[go: up one dir, main page]

JP6705910B2 - Electrodeposited diamond dresser for forming screw-shaped grindstone for gear grinding and manufacturing method thereof - Google Patents

Electrodeposited diamond dresser for forming screw-shaped grindstone for gear grinding and manufacturing method thereof Download PDF

Info

Publication number
JP6705910B2
JP6705910B2 JP2018551030A JP2018551030A JP6705910B2 JP 6705910 B2 JP6705910 B2 JP 6705910B2 JP 2018551030 A JP2018551030 A JP 2018551030A JP 2018551030 A JP2018551030 A JP 2018551030A JP 6705910 B2 JP6705910 B2 JP 6705910B2
Authority
JP
Japan
Prior art keywords
diamond abrasive
wheel
outer peripheral
abrasive grains
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018551030A
Other languages
Japanese (ja)
Other versions
JPWO2018092361A1 (en
Inventor
利浩 佐藤
利浩 佐藤
深見 肇
肇 深見
貞雄 榊原
貞雄 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Van Moppes Ltd
Original Assignee
Toyoda Van Moppes Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Van Moppes Ltd filed Critical Toyoda Van Moppes Ltd
Publication of JPWO2018092361A1 publication Critical patent/JPWO2018092361A1/en
Application granted granted Critical
Publication of JP6705910B2 publication Critical patent/JP6705910B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/12Dressing tools; Holders therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/06Devices or means for dressing or conditioning abrasive surfaces of profiled abrasive wheels
    • B24B53/075Devices or means for dressing or conditioning abrasive surfaces of profiled abrasive wheels for workpieces having a grooved profile, e.g. gears, splined shafts, threads, worms

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Description

本発明は、歯車を研削するねじ状砥石を成形する電着ダイヤモンドドレッサとその製造方法に関する。 The present invention relates to an electrodeposited diamond dresser for forming a screw-shaped grindstone for grinding a gear and a method for manufacturing the same.

歯車を研削する砥石は、ねじ状(ウォーム型)のものがあり、ねじ状の成形を行うドレッサは、特に精工さを要求される。
特許文献1に記載のドレッサは、ねじ状砥石のフランク面をドレッシングするための二つのテーパ状作用面とねじ状砥石のねじの谷底部をドレッシングするための外周作用面とを備えている。これらの作用面には、小粒径ダイヤモンド砥粒が設けられている。
A grindstone for grinding a gear has a screw shape (worm type), and a dresser for forming a screw shape is required to have a high degree of precision.
The dresser described in Patent Document 1 includes two tapered working surfaces for dressing the flank surfaces of the threaded grindstone and an outer peripheral working surface for dressing the roots of the threads of the threaded grindstone. Small-diameter diamond abrasive grains are provided on these working surfaces.

従来の技術としての特許文献1によると、一対のドレッサを所定の長さ離間させて回転軸に配置し、各ドレッサは、二つのテーパ状作用面をウォーム型砥石の異なるフランク面にそれぞれ接触させて使用する。 According to Patent Document 1 as a conventional technique, a pair of dressers are arranged on a rotating shaft with a predetermined distance therebetween, and each of the dressers has two tapered action surfaces that are brought into contact with different flank surfaces of a worm wheel. To use.

国際公開第2007/000831号International Publication No. 2007/000831

しかし、特許文献1では、ドレッシングの精度を上げるため、各ドレッサの表裏のテーパ面で形成される外周作用面の幅を狭小に形成している。この狭小の外周作用面でウォーム型砥石のねじのフランク面や谷底部をドレッシングすると、大きな接触負荷によって、小粒径ダイヤモンド砥粒が脱落してドレッサとしての寿命が短くなるという問題があった。 However, in Patent Document 1, in order to improve the dressing accuracy, the width of the outer peripheral working surface formed by the front and back tapered surfaces of each dresser is narrowed. When the flank surface and the valley bottom portion of the screw of the worm type grindstone are dressed with this narrow outer peripheral working surface, there is a problem that a large contact load causes the small-diameter diamond abrasive particles to fall off and shorten the life as a dresser.

本発明は係る従来の問題点に鑑みてなされたものであり、高い精度のドレッシングが可能で寿命が長い歯車研削用ねじ状砥石の成形用電着ダイヤモンドドレッサを提供するものである。 The present invention has been made in view of the above conventional problems, and provides an electrodeposition diamond dresser for forming a threaded grinding wheel for gear grinding, which enables highly accurate dressing and has a long life.

上述した課題を解決するために、請求項1に係る発明の構成上の特徴は、歯車研削用ねじ状砥石の成形用電着ダイヤモンドドレッサにおいて、外周面に向って薄くなるように外周部の両側にテーパ面を備えた円盤状に形成され回転軸線の回りに回転駆動される調質鋼製のホイールと、前記テーパ面の外周縁部に所定幅で帯状に延在し、複数の小粒径ダイヤモンド砥粒がめっき層で鍍着されたダイヤモンド砥粒層と、前記ホイールの前記外周面に前記回転軸線と平行に形成され、所定角度を成す溝内両壁面を有する複数の取付溝と、前記小粒径ダイヤモンド砥粒よりも大きい粒状に形成され、前記所定角度と等しい取付結晶面を有し、前記取付結晶面を前記溝内両壁面に取り付けたとき、前記ホイールの前記外周面と平行になる面が劈開面とならない結晶である多面体単結晶ダイヤモンド砥粒と、を備え、前記各多面体単結晶ダイヤモンド砥粒は、前記取付結晶面が前記ホイールの前記取付溝の前記溝内両壁面に前記めっき層で鍍着され、前記ホイールの前記外周面において、前記複数の多面体単結晶ダイヤモンド砥粒間に、前記小粒径ダイヤモンド砥粒が前記めっき層で鍍着されている。
ホイールの外周面は、取付溝が形成されていないとした場合の円盤状のホイールの外周面をいうものである。また、ホイールの外周面は、曲面であるため、平面である劈開面と平行であるとは、本来表現できない。しかし、ホイールの外周面に対して多面体単結晶ダイヤモンド砥粒の結晶面は、微小であるところから、ホイールの外周面は、多面体単結晶ダイヤモンド砥粒の結晶面との比較において、略平面と把握しうる。そのため、本件特許請求の範囲および明細書において、ホイールの外周面と多面体単結晶ダイヤモンド砥粒の劈開面とを、「平行」という表現を使って記載するものである。
本来は、溝内両壁面の中央に対向する位置において、ホイールの外周面に接する「仮想上の平面」に平行する面が、多面体単結晶ダイヤモンド砥粒の劈開面にならない結晶であることを意味するものである。
In order to solve the above-mentioned problems, the structural feature of the invention according to claim 1 is that in the electrodeposition diamond dresser for forming a screw-shaped grindstone for gear grinding, both sides of the outer peripheral portion are thinned toward the outer peripheral surface. A wheel made of heat-treated steel that is formed into a disk shape having a tapered surface and is driven to rotate around a rotation axis, and extends in a belt shape with a predetermined width on the outer peripheral edge of the tapered surface, and has a plurality of small particle sizes. A diamond abrasive grain layer in which diamond abrasive grains are plated with a plating layer, a plurality of mounting grooves having two inner wall surfaces formed in the outer peripheral surface of the wheel in parallel with the rotation axis and forming a predetermined angle, and It is formed in a grain larger than the small-diameter diamond abrasive grain, has an attachment crystal plane equal to the predetermined angle, and when the attachment crystal plane is attached to both wall surfaces in the groove, it is parallel to the outer peripheral surface of the wheel. A polyhedral single-crystal diamond abrasive grain that is a crystal that does not become a cleavage plane, each said polyhedral single-crystal diamond abrasive grain, said attachment crystal face is said groove inner wall surfaces of said attachment groove of said wheel The small-diameter diamond abrasive grains are plated on the outer peripheral surface of the wheel between the plurality of polyhedral single-crystal diamond abrasive grains on the outer peripheral surface of the wheel by the plating layer.
The outer peripheral surface of the wheel refers to the outer peripheral surface of the disc-shaped wheel when the mounting groove is not formed. Further, since the outer peripheral surface of the wheel is a curved surface, it cannot be originally expressed that it is parallel to the cleavage plane that is a flat surface. However, since the crystal plane of the polyhedral single crystal diamond abrasive grains is minute with respect to the outer peripheral surface of the wheel, the outer peripheral surface of the wheel is grasped as a substantially flat surface in comparison with the crystal plane of the polyhedral single crystal diamond abrasive grains. You can. Therefore, in the claims and the specification of the present application, the outer peripheral surface of the wheel and the cleavage plane of the polyhedral single crystal diamond abrasive grain are described by using the expression “parallel”.
Originally, at the position facing the center of both wall surfaces in the groove, it means that the plane parallel to the "imaginary plane" in contact with the outer peripheral surface of the wheel is a crystal that does not become the cleavage plane of the polyhedral diamond abrasive grain. To do.

従来、外周面に向って薄くなるホイールは、外周部両側に設けられたテーパ面により外周面は狭小となっており、外周面に配置された単位面積当たりの小粒径ダイヤモンド砥粒の数が少ない。そのため、外周面に配置された小粒径ダイヤモンド砥粒にはドレッシング負荷がかかる。しかし、ホイールの外周面に、周方向に沿って大きい粒状の多面体単結晶ダイヤモンド砥粒が複数鍍着され、ドレッシングする際に多面体単結晶ダイヤモンド砥粒が主にドレッシングを実行する。そのため、多面体単結晶ダイヤモンド砥粒が小粒径ダイヤモンド砥粒を含んで構成されるダイヤモンド砥粒層に加わる負荷を軽減し、小粒径ダイヤモンド砥粒の脱落を防止し、さらにホイール自体の損傷を防止してドレッサとしての寿命を延ばすことができる。
また、ホイールの外周面には、回転軸線と平行に、所定角度を成す溝内両壁面を有する複数の取付溝が形成され、多面体単結晶ダイヤモンド砥粒は、溝内両壁面の所定角度と等しい取付結晶面で、ホイールの外周面と平行になる面が劈開面とならないように溝内両壁面に鍍着される。そのため、多面体単結晶ダイヤモンド砥粒は、破砕しにくくかつ強固にホイールに固着されドレッサとしての寿命を延ばすことができる。
Conventionally, a wheel that becomes thinner toward the outer peripheral surface has a narrow outer peripheral surface due to the tapered surfaces provided on both sides of the outer peripheral portion, and the number of small-diameter diamond abrasive grains per unit area arranged on the outer peripheral surface is small. Few. Therefore, a dressing load is applied to the small-diameter diamond abrasive grains arranged on the outer peripheral surface. However, a plurality of large granular polyhedral single crystal diamond abrasive grains are plated on the outer peripheral surface of the wheel along the circumferential direction, and the polyhedral single crystal diamond abrasive grains mainly perform dressing when dressing. Therefore, the load applied to the diamond abrasive grain layer formed by the polyhedral single crystal diamond abrasive grains containing the small-diameter diamond abrasive grains is reduced, the small-diameter diamond abrasive grains are prevented from falling off, and the wheel itself is not damaged. It can be prevented and the life as a dresser can be extended.
Further, on the outer peripheral surface of the wheel, a plurality of mounting grooves are formed in parallel with the axis of rotation and having both inner walls of the groove forming a predetermined angle, and the polyhedral single crystal diamond abrasive grains are equal to the predetermined angle of both inner walls of the groove. The mounting crystal plane is plated on both wall surfaces in the groove so that the plane parallel to the outer peripheral surface of the wheel does not become a cleavage plane. Therefore, the polyhedral single-crystal diamond abrasive grains are hard to be crushed and firmly fixed to the wheel, so that the life of the dresser can be extended.

本発明に係る実施形態の成形用電着ダイヤモンドドレッサを裏面側から見て示す図である。It is a figure which shows the electrodeposition diamond dresser for shaping|molding of embodiment which concerns on this invention seeing from a back surface side. 図1における成形用電着ダイヤモンドドレッサのII−II断面を示す図である。It is a figure which shows the II-II cross section of the electrodeposition diamond dresser for shaping|molding in FIG. 図2におけるテーパ面を拡大して示す断面図である。It is sectional drawing which expands and shows the taper surface in FIG. 図3における外周部を拡大して示す図である。It is a figure which expands and shows the outer peripheral part in FIG. 成形用電着ダイヤモンドドレッサの外周面を表側から見て示す部分拡大図である。It is a partial enlarged view showing the outer peripheral surface of the electrodeposition diamond dresser for molding as seen from the front side. 成形用電着ダイヤモンドドレッサの外周面を側方から見て示す部分拡大図である。It is a partial enlarged view showing the outer peripheral surface of the electrodeposition diamond dresser for molding as seen from the side. 八面体単結晶ダイヤモンド砥粒のモデルを示す図である。It is a figure which shows the model of an octahedron single crystal diamond abrasive grain. 成形用電着ダイヤモンドドレッサの製造手順を示すフローチャートである。It is a flowchart which shows the manufacturing procedure of the electrodeposition diamond dresser for shaping|molding. 取付溝を形成する工程を示す部分拡大図である。It is a partial enlarged view showing a process of forming a mounting groove. 取付溝に接着剤を塗布する工程を示す図である。It is a figure which shows the process of apply|coating an adhesive agent to an attachment groove. 取付溝に八面体単結晶ダイヤモンド砥粒を接着した工程を示す図である。It is a figure which shows the process which adhered the octahedral single crystal diamond abrasive grain to the attachment groove. 電気めっき層をホイールに形成する電気めっき槽を示す図である。It is a figure which shows the electroplating tank which forms an electroplating layer in a wheel. 小粒径ダイヤモンド砥粒をホイールに接触させる工程を示す図である。It is a figure which shows the process of making a diamond particle of small particle size contact a wheel. 電気めっき層を形成し、余剰の小粒径ダイヤモンド砥粒を除去する工程を示す図である。It is a figure which shows the process of forming an electroplating layer and removing a surplus small particle diameter diamond abrasive grain. 電気めっき層を成長させる工程を示す図である。It is a figure which shows the process of growing an electroplating layer. ねじ状砥石をドレッシングする状態を説明する図である。It is a figure explaining the state which dresses a thread-like grindstone. 従来ドレッサと本件ドレッサのドレス回数の耐久性を比較した図である。It is the figure which compared the durability of the dressing frequency of the conventional dresser and this dresser. 多面体単結晶ダイヤモンド砥粒の結晶形状の種類を示す図である。It is a figure which shows the kind of crystal shape of a polyhedral diamond abrasive grain. 六面体単結晶ダイヤモンド砥粒をホイールの取付溝に取り付ける状態を示す図である。It is a figure which shows the state which attaches a hexahedral single crystal diamond abrasive grain to the attachment groove of a wheel. 菱形十二面体単結晶ダイヤモンド砥粒をホイールの取付溝に取り付ける状態を示す図である。It is a figure which shows the state which attaches the rhombic dodecahedron single crystal diamond abrasive grain to the attachment groove of a wheel. 八面体の結晶面と六面体の結晶面とが現れた単結晶ダイヤモンド砥粒をホイールの取付溝に取り付ける状態を示す図である。It is a figure which shows the state which attaches the single crystal diamond abrasive grain in which the crystal plane of an octahedron and the crystal plane of a hexahedron appeared to the mounting groove of a wheel. 菱形十二面体の結晶面と八面体の結晶面と六面体の結晶面とが現れた単結晶ダイヤモンド砥粒をホイールの取付溝に取り付ける状態を示す図である。FIG. 3 is a diagram showing a state in which single-crystal diamond abrasive grains having a rhombic dodecahedron crystal face, an octahedron crystal face, and a hexahedral crystal face are attached to an attachment groove of a wheel. 菱形十二面体の結晶面と八面体の結晶面とが現れた単結晶ダイヤモンド砥粒をホイールの取付溝に取り付ける状態を示す図である。It is a figure which shows the state which attaches the single crystal diamond abrasive grain which the crystal plane of a rhombic dodecahedra and the crystal plane of an octahedron appeared to the attachment groove of a wheel.

(実施形態)
以下、本発明に係る歯車研削用ねじ状砥石の成形用電着ダイヤモンドドレッサの実施形態について図面を参照して説明する。
成形用電着ダイヤモンドドレッサ1は、図1及び図2に示すように、ホイール2と、ホイール2に設けられたダイヤモンド砥粒層3と、ホイール2の外周面22に設けられた八面体単結晶ダイヤモンド砥粒4とを備えている。
(Embodiment)
Hereinafter, an embodiment of an electrodeposition diamond dresser for forming a thread grinding wheel for gear grinding according to the present invention will be described with reference to the drawings.
As shown in FIGS. 1 and 2, the electrodeposition diamond dresser 1 for molding includes a wheel 2, a diamond abrasive grain layer 3 provided on the wheel 2, and an octahedral single crystal provided on an outer peripheral surface 22 of the wheel 2. And diamond abrasive grains 4.

(ホイール)
ホイール2は、図1および図2に示すように、例えば、鋼製部材で、外周に向って薄くなるテーパ面21を表裏二面(表テーパ面21f、裏テーパ面21b)備え円盤状に形成されている。調質鋼製部材として、例えば、焼入れ、焼戻し鋼(SUJ)などが用いられる。表テーパ面21fは、ホイール2の中央部分に設けられた肉厚円盤部23の表面から連続して外周面22まで延在している。裏テーパ面21bは、ホイール2の中央部分に肉厚に設けられた肉厚円盤部23の裏面より、肉厚が薄くなる方向に段差が形成された段部24の表面より連続して外周面22まで延在している。外周面22は、外周に向って薄くなるように設けられた表テーパ面21fおよび裏テーパ面21bにより、回転軸線CLに沿った方向の幅が狭小に形成されている(図3および図4参照)。
なお、ホイール2において、ダイヤモンド砥粒層3が所定幅で帯状に広く形成される表テーパ面21fが形成される側を表側といい、表テーパ面21fより狭い幅でダイヤモンド砥粒層3が帯状に形成される裏テーパ面21bが形成される側を裏側という。ホイール2の表テーパ面21fには、外周縁部26に所定の幅で帯状に表帯状部25fが形成されている。また、裏テーパ面21bには、外周縁部26に表帯状部25fより狭い幅で裏帯状部25bが形成されている。表帯状部25fおよび裏帯状部25bには複数の小粒径ダイヤモンド砥粒31が後述するめっき層で鍍着されたダイヤモンド砥粒層3が形成されている。
(wheel)
As shown in FIGS. 1 and 2, the wheel 2 is, for example, a steel member, and is formed into a disk shape with two tapered surfaces 21 (front tapered surface 21f, back tapered surface 21b) that taper toward the outer periphery. Has been done. As the heat-treated steel member, for example, quenched or tempered steel (SUJ) is used. The front taper surface 21f continuously extends from the surface of the thick disk portion 23 provided in the central portion of the wheel 2 to the outer peripheral surface 22. The back taper surface 21b is an outer peripheral surface that is continuous from the back surface of the thick disk portion 23 provided in the central portion of the wheel 2 from the front surface of the step portion 24 in which a step is formed in the direction of decreasing the wall thickness. It extends to 22. The outer peripheral surface 22 is formed to have a narrow width in the direction along the rotation axis CL by the front taper surface 21f and the back taper surface 21b provided so as to become thinner toward the outer circumference (see FIGS. 3 and 4). ).
In the wheel 2, the side on which the front surface 21f where the diamond abrasive grain layer 3 is formed in a wide band shape with a predetermined width is formed is referred to as a front side, and the diamond abrasive grain layer 3 is narrower in width than the front taper surface 21f. The side on which the back taper surface 21b is formed is referred to as the back side. On the front taper surface 21f of the wheel 2, a front strip portion 25f having a predetermined width is formed on the outer peripheral edge portion 26 in a strip shape. Further, on the back taper surface 21b, a back strip portion 25b is formed on the outer peripheral edge portion 26 with a width narrower than that of the front strip portion 25f. A diamond abrasive grain layer 3 in which a plurality of small-diameter diamond abrasive grains 31 are plated with a plating layer described below is formed on the front strip portion 25f and the back strip portion 25b.

(ダイヤモンド砥粒層)
ダイヤモンド砥粒層3を構成する小粒径ダイヤモンド砥粒31は、例えば、粒度が♯60/80のものが使用される。小粒径ダイヤモンド砥粒31は、電気めっきにより形成される電気めっき層32によりホイール2に鍍着されてダイヤモンド砥粒層3を形成する。
(Diamond abrasive layer)
As the small-diameter diamond abrasive grains 31 forming the diamond abrasive grain layer 3, for example, those having a grain size of #60/80 are used. The small-diameter diamond abrasive grains 31 are plated on the wheel 2 by the electroplating layer 32 formed by electroplating to form the diamond abrasive grain layer 3.

(取付溝)
ホイール2の外周面22には、図9に示すように、対向する溝内両壁面51a,51bが110°を成し、溝筋52がホイール2の回転軸線CL方向に平行に延在する取付溝5が複数(本実施形態では80箇所)設けられている。各取付溝5には、八面体単結晶ダイヤモンド砥粒4が各一個ずつ固着されている。八面体単結晶ダイヤモンド砥粒4は、図7に示すように、オクタヘドロンタイプといわれる正八面体を成し、粒度として例えば♯16/18のものを使用する。図9に示す取付溝5の溝内両壁面51a,51bは、110°の所定角度を成して形成されている。溝内両壁面51a,51bには、図11に示すように、八面体単結晶ダイヤモンド砥粒4の110°の角度を成して隣接する二つの基端部側ミラー指数{1,1,1}面M1,M2を合せて取り付ける。(ここで、二つの基端部側ミラー指数{1,1,1}面とは、八面体単結晶ダイヤモンド砥粒4の八つのミラー指数{1,1,1}面のうち、ホイール2の回転軸線CL側(取付溝5側)に配置され、取付溝5の溝内両壁面51a,51bに接着される二つのミラー指数{1,1,1}面をいうものとする。また、二つの基端部側ミラー指数{1,1,1}面が、「取付結晶面」に対応する。)また、頭部側ミラー指数{1,1,1}面とは、取付結晶面として取付溝5側に位置された二つの基端部側ミラー指数{1,1,1}面に対向する取付溝5とは反対側に配置された二つのミラー指数{1,1,1}面をいうものとする。
(Mounting groove)
As shown in FIG. 9, on the outer peripheral surface 22 of the wheel 2, both inner wall surfaces 51a, 51b of the groove facing each other form 110°, and the groove stripe 52 extends parallel to the rotational axis CL direction of the wheel 2. A plurality of grooves 5 (80 locations in this embodiment) are provided. One octahedral single crystal diamond abrasive grain 4 is fixed to each mounting groove 5. As shown in FIG. 7, the octahedral single crystal diamond abrasive grains 4 form a regular octahedron called an octahedron type and have a grain size of #16/18, for example. Both inner wall surfaces 51a and 51b of the mounting groove 5 shown in FIG. 9 are formed at a predetermined angle of 110°. As shown in FIG. 11, on both wall surfaces 51a and 51b in the groove, two base end side mirror indexes {1, 1, 1 which are adjacent to each other at an angle of 110° of the octahedral single crystal diamond abrasive grains 4 are formed. } Faces M1 and M2 are attached together. (Here, the two base end side mirror index {1,1,1} planes are the eight mirror index {1,1,1} planes of the octahedral single crystal diamond abrasive grain 4 of the wheel 2). The two mirror index {1,1,1} planes that are arranged on the rotation axis CL side (mounting groove 5 side) and are bonded to both inner wall surfaces 51a and 51b of the mounting groove 5 are referred to. One of the base end side mirror index {1,1,1} planes corresponds to the "mounting crystal plane".) Further, the head side mirror index {1,1,1} planes are mounted as mounting crystal planes. The two mirror index {1,1,1} faces arranged on the opposite side of the mounting groove 5 facing the two base end side mirror index {1,1,1} faces located on the groove 5 side I will say.

この場合、取付溝5は、八面体単結晶ダイヤモンド砥粒4が取り付けられる場合に、図7および図9に示すように、八面体単結晶ダイヤモンド砥粒4における二つの基端部側ミラー指数{1,1,1}面M1,M2と、二つの基端部側ミラー指数{1,1,1}面M1,M2と互いに対向する二つの頭部側ミラー指数{1,1,1}面H1,H2とが交差する頂部42,43(頂部42は、座標(1,0,0)、頂部43は、座標(−1,0,0)で表される。)を、ホイール2の半径方向において、外周面22より回転軸線CL側に近い位置に配置可能に形成されている(図7および図11参照)。 In this case, when the octahedral single crystal diamond abrasive grain 4 is attached, the attachment groove 5 has two base end side mirror indices of the octahedral single crystal diamond abrasive grain 4 as shown in FIGS. 7 and 9. 1,1,1} planes M1, M2 and two base end side mirror index {1,1,1} planes M1, M2 and two head side mirror index {1,1,1} planes facing each other The radii of the wheel 2 are the apices 42, 43 where H1 and H2 intersect (the apices 42 are represented by coordinates (1, 0, 0) and the apices 43 are represented by coordinates (-1, 0, 0)). In the direction, it is formed so that it can be arranged at a position closer to the rotation axis CL side than the outer peripheral surface 22 (see FIGS. 7 and 11).

取付溝5の溝内両壁面51a,51bと、八面体単結晶ダイヤモンド砥粒4の110°で隣接する二つの基端部側ミラー指数{1,1,1}面M1,M2とは、接着剤6により接着されている。接着剤6としては、例えば、エポキシ樹脂系の非導電性接着剤が使用される。 The inner wall surfaces 51a and 51b of the mounting groove 5 and the two base end side mirror index {1,1,1} surfaces M1 and M2 of the octahedral single crystal diamond abrasive grain 4 which are adjacent to each other at 110° are bonded to each other. It is adhered by the agent 6. As the adhesive 6, for example, an epoxy resin-based non-conductive adhesive is used.

(八面体単結晶ダイヤモンド砥粒)
八面体単結晶ダイヤモンド砥粒4は、小粒径ダイヤモンド砥粒31とともに、電気めっき層32で、ホイール2の外周面22に鍍着されている(図5、図6および図15参照)。この場合、電気めっき層32は、二つの基端部側ミラー指数{1,1,1}面M1,M2と、二つの頭部側ミラー指数{1,1,1}面H1,H2とが、交差する頂部42,43を、覆って八面体単結晶ダイヤモンド砥粒4を、外周面22に鍍着している(図5、図6、図7および図15参照)。このようにして、八面体単結晶ダイヤモンド砥粒4は、電気めっき層32により強固にホイール2の外周面22に鍍着されている。
なお、図3から図6に示される八面体単結晶ダイヤモンド砥粒4は、八面体結晶のままの形状ではなく、ダイヤモンド砥粒層3に並んだ小粒径ダイヤモンド砥粒31の刃面に整合させて成形された形状となっている。劈開面CSとは、結晶が特定の方向に割れやすい場合にその方向の面をいい、八面体単結晶ダイヤモンド4の場合、{1,1,1}面に平行な面(この場合もミラー指数{1,1,1}面)となる。八面体単結晶ダイヤモンド砥粒4は、図5および図6に示すように、外表面に劈開面CSに平行な面ミラー指数{1,1,1}面を有している。劈開面CS以外の箇所を加工する場合には、ダイヤモンド同士を摺り合わせて研磨する。ホイール2の外周面22に複数配置された八面体単結晶ダイヤモンド砥粒4の間にも小粒径ダイヤモンド砥粒31が配置されている。八面体単結晶ダイヤモンド砥粒4は、取付溝5が形成されなかったとした場合のホイール2の外周面22に、八面体単結晶ダイヤモンド砥粒4が取り付けられた中心位置において接する仮想上の平面と、八面体単結晶ダイヤモンド砥粒4の劈開面CSとが、平行ではなく35°の角度で交差するよう位置決めされている。
(Octahedron single crystal diamond grain)
The octahedral single-crystal diamond abrasive grains 4 are plated on the outer peripheral surface 22 of the wheel 2 together with the small-diameter diamond abrasive grains 31 by the electroplating layer 32 (see FIGS. 5, 6 and 15). In this case, the electroplating layer 32 has two base end side mirror index {1,1,1} planes M1, M2 and two head side mirror index {1,1,1} planes H1, H2. The octahedral single-crystal diamond abrasive grains 4 are coated on the outer peripheral surface 22 to cover the intersecting top portions 42 and 43 (see FIGS. 5, 6, 7, and 15). In this way, the octahedral single crystal diamond abrasive grains 4 are firmly attached to the outer peripheral surface 22 of the wheel 2 by the electroplating layer 32.
The octahedral single crystal diamond abrasive grains 4 shown in FIGS. 3 to 6 are not in the shape of the octahedral crystal as they are, but are aligned with the blade surfaces of the small-diameter diamond abrasive grains 31 arranged in the diamond abrasive grain layer 3. It has a shape that has been molded. The cleavage plane CS is a plane in which a crystal is easily broken in a specific direction, and in the case of an octahedral single crystal diamond 4, a plane parallel to the {1,1,1} plane (also in this case, Miller index). The {1,1,1} plane). As shown in FIGS. 5 and 6, the octahedron single crystal diamond abrasive grain 4 has a plane mirror index {1, 1, 1} plane parallel to the cleavage plane CS on the outer surface. When processing a portion other than the cleavage plane CS, diamonds are rubbed together and polished. Small-diameter diamond abrasive grains 31 are also arranged among a plurality of octahedral single-crystal diamond abrasive grains 4 arranged on the outer peripheral surface 22 of the wheel 2. The octahedral single crystal diamond abrasive grain 4 is an imaginary plane that is in contact with the outer peripheral surface 22 of the wheel 2 at the center position where the octahedral single crystal diamond abrasive grain 4 is attached, assuming that the attachment groove 5 is not formed. , The cleavage plane CS of the octahedral single crystal diamond abrasive grain 4 is positioned not to be parallel but to intersect at an angle of 35°.

ホイール2の中心には、駆動軸SFr,SFl(図16参照)の軸端に突出する芯合わせボスに嵌合する中心穴27が貫設されている。中心穴27の周囲には、雌ねじが形成された雌ねじ穴28およびボルトが挿通するボルト穴29が三つずつ形成されている(図1および図2参照)。 At the center of the wheel 2, a center hole 27 is provided which is fitted into a centering boss protruding at the shaft ends of the drive shafts SFr, SF1 (see FIG. 16). Around the center hole 27, three female screw holes 28 having female screws and three bolt holes 29 through which bolts are inserted are formed (see FIGS. 1 and 2).

(製造方法の手順)
次に、歯車研削用ねじ状砥石の成形用電着ダイヤモンドドレッサ1の製造方法を図8〜図15等に基づき以下に説明する。
ホイール2は、例えば、研削盤により円盤状に形成される(ホイール形成工程・ステップ101(以下、ステップを「S」で略記する。))(図8参照)。ホイール2は、調質鋼製部材により形成され、外周に向って薄くなるように、表テーパ面21fと裏テーパ面21bと外周部の表裏に夫々形成される。表テーパ面21fは、ホイール2の中央部分に設けられた肉厚円盤部23の表面から連続して外周面22まで延在するように形成される。ホイール2の裏側中央部分に肉厚に設けられる肉厚円盤部23が形成され、肉厚円盤部23の外周部には肉厚が薄くなる方向に段差が生じた段部24が形成される。裏テーパ面21bは、段部24の薄く形成された端部の表面より連続して外周面22まで延在するように形成される。
(Procedure of manufacturing method)
Next, a method for manufacturing the electrodeposition diamond dresser 1 for forming a screw-shaped grindstone for gear grinding will be described below with reference to FIGS.
The wheel 2 is formed into a disc shape, for example, by a grinding machine (wheel forming step/step 101 (hereinafter, step is abbreviated as “S”)) (see FIG. 8 ). The wheel 2 is formed of a heat-treated steel member, and is formed on the front taper surface 21f, the back taper surface 21b, and the front and back surfaces of the outer peripheral portion so as to become thinner toward the outer circumference. The front taper surface 21f is formed so as to extend continuously from the surface of the thick disk portion 23 provided in the central portion of the wheel 2 to the outer peripheral surface 22. A thick-walled disc portion 23 is formed in the central portion on the back side of the wheel 2, and a step portion 24 is formed on the outer peripheral portion of the thick-walled disc portion 23 in which a step is formed in the direction in which the thickness is reduced. The back taper surface 21b is formed so as to extend continuously to the outer peripheral surface 22 from the surface of the thinly formed end of the step portion 24.

ホイール2の中心部には、駆動軸SFr,SFl(図16)が貫通する中心穴27が貫設される。中心穴27の周りには、雌ねじが螺設された雌ねじ穴28と、ボルトを挿通させるボルト穴29とが三つずつ設けられる(図1参照)。 A central hole 27 through which the drive shafts SFr and SFl (FIG. 16) penetrate is provided at the center of the wheel 2. Around the center hole 27, three female screw holes 28 in which female screws are screwed and three bolt holes 29 into which bolts are inserted are provided (see FIG. 1 ).

次に、取付溝5が、ホイール2の外周面22に、例えば、ワイヤー加工によって形成される(取付溝形成工程・S102)(図9参照)。取付溝5は、図7および図9に示すように、ホイール2の回転軸線CLの方向に沿って溝筋52が延在し対向する溝内両壁面51a,51bが110°の角度を成し、取り付けられる各八面体単結晶ダイヤモンド砥粒4における110°の角度を成して稜線41で隣接する二つの基端部側ミラー指数{1,1,1}面M1,M2の互いに離間した側の二つの頂部42,43を、ホイール2の半径方向において外周面22よりも回転軸線CL側に近い位置に配置可能な深さ寸法に形成する(図9および図11参照)。取付溝5は、ホイール2の外周面22に所定間隔で複数(本実施形態では80箇所)形成する。 Next, the mounting groove 5 is formed on the outer peripheral surface 22 of the wheel 2 by, for example, wire working (mounting groove forming step S102) (see FIG. 9). As shown in FIGS. 7 and 9, the mounting groove 5 has groove grooves 52 extending along the direction of the rotation axis CL of the wheel 2 and both inner wall surfaces 51a and 51b of the groove facing each other form an angle of 110°. , Two octagonal single-crystal diamond abrasive grains 4 attached at an angle of 110° and adjacent to each other at a ridge 41 on the base end side mirror index {1,1,1} planes M1, M2 spaced apart from each other The two top portions 42 and 43 are formed to have a depth dimension that can be arranged at a position closer to the rotation axis CL side than the outer peripheral surface 22 in the radial direction of the wheel 2 (see FIGS. 9 and 11). A plurality of mounting grooves 5 are formed on the outer peripheral surface 22 of the wheel 2 at predetermined intervals (80 locations in this embodiment).

次に、八面体単結晶ダイヤモンド砥粒4が、取付溝5の溝内両壁面51a,51bに接着される(八面体単結晶ダイヤモンド砥粒接着工程・S103)(図10・図11参照)。この場合、八面体単結晶ダイヤモンド砥粒4における110°の角度を成して稜線41で隣接する二つの基端部側ミラー指数{1,1,1}面M1,M2を、接着剤6により溝内両壁面51a,51bに接着する。接着剤6としては、非導電性接着剤としては、例えば、エポキシ樹脂系接着剤を使用できる。 Next, the octahedral single crystal diamond abrasive grains 4 are adhered to both inner wall surfaces 51a and 51b of the attachment groove 5 (octahedral single crystal diamond abrasive grain adhering step S103) (see FIGS. 10 and 11). In this case, two base end side mirror index {1,1,1} planes M1, M2 that are adjacent to each other at the ridge line 41 at an angle of 110° in the octahedral single crystal diamond abrasive grain 4 are bonded by the adhesive 6. It adheres to both wall surfaces 51a and 51b in the groove. As the adhesive agent 6, for example, an epoxy resin adhesive agent can be used as the non-conductive adhesive agent.

次に、複数の小粒径ダイヤモンド砥粒31が、ホイール2のテーパ面21における帯状部25f、25bおよびホイール2の外周面22に接触させられる(小粒径ダイヤモンド砥粒接触工程・S104)(図13参照)。この接触は、図略の容器内に収納した複数の小粒径ダイヤモンド砥粒31をテーパ面21および外周面22に接触させておこなう。 Next, a plurality of small-diameter diamond abrasive grains 31 are brought into contact with the belt-shaped portions 25f, 25b on the tapered surface 21 of the wheel 2 and the outer peripheral surface 22 of the wheel 2 (small-diameter diamond abrasive grain contact step S104) ( (See FIG. 13). This contact is performed by bringing a plurality of small-diameter diamond abrasive grains 31 housed in a container (not shown) into contact with the tapered surface 21 and the outer peripheral surface 22.

次に、八面体単結晶ダイヤモンド砥粒4が接着されかつ小粒径ダイヤモンド砥粒31が接触したホイール2が、ニッケル溶液中における電気めっきにより仮鍍着される(第一電気めっき工程・S105)(図12・図14参照)。電気めっき槽7には、例えば、ホウ酸、硫酸ニッケル、塩化ニッケル等を混合しためっき液71が収納されている。めっき液71中には、陽極としてニッケル電極72が設けられている。陰極としてホイール2が割り当てられる。陰極の端子に接続された導電性の支持部材73のフランジ部73aには、ホイール2がナット74により締結され、ホイール2は底板75と塩ビ製のブラケット76によりゴム製のマスキング部材77を上下方向から挟持されている。この電気めっきにより、ホイール2の表面に接触した小粒径ダイヤモンド砥粒31とホイール2との間に電気めっき層32が形成され、小粒径ダイヤモンド砥粒31をホイール2の表面に仮鍍着を行う(図14参照)。 Next, the wheel 2 to which the octahedral single-crystal diamond abrasive grains 4 are adhered and the small-diameter diamond abrasive grains 31 are in contact is provisionally plated by electroplating in a nickel solution (first electroplating step S105). (See FIGS. 12 and 14). The electroplating bath 7 contains, for example, a plating solution 71 in which boric acid, nickel sulfate, nickel chloride, etc. are mixed. A nickel electrode 72 is provided as an anode in the plating solution 71. Wheel 2 is assigned as the cathode. The wheel 2 is fastened to the flange portion 73a of the conductive support member 73 connected to the terminal of the cathode by a nut 74, and the wheel 2 has a bottom plate 75 and a bracket 76 made of vinyl chloride and has a masking member 77 made of rubber in a vertical direction. Being pinched from. By this electroplating, the electroplating layer 32 is formed between the small-diameter diamond abrasive grains 31 contacting the surface of the wheel 2 and the wheel 2, and the small-diameter diamond abrasive grains 31 are temporarily plated on the surface of the wheel 2. (See FIG. 14).

次に、ホイール2の表面に仮鍍着されていない余剰の小粒径ダイヤモンド砥粒31が取り除かれる(余剰小粒径ダイヤモンド砥粒除去工程・S106)(図14参照)。これにより、一層の砥粒層として形状精度の高いダイヤモンド砥粒層3を形成することができる。 Next, the surplus small-diameter diamond abrasive grains 31 not temporarily applied to the surface of the wheel 2 are removed (excess small-diamond diamond abrasive removing step S106) (see FIG. 14). Thereby, the diamond abrasive grain layer 3 having a high shape accuracy can be formed as a single abrasive grain layer.

次に、余剰の小粒径ダイヤモンド砥粒31が除かれたホイール2に、さらに電気めっき層32が形成される(第二電気めっき工程・S107)(図15参照)。電気めっき層32をさらに成長させて形成することで、八面体単結晶ダイヤモンド砥粒4において、二つの基端部側ミラー指数{1,1,1}面M1,M2と、二つの基端部側ミラー指数{1,1,1}面M1,M2と互いに対向する二つの頭部側ミラー指数{1,1,1}面H1,H2とが、交差する頂部42,43を覆って八面体単結晶ダイヤモンド砥粒4を外周面22に鍍着する。この場合、電気めっき層32は、八面体単結晶ダイヤモンド砥粒4の基端側(八面体単結晶ダイヤモンド砥粒4がホイール2に固着される側)をホイール2の外周面22に強固に本鍍着する。 Next, the electroplating layer 32 is further formed on the wheel 2 from which the surplus small-diameter diamond abrasive grains 31 have been removed (second electroplating step S107) (see FIG. 15). By further growing and forming the electroplating layer 32, in the octahedral single crystal diamond abrasive grain 4, two base end side mirror index {1,1,1} planes M1, M2 and two base end portions are formed. An octahedron that covers the tops 42 and 43 where the side mirror index {1,1,1} planes M1, M2 and the two head side mirror index {1,1,1} planes H1, H2 that face each other intersect. The single crystal diamond abrasive grains 4 are plated on the outer peripheral surface 22. In this case, in the electroplating layer 32, the base end side of the octahedral single crystal diamond abrasive grains 4 (the side where the octahedral single crystal diamond abrasive grains 4 are fixed to the wheel 2) is firmly bonded to the outer peripheral surface 22 of the wheel 2. Put on the plate.

(作動)
次に、本実施形態における歯車研削用ねじ状砥石の成形用電着ダイヤモンドドレッサ1を使用して、歯車研削用ねじ状砥石(以下、ねじ状砥石という。)Wをドレッシングする場合について簡単に説明する。
まず、図16に示すように、同軸に並んだ二つの駆動軸SFr,SFlの対向する端部には夫々成形用電着ダイヤモンドドレッサ1がボルトB等によって相対回転不能に設けられている。二つの成形用電着ダイヤモンドドレッサ1(1R,1L)は、ダイヤモンド砥粒層3が設けられた表テーパ面21fを対向して配置されている。駆動軸SFr,SFlは、減速装置(図略)を介して駆動モータ(図略)により駆動トルクが伝達されて回転する。駆動軸SFr,SFlの回転速度は、減速装置におけるギヤ比を切替える機構によって任意の周速度に変更されるよう構成されている。二つの駆動軸SFr,SFlは、回転軸線CL方向に接近離間する接離移動機構(図示せず)に組み込まれている。
(Operation)
Next, a brief description will be given of a case of dressing a thread grinding wheel for gear grinding (hereinafter, referred to as a thread grinding wheel) W using the electrodeposition diamond dresser 1 for forming a thread grinding wheel for gear grinding in the present embodiment. To do.
First, as shown in FIG. 16, a forming electrodeposition diamond dresser 1 is provided by bolts B and the like at the opposite ends of the two coaxially arranged drive shafts SFr and SFl so that they cannot rotate relative to each other. The two forming electrodeposition diamond dressers 1 (1R, 1L) are arranged so that the front taper surfaces 21f provided with the diamond abrasive grain layer 3 face each other. The drive shafts SFr and SFl rotate by being transmitted with drive torque by a drive motor (not shown) via a speed reducer (not shown). The rotation speeds of the drive shafts SFr and SFl are configured to be changed to an arbitrary peripheral speed by a mechanism that switches the gear ratio in the reduction gear transmission. The two drive shafts SFr and SFl are incorporated into a contact/separation moving mechanism (not shown) that moves closer to and away from the rotation axis CL.

被研削物であるねじ状砥石Wは、駆動軸SFr,SFlとは異なる周速度で回転可能な図略の回転軸に相対回転不能に組み付けられている。駆動軸SFr,SFlとねじ状砥石Wが組み付けられた回転軸とは、互いに平行な状態で接近離間可能とする図略の切込移動機構(図示せず)に組み込まれている。また、駆動軸SFr,SFlとねじ状砥石Wが組み付けられた回転軸とは、ねじ状砥石Wが組み付けられた回転軸の回転に連動して軸方向に相対移動可能とする送り移動機構(図示せず)に組み込まれている。 The threaded grindstone W, which is the object to be ground, is non-rotatably assembled to a rotary shaft (not shown) that can rotate at a peripheral speed different from that of the drive shafts SFr and SFl. The drive shafts SFr and SFl and the rotary shaft to which the screw-shaped grindstone W is assembled are incorporated in a not-shown notch movement mechanism (not shown) that enables them to approach and separate in parallel with each other. Further, the drive shafts SFr, SFl and the rotary shaft on which the screw-shaped grindstone W is assembled have a feed moving mechanism that allows relative movement in the axial direction in association with the rotation of the rotary shaft on which the screw-shaped grindstone W is assembled (Fig. (Not shown).

ドレッシングを実施する際に、例えば、成形用電着ダイヤモンドドレッサ1の周速度よりもねじ状砥石Wの周速度を低くして、成形用電着ダイヤモンドドレッサ1とねじ状砥石Wとが接触点において同一の接線方向に回転するよう互いに逆方向に回転させる。そして、切込移動機構によって切り込み量を調節しながら接近させてねじ状砥石Wのねじ歯の谷の側面(フランク面WF)をドレッシングする。そして、ねじ状砥石Wのねじ形状の回転に同期させて送り移動機構により、成形用電着ダイヤモンドドレッサ1とねじ状砥石Wとを軸方向に相対移動させて、ねじ状砥石Wのフランク面WFおよび谷底部WBを連続してドレッシングする。この場合、二枚の成形用電着ダイヤモンドドレッサ1の切り込み量を切込移動機構によって同期させ、かつ送り移動機構により二枚の成形用電着ダイヤモンドドレッサ1の送り移動量を夫々のフランク面WFr,WFlの側面形状に合せて調節する。 When performing dressing, for example, the peripheral speed of the threaded grindstone W is made lower than the peripheral speed of the electrodeposited diamond dresser 1 for molding, and the electrodeposited diamond dresser 1 for molding and the threaded grindstone W are contacted at a contact point. Rotate in opposite directions so that they rotate in the same tangential direction. Then, the side surfaces of the roots of the screw teeth of the threaded grindstone W (flank surfaces WF) are dressed by approaching them while adjusting the amount of cutting by the cutting movement mechanism. Then, the electrodeposition diamond forming dresser 1 for forming and the thread-shaped grindstone W are relatively moved in the axial direction by the feed moving mechanism in synchronization with the rotation of the thread-shaped grindstone W, and the flank surface WF of the thread-shaped grindstone W is moved. And the valley bottom WB is continuously dressed. In this case, the cutting amount of the two electroforming diamond dresser 1 for forming is synchronized by the notch moving mechanism, and the feed moving amount of the two electroforming diamond dresser 1 for forming is controlled by the respective flank surfaces WFr. , WFl according to the side profile.

ドレッシングにおいて、フランク面WFや谷底部WBに外周面22が接触した場合、外周部両側に設けられた表テーパ面21f、裏テーパ面21bにより幅が狭小となった外周面22で主に八面体単結晶ダイヤモンド砥粒4がドレッシングする。そのため、精工なねじ状砥石Wの形状に合せて高精度のドレッシングを行なうことができる。そして、外周面22には、周方向に複数の八面体単結晶ダイヤモンド砥粒4が配置されているので、主に八面体単結晶ダイヤモンド砥粒4がドレッシングを実行し、小粒径ダイヤモンド砥粒31の脱落を防止し、ひいてはホイール2自体が損傷することを防止することができる。 In the dressing, when the outer peripheral surface 22 comes into contact with the flank surface WF or the valley bottom portion WB, an octahedron is mainly formed on the outer peripheral surface 22 that is narrowed by the front tapered surface 21f and the back tapered surface 21b provided on both sides of the outer peripheral portion. The single crystal diamond abrasive grains 4 dress. Therefore, highly accurate dressing can be performed in accordance with the shape of the finely threaded grindstone W. Since the plurality of octahedral single-crystal diamond abrasive grains 4 are arranged in the circumferential direction on the outer peripheral surface 22, the octahedral single-crystal diamond abrasive grains 4 mainly perform dressing, and the small-diameter diamond abrasive grains 4 are used. It is possible to prevent the falling of the wheel 31, and thus prevent the wheel 2 itself from being damaged.

(従来との比較データ)
図17に示すように、従来のドレッサを使用してドレッシングした場合と、外周面に八面体単結晶ダイヤモンド砥粒を配置した本実施形態のドレッサとをドレッシングした場合、従来のものでは900回ドレッシングできたのに対し、本件成形用電着ダイヤモンドドレッサ1は、1600回以上ドレッシングすることができ、約1.8倍の耐久性が認められた。
(Comparison data with conventional)
As shown in FIG. 17, when dressing is performed using a conventional dresser and when dressing the dresser of the present embodiment in which octahedral single crystal diamond abrasive grains are arranged on the outer peripheral surface, conventional dressing is performed 900 times. In contrast to this, the electrodeposition diamond dresser 1 for molding of the present case could be dressed 1600 times or more, and the durability of about 1.8 times was recognized.

上記の記載で明らかなように、本実施形態における歯車研削用ねじ状砥石の成形用電着ダイヤモンドドレッサ1は、歯車研削用ねじ状砥石の成形用電着ダイヤモンドドレッサ1において、外周面22に向って薄くなるように外周部の両側に表テーパ面21f、裏テーパ面21bを備えた円盤状に形成され回転軸線CLの回りに回転駆動される調質鋼製のホイール2と、表テーパ面21f、裏テーパ面21bの外周縁部に所定幅で帯状に延在し、複数の小粒径ダイヤモンド砥粒31が電気めっき層32で鍍着されたダイヤモンド砥粒層3と、ホイール2の外周面22に回転軸線CLと平行に形成され、所定角度を成す溝内両壁面51a,51bを有する複数の取付溝5と、小粒径ダイヤモンド砥粒31よりも大きい粒状に形成され、所定角度と等しい二つの基端部側ミラー指数面M1,M2(取付結晶面(八面体の結晶面oc1,oc2))を有し、二つの基端部側ミラー指数面M1,M2を溝内両壁面51a,51bに取り付けたとき、ホイール2の外周面22と平行になる面が劈開面CSとならない結晶である八面体単結晶ダイヤモンド砥粒4と、を備え、各八面体単結晶ダイヤモンド砥粒4は、二つの基端部側ミラー指数面M1,M2がホイール2の取付溝5の溝内両壁面51a,51bに電気めっき層32で鍍着されている。 As is clear from the above description, the forming electrodeposition diamond dresser 1 for the screw grinding wheel for gear grinding according to the present embodiment faces the outer peripheral surface 22 in the forming electrodeposition diamond dresser 1 for the screw grinding wheel for gear grinding. Wheel 2 made of heat-treated steel, which is formed in a disk shape having a front taper surface 21f and a back taper surface 21b on both sides of the outer periphery so as to be thin and is driven to rotate around a rotation axis CL, and the front taper surface 21f. The outer peripheral surface of the wheel 2 and the diamond abrasive grain layer 3 extending in a strip shape with a predetermined width on the outer peripheral edge of the back taper surface 21b, and a plurality of small-diameter diamond abrasive grains 31 plated on the electroplating layer 32. 22 is formed in parallel with the rotation axis CL and has a plurality of mounting grooves 5 having inner wall surfaces 51a and 51b forming a predetermined angle, and a granular shape larger than the small-diameter diamond abrasive grains 31 and equal to the predetermined angle. It has two base end side Miller index planes M1 and M2 (attached crystal planes (octahedral crystal planes oc1 and oc2)), and two base end side Miller index planes M1 and M2 are formed on both wall surfaces 51a in the groove. When attached to 51b, the octahedral single crystal diamond abrasive grain 4 is a crystal whose plane parallel to the outer peripheral surface 22 of the wheel 2 does not become the cleavage plane CS, and each octahedral single crystal diamond abrasive grain 4 is Two base end side mirror index surfaces M1 and M2 are plated with electroplating layers 32 on both inner wall surfaces 51a and 51b of the mounting groove 5 of the wheel 2.

従来、外周面22に向って薄くなるホイール2は、外周部両側に設けられた表テーパ面21fおよび裏テーパ面21bにより外周面22は狭小となっており、単位面積当たりの小粒径ダイヤモンド砥粒31の数が少ない。そのため、外周面22に配置された小粒径ダイヤモンド砥粒31には大きなドレッシング負荷がかかる。しかし、ホイール2の外周面22に、周方向に沿って大きい粒状の八面体単結晶ダイヤモンド砥粒4が複数鍍着され、ドレッシングする際に八面体単結晶ダイヤモンド砥粒4が主にドレッシングを実行する。そのため、八面体単結晶ダイヤモンド砥粒4がダイヤモンド砥粒層3に加わる負荷を軽減し、小粒径ダイヤモンド砥粒31の脱落を防止し、さらにホイール2自体の損傷を防止してドレッサとしての寿命を延ばすことができる。
また、ホイール2の外周面22には、回転軸線CLと平行に、所定角度110°を成す溝内両壁面51a,51bを有する複数の取付溝5が形成され、八面体単結晶ダイヤモンド砥粒4は、溝内両壁面51a,51bの所定角度110°と等しい二つの基端部側ミラー指数面M1,M2で、ホイール2の外周面22と平行になる面が劈開面CSとならないように溝内両壁面51a,51bに鍍着される。そのため、八面体単結晶ダイヤモンド砥粒4は、破砕しにくくかつ強固にホイール2に固着されドレッサとしての寿命を延ばすことができる。
Conventionally, in the wheel 2 that becomes thinner toward the outer peripheral surface 22, the outer peripheral surface 22 is narrowed by the front taper surface 21f and the back taper surface 21b provided on both sides of the outer peripheral portion, and the small-diameter diamond grindstone per unit area is provided. The number of grains 31 is small. Therefore, a large dressing load is applied to the small-diameter diamond abrasive grains 31 arranged on the outer peripheral surface 22. However, a plurality of large granular octahedral single crystal diamond abrasive grains 4 are plated on the outer peripheral surface 22 of the wheel 2 along the circumferential direction, and the octahedral single crystal diamond abrasive grains 4 mainly perform dressing when dressing. To do. Therefore, the load applied to the diamond abrasive grain layer 3 by the octahedral single-crystal diamond abrasive grains 4 is reduced, the small-diameter diamond abrasive grains 31 are prevented from falling off, the damage of the wheel 2 itself is prevented, and the life as a dresser is reduced. Can be extended.
Further, on the outer peripheral surface 22 of the wheel 2, a plurality of mounting grooves 5 having inner wall surfaces 51a and 51b forming a predetermined angle of 110° are formed in parallel with the rotation axis CL, and the octahedral single crystal diamond abrasive grains 4 are formed. Are two base end side mirror index surfaces M1 and M2 that are equal to a predetermined angle 110° of both inner wall surfaces 51a and 51b of the groove, so that the surface parallel to the outer peripheral surface 22 of the wheel 2 is not the cleavage surface CS. It is plated on both inner wall surfaces 51a and 51b. Therefore, the octahedral single-crystal diamond abrasive grains 4 are hard to be crushed and firmly fixed to the wheel 2 so that the life as a dresser can be extended.

八面体単結晶ダイヤモンド砥粒4は、回転軸線CLに溝筋52が平行な取付溝5の溝内両壁面51a,51bに、八面体単結晶ダイヤモンド砥粒4における110°の角度をなして稜線41で隣接する取付結晶面としての二つの基端側ミラー指数{1,1,1}面M1,M2において、強固に固定されている。そのため、ドレッシングの際に、八面体単結晶ダイヤモンド砥粒4に加わる周方向および半径方向からのドレッシング負荷による力が、ホイール2の溝内両壁面51a,51bに作用され、めっき層32によって八面体単結晶ダイヤモンド砥粒4が確実に鍍着される。これによって、ダイヤモンド砥粒層3の損傷が防止され、ドレッサとしての寿命を延ばすことができる。
八面体単結晶ダイヤモンド砥粒4は、ミラー指数{1,1,1}面に対して平行に働く力に対しては、その劈開性より割れやすい傾向がある。しかし、本実施形態の八面体単結晶ダイヤモンド砥粒4は、溝筋52が回転軸線CLに平行な取付溝5の溝内両壁面51a,51bに、二つの基端側ミラー指数{1,1,1}面M1,M2において、固定されている。そのため、大きいドレッシング負荷がかかるホイール2の周方向が、ドレッシングを行う頭部側ミラー指数{1,1,1}面H1,H2に対して35°の角度を成すため、八面体単結晶ダイヤモンド砥粒4は、割れにくくドレッサとしての寿命を長く保持することができる。
The octahedron single crystal diamond abrasive grain 4 forms a ridgeline at an angle of 110° in the octahedral single crystal diamond abrasive grain 4 on both inner wall surfaces 51a and 51b of the mounting groove 5 in which the groove line 52 is parallel to the rotation axis CL. It is strongly fixed at two base end side mirror index {1,1,1} planes M1, M2 as mounting crystal planes adjacent to each other at 41. Therefore, at the time of dressing, the force due to the dressing load applied to the octahedral single crystal diamond abrasive grains 4 from the circumferential direction and the radial direction is applied to both the groove inner wall surfaces 51a and 51b of the wheel 2, and the octahedral layer is formed by the plating layer 32. The single crystal diamond abrasive grains 4 are reliably plated. Thereby, the diamond abrasive grain layer 3 is prevented from being damaged and the life as a dresser can be extended.
The octahedral single-crystal diamond abrasive grains 4 tend to be more liable to be cracked due to the cleavage force with respect to the force acting in parallel with the Miller index {1,1,1} plane. However, in the octahedral single crystal diamond abrasive grain 4 of the present embodiment, two proximal end side mirror indices {1,1 are provided on both inner wall surfaces 51a, 51b of the mounting groove 5 in which the groove line 52 is parallel to the rotation axis CL. , 1} planes M1 and M2 are fixed. Therefore, since the circumferential direction of the wheel 2 to which a large dressing load is applied forms an angle of 35° with respect to the head side mirror index {1,1,1} planes H1 and H2 for dressing, the octahedral single crystal diamond abrasive is used. The particles 4 are hard to crack and can maintain a long life as a dresser.

また、八面体単結晶ダイヤモンド砥粒4は、二つの基端部側ミラー指数{1,1,1}面M1,M2と二つの頭部側ミラー指数{1,1,1}面H1,H2とが交差する頂部42,43を、めっき層32により覆って鍍着されている。そのため、八面体単結晶ダイヤモンド砥粒4は、取付溝5から脱落しにくい構造となる。これによって、八面体単結晶ダイヤモンド砥粒4の脱落によるホイール2自体の損傷を防止するとともに、八面体単結晶ダイヤモンド砥粒4を使用してドレッシングできるドレッサとしての寿命を延ばすことができる。 Further, the octahedral single crystal diamond abrasive grains 4 have two base end side mirror index {1,1,1} planes M1, M2 and two head side mirror index {1,1,1} planes H1, H2. The top portions 42, 43 intersecting with and are covered with the plating layer 32 and plated. Therefore, the octahedral single-crystal diamond abrasive grains 4 have a structure that does not easily come off from the mounting groove 5. As a result, the wheel 2 itself can be prevented from being damaged by the falling of the octahedral single crystal diamond abrasive grains 4 and the life of the dresser that can be dressed using the octahedral single crystal diamond abrasive grains 4 can be extended.

また、ホイール2は、八面体単結晶ダイヤモンド砥粒4によりホイール2の外周面22の小粒径ダイヤモンド砥粒31にかかる負荷が軽減され、従来よりホイール2自体への損傷が防止される。そして、小粒径ダイヤモンド砥粒31および八面体単結晶ダイヤモンド砥粒4は、めっき層32でホイール2に鍍着されている。そのため、剥離剤等でめっき層32を剥離することで、小粒径ダイヤモンド砥粒31および八面体単結晶ダイヤモンド砥粒4をホイール2から除去して、損傷の無い使用済みのホイール2を新たなドレッサとして容易に再生させることできる。
また、外周に向って薄くなるホイール2の外周部の両側に設けられた表テーパ面21f、裏テーパ面21bにより狭小となったホイール2の外周面22には、周方向に沿って配置された複数の八面体単結晶ダイヤモンド砥粒4が設けられている。そのため、八面体単結晶ダイヤモンド砥粒4によってねじ状砥石Wの精工に形成されたフランク面WFや谷底部WBを、高い精度でドレッシングすることができる。
Further, in the wheel 2, the load applied to the small-diameter diamond abrasive grains 31 on the outer peripheral surface 22 of the wheel 2 is reduced by the octahedral single crystal diamond abrasive grains 4, and damage to the wheel 2 itself is prevented as compared with the conventional case. The small-diameter diamond abrasive grains 31 and the octahedral single crystal diamond abrasive grains 4 are plated on the wheel 2 by the plating layer 32. Therefore, the small-diameter diamond abrasive grains 31 and the octahedral single crystal diamond abrasive grains 4 are removed from the wheel 2 by peeling off the plating layer 32 with a release agent or the like, so that the used wheel 2 without damage can be renewed. It can be easily reproduced as a dresser.
Further, the outer peripheral surface 22 of the wheel 2 narrowed by the front taper surface 21f and the back taper surface 21b provided on both sides of the outer peripheral portion of the wheel 2 which becomes thinner toward the outer periphery is arranged along the circumferential direction. A plurality of octahedral single crystal diamond abrasive grains 4 are provided. Therefore, the flank surface WF and the valley bottom portion WB formed by the octagonal single crystal diamond abrasive grains 4 in the fine grinding of the thread-shaped grindstone W can be dressed with high accuracy.

また、ホイール2の外周面22において、複数の八面体単結晶ダイヤモンド砥粒4間に、小粒径ダイヤモンド砥粒31がめっき層32で鍍着されている。
これによると、八面体単結晶ダイヤモンド砥粒4間に鍍着された小粒径ダイヤモンド砥粒31によって、ホイール2の外周面22が損傷するのを確実に防止することができる。
Further, on the outer peripheral surface 22 of the wheel 2, small-diameter diamond abrasive grains 31 are plated with a plating layer 32 between a plurality of octahedral single-crystal diamond abrasive grains 4.
According to this, it is possible to reliably prevent the outer peripheral surface 22 of the wheel 2 from being damaged by the small-diameter diamond abrasive grains 31 plated between the octahedral single-crystal diamond abrasive grains 4.

二つの基端部側ミラー指数{1,1,1}面M1,M2と、二つの基端部側ミラー指数{1,1,1}面M1,M2と互いに対向する二つの頭部側ミラー指数{1,1,1}面H1,H2とが、交差する頂部42,43が、ホイール2の半径方向において外周面22よりも回転軸線CL側に近い位置に配置されている。
これによると、各八面体単結晶ダイヤモンド砥粒4は、二つの基端部側ミラー指数{1,1,1}面M1,M2と二つの頭部側ミラー指数{1,1,1}面H1,H2とが、交差する頂部42,43が、ホイール2の半径方向において外周面22よりも回転軸線CL側に近い位置に配置されている。そのため、各八面体単結晶ダイヤモンド砥粒4は、各取付溝5内に半分以上が嵌まり込んだ状態で安定して固定することができ、八面体単結晶ダイヤモンド砥粒4がホイール2の外周面22より脱落しにくく、寿命の長いドレッサとすることができる。
Two base end side mirror index {1,1,1} planes M1, M2, and two base end side mirror index {1,1,1} planes M1, M2 and two head side mirrors facing each other The apex portions 42 and 43 that intersect the index {1,1,1} planes H1 and H2 are arranged closer to the rotation axis CL side than the outer peripheral surface 22 in the radial direction of the wheel 2.
According to this, each octahedral single crystal diamond abrasive grain 4 has two base end side mirror index {1,1,1} planes M1, M2 and two head side mirror index {1,1,1} planes. The tops 42 and 43 intersecting with H1 and H2 are arranged at a position closer to the rotation axis CL side than the outer peripheral surface 22 in the radial direction of the wheel 2. Therefore, each octahedral single-crystal diamond abrasive grain 4 can be stably fixed in a state in which half or more are fitted in each mounting groove 5, and the octahedral single-crystal diamond abrasive grain 4 is attached to the outer periphery of the wheel 2. The dresser is less likely to fall off than the surface 22 and has a long life.

小粒径ダイヤモンド砥粒31の粒度は、♯20/30〜♯100/120であり、八面体単結晶ダイヤモンド砥粒4の粒度は、♯12/14〜♯60/80である。
これによると、ダイヤモンド砥粒層3を構成する小粒径ダイヤモンド砥粒31の保護に適合した粒度比となる粒度の八面体単結晶ダイヤモンド砥粒4を容易に設定して、寿命の長いドレッサとすることができる。
The grain size of the small-diameter diamond abrasive grain 31 is #20/30 to #100/120, and the grain size of the octahedral single crystal diamond abrasive grain 4 is #12/14 to #60/80.
According to this, it is possible to easily set the octahedral single crystal diamond abrasive grains 4 having a grain size ratio suitable for protection of the small-diameter diamond abrasive grains 31 constituting the diamond abrasive grain layer 3 to provide a dresser having a long life. can do.

歯車研削用ねじ状砥石Wの成形用電着ダイヤモンドドレッサ1の製造方法は、外周面22に向って薄くなるように外周部の両側に表テーパ面21fおよび裏テーパ面21bを備えた円盤状に調質鋼製のホイール2を形成するホイール形成工程と、ホイール2の回転軸線CLの方向に沿って溝筋52が延在し対向する溝内両壁面51a,51bが110°の角度を成す取付溝5を、ホイール2の外周面22に所定間隔で複数形成する取付溝形成工程と、各取付溝5の溝内両壁面51a,51bに、八面体単結晶ダイヤモンド砥粒4における110°の角度を成して稜線41で隣接する二つの基端側ミラー指数{1,1,1}面M1,M2において、八面体単結晶ダイヤモンド砥粒4を接着剤6により接着する八面体単結晶ダイヤモンド砥粒接着工程と、ホイール2の表テーパ面21fおよび裏テーパ面21bにおける外周縁部に所定幅で帯状に延在する範囲(表帯状部25f、裏帯状部25b)および外周面22に複数の小粒径ダイヤモンド砥粒31を接触させるダイヤモンド砥粒接触工程と、八面体単結晶ダイヤモンド砥粒4が接着され小粒径ダイヤモンド砥粒31が接触された外周面22、および小粒径ダイヤモンド砥粒31が接触された表テーパ面21fおよび裏テーパ面21bの帯状に延在する範囲(表帯状部25f、裏帯状部25b)に、電気めっきにより形成される電気めっき層32を形成し、八面体単結晶ダイヤモンド砥粒4および小粒径ダイヤモンド砥粒31をホイール2に鍍着する第一電気めっき工程と、第一電気めっき工程によりホイール2に形成された電気めっき層32を成長させて厚く形成することで、二つの基端部側ミラー指数{1,1,1}面M1.M2と、二つの基端部側ミラー指数{1,1,1}面M1.M2と互いに対向する二つの頭部側ミラー指数{1,1,1}面H1,H2とが、交差する頂部43,42を覆って前記八面体単結晶ダイヤモンド砥粒4を外周面22に鍍着する第二電気めっき工程と、を備えている。 The manufacturing method of the electrodeposition diamond dresser 1 for forming the screw-shaped grinding wheel W for gear grinding is performed by forming a disk shape having the front taper surface 21f and the back taper surface 21b on both sides of the outer peripheral portion so as to become thinner toward the outer peripheral surface 22. A wheel forming process for forming the wheel 2 made of heat-treated steel, and mounting in which groove grooves 52 extend along the direction of the rotation axis CL of the wheel 2 and both opposing groove inner wall surfaces 51a, 51b form an angle of 110°. A mounting groove forming step of forming a plurality of grooves 5 on the outer peripheral surface 22 of the wheel 2 at predetermined intervals, and an angle of 110° in the octahedral single crystal diamond abrasive grains 4 on both inner wall surfaces 51a and 51b of each mounting groove 5. An octahedral single-crystal diamond abrasive in which the octahedral single-crystal diamond abrasive grains 4 are adhered by an adhesive 6 on two proximal-end side mirror index {1,1,1} planes M1, M2 that form The grain adhering step, and a plurality of small areas on the outer peripheral surface 22 and the range (front belt-shaped portion 25f, back belt-shaped portion 25b) that extends in a belt shape with a predetermined width on the outer peripheral edge portions of the front tapered surface 21f and the back tapered surface 21b of the wheel 2. The diamond abrasive grain contacting step of bringing the diamond abrasive grains 31 into contact with each other; The electroplated layer 32 formed by electroplating is formed in a range (front strip portion 25f, back strip portion 25b) extending in a strip shape of the front taper surface 21f and the back taper surface 21b which are in contact with each other. The first electroplating step of plating the crystal diamond abrasive grains 4 and the small-diameter diamond abrasive grains 31 on the wheel 2 and the electroplating layer 32 formed on the wheel 2 by the first electroplating step are grown to be thick. Thus, the two base end side Miller index {1,1,1} planes M1. M2 and two proximal end side Miller index {1,1,1} planes M1. M2 and two head side mirror index {1,1,1} planes H1, H2 facing each other cover the tops 43, 42 intersecting with each other, and the octahedral single crystal diamond abrasive grains 4 are plated on the outer peripheral surface 22. And a second electroplating step.

これによると、八面体単結晶ダイヤモンド砥粒4を、溝筋52が回転軸線CL方向に沿った取付溝5の溝内両壁面51a,51bに基端部側ミラー指数{1,1,1}面M1,M2を合せて接着するので、ホイール2の狭小な外周面22に強固に固定することができる。さらに、二つの基端部側ミラー指数{1,1,1}面M1.M2と、二つの頭部側ミラー指数{1,1,1}面H1,H2とが、交差する頂部43,42を、覆ってめっき層32で鍍着するので、八面体単結晶ダイヤモンド砥粒4が脱落しにくい構造の成形用電着ダイヤモンドドレッサ1を容易に製造することができる。 According to this, the octahedral single crystal diamond abrasive grains 4 are formed on the inner wall surfaces 51a, 51b of the mounting groove 5 with the groove stripes 52 along the direction of the rotation axis CL on the base end side mirror index {1, 1, 1}. Since the surfaces M1 and M2 are bonded together, they can be firmly fixed to the narrow outer peripheral surface 22 of the wheel 2. Furthermore, two base end side Miller index {1,1,1} planes M1. Since the M2 and the two head side Miller index {1,1,1} planes H1, H2 cover the intersecting tops 43, 42 and are plated with the plating layer 32, an octahedral single crystal diamond abrasive grain is provided. The electrodeposited diamond dresser 1 for molding having a structure in which 4 does not easily drop can be easily manufactured.

そして、このように製造された成形用電着ダイヤモンドドレッサ1は、小粒径ダイヤモンド砥粒31および八面体単結晶ダイヤモンド砥粒4は、電気めっき層32によりホイール2に鍍着されているので、剥離剤等で電気めっき層32を剥離することで、小粒径ダイヤモンド砥粒31と八面体単結晶ダイヤモンド砥粒4とをホイール2から除去し、小粒径ダイヤモンド砥粒31と八面体単結晶ダイヤモンド砥粒4とが除去され、損傷の無い使用済みホイール2を使用して新たなドレッサとして容易に再生することできる。 In the thus-formed electrodeposited diamond dresser 1 for forming, the small-diameter diamond abrasive grains 31 and the octahedral single-crystal diamond abrasive grains 4 are plated on the wheel 2 by the electroplating layer 32. By peeling the electroplating layer 32 with a peeling agent or the like, the small-diameter diamond abrasive grains 31 and the octahedral single crystal diamond abrasive grains 4 are removed from the wheel 2, and the small-diameter diamond abrasive grains 31 and the octahedral single crystal are removed. The diamond abrasive grains 4 and are removed, and the used wheel 2 without damage can be easily regenerated as a new dresser.

なお、本実施形態においては、ダイヤモンド砥粒層3が設けられる所定幅を裏テーパ面21bよりも表テーパ面21fが大きいものとしたが、これに限定されない。例えば、裏テーパ面と表テーパ面とに同じ所定幅でダイヤモンド砥粒層が設けられていてもよい。この場合、対向する二枚の成形用電着ダイヤモンドドレッサを組み合わせてドレッシングしなくてもよく、例えば、一枚の成形用電着ダイヤモンドドレッサで、歯車研削用ねじ状砥石をドレッシングしてもよい。 In the present embodiment, the predetermined width in which the diamond abrasive grain layer 3 is provided is set such that the front taper surface 21f is larger than the back taper surface 21b, but the present invention is not limited to this. For example, a diamond abrasive grain layer may be provided with the same predetermined width on the back taper surface and the front taper surface. In this case, it is not necessary to combine two facing electroforming diamond dressers for dressing, and for example, one forming electroplated diamond dresser may be used for dressing a screw grinding wheel for gear grinding.

また、ダイヤモンド砥粒層3に設けられる小粒径ダイヤモンド砥粒31の粒度を♯60/80としたが、これに限定されず、例えば、♯20/30〜♯100/120の範囲の粒度であればよい。 Further, although the particle size of the small-diameter diamond abrasive grains 31 provided in the diamond abrasive grain layer 3 is set to #60/80, it is not limited to this, and for example, in the range of #20/30 to #100/120. I wish I had it.

また、実施形態において多面体単結晶ダイヤモンド砥粒を、八面体単結晶ダイヤモンド砥粒4・(B)としたが、これに限定されない。例えば、図18に示すように、六面体単結晶ダイヤモンド砥粒(A)、菱形十二面体単結晶ダイヤモンド砥粒(C)、六面体の結晶面と八面体の結晶面と十二面体の結晶面とが混在して現れた単結晶ダイヤモンド砥粒(B−1)、八面体の結晶面と六面体の結晶面とが混在して現れた単結晶ダイヤモンド砥粒(B−2,B−3)、十二面体の結晶面と八面体の結晶面とが混在して現れた単結晶ダイヤモンド砥粒(B−4)および十二面体の結晶面と六面体の結晶面とが混在して現れた単結晶ダイヤモンド砥粒(C−1)を挙げることができる。 Further, in the embodiment, the polyhedral single-crystal diamond abrasive grains are octahedral single-crystal diamond abrasive grains 4(B), but the present invention is not limited to this. For example, as shown in FIG. 18, a hexahedral single crystal diamond abrasive grain (A), a rhombohedral dodecahedral single crystal diamond abrasive grain (C), a hexahedral crystal face, an octahedral crystal face, and a dodecahedral crystal face. Single crystal diamond abrasive grains (B-1) appearing in a mixed manner, single crystal diamond abrasive grains (B-2, B-3) in which an octahedral crystal face and a hexahedral crystal face appear in a mixed state, Single crystal diamond abrasive grain (B-4) in which a dihedral crystal surface and an octahedral crystal surface appear in a mixed manner, and a single crystal diamond in which an dodecahedral crystal surface and a hexahedral crystal surface appear in a mixed state An abrasive grain (C-1) can be mentioned.

次に、各結晶形状の異なった多面体単結晶ダイヤモンド砥粒について、結晶形状別にホイール2への取付構造を図19〜図23に基づいて説明する。ホイール2における各取付溝5,5d,5h,5do,5ohは、すべて溝筋52がホイールの回転軸線CLに平行に形成されている。また、接着剤とめっき層とは、図示しないが、八面体単結晶ダイヤモンド砥粒4・(B)と同様にホイール2への固着に使用される。
六面体単結晶ダイヤモンド砥粒(A)の取付けにおいて、図19に示すように、ホイール2に形成される取付溝5hは、対向する溝内両壁面51ha,51hbの角度が90°を成すように形成されている。そして、六面体単結晶ダイヤモンド砥粒(A)は、稜線を挟んで対向する取付結晶面としての二つの結晶面(ミラー指数{1,0,0}面・he)が角度90°に成す角部を取付溝5hの溝筋52に合せて接着し鍍着する。六面体単結晶ダイヤモンド砥粒(A)の劈開面CSは、結晶面heと平行な面である。六面体単結晶ダイヤモンド砥粒(A)は、ホイール2の外周面22に対して劈開面CSが45°の角度となるように保持されている。言い換えると、六面体単結晶ダイヤモンド砥粒(A)は、取付溝5hが形成されなかったとした場合のホイール2の外周面22に、六面体単結晶ダイヤモンド砥粒(A)が取り付けられた中心位置において接する仮想上の平面と、六面体単結晶ダイヤモンド砥粒(A)の劈開面CSとが、平行ではなく45°の角度で交差するよう位置決めされている。
Next, the attachment structure of the polyhedral single crystal diamond abrasive grains having different crystal shapes to the wheel 2 for each crystal shape will be described with reference to FIGS. 19 to 23. In each of the mounting grooves 5, 5d, 5h, 5do, 5oh of the wheel 2, groove grooves 52 are all formed in parallel with the rotational axis CL of the wheel. Although not shown, the adhesive and the plating layer are used for fixing to the wheel 2 like the octahedral single crystal diamond abrasive grains 4 (B).
In the attachment of the hexahedral single crystal diamond abrasive grains (A), as shown in FIG. 19, the attachment groove 5h formed in the wheel 2 is formed such that the angle between the opposing inner wall surfaces 51ha and 51hb of the groove is 90°. Has been done. The hexahedral single crystal diamond abrasive grain (A) is a corner portion formed by two crystal planes (mirror index {1,0,0} plane/he) as mounting crystal planes facing each other with a ridge line formed at an angle of 90°. Aligned with the groove line 52 of the mounting groove 5h, it is adhered and plated. The cleavage plane CS of the hexahedral single crystal diamond abrasive grain (A) is a plane parallel to the crystal plane he. The hexahedral single crystal diamond abrasive grains (A) are held so that the cleavage plane CS forms an angle of 45° with respect to the outer peripheral surface 22 of the wheel 2. In other words, the hexahedral single crystal diamond abrasive grains (A) are in contact with the outer peripheral surface 22 of the wheel 2 at the center position where the hexahedral single crystal diamond abrasive grains (A) are attached, assuming that the attachment groove 5h is not formed. The imaginary plane and the cleavage plane CS of the hexahedral single-crystal diamond abrasive grain (A) are positioned so as not to be parallel but to intersect at an angle of 45°.

また、菱形十二面体単結晶ダイヤモンド砥粒(C)の取付けにおいて、図20に示すように、ホイール2に形成される取付溝5dは、対向する溝内両壁面51da,51dbは、溝谷底において120°の所定角度を成す谷底面51dab,51dbbと、谷底面51dab,51dbbの上端より連続して外周面22まで立ち上がる垂直面51dav,51dbvとを有している。そして、菱形十二面体単結晶ダイヤモンド砥粒(C)は、稜線RL(図18参照)を挟んで対向する取付結晶面としての二つの基端部側結晶面(例えば、ミラー指数(1,1,0)面do1とミラー指数(1,0,1)面do2)が角度120°に成す角部を取付溝5dの溝筋52に合せ、かつその際に垂直となる結晶面doを垂直面51dav,51dbvに合せて接着し鍍着する。二つの基端部側結晶面do1,do2に対向する二つの頭部側結晶面do3,do4と垂直となる結晶面do5,do6とが形成する二つの辺S1,S2は、外周面22よりも回転軸線CLに近い位置となるよう構成されている。なお、二つの基端部側結晶面として、ミラー指数(1,1,0)面do1とミラー指数(1,0,1)面do2としたが、これに限定されず、例えば、ミラー指数(1,1,0)面とミラー指数(0,1,1)面とで二つの基端部側結晶面を構成してもよい。菱形十二面体単結晶ダイヤモンド砥粒(C)の劈開面CSは、三つの結晶面doが交差する頂部を頂点とし、その頂点から延在する三つの斜辺の長さが等しい三角垂を考えた場合に、三角錐の底面が形成する正三角形の面が該当する(図18参照)。菱形十二面体単結晶ダイヤモンド砥粒(C)は、ホイール2の外周面22に対して劈開面CSが傾斜した状態となるように保持されている。 Further, when the diamond dodecahedron single crystal diamond abrasive grains (C) are attached, as shown in FIG. 20, the attachment groove 5d formed on the wheel 2 has two inner wall surfaces 51da and 51db facing each other at the groove bottom. It has valley bottom surfaces 51dab and 51dbb forming a predetermined angle of 120°, and vertical surfaces 51dav and 51dbv that continuously rise from the upper ends of the valley bottom surfaces 51dab and 51dbb to the outer peripheral surface 22. The rhombohedral dodecahedron single crystal diamond abrasive grains (C) have two base end side crystal faces (for example, Miller index (1,1) as mounting crystal faces opposed to each other with the ridge line RL (see FIG. 18) interposed therebetween. , 0) plane do1 and Miller index (1, 0, 1) plane do2) form an angle of 120° with the groove 52 of the mounting groove 5d, and at that time, the crystal plane do which is vertical is a vertical plane. Adhesion and plating according to 51dav and 51dbv. The two sides S1 and S2 formed by the two head-side crystal faces do3 and do4 facing the two base-end side crystal faces do1 and do2 and the crystal faces do5 and do6 perpendicular to the head-side crystal faces do3 and do4 are larger than the outer peripheral surface 22. The position is close to the rotation axis line CL. The two crystal planes on the base end side are the Miller index (1,1,0) plane do1 and the Miller index (1,0,1) plane do2, but the present invention is not limited to this, and for example, the Miller index ( Two crystal planes on the base end side may be formed by the (1,1,0) plane and the Miller index (0,1,1) plane. The cleavage plane CS of the rhombic dodecahedron single crystal diamond abrasive grain (C) has a top where the three crystal planes do intersect as an apex, and considers a triangular drip having three hypotenuses extending from the apex. In this case, an equilateral triangular surface formed by the bottom surface of the triangular pyramid is applicable (see FIG. 18). The rhombic dodecahedron single crystal diamond abrasive grains (C) are held so that the cleavage plane CS is inclined with respect to the outer peripheral surface 22 of the wheel 2.

また、八面体の結晶面ocと六面体の結晶面heとが現れた単結晶ダイヤモンド砥粒(B−2,B−3)の取付けにおいて、図21に示すように、ホイール2に形成される取付溝5ohは、対向する溝内両壁面51oha,51ohbは、溝谷底において110°を成す谷底面51ohab,51ohbbと、谷底面51ohab,51ohbbの上部より外周面22まで立ち上がる垂直面51ohav,51ohbvとを有している。
八面体の結晶面ocと六面体の結晶面heとが現れた単結晶ダイヤモンド砥粒(B−2,B−3)は、図21に示すように、八面体の結晶面oc1,oc2を二つの基端部側結晶面として取付溝5ohの谷底面51ohab,51ohbbに合せ、六面体の結晶面heを垂直面51ohav,51ohbvに合せて固着する。二つの基端部側結晶面oc1,oc2に対向する二つの頭部側結晶面oc3,oc4と垂直となる結晶面he1,he2とが形成する二つの辺Si1,Si2は、外周面22よりも回転軸線CLに近い位置となるよう構成されている。八面体の結晶面ocと六面体の結晶面heとが現れた単結晶ダイヤモンド砥粒(B−2,B−3)の場合、ドレッシングに使用される結晶面は、八面体の結晶面ocである。そのため、劈開面は、八面体の結晶面ocに平行な面であり、八面体の結晶面ocと六面体の結晶面heとが現れた単結晶ダイヤモンド砥粒(B−2,B−3)は、ホイール2の外周面22に対して劈開面が傾斜した状態となるように保持されている。
また、ダイヤモンド単結晶の結晶面において八面体の結晶面ocを構成するミラー指数{1,1,1}面が、六面体の結晶面heを構成するミラー指数{1,0,0}面より硬度が高い。そのため、図21に示すように、八面体の結晶面ocを取付溝5oh側の反対側(ホイール2の径方向外側)に取り付けることで、硬度の高いミラー指数{1,1,1}面を使ってドレッシングすることができる。これによって、八面体の結晶面ocと六面体の結晶面heとが現れた単結晶ダイヤモンド砥粒(B−2,B−3)の磨耗の進行を遅らせ、長寿命のドレッサとすることができる。
Further, in the attachment of the single crystal diamond abrasive grains (B-2, B-3) in which the octahedral crystal plane oc and the hexahedral crystal plane he appear, the attachment formed on the wheel 2 as shown in FIG. The groove 5oh has inner wall surfaces 51oha and 51ohb facing each other, having valley bottoms 51ohab and 51ohbb forming 110° at the groove bottom, and vertical surfaces 51ohav and 51ohbv rising from the upper part of the valley bottoms 51ohab and 51ohbb to the outer peripheral surface 22. is doing.
As shown in FIG. 21, the single crystal diamond abrasive grains (B-2, B-3) in which the octahedral crystal plane oc and the hexahedral crystal plane he appear have two octahedral crystal planes oc1 and oc2. As the crystal planes on the base end side, the bottom surfaces 51ohab, 51ohbb of the mounting groove 5oh are aligned, and the hexahedral crystal planes he are aligned with the vertical surfaces 51ohav, 51ohbv, and fixed. Two sides Si1 and Si2 formed by the two head-side crystal planes oc3 and oc4 facing the two base-end side crystal planes oc1 and oc2 and the crystal planes he1 and he2 that are perpendicular to the two head-side crystal planes oc1 and oc2 are larger than the outer peripheral surface 22. The position is close to the rotation axis line CL. In the case of the single crystal diamond abrasive grains (B-2, B-3) in which the octahedral crystal plane oc and the hexahedral crystal plane he appear, the crystal plane used for dressing is the octahedral crystal plane oc. .. Therefore, the cleavage plane is a plane parallel to the crystal face oc of the octahedron, and the single crystal diamond abrasive grains (B-2, B-3) in which the crystal face oc of the octahedron and the crystal face he of the hexahedron appear are The cleaved surface is held so as to be inclined with respect to the outer peripheral surface 22 of the wheel 2.
Further, in the crystal plane of the diamond single crystal, the Miller index {1,1,1} plane forming the octahedral crystal plane oc is harder than the Miller index {1,0,0} plane forming the hexahedral crystal plane he. Is high. Therefore, as shown in FIG. 21, the crystal face oc of the octahedron is attached to the opposite side of the attachment groove 5oh side (the outer side in the radial direction of the wheel 2), so that the Miller index {1,1,1} plane having a high hardness can be obtained. Can be used for dressing. This delays the progress of wear of the single crystal diamond abrasive grains (B-2, B-3) in which the octahedral crystal surface oc and the hexahedral crystal surface he appear, and can be a long-life dresser.

菱形十二面体の結晶面doと八面体の結晶面ocと六面体の結晶面heとが、現れた単結晶ダイヤモンド砥粒(B−1)の取付けにおいて、図22に示すように、ホイール2に形成される取付溝5dohは、対向する溝内両壁面51doha,51dohbは、溝谷底において110°を成す谷底面51dohab,51dohbb、外周面22まで立ち上がる垂直面51dohav,51dohbv、および谷底面51dohab,51dohbbの上端部と垂直面51dohav,51dohbvの下端部との間に形成され、71°を成す二つの中位斜面51doham,51dohbmを有している。
また、菱形十二面体の結晶面doと八面体の結晶面ocと六面体の結晶面heとが、現れた単結晶ダイヤモンド砥粒(B−1)は、八面体の結晶面oc1,oc2を二つの基端部側結晶面として、取付溝5dohの谷底面51dohab,51dohbbに合せ、六面体の結晶面heを垂直面51dohav,51dohbvに合せて固着する。なお、中位斜面51doham,51dohbmには、二つの隣接する十二面体の結晶面doが形成する辺Si1,Si2を夫々合せるものとする。六面体の結晶面heと十二面体の結晶面doとが形成する二つの辺Shd1,Shd2(図22参照)は、外周面22よりも回転軸線CLに近い位置となるよう構成されている。菱形十二面体の結晶面doと八面体の結晶面ocと六面体の結晶面heとが、現れた単結晶ダイヤモンド砥粒(B−1)は、ドレッシングに使用される結晶面が、主に十二面体の結晶面doと八面体の結晶面ocである。菱形十二面体の結晶面doと八面体の結晶面ocと六面体の結晶面heとが、現れた単結晶ダイヤモンド砥粒(B−1)は、これらの結晶のいずれの劈開面も、ホイール2の外周面22に対して劈開面が傾斜した状態となるように保持されている。
また、ダイヤモンド単結晶の結晶面において八面体の結晶面ocを構成するミラー指数{1,1,1}面および十二面体の結晶面doを構成するミラー指数{1,1,0}面が、六面体の結晶面heを構成するミラー指数{1,0,0}面より硬度が高い。そのため、図22に示すように、八面体結晶面ocおよび十二面体結晶面doミラー指数{1,1,1}面を、取付溝5doh側の反対側(ホイール2の径方向外側)に取り付けることで、硬度の高い結晶面oc,doを使ってドレッシングすることができる。これによって、菱形十二面体の結晶面doと八面体の結晶面ocと六面体の結晶面heとが、現れた単結晶ダイヤモンド砥粒(B−1)の磨耗の進行を遅らせ、長寿命のドレッサとすることができる。
The rhombic dodecahedron crystal face do, the octahedron crystal face oc, and the hexahedron crystal face he appear on the wheel 2 as shown in FIG. 22 when the single crystal diamond abrasive grains (B-1) are attached. The mounting groove 5doh that is formed is a pair of inner wall surfaces 51doha and 51dohb that face each other. It is formed between the upper end and the lower ends of the vertical surfaces 51 dohav, 51 dohbv, and has two middle slopes 51 doham, 51 dohbm forming 71°.
In addition, the single crystal diamond abrasive grain (B-1) in which the rhombic dodecahedron crystal face do, the octahedron crystal face oc, and the hexahedron crystal face he appear has the octahedral crystal faces oc1 and oc2. As one of the crystal planes on the base end side, the hexahedron crystal plane he is fixed to the valley bottoms 51dohab and 51dohbb of the mounting groove 5doh and the vertical planes 51dohav and 51dohbv. It should be noted that the middle slopes 51 doham and 51 dohbm are respectively aligned with the sides Si1 and Si2 formed by the crystal faces do of two adjacent dodecahedrons. Two sides Shd1 and Shd2 (see FIG. 22) formed by the hexahedral crystal plane he and the dodecahedron crystal plane do are arranged closer to the rotation axis CL than the outer peripheral surface 22. The rhombic dodecahedral crystal face do, the octahedron crystal face oc, and the hexahedral crystal face he appear, and the single crystal diamond abrasive grain (B-1) is mainly composed of the crystal faces used for dressing. A crystal face do of a dihedron and a crystal face oc of an octahedron. The rhombic dodecahedron crystal face do, the octahedron crystal face oc, and the hexahedron crystal face he appear, and the single crystal diamond abrasive grain (B-1) shows that the cleavage planes of any of these crystals are in the wheel 2 Is held so that the cleavage plane is inclined with respect to the outer peripheral surface 22 of the.
Further, in the crystal plane of the diamond single crystal, the Miller index {1,1,1} plane which constitutes the octahedral crystal plane oc and the Miller index {1,1,0} plane which constitutes the dodecahedron crystal plane do are , The hardness is higher than the Miller index {1,0,0} plane that constitutes the hexahedral crystal plane he. Therefore, as shown in FIG. 22, the octahedral crystal plane oc and the dodecahedron crystal plane do Miller index {1,1,1} plane are attached to the side opposite to the attachment groove 5doh side (outer side in the radial direction of the wheel 2). As a result, dressing can be performed using the crystal planes oc and do having high hardness. As a result, the rhombic dodecahedron crystal face do, the octahedron crystal face oc, and the hexahedron crystal face he delay the progress of wear of the appeared single-crystal diamond abrasive grains (B-1), and the long-life dresser. Can be

菱形十二面体の結晶面doと八面体の結晶面ocとが、現れた単結晶ダイヤモンド砥粒(B−4)の取付けにおいて、図23に示すように、ホイール2に形成される取付溝5doは、対向する溝内両壁面51doa,51dobは、溝谷底において110°を成す谷底面51doab,51dobb、および谷底面51doab,51dobbの上端部に連続し、対向して71°を成す角で形成された二つの上部斜面51doau,51dobuを有している。
菱形十二面体の結晶面doと八面体の結晶面ocとが、現れた単結晶ダイヤモンド砥粒(B−4)は、八面体の結晶面oc1,oc2を二つの基端部側結晶面として、取付溝5doの谷底面51doab,51dobbに合せて固着する。なお、上部斜面51doau,51dobuには、二つの隣接する十二面体の結晶面doが形成する辺Si1,Si2を夫々合せるものとする。四つの十二面体の結晶面が形成する二つの頂部AP1,AP2は、(図23参照)は、外周面22よりも回転軸線CLに近い位置となるよう構成されている。菱形十二面体の結晶面doと八面体の結晶面ocとが、現れた単結晶ダイヤモンド砥粒(B−4)は、これらの結晶のいずれの劈開面も、ホイール2の外周面22に対して傾斜した状態となるように保持されている。
なお、菱形十二面体の結晶面doと六面体の結晶面heとが、現れた単結晶ダイヤモンド砥粒(C−1)の取付けは、菱形十二面体単結晶ダイヤモンド砥粒(C)に準じるものであり、説明を省略する。
The rhombic dodecahedron crystal plane do and the octahedron crystal plane oc appear, when the single crystal diamond abrasive grains (B-4) are attached, as shown in FIG. 23, as shown in FIG. The two inner wall surfaces 51 doa and 51 dob which face each other are formed at an angle which is continuous with the bottom surfaces 51 doab and 51 dobb which form 110 degrees at the bottom of the groove and the upper ends of the bottom surfaces 51 doab and 51 dobb, and which form 71 degrees facing each other. It has two upper slopes 51 doau and 51 dobu.
The rhombic dodecahedron crystal plane do and the octahedral crystal plane oc appear, and the single crystal diamond abrasive grain (B-4) has the octahedral crystal planes oc1 and oc2 as two crystal planes on the base end side. , The bottoms of the mounting grooves 5do are fixed to the bottoms 51doab and 51dobb. Note that the upper slopes 51 doau, 51 dobu are respectively aligned with the sides Si1, Si2 formed by the crystal faces do of two adjacent dodecahedrons. The two apexes AP1 and AP2 formed by the four dodecahedron crystal planes (see FIG. 23) are configured to be closer to the rotation axis CL than the outer peripheral surface 22. The single crystal diamond abrasive grains (B-4) in which the rhombic dodecahedron crystal planes do and the octahedron crystal planes oc have appeared are compared with the outer peripheral surface 22 of the wheel 2 in any of the cleavage planes of these crystals. It is held so as to be inclined.
The rhombic dodecahedron crystal planes do and the hexahedron crystal planes he appear, and the single crystal diamond abrasive grains (C-1) are attached according to the rhombohedral dodecahedron single crystal diamond abrasive grains (C). Therefore, the description is omitted.

また、八面体単結晶ダイヤモンド砥粒4の粒度を♯16/18としたが、これに限定されない。例えば、♯12/14〜♯60/80の範囲の粒度であればよく、好ましくは、小粒径ダイヤモンド砥粒が大きい♯20/30ときには八面体単結晶ダイヤモンド砥粒も大きいもの♯12/14を使用する。 Further, the grain size of the octahedral single crystal diamond abrasive grains 4 is #16/18, but is not limited to this. For example, the grain size may be in the range of #12/14 to #60/80, and preferably, when the small-diameter diamond abrasive grains are large #20/30, the octahedral single crystal diamond abrasive grains are also large #12/14. To use.

また、八面体単結晶ダイヤモンド砥粒4をホイール2の外周面22に80個配置するものとしたが、これに限定されない。ダイヤモンド砥粒層の小粒径ダイヤモンド砥粒の大きさ(粒度)に応じ、或いはホイールの外周面の長さに応じて、例えば70個、100個など任意の数を定めて配置することができる。 Further, 80 octahedron single crystal diamond abrasive grains 4 are arranged on the outer peripheral surface 22 of the wheