|pulling of a moving mechanism. 第3実施形態に係る部材接合装置の第1変形例のかしめ接合前の部分断面図。The partial cross section figure before caulking joining of the 1st modification of the member joining device concerning a 3rd embodiment. 第3実施形態に係る部材接合装置の第1変形例のかしめ接合後の部分断面図。The partial cross section figure after caulking joining of the 1st modification of the member joining device concerning a 3rd embodiment. 第3実施形態に係る部材接合装置の第2変形例のかしめ接合前の部分断面図。The partial cross section figure before caulking joining of the 2nd modification of the member joining device concerning a 3rd embodiment. 第3実施形態に係る部材接合装置の第2変形例のかしめ接合後の部分断面図。The partial cross section figure after caulking joining of the 2nd modification of the member joining device concerning a 3rd embodiment.

以下、添付図面を参照して本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

(第1実施形態) (First embodiment)

以下、添付図面を参照して本発明の実施形態を説明する。以下の各実施形態では、管体100および壁部200の材質は特に限定されず、異なる材質であってもよいし、同じ材質であってもよい。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In each of the following embodiments, the materials of the tubular body 100 and the wall portion 200 are not particularly limited, and may be different materials or the same material.

(第1実施形態)
図1に示すように、本実施形態では、1本の管体100と4つの壁部200とを、4個のゴム部材(弾性部材)10を使用してかしめ接合する。本実施形態は、本発明の理解を容易にするための概念的な例示である。そのため、具体的な詳細構成については第2実施形態以降で説明する。
(First embodiment)
As shown in FIG. 1, in the present embodiment, one tubular body 100 and four wall portions 200 are caulked and joined using four rubber members (elastic members) 10. This embodiment is a conceptual illustration for facilitating the understanding of the present invention. Therefore, a specific detailed configuration will be described in the second and subsequent embodiments.

図1に示すように、管体100は円管状であり、例えばアルミパイプであり得る。壁部200は、管体100を挿通可能な円形の孔部201が形成された板状体であり、例えばハイテンション鋼製の部品の一部であり得る。本実施形態では、1本の管体100が4つの同じ形状の壁部200の孔部201に挿通されている。管体100はゴム部材10によって4箇所で拡管されることによって、4箇所で壁部200にかしめ接合される。 As shown in FIG. 1, the tubular body 100 has a circular tubular shape, and may be, for example, an aluminum pipe. The wall portion 200 is a plate-shaped body in which a circular hole portion 201 through which the tubular body 100 can be inserted is formed, and may be, for example, a part of a high tension steel component. In the present embodiment, one tubular body 100 is inserted through the holes 201 of the four wall portions 200 having the same shape. The tube body 100 is expanded by the rubber member 10 at four locations, and thereby caulked and joined to the wall portion 200 at four locations.

図2に示すように、本実施形態の部材接合装置1は、筒状ユニット20と、軸状ユニット30と、4個のゴム部材10と、概念的に示す移動機構Mとを備える。部材接合装置1は、図2では、図示を明瞭にするため、ゴム部材10が分離された状態で示されているが、実際は後述するように組み合わされた状態(図2の1点鎖線矢印参照)で使用される。 As shown in FIG. 2, the member joining device 1 of the present embodiment includes a tubular unit 20, a shaft unit 30, four rubber members 10, and a moving mechanism M conceptually shown. The member joining device 1 is shown in FIG. 2 in a state where the rubber members 10 are separated for the sake of clarity. However, in actuality, the member joining device 1 is combined as described later (see the one-dot chain line arrow in FIG. 2 ). ) Used in.

本実施形態の筒状ユニット20は、単一の筒状部材22から構成されている筒状アセンブリ21と、4個のフランジ部(押部)22aとを備える。筒状部材22は、第1中心軸L1方向に延びる概ね円筒状の部材である。筒状部材22の外周面には、4個のフランジ部(押部)22aが形成されている。換言すると、4個のフランジ部22aは、筒状アセンブリ21に対して第1中心軸L1方向の位置が固定されている。4個のフランジ部22aのうち1つは、筒状部材22の端面に形成されている。4個のフランジ部22aの外形は、第1中心軸L1方向から見て円形状であり、筒状部材22を管体100に挿入できる程度の大きさである。フランジ部22aは、第1中心軸L1に垂直な平坦面である押面22bを有している。また、筒状部材22には、第1中心軸L1方向に延びる4個のスリット22cが設けられている。 The tubular unit 20 of the present embodiment includes a tubular assembly 21 composed of a single tubular member 22 and four flange portions (pushing portions) 22a. The tubular member 22 is a generally cylindrical member extending in the first central axis L1 direction. Four flange portions (pushing portions) 22 a are formed on the outer peripheral surface of the tubular member 22. In other words, the four flange portions 22a are fixed to the tubular assembly 21 at positions in the first central axis L1 direction. One of the four flange portions 22 a is formed on the end surface of the tubular member 22. The outer shape of the four flange portions 22a is circular when viewed from the first central axis L1 direction, and is large enough to insert the tubular member 22 into the tubular body 100. The flange portion 22a has a pressing surface 22b that is a flat surface perpendicular to the first central axis L1. Further, the tubular member 22 is provided with four slits 22c extending in the first central axis L1 direction.

本実施形態の軸状ユニット30は、単一の軸状部材32から構成されている軸状アセンブリ31と、4つの突出部(受部)32bとを備える。軸状部材32は、第2中心軸L2方向に延びる概ね円柱状の軸部32aを有し、軸部32aには第2中心軸L2の径方向外側に突出する突出部(受部)32bが形成されている。換言すると、突出部32bは、軸状アセンブリ31に対して第2中心軸L2方向の位置が固定されている。図2に示すように、軸状ユニット30と筒状ユニット20とを組み合わせたとき、第1中心軸L1方向と第2中心軸L2方向とは一致する。そのため、以降、軸状ユニット30と筒状ユニット20とを組み合わせた状態では、第1中心軸L1と第2中心軸L2とをまとめて中心軸Lという場合がある。各突出部32bは、軸部32aから2方向に突出しており、詳細には、第2中心軸L2方向から見てI字型に形成されている。軸状部材32の軸部32aは径方向において筒状部材22の内径よりも小さく、突出部32bは筒状部材22の外径よりも大きい。軸状部材32は筒状部材22に挿入可能であって、挿入された状態では突出部32bは筒状部材22のスリット22cを介して筒状部材22を貫通して筒状部材22の径方向外側へ突出している。そのため、軸状部材32は、部分的に筒状部材22の内外にて中心軸L方向に筒状部材22に対して相対的に直動可能である。また、突出部32bは、第2中心軸L2に垂直な平坦面である受面32cを有している。受面32cは、中心軸L方向においてフランジ部22aの押面22bと対向している。従って、上記の直動によって受面32cと押面22bとの間の間隔が変化する。 The shaft-shaped unit 30 of the present embodiment includes a shaft-shaped assembly 31 composed of a single shaft-shaped member 32, and four projecting portions (receiving portions) 32b. The shaft-shaped member 32 has a substantially columnar shaft portion 32a extending in the second central axis L2 direction, and the shaft portion 32a has a protruding portion (reception portion) 32b protruding outward in the radial direction of the second central axis L2. Has been formed. In other words, the protrusion 32b is fixed to the shaft-shaped assembly 31 at a position in the second central axis L2 direction. As shown in FIG. 2, when the axial unit 30 and the tubular unit 20 are combined, the first central axis L1 direction and the second central axis L2 direction coincide with each other. Therefore, hereinafter, in a state where the shaft-shaped unit 30 and the tubular unit 20 are combined, the first central axis L1 and the second central axis L2 may be collectively referred to as the central axis L. Each protruding portion 32b protrudes from the shaft portion 32a in two directions, and more specifically, is formed in an I shape when viewed from the second central axis L2 direction. The shaft portion 32a of the shaft-shaped member 32 is smaller than the inner diameter of the tubular member 22 in the radial direction, and the protrusion 32b is larger than the outer diameter of the tubular member 22. The shaft-shaped member 32 can be inserted into the tubular member 22, and in the inserted state, the protruding portion 32b penetrates the tubular member 22 through the slit 22c of the tubular member 22 and the radial direction of the tubular member 22. It projects to the outside. Therefore, the shaft-shaped member 32 is partially movable inside and outside the tubular member 22 in the direction of the central axis L relative to the tubular member 22. Further, the protrusion 32b has a receiving surface 32c which is a flat surface perpendicular to the second central axis L2. The receiving surface 32c faces the pressing surface 22b of the flange portion 22a in the central axis L direction. Therefore, the above-described linear movement changes the distance between the receiving surface 32c and the pressing surface 22b.

4個のゴム部材10は、両端面が平坦面である円筒状であり、全て同じものである。ゴム部材10の材質は、例えば、ウレタンゴム、クロロプレンゴム、CNRゴム(クロロプレンゴム+ニトリルゴム)、またはシリコンゴムのいずれかであることが好ましい。また、ゴム部材10の硬度は、ショアAで30以上であることが好ましい。 The four rubber members 10 have a cylindrical shape with flat end surfaces, and are all the same. The material of the rubber member 10 is preferably, for example, urethane rubber, chloroprene rubber, CNR rubber (chloroprene rubber+nitrile rubber), or silicon rubber. Further, the hardness of the rubber member 10 is preferably 30 or more in Shore A.

部材接合装置1は、筒状ユニット20が軸状ユニット30に挿入され、ゴム部材10が筒状部材22の径方向外側であって、フランジ部22aと突出部32bとの間にそれぞれ配置されることで構成される。 In the member joining device 1, the tubular unit 20 is inserted into the axial unit 30, the rubber member 10 is arranged radially outside the tubular member 22, and is arranged between the flange portion 22a and the protruding portion 32b. It is composed of

かしめ接合の際、図1に示すように、まず、4つの壁部200の孔部201に管体100を挿通する。次いで、図2に示す部材接合装置1を組み合わせた状態で管体100の内部に挿入する。このとき各ゴム部材10と、各壁部200の孔部201との中心軸L方向における位置を合わせ、軸状ユニット30を固定する。その後、移動機構Mによって筒状ユニット20を軸状ユニット30に対して、中心軸L方向に移動させる(図2の矢印参照)。これにより、フランジ部22aの押面22bと突出部32bの受面32cとの間が狭まり、押面22bと受面32cとによってゴム部材10が中心軸L方向にそれぞれ圧縮される。この圧縮に伴って中心軸Lの径方向外側に向けてゴム部材10がそれぞれ膨張され、図3に示すように、ゴム部材10によって管体100の各部が拡管され、管体100が壁部200の孔部201にかしめ接合される。本発明は前述のように概念的な例示であり、実際上、受面32cの面積を大きくするか、または、第2実施形態以降の環状圧子40(図5等参照)のような部材を用いるなどしてかしめ接合することが好ましい。 At the time of caulking and joining, as shown in FIG. 1, first, the tubular body 100 is inserted into the hole portions 201 of the four wall portions 200. Then, the member joining device 1 shown in FIG. 2 is inserted into the tubular body 100 in a combined state. At this time, the positions of the rubber members 10 and the hole portions 201 of the wall portions 200 in the central axis L direction are aligned, and the shaft-shaped unit 30 is fixed. Then, the tubular unit 20 is moved in the central axis L direction with respect to the shaft unit 30 by the moving mechanism M (see the arrow in FIG. 2 ). As a result, the gap between the pressing surface 22b of the flange portion 22a and the receiving surface 32c of the protruding portion 32b is narrowed, and the rubber member 10 is compressed in the central axis L direction by the pressing surface 22b and the receiving surface 32c. Along with this compression, the rubber members 10 are respectively expanded outward in the radial direction of the central axis L, and as shown in FIG. 3, the rubber members 10 expand the respective parts of the tubular body 100, so that the tubular body 100 is covered with the wall portion 200. It is caulked and joined to the hole portion 201. The present invention is a conceptual example as described above, and in practice, the area of the receiving surface 32c is increased, or a member such as the annular indenter 40 (see FIG. 5, etc.) of the second and subsequent embodiments is used. It is preferable to perform caulking and joining.

本実施形態によれば、管体100と壁部200とを4箇所で同時に正確にかしめ接合できる。 According to the present embodiment, the pipe body 100 and the wall portion 200 can be accurately caulked and joined at four locations simultaneously.

本実施形態の構成では、フランジ部22aと突出部32bとの間に配置された4個のゴム部材10によって、管体100と壁部200とを4箇所でかしめ接合できる。 In the configuration of this embodiment, the tubular body 100 and the wall portion 200 can be caulked and joined at four points by the four rubber members 10 arranged between the flange portion 22a and the protruding portion 32b.

また、本実施形態によれば、各フランジ部22aは、筒状アセンブリ21に対して中心軸L方向の位置が固定されているため、互いに同期して移動する。そのため、この4箇所でのかしめ接合は同時に実行可能である。 Further, according to the present embodiment, since the flange portions 22a are fixed in position in the central axis L direction with respect to the tubular assembly 21, they move in synchronization with each other. Therefore, the caulking joining at these four locations can be performed simultaneously.

また、本実施形態によれば、ゴム部材10は中心軸L方向において突出部32bに支持されているため、かしめ接合の際にもゴム部材10の中心軸L方向の位置は変化しない。そのため、正確な位置でゴム部材10をそれぞれ変形させることができ、正確な位置で管体100の各部を拡管できる。従って、管体100のうち拡管不要な部分を拡管することなく、必要な部分のみを正確に拡管できるため、正確にかしめ接合できる。 Further, according to the present embodiment, since the rubber member 10 is supported by the protrusion 32b in the central axis L direction, the position of the rubber member 10 in the central axis L direction does not change even when caulking and joining. Therefore, the rubber member 10 can be deformed at each accurate position, and each part of the tubular body 100 can be expanded at each accurate position. Therefore, it is possible to accurately expand only the necessary part of the tubular body 100 without expanding the part that does not need to be expanded, so that the caulking can be performed accurately.

また、本実施形態によれば、筒状部材22にスリット22cを設けることで、突出部32bを筒状部材22から中心軸Lの径方向外側へ突出させることができる。また、スリット22cが中心軸L方向に延び、かつ、突出部32bがスリット22c内で相対的に直動可能に配置されている。そのため、筒状部材22が軸状部材32の外側にて中心軸L方向に直動可能な構成を実現できる。即ち、上記のような中心軸L方向に不動の突出部32bと、中心軸L方向に可動のフランジ部22aとからなる構成を簡易に実現できる。 Further, according to the present embodiment, by providing the slit 22c in the tubular member 22, the projecting portion 32b can be projected from the tubular member 22 to the outside in the radial direction of the central axis L. Further, the slit 22c extends in the central axis L direction, and the protrusion 32b is arranged so as to be relatively movable in the slit 22c. Therefore, it is possible to realize a configuration in which the tubular member 22 can be linearly moved in the central axis L direction outside the shaft-shaped member 32. That is, it is possible to easily realize the above-described configuration including the protruding portion 32b that is immovable in the central axis L direction and the flange portion 22a that is movable in the central axis L direction.

(第2実施形態)
図4〜図7Bを参照して、本実施形態の部材接合装置1は、詳細な構成を除き、第1実施形態と実質的に同じである。従って、第1実施形態で示した構成と同じ部分については同じ符号を付して説明を省略する場合がある。
(Second embodiment)
4 to 7B, the member joining device 1 of the present embodiment is substantially the same as the first embodiment except for the detailed configuration. Therefore, the same parts as those shown in the first embodiment may be designated by the same reference numerals and the description thereof may be omitted.

図4に示すように、本実施形態では、1本の管体100と2つの壁部200とを、2個のゴム部材10を使用してかしめ接合する。特に、管体100は、扱いの容易さの観点から水平方向に延びるように配置されることが好ましい。 As shown in FIG. 4, in the present embodiment, one tubular body 100 and two wall portions 200 are caulked and joined using two rubber members 10. In particular, the tubular body 100 is preferably arranged so as to extend in the horizontal direction from the viewpoint of easy handling.

図5に示すように、本実施形態の部材接合装置1は、筒状ユニット20と、軸状ユニット30と、ゴム部材10と、環状圧子(環状部材)40とを備える。 As shown in FIG. 5, the member joining device 1 of the present embodiment includes a tubular unit 20, a shaft unit 30, a rubber member 10, and an annular indenter (annular member) 40.

本実施形態の筒状ユニット20は、2個の第1筒状部材23から構成される筒状アセンブリ21と、フランジ部23a(押部)とを備える。第1筒状部材23は、第1中心軸L1方向に延びる概ね円筒状の部材である。第1筒状部材23の一端部には、フランジ部23aが形成されている。換言すると、フランジ部23aは、筒状アセンブリ21に対して第1中心軸L1方向の位置が固定されている。フランジ部23aの外径は、第1中心軸L1方向から見て円形状である。フランジ部23aは、第1中心軸L1方向に垂直な平坦面である押面23bを有している。また、第1筒状部材23の他端部には、4個のスリット23cが形成されている。4個のスリット23cは、第1筒状部材23の周方向に等間隔に形成されており、第1中心軸L1方向に延びている。また、第1筒状部材23の一端面には、第1中心軸L1方向に凹形状となっている座ぐり穴23dが設けられている。座ぐり穴23dは、第1中心軸L1方向から見て円形状であり、別の第1筒状部材23の他端部を部分的に挿入できる大きさである。 The tubular unit 20 of the present embodiment includes a tubular assembly 21 composed of two first tubular members 23 and a flange portion 23a (pushing portion). The first tubular member 23 is a generally cylindrical member extending in the first central axis L1 direction. A flange portion 23a is formed at one end of the first tubular member 23. In other words, the flange portion 23a is fixed to the tubular assembly 21 at a position in the first central axis L1 direction. The outer diameter of the flange portion 23a is circular when viewed from the first central axis L1 direction. The flange portion 23a has a pressing surface 23b which is a flat surface perpendicular to the first central axis L1 direction. Further, four slits 23c are formed at the other end of the first tubular member 23. The four slits 23c are formed at equal intervals in the circumferential direction of the first tubular member 23 and extend in the first central axis L1 direction. Further, a counterbore hole 23d having a concave shape in the direction of the first central axis L1 is provided on one end surface of the first tubular member 23. The counterbore 23d has a circular shape when viewed from the direction of the first central axis L1 and has a size such that the other end of the other first tubular member 23 can be partially inserted.

本実施形態の軸状ユニット30は、2個の軸状部材33から構成される軸状アセンブリ31と、突出部(受部)33bとを備える。軸状部材33は、第2中心軸L2方向に延びる円柱状の軸部33aと、第2中心軸L2の径方向外側に4方向に突出する突出部33bとを有している。換言すると、突出部33bは、軸状アセンブリ31に対して第2中心軸L1方向の位置が固定されている。突出部33bは、軸部33aの周方向に等間隔に形成され、即ち第2中心軸L2方向から見て十字型に形成されている。軸部33aは第1筒状部材23に挿入可能な形状であり、突出部33bは第1筒状部材23のスリット23cに挿入可能な形状である。そのため、筒状アセンブリ21が中心軸L方向に直動することにより、軸状部材33は部分的に第1筒状部材23の内外にて中心軸L方向に相対的に直動可能である。また、突出部33bは、第2中心軸L2に垂直な平坦面である受面33cを有している。受面33cは、中心軸L方向において押面23bと対向している。従って、上記の直動によって受面33cと押面23bとの間の間隔が変化する。 The shaft-shaped unit 30 of the present embodiment includes a shaft-shaped assembly 31 composed of two shaft-shaped members 33 and a protrusion (reception part) 33b. The shaft-shaped member 33 has a cylindrical shaft portion 33a extending in the second central axis L2 direction, and a protruding portion 33b protruding in four directions radially outward of the second central axis L2. In other words, the position of the protruding portion 33b in the second central axis L1 direction is fixed with respect to the shaft-shaped assembly 31. The protrusions 33b are formed at equal intervals in the circumferential direction of the shaft 33a, that is, formed in a cross shape when viewed from the second central axis L2 direction. The shaft portion 33a has a shape that can be inserted into the first tubular member 23, and the protrusion portion 33b has a shape that can be inserted into the slit 23c of the first tubular member 23. Therefore, when the tubular assembly 21 is linearly moved in the central axis L direction, the shaft-shaped member 33 is partially movable inside and outside the first tubular member 23 relatively in the central axis L direction. Further, the protruding portion 33b has a receiving surface 33c which is a flat surface perpendicular to the second central axis L2. The receiving surface 33c faces the pressing surface 23b in the central axis L direction. Therefore, the above-described linear movement changes the distance between the receiving surface 33c and the pressing surface 23b.

本実施形態の2個のゴム部材10は、第1実施形態と実質的に同じものであり、ともに円筒状である。 The two rubber members 10 of this embodiment are substantially the same as those of the first embodiment, and both are cylindrical.

本実施形態の2個の環状圧子40は、同じ形状であり、両端面が平坦面である円筒状の部材である。環状圧子40は、それぞれの第1筒状部材23の周囲に配置可能な形状であり、即ち環状圧子40に第1筒状部材23を挿通できる。環状圧子40の材質は、特に限定されないが、かしめ接合の際に生じる押圧力によって変形しない材質であることが好ましく、例えば鋼鉄製であり得る。 The two annular indenters 40 of the present embodiment are cylindrical members having the same shape and both end surfaces being flat surfaces. The annular indenter 40 has a shape that can be arranged around each first tubular member 23, that is, the first tubular member 23 can be inserted into the annular indenter 40. The material of the annular indenter 40 is not particularly limited, but is preferably a material that is not deformed by the pressing force generated during caulking and joining, and may be made of steel, for example.

図6Aに示すように、これらの構成要素を組み立てるとき、ゴム部材10を第1筒状部材23の周囲に配置し、続けて環状圧子40を第1筒状部材23の周囲に配置する。そして、軸状部材33の軸部33aを第1筒状部材23内に挿入するとともに突出部33bを第1筒状部材23のスリット23cに挿入する。次いで、別の第1筒状部材23を先の第1筒状部材23と連結させる。そして、ゴム部材10を第1筒状部材23の周囲に配置し、続けて環状圧子40を第1筒状部材23の周囲に配置する。そして、軸状部材33の軸部33aを第1筒状部材23内に挿入するとともに突出部33bを第1筒状部材23のスリット23cに挿入する。そして、中心軸L方向の移動を制限するように、軸状ユニット30を固定する。このように組み立てられた部材接合装置1は、中心軸Lの径方向において内側に軸状部材33が配置され、中間に第1筒状部材23が配置され、外側に環状圧子40、およびゴム部材10が配置されている。即ち、部材接合装置1は3層構造を有している。また、中心軸L方向において、軸状ユニット30および環状圧子40は不動であり、筒状ユニット20は可動である。 As shown in FIG. 6A, when assembling these components, the rubber member 10 is arranged around the first cylindrical member 23, and subsequently the annular indenter 40 is arranged around the first cylindrical member 23. Then, the shaft portion 33a of the shaft-shaped member 33 is inserted into the first tubular member 23, and the protrusion 33b is inserted into the slit 23c of the first tubular member 23. Next, another first tubular member 23 is connected to the first tubular member 23. Then, the rubber member 10 is arranged around the first cylindrical member 23, and then the annular indenter 40 is arranged around the first cylindrical member 23. Then, the shaft portion 33a of the shaft-shaped member 33 is inserted into the first tubular member 23, and the protrusion 33b is inserted into the slit 23c of the first tubular member 23. Then, the shaft-shaped unit 30 is fixed so as to limit the movement in the central axis L direction. In the member joining device 1 assembled in this way, the shaft-shaped member 33 is arranged inside in the radial direction of the central axis L, the first cylindrical member 23 is arranged in the middle, and the annular indenter 40 and the rubber member are arranged outside. Ten are arranged. That is, the member joining device 1 has a three-layer structure. Further, in the direction of the central axis L, the shaft-shaped unit 30 and the annular indenter 40 are immovable, and the tubular unit 20 is movable.

かしめ接合の際、まず、壁部200の孔部201に管体100を挿通する。次いで、部材接合装置1を管体100の内部に挿入する。このとき、各ゴム部材10と、各壁部200の孔部201との中心軸L方向における位置を合わせ、軸状ユニット30を固定する。 When caulking and joining, first, the tubular body 100 is inserted into the hole portion 201 of the wall portion 200. Next, the member joining device 1 is inserted into the tubular body 100. At this time, the positions of the rubber members 10 and the hole portions 201 of the wall portions 200 in the central axis L direction are aligned and the shaft-shaped unit 30 is fixed.

図6Bに示すように、上記位置合わせ後、概念的に示す移動機構Mによって筒状ユニット20を中心軸L方向(図の矢印参照)に移動させる。この移動に伴い、フランジ部23aの押面23bと軸状部材33の突出部33bの受面33c(ないし環状圧子40の端面)との間が狭まり、ゴム部材10が中心軸L方向にそれぞれ圧縮される。この圧縮に伴って中心軸Lの径方向外側に向けてゴム部材10がそれぞれ膨張され、それによって管体100が拡管され、管体100が壁部200の孔部201にかしめ接合される。 As shown in FIG. 6B, after the above-described alignment, the cylindrical unit 20 is moved in the direction of the central axis L (see the arrow in the drawing) by the conceptually moving mechanism M. Along with this movement, the distance between the pressing surface 23b of the flange portion 23a and the receiving surface 33c (or the end surface of the annular indenter 40) of the protruding portion 33b of the shaft-shaped member 33 is narrowed, and the rubber member 10 is compressed in the central axis L direction. To be done. Along with this compression, the rubber members 10 are respectively expanded outward in the radial direction of the central axis L, whereby the tubular body 100 is expanded and the tubular body 100 is caulked and joined to the hole 201 of the wall portion 200.

本実施形態によれば、管体100と壁部200とを2箇所で同時に正確にかしめ接合できる。 According to this embodiment, the tubular body 100 and the wall portion 200 can be accurately caulked and joined at two locations at the same time.

本実施形態の構成では、突出部33bとフランジ部23aとの間にそれぞれ配置された2個のゴム部材10によって、管体100と壁部200とを2箇所でかしめ接合できる。 In the configuration of the present embodiment, the tubular body 100 and the wall portion 200 can be caulked and joined at two points by the two rubber members 10 respectively arranged between the protruding portion 33b and the flange portion 23a.

また、本実施形態によれば、フランジ部23aは筒状アセンブリ21に対して中心軸L方向の位置が固定されているため、互いに同期して移動する。そのため、この2箇所でのかしめ接合は同時に実行可能である。 Further, according to the present embodiment, the flange portion 23a is fixed in position in the central axis L direction with respect to the tubular assembly 21, and thus moves in synchronization with each other. Therefore, the caulking joining at these two locations can be performed simultaneously.

また、本実施形態によれば、ゴム部材10は軸状部材33の突出部33bの受面33cに支持されているため、かしめ接合の際にも2個のゴム部材10の中心軸L方向の位置はそれぞれ変化しない。そのため、正確な位置で2個のゴム部材10をそれぞれ変形でき、正確な位置で管体100の各部を拡管できる。従って、管体100のうち拡管不要な部分を拡管することなく、必要な部分のみを正確に拡管できるため、正確にかしめ接合できる。 Further, according to the present embodiment, since the rubber member 10 is supported by the receiving surface 33c of the protruding portion 33b of the shaft-shaped member 33, the two rubber members 10 in the direction of the central axis L in the caulking connection are also supported. The position does not change. Therefore, each of the two rubber members 10 can be deformed at an accurate position, and each part of the tubular body 100 can be expanded at an accurate position. Therefore, it is possible to accurately expand only the necessary part of the tubular body 100 without expanding the part that does not need to be expanded, so that the caulking can be performed accurately.

また、本実施形態によれば、第1筒状部材23にスリット23cを設けることで、突出部33bを第1筒状部材23から中心軸Lの径方向外側へ突出させることができる。また、スリット23cが中心軸L方向に延び、かつ、突出部33bがスリット23c内で相対的に直動可能に配置されているため、筒状アセンブリ21が軸状部材33外側にて中心軸L方向に直動可能な構成を実現できる。即ち、上記のような中心軸L方向に不動の突出部33bと、中心軸L方向に可動のフランジ部23aとからなる構成を簡易に実現できる。 Further, according to the present embodiment, by providing the slit 23c in the first tubular member 23, the protruding portion 33b can be projected outward from the first tubular member 23 in the radial direction of the central axis L. Further, since the slit 23c extends in the direction of the central axis L and the protruding portion 33b is arranged so as to be relatively linearly movable within the slit 23c, the cylindrical assembly 21 is located outside the axial member 33 at the central axis L. It is possible to realize a structure that can move linearly in any direction. That is, it is possible to easily realize the above-described configuration including the protruding portion 33b that is immovable in the central axis L direction and the flange portion 23a that is movable in the central axis L direction.

また、本実施形態によれば、環状圧子40によってゴム部材10をそれぞれ均等に支持できる。仮に、環状圧子40が設けられていない場合、突出部33bがゴム部材10を直接支持することになるが、突出部33bの形状が十字型であるため、ゴム部材10の意図しない変形を引き起こす恐れがある。具体的には、突出部33bがゴム部材10の表面の数箇所のみを不均等に支持する形状であるため、ゴム部材10のうち不均等に支持された数箇所のみが不均等に変形し、管体100を均等に拡管できないおそれがある。しかし、本実施形態の構成のように、環状圧子40を介してゴム部材10を支持すると、ゴム部材10に対して中心軸Lの周方向にわたって均等に力を付加できるため、ゴム部材10の意図しない変形を防止し、安定してかしめ接合できる。 Further, according to the present embodiment, the rubber members 10 can be evenly supported by the annular indenter 40. If the annular indenter 40 is not provided, the protruding portion 33b directly supports the rubber member 10. However, since the protruding portion 33b has a cruciform shape, the rubber member 10 may be unintentionally deformed. There is. Specifically, since the protruding portion 33b has a shape that unevenly supports only several points on the surface of the rubber member 10, only several unevenly supported points of the rubber member 10 are deformed unevenly, There is a possibility that the tubular body 100 cannot be expanded evenly. However, when the rubber member 10 is supported via the annular indenter 40 as in the configuration of the present embodiment, a force can be uniformly applied to the rubber member 10 in the circumferential direction of the central axis L. Prevents deformation and stabilizes caulking.

また、本実施形態によれば、突出部33bが軸状部材33において中心軸Lに垂直な断面において、中心軸Lを中心として点対称に形成されており、より詳細には十字型に形成されている。このように点対称に形成されていることで、ゴム部材10に対して均等に力を付加しやすい。即ち、前述のようなゴム部材10の意図しない変形を引き起こす可能性を低減できる。 Further, according to the present embodiment, the projecting portion 33b is formed point-symmetrically with respect to the central axis L in the cross section perpendicular to the central axis L in the shaft-shaped member 33, and more specifically, formed in a cross shape. ing. By being formed point-symmetrically in this way, it is easy to evenly apply a force to the rubber member 10. That is, it is possible to reduce the possibility of causing the unintentional deformation of the rubber member 10 as described above.

図7Aおよび図7Bに、移動機構M(図6A,6B参照)の一例である押圧機構70を示す。押圧機構70は、カムドライバ71と、カムスライダ72と、立壁部73と、円柱状の押出台74とを備える。カムドライバ71は、床面に固定された鉛直に立つ立壁部73に隣接して配置されており、立壁部73に沿って鉛直方向に移動可能である。カムドライバ71は、カムスライダ72に力を伝達するための傾斜面71aをその下部に有する。カムドライバ71には、例えば通常よくプレス加工などに使用されるプレス機械等を使用してもよい。カムスライダ72は、下面に図示しないレール機構を有し、水平方向に移動可能である。ただし、レール機構以外にも例えば車輪などのように移動の際に地面との摩擦力を低減する機構であれば、それを採用してもよい。またカムスライダ72は、カムドライバ71から力を受けるための傾斜面72aをその上部に有する。そのため、カムドライバ71の傾斜面71aおよびカムスライダ72の傾斜面72aは、互いに対応した傾斜に形成されている。押出台74は、水平方向に延びており、第1筒状部材23を押圧するための平坦な押圧面74aを有している。また、押出台74は、水平方向に延びる断面円形の貫通孔74bを有している。貫通孔74bは、軸状部材33の軸部33aを挿通できる大きさである。押出台74は、カムスライダ72に取り付けられており、カムスライダ72とともに水平方向に移動する。 7A and 7B show a pressing mechanism 70 which is an example of the moving mechanism M (see FIGS. 6A and 6B). The pressing mechanism 70 includes a cam driver 71, a cam slider 72, a standing wall portion 73, and a columnar push-out base 74. The cam driver 71 is arranged adjacent to a vertically standing standing wall portion 73 fixed to the floor surface, and is movable in the vertical direction along the standing wall portion 73. The cam driver 71 has an inclined surface 71a for transmitting a force to the cam slider 72 at its lower portion. As the cam driver 71, for example, a press machine or the like which is often used for press working may be used. The cam slider 72 has a rail mechanism (not shown) on its lower surface and is movable in the horizontal direction. However, other than the rail mechanism, a mechanism such as a wheel that reduces the frictional force with the ground during movement may be used. Further, the cam slider 72 has an inclined surface 72a for receiving a force from the cam driver 71 at its upper portion. Therefore, the inclined surface 71a of the cam driver 71 and the inclined surface 72a of the cam slider 72 are formed to have inclinations corresponding to each other. The extrusion table 74 extends in the horizontal direction and has a flat pressing surface 74a for pressing the first tubular member 23. Further, the extrusion table 74 has a through hole 74b extending in the horizontal direction and having a circular cross section. The through hole 74b has a size that allows the shaft portion 33a of the shaft-shaped member 33 to be inserted therethrough. The extrusion table 74 is attached to the cam slider 72, and moves in the horizontal direction together with the cam slider 72.

カムドライバ71に鉛直方向(図において下方向)の力が付加されると、傾斜面71a,72aを介してカムドライバ71からカムスライダ72に力が伝達される。これにより、カムドライバ71が鉛直方向(図において下方向)へ移動するとともに、カムスライダ72は水平方向(図において左方向)へ移動する。カムスライダ72が移動すると、押出台74もともに移動し、第1筒状部材23を押圧する。このとき、軸状部材33は、貫通孔74b内に挿入されるため、押出台74から力を受けない。なお、カムドライバ71およびカムスライダ72は、カム機構の一例である。 When a vertical force (downward in the drawing) is applied to the cam driver 71, the force is transmitted from the cam driver 71 to the cam slider 72 via the inclined surfaces 71a and 72a. As a result, the cam driver 71 moves vertically (downward in the figure) and the cam slider 72 moves horizontally (leftward in the figure). When the cam slider 72 moves, the push-out table 74 also moves and presses the first tubular member 23. At this time, since the shaft-shaped member 33 is inserted into the through hole 74b, no force is applied from the extrusion table 74. The cam driver 71 and the cam slider 72 are examples of a cam mechanism.

立壁部73およびカムスライダ72はコイルばね75によって弾性的に接続されている。従って、カムスライダ72は、立壁部73へ向かって付勢されている。 The standing wall portion 73 and the cam slider 72 are elastically connected by a coil spring 75. Therefore, the cam slider 72 is biased toward the standing wall portion 73.

この押圧機構70によれば、カム機構によって力の作用方向を変換できるため、かしめ接合する管体100の配置を任意に選択できる。例えば、通常、圧縮力を付加するプレス機などの加工機は、鉛直方向に圧縮力を付加する。カム機構は、この通常のプレス機などの加工機によって付加される鉛直方向の力を例えば水平方向の力に変換できる。従って、通常のプレス機などの加工機を使用しつつ、かしめ接合する管体100を水平方向に配置することもできる。さらに言えば、管体100が長尺な部材であるとき、複数の壁部200とかしめ接合される可能性があるため、複数箇所で同時に正確にかしめ接合できることは特に有効である。しかし、管体100が長尺な部材であるとき、鉛直方向に圧縮力を付加する通常のプレス機などの設備では限界ストロークが規定されているため、寸法の制限上かしめ接合できないおそれがある。しかし、上記構成では、カム機構によって力の作用方向を変換できるため、寸法の制限を受けることなく、限界ストロークの影響を受けない任意の配置を選択してかしめ接合できる。 According to the pressing mechanism 70, since the acting direction of the force can be changed by the cam mechanism, the arrangement of the tubular body 100 to be caulked and joined can be arbitrarily selected. For example, a processing machine such as a press machine that normally applies a compressive force applies a compressive force in the vertical direction. The cam mechanism can convert the vertical force applied by the processing machine such as the ordinary press machine into, for example, the horizontal force. Therefore, it is possible to dispose the tubular body 100 to be caulked and joined in the horizontal direction while using a processing machine such as an ordinary press machine. Further speaking, when the tubular body 100 is a long member, it may be caulked and jointed to the plurality of wall portions 200, so that it is particularly effective to be able to caulk and joint accurately at a plurality of locations at the same time. However, when the tubular body 100 is a long member, the limit stroke is specified in equipment such as an ordinary press that applies a compressive force in the vertical direction, and therefore caulking may not be possible due to the size limitation. However, in the above configuration, since the acting direction of the force can be changed by the cam mechanism, it is possible to perform caulking and joining by selecting an arbitrary arrangement that is not affected by the limit stroke without being restricted by the size.

図8Aおよび図8Bに示すように、本実施形態の変形例として、接合箇所を3箇所またはそれ以上としてもよい。本実施形態の構成に加えて、軸状部材33と、第1筒状部材23と、環状圧子40と、ゴム部材10とからなる組立体を連続させることによって、接合箇所を増やすことができる。 As shown in FIGS. 8A and 8B, as a modified example of the present embodiment, the number of joints may be three or more. In addition to the configuration of the present embodiment, the number of joints can be increased by continuously connecting the assembly including the shaft-shaped member 33, the first tubular member 23, the annular indenter 40, and the rubber member 10.

本変形例によれば、一度に接合できる箇所を3箇所以上とすることができる。即ち、上記の組立体の連続構成を増やすことで、一度に接合できる箇所を任意に増やすことができる。 According to this modification, the number of locations that can be joined at one time can be three or more. That is, by increasing the continuous structure of the above assembly, it is possible to arbitrarily increase the number of locations that can be joined at one time.

(第3実施形態)
図9A〜10Bを参照して、本実施形態の部材接合装置1は、詳細な構成を除き、第2実施形態と実質的に同じである。従って、第2実施形態で示した構成と同じ部分については同じ符号を付して説明を省略する場合がある。
(Third Embodiment)
9A to 10B, the member joining device 1 of the present embodiment is substantially the same as the second embodiment except for the detailed configuration. Therefore, the same parts as those in the second embodiment may be designated by the same reference numerals and the description thereof may be omitted.

図9Aに示すように、本実施形態の部材接合装置1は、筒状ユニット20と、軸状ユニット30と、ゴム部材10と、環状圧子40とを備える。 As shown in FIG. 9A, the member joining device 1 of the present embodiment includes a tubular unit 20, a shaft unit 30, a rubber member 10, and an annular indenter 40.

本実施形態の軸状ユニット30は、単一の軸状部材33から構成される軸状アセンブリ31と、突出部(受部)33bおよび支持圧子(受部)50とを備える。軸状部材33は、第2実施形態と同じものである。支持圧子50は、円筒状の部材であり、第2中心軸L2に垂直な平坦面である受面50aを有している。支持圧子50は、床面などの固定物に固定可能な構成を有しており、後述するように組み立てられた状態では固定されて使用される。 The shaft-shaped unit 30 of the present embodiment includes a shaft-shaped assembly 31 composed of a single shaft-shaped member 33, a protrusion (reception part) 33b, and a support indenter (reception part) 50. The shaft-shaped member 33 is the same as that of the second embodiment. The support indenter 50 is a cylindrical member and has a receiving surface 50a that is a flat surface perpendicular to the second central axis L2. The support indenter 50 has a structure capable of being fixed to a fixed object such as a floor surface, and is fixed and used in an assembled state as described later.

図9Aに示すように、これらの構成要素を組み立てるとき、ゴム部材10を第1筒状部材23の周囲に配置し、続けて環状圧子40を第1筒状部材23の周囲に配置する。そして、軸状部材33の突出部33bを第1筒状部材23のスリット23cに挿入する。次いで、別の第1筒状部材23を先の第1筒状部材23と連結させる。この連結は、ねじ締結などの任意の方法によって中心軸L方向に2個の第1筒状部材23が一体として移動することを可能にする連結である。そして、ゴム部材10を第1筒状部材23の周囲に配置し、続けて支持圧子50を第1筒状部材23の周囲に配置する。このとき、軸状部材33および第1筒状部材23は、支持圧子50を貫通している。そして、中心軸L方向の移動を制限するように、軸状ユニット30を固定する。組み立てられた部材接合装置1は、中心軸Lの径方向において内側に軸状部材33が配置され、中間に第1筒状部材23が配置され、外側に環状圧子40およびゴム部材10が配置されている。即ち、部材接合装置1は3層構造を有している。また、中心軸L方向において、軸状ユニット30、環状圧子40、および支持圧子50は不動であり、筒状ユニット20は可動である。 As shown in FIG. 9A, when assembling these components, the rubber member 10 is arranged around the first cylindrical member 23, and subsequently the annular indenter 40 is arranged around the first cylindrical member 23. Then, the protruding portion 33b of the shaft-shaped member 33 is inserted into the slit 23c of the first tubular member 23. Next, another first tubular member 23 is connected to the first tubular member 23. This connection is a connection that enables the two first cylindrical members 23 to move integrally in the direction of the central axis L by an arbitrary method such as screw fastening. Then, the rubber member 10 is arranged around the first cylindrical member 23, and subsequently the supporting indenter 50 is arranged around the first cylindrical member 23. At this time, the shaft-shaped member 33 and the first tubular member 23 penetrate the support indenter 50. Then, the shaft-shaped unit 30 is fixed so as to limit the movement in the central axis L direction. In the assembled member joining device 1, the shaft-shaped member 33 is arranged inside in the radial direction of the central axis L, the first cylindrical member 23 is arranged in the middle, and the annular indenter 40 and the rubber member 10 are arranged outside. ing. That is, the member joining device 1 has a three-layer structure. Further, in the central axis L direction, the shaft-shaped unit 30, the annular indenter 40, and the support indenter 50 are immovable, and the tubular unit 20 is movable.

かしめ接合の際、まず、壁部200の孔部201に管体100を挿通する。次いで、部材接合装置1を管体100の内部に挿入する。このとき、各ゴム部材10と、各壁部200の孔部201との中心軸L方向における位置を合わせ、軸状ユニット30を固定する。 When caulking and joining, first, the tubular body 100 is inserted into the hole portion 201 of the wall portion 200. Next, the member joining device 1 is inserted into the tubular body 100. At this time, the positions of the rubber members 10 and the hole portions 201 of the wall portions 200 in the central axis L direction are aligned and the shaft-shaped unit 30 is fixed.

図9Bに示すように、上記位置合わせ後、概念的に示す移動機構Mによって筒状ユニット20を中心軸L方向(図の矢印参照)に引っ張る。すると、環状圧子40の端面とフランジ部23aの押面23bとの間が狭まり、ゴム部材10が中心軸L方向にそれぞれ圧縮される。この圧縮に伴って中心軸Lの径方向外側に向けてゴム部材10がそれぞれ膨張され、それによって管体100が拡管され、管体100が壁部200の孔部201にかしめ接合される。 As shown in FIG. 9B, after the above-mentioned alignment, the tubular unit 20 is pulled in the direction of the central axis L (see the arrow in the figure) by the moving mechanism M conceptually shown. Then, the space between the end surface of the annular indenter 40 and the pressing surface 23b of the flange portion 23a is narrowed, and the rubber member 10 is compressed in the central axis L direction. Along with this compression, the rubber members 10 are respectively expanded outward in the radial direction of the central axis L, whereby the tubular body 100 is expanded and the tubular body 100 is caulked and joined to the hole 201 of the wall portion 200.

図10Aおよび図10Bに、移動機構M(図9A,9B参照)の一例である引張機構80を示す。引張機構80は、カムドライバ81と、カムスライダ82と、立壁部83と、ガイド軸部材84と、固定具85とを備える。カムドライバ81は、床面に固定された鉛直に立つ立壁部83に隣接して配置されており、立壁部83に沿って鉛直方向に移動可能である。カムドライバ81は、カムスライダ82に力を伝達するための傾斜面81aをその下部に有する。カムドライバ81には、例えば通常よくプレス加工などに使用されるプレス機械等を使用してもよい。カムスライダ82は、下面に図示しないレール機構を有し、水平方向に移動可能である。ただし、レール機構以外にも例えば車輪などのように移動の際に地面との摩擦力を低減する機構であれば、それを採用してもよい。またカムスライダ82は、カムドライバ81から力を受けるための傾斜面82aをその上部に有する。そのため、カムドライバ81の傾斜面81aおよびカムスライダ82の傾斜面82aは、互いに対応した傾斜に形成されている。ガイド軸部材84は、カムスライダ82と立壁部83とを貫通して水平方向に延びている。カムスライダ82および立壁部83は、ガイド軸部材84を挿通するための貫通孔82b,83aをそれぞれ有しており、ガイド軸部材84は貫通孔82b,83a内にて水平方向に摺動可能である。ガイド軸部材84の一端は、カップリング機構84aによって第1筒状部材23に機械的に接続されており、他端はカムスライダ82の外側(立壁部83と反対側)にて貫通孔82bよりも大きなボルトなどの係止部材84bに接続されている。また、固定具85は、支持圧子50を床面に固定している。 10A and 10B show a pulling mechanism 80 which is an example of the moving mechanism M (see FIGS. 9A and 9B). The pulling mechanism 80 includes a cam driver 81, a cam slider 82, a standing wall portion 83, a guide shaft member 84, and a fixture 85. The cam driver 81 is arranged adjacent to a vertically standing standing wall portion 83 fixed to the floor surface, and is movable in the vertical direction along the standing wall portion 83. The cam driver 81 has an inclined surface 81a for transmitting a force to the cam slider 82 at its lower part. For the cam driver 81, for example, a press machine or the like which is often used for press working may be used. The cam slider 82 has a rail mechanism (not shown) on the lower surface and is movable in the horizontal direction. However, other than the rail mechanism, a mechanism such as a wheel that reduces the frictional force with the ground during movement may be used. Further, the cam slider 82 has an inclined surface 82a for receiving a force from the cam driver 81 at its upper portion. Therefore, the inclined surface 81a of the cam driver 81 and the inclined surface 82a of the cam slider 82 are formed to correspond to each other. The guide shaft member 84 extends horizontally through the cam slider 82 and the standing wall portion 83. The cam slider 82 and the standing wall portion 83 respectively have through holes 82b and 83a for inserting the guide shaft member 84, and the guide shaft member 84 is slidable in the through holes 82b and 83a in the horizontal direction. .. One end of the guide shaft member 84 is mechanically connected to the first tubular member 23 by the coupling mechanism 84a, and the other end is outside the cam slider 82 (on the side opposite to the standing wall portion 83) than the through hole 82b. It is connected to a locking member 84b such as a large bolt. Moreover, the fixture 85 fixes the support indenter 50 to the floor surface.

立壁部83およびカムスライダ82はコイルばね86によって弾性的に接続されている。従って、カムスライダ82は、立壁部83へ向かって付勢されている。 The standing wall portion 83 and the cam slider 82 are elastically connected by a coil spring 86. Therefore, the cam slider 82 is urged toward the standing wall portion 83.

カムドライバ81に鉛直方向(図において下方向)の力が付加されると、傾斜面81a,82aを介してカムドライバ81からカムスライダ82に力が伝達される。これにより、カムドライバ81が鉛直方向(図において下方向)へ移動するとともに、カムスライダ82は水平方向(図において右方向)へ移動する。カムスライダ82が移動すると、係止部材84bを介して力を受けたガイド軸部材84もともに移動し、カップリング機構84aを介して第1筒状部材23を引っ張る。なお、カムドライバ81およびカムスライダ82は、カム機構の一例である。 When a vertical force (downward in the drawing) is applied to the cam driver 81, the force is transmitted from the cam driver 81 to the cam slider 82 via the inclined surfaces 81a and 82a. As a result, the cam driver 81 moves vertically (downward in the figure) and the cam slider 82 moves horizontally (rightward in the figure). When the cam slider 82 moves, the guide shaft member 84 that receives a force via the locking member 84b also moves, and pulls the first tubular member 23 via the coupling mechanism 84a. The cam driver 81 and the cam slider 82 are an example of a cam mechanism.

立壁部83およびカムスライダ82はコイルばね86によって弾性的に接続されている。従って、カムスライダ82は、立壁部83へ向かって付勢されている。 The standing wall portion 83 and the cam slider 82 are elastically connected by a coil spring 86. Therefore, the cam slider 82 is urged toward the standing wall portion 83.

この引張機構によれば、第2実施形態における押圧機構70(図7A,7B参照)と同様に、カム機構によって力の作用方向を変換できるため、かしめ接合する管体100の配置を任意に選択できる。 According to this pulling mechanism, like the pressing mechanism 70 in the second embodiment (see FIGS. 7A and 7B), the action direction of the force can be changed by the cam mechanism, so the arrangement of the tubular body 100 to be caulked and joined can be arbitrarily selected. it can.

図11Aおよび図11Bに示すように、本実施形態の第1変形例として、図9Aおよび図9Bに示す第1筒状部材23からフランジ部23aを分離してもよい。即ち、第1筒状部材23を第2筒状部材24と押圧台60とに分離してもよい。 As shown in FIGS. 11A and 11B, as a first modification of this embodiment, the flange portion 23a may be separated from the first tubular member 23 shown in FIGS. 9A and 9B. That is, the first tubular member 23 may be separated into the second tubular member 24 and the pressing base 60.

第2筒状部材24は、概ね円筒状であり、一端部には第1筒状部材23と同じスリット24aが形成されている。押圧台60は、概ね円柱状であるが、第1筒状部材23を挿入および載置できる凹状の座部60aを備える。また、押圧台60は、中心軸Lに垂直であって、軸状部材33の受面33cと対向する押面60bを備える。また、第2筒状部材24および押圧台60は、ねじ締結などの任意の方法によって連結されており、中心軸L方向に一体として移動可能である。 The second tubular member 24 has a substantially cylindrical shape, and the same slit 24a as the first tubular member 23 is formed at one end thereof. The pressing base 60 has a substantially cylindrical shape, but includes a concave seat portion 60a into which the first tubular member 23 can be inserted and placed. Further, the pressing table 60 includes a pressing surface 60b which is perpendicular to the central axis L and faces the receiving surface 33c of the shaft-shaped member 33. Further, the second tubular member 24 and the pressing base 60 are connected by an arbitrary method such as screw fastening, and can be moved integrally in the central axis L direction.

本変形例によれば、第1筒状部材23を第2筒状部材24と押圧台60とに分離したことにより、部材接合装置1を組み立てる際の自由度を向上させることができる。 According to this modification, since the first tubular member 23 is separated into the second tubular member 24 and the pressing base 60, the degree of freedom in assembling the member joining device 1 can be improved.

図12Aおよび図12Bに示すように、本実施形態の変形例として、接合箇所を3箇所またはそれ以上としてもよい。本実施形態(図10A,10B)の構成に加えて、軸状部材33と、第1筒状部材23と、環状圧子40と、ゴム部材10とからなる組立体を連続させることによって、接合箇所を増やすことができる。 As shown in FIGS. 12A and 12B, as a modified example of the present embodiment, the number of joints may be three or more. In addition to the configuration of the present embodiment (FIGS. 10A and 10B), the assembly including the shaft-shaped member 33, the first tubular member 23, the annular indenter 40, and the rubber member 10 is made continuous to form a joint portion. Can be increased.

本変形例によれば、一度に接合できる箇所を3箇所以上とすることができる。即ち、上記の組立体の連続構成を増やすことで、一度に接合できる箇所を任意に増やすことができる。 According to this modification, the number of locations that can be joined at one time can be three or more. That is, by increasing the continuous structure of the above assembly, it is possible to arbitrarily increase the number of locations that can be joined at one time.

以上より、本発明の具体的な実施形態やその変形例について説明したが、本発明は上記形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。例えば、個々の実施形態の内容を適宜組み合わせたものを、この発明の一実施形態としてもよい。 Although specific embodiments of the present invention and modifications thereof have been described above, the present invention is not limited to the above embodiments, and various modifications can be made within the scope of the present invention. For example, a combination of the contents of the individual embodiments may be an embodiment of the present invention.

1 部材接合装置
10 ゴム部材(弾性部材)
20 筒状ユニット
21 筒状アセンブリ
22 筒状部材
22a フランジ部(押部)
22b 押面
22c スリット
23 第1筒状部材
23a フランジ部(押部)
23b 押面
23c スリット
23d 座ぐり穴
24 第2筒状部材
24a スリット
30 軸状ユニット
31 軸状アセンブリ
32 軸状部材
32a 軸部
32b 突出部(受部)
32c 受面
33 軸状部材
33a 軸部
33b 突出部(受部)
33c 受面
40 環状圧子(環状部材)
50 支持圧子(受部)
50a 受面
60 押圧台
60a 座部
70 押圧機構(移動機構)
71 カムドライバ
71a 傾斜面
72 カムスライダ
72a 傾斜面
73 立壁部
74 押出台
74a 押圧面
74b 貫通孔
75 コイルばね
80 引張機構(移動機構)
81 カムドライバ
81a 傾斜面
82 カムスライダ
82a 傾斜面
82b 貫通孔
83 立壁部
83a 貫通孔
84 ガイド軸部材
84a カップリング機構
84b 係止部材
85 固定具
86 コイルばね
100 管体
200 壁部
201 孔部
1 member joining device 10 rubber member (elastic member)
20 tubular unit 21 tubular assembly 22 tubular member 22a flange part (pushing part)
22b Pushing surface 22c Slit 23 First tubular member 23a Flange portion (pushing portion)
23b Pushing surface 23c Slit 23d Counterbore hole 24 Second tubular member 24a Slit 30 Shaft unit 31 Shaft assembly 32 Shaft member 32a Shaft portion 32b Projecting portion (receiving portion)
32c Receiving surface 33 Shaft member 33a Shaft portion 33b Projecting portion (reception portion)
33c Receiving surface 40 Annular indenter (annular member)
50 Support indenter (receiving part)
50a receiving surface 60 pressing base 60a seat 70 pressing mechanism (moving mechanism)
71 cam driver 71a inclined surface 72 cam slider 72a inclined surface 73 standing wall portion 74 extrusion table 74a pressing surface 74b through hole 75 coil spring 80 tension mechanism (moving mechanism)
81 cam driver 81a inclined surface 82 cam slider 82a inclined surface 82b through hole 83 standing wall portion 83a through hole 84 guide shaft member 84a coupling mechanism 84b locking member 85 fixing tool 86 coil spring 100 tube body 200 wall portion 201 hole portion

Claims (8)

第1中心軸を有し、前記第1中心軸方向に直動可能な筒状アセンブリと、前記筒状アセンブリに対して前記第1中心軸方向の位置が固定されている第1押部および第2押部とを含む筒状ユニットと、
前記筒状アセンブリ内に挿通され、前記第1中心軸と同方向に延びる第2中心軸を有する固定された軸状アセンブリと、前記軸状アセンブリに対して前記第2中心軸方向の位置が固定されている第1受部および第2受部とを含む軸状ユニットであって、前記第1受部および前記第2受部は前記筒状アセンブリの前記第1中心軸の径方向外側に位置し、前記第1受部は前記第1押部と前記第1および第2中心軸方向に対向し、かつ、前記第2受部は前記第2押部と前記第1および第2中心軸方向に対向している軸状ユニットと、
前記第1および第2中心軸方向における前記第1押部と前記第1受部との間であって、前記筒状アセンブリの前記第1中心軸の径方向外側に配置された第1弾性部材と、
前記第1および第2中心軸方向における前記第2押部と前記第2受部との間であって、前記筒状アセンブリの前記第1中心軸の径方向外側に配置された第2弾性部材と、
前記筒状ユニットを前記軸状ユニットに対して、前記第1および第2中心軸方向に移動させる移動機構と
を備える、部材接合装置。
A tubular assembly having a first central axis and capable of linearly moving in the first central axis direction; a first pushing portion and a first pressing portion whose position in the first central axis direction is fixed with respect to the tubular assembly; A tubular unit including two pushing parts,
A fixed axial assembly that is inserted into the tubular assembly and has a second central axis that extends in the same direction as the first central axis, and a position in the second central axis direction that is fixed with respect to the axial assembly. An axial unit including a first receiving portion and a second receiving portion, the first receiving portion and the second receiving portion being positioned radially outside of the first central axis of the tubular assembly. The first receiving portion faces the first pushing portion in the first and second central axis directions, and the second receiving portion has the second pushing portion and the first and second central axis directions. A shaft-shaped unit facing each other,
A first elastic member disposed between the first pushing portion and the first receiving portion in the first and second central axis directions and radially outside the first central axis of the tubular assembly. When,
A second elastic member arranged between the second pressing portion and the second receiving portion in the first and second central axis directions and radially outside the first central axis of the tubular assembly. When,
And a moving mechanism for moving the tubular unit in the first and second central axis directions with respect to the shaft unit.
前記筒状アセンブリには、前記第1中心軸方向に延びるスリットが設けられており、
前記第1受部および前記第2受部の少なくとも一方は、前記スリットにて前記筒状アセンブリを貫通して前記筒状アセンブリの前記第1中心軸の径方向外側へ突出している、請求項1に記載の部材接合装置。
The cylindrical assembly is provided with a slit extending in the first central axis direction,
At least one of the first receiving portion and the second receiving portion penetrates the tubular assembly at the slit and projects outward in the radial direction of the first central axis of the tubular assembly. The member joining apparatus according to item 1.
前記第1および第2中心軸方向における前記第1受部と前記第1弾性部材との間であって、前記筒状アセンブリの前記第1中心軸の径方向外側に配置された第1環状部材と、
前記第1および第2中心軸方向における前記第2受部と前記第2弾性部材との間であって、前記筒状アセンブリの前記第1中心軸の径方向外側に配置された第2環状部材と
をさらに備える、請求項1または請求項2に記載の部材接合装置。
A first annular member arranged between the first receiving portion and the first elastic member in the first and second central axis directions and radially outside the first central axis of the tubular assembly. When,
A second annular member disposed between the second receiving portion and the second elastic member in the first and second central axis directions and radially outside the first central axis of the tubular assembly. The member joining apparatus according to claim 1, further comprising:
前記第1および第2中心軸方向に垂直な断面において、前記第1受部および前記第2受部の少なくとも一方は、前記第1および第2中心軸を中心として点対称に形成されている、請求項1から請求項3のいずれか1項に記載の部材接合装置。 In a cross section perpendicular to the first and second central axis directions, at least one of the first receiving portion and the second receiving portion is formed point-symmetrically about the first and second central axes. The member joining device according to any one of claims 1 to 3. 前記移動機構は、前記第1および第2中心軸方向以外の方向に作用する力を前記第1および第2中心軸方向の力に変換するカム機構を備える、請求項1から請求項4のいずれか1項に記載の部材接合装置。 The moving mechanism includes a cam mechanism that converts a force acting in a direction other than the first and second central axis directions into a force in the first and second central axis directions. The member joining apparatus according to item 1. 前記移動機構は、前記筒状ユニットを押圧する押圧機構である、請求項1から請求項5のいずれか1項に記載の部材接合装置。 The member joining device according to any one of claims 1 to 5, wherein the moving mechanism is a pressing mechanism that presses the tubular unit. 前記移動機構は、前記筒状ユニットを引っ張る引張機構である、請求項1から請求項5のいずれか1項に記載の部材接合装置。 The member joining device according to claim 1, wherein the moving mechanism is a pulling mechanism that pulls the tubular unit. 管体と、孔部が設けられた少なくとも2つの壁部と、請求項1から請求項6のいずれか1項に記載の部材接合装置とを準備し、
前記少なくとも2つの壁部の前記孔部に前記管体を挿通し、
前記管体の内部に前記部材接合装置を挿入し、
前記部材接合装置によって前記第1弾性部材および前記第2弾性部材を前記第1中心軸方向に圧縮して径方向外側に向けて膨張させ、それによって前記管体の少なくとも2箇所を拡大変形させて前記少なくとも2つの壁部の前記孔部にかしめ接合する
ことを含む、部材接合方法。
Preparing a tubular body, at least two wall portions provided with holes, and the member joining device according to any one of claims 1 to 6,
Inserting the tubular body into the holes of the at least two walls,
Insert the member joining device inside the tube,
By the member joining device, the first elastic member and the second elastic member are compressed in the first central axis direction and expanded outward in the radial direction, thereby expanding and deforming at least two locations of the tubular body. A member joining method, comprising caulking and joining the holes of the at least two walls.
JP2017061667A 2017-03-27 2017-03-27 Member joining apparatus and member joining method Active JP6708579B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017061667A JP6708579B2 (en) 2017-03-27 2017-03-27 Member joining apparatus and member joining method
PCT/JP2018/009926 WO2018180489A1 (en) 2017-03-27 2018-03-14 Member joining device and member joining method
US16/488,560 US11052448B2 (en) 2017-03-27 2018-03-14 Member joining device and member joining method
EP18778101.8A EP3603843B1 (en) 2017-03-27 2018-03-14 Member joining device and member joining method
CN201880021561.6A CN110446568B (en) 2017-03-27 2018-03-14 Component bonding device and component bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017061667A JP6708579B2 (en) 2017-03-27 2017-03-27 Member joining apparatus and member joining method

Publications (2)

Publication Number Publication Date
JP2018161683A JP2018161683A (en) 2018-10-18
JP6708579B2 true JP6708579B2 (en) 2020-06-10

Family

ID=63859113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017061667A Active JP6708579B2 (en) 2017-03-27 2017-03-27 Member joining apparatus and member joining method

Country Status (1)

Country Link
JP (1) JP6708579B2 (en)

Also Published As

Publication number Publication date
JP2018161683A (en) 2018-10-18

Similar Documents

Publication Publication Date Title
US9353861B2 (en) Coupling structure for piston used in fluid-pressure cylinder, and coupling method therefor
WO2018180489A1 (en) Member joining device and member joining method
WO2017056782A1 (en) Member joining method and device
EP0499996A1 (en) Vibration isolation apparatus
US11198172B2 (en) Method and device for joining members
JP6765310B2 (en) Member joining method and joining body
JP7118645B2 (en) Member joining method and joined body
WO2016136916A1 (en) Bracket for vibration-damping device, bracket-equipped vibration-damping device, and method for manufacturing bracket for vibration-damping device
JP6767908B2 (en) Member joining device and member joining method
JP6708579B2 (en) Member joining apparatus and member joining method
WO2018030014A1 (en) Method for producing piston assembly and hydraulic fluid device
JP6681814B2 (en) Method of joining members and joined body
CN113226588B (en) Component joint and method for manufacturing the same
US11377133B2 (en) Method for fixing steering support, device for fixing steering support, and method for checking deformation of instrument panel reinforcement body
WO2021095425A1 (en) Structure and method for producing same
WO2023276419A1 (en) Method for joining members, and composite elastic body used in said method
JP6993312B2 (en) Dissimilar material joining method, dissimilar material joining joint, tubular member with auxiliary member for dissimilar material joining, and its manufacturing method
JP7078515B2 (en) Dissimilar material joining method, dissimilar material joining joint, tubular member with auxiliary member for dissimilar material joining, and its manufacturing method
JP2006349034A (en) Dynamic damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200521

R151 Written notification of patent or utility model registration

Ref document number: 6708579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151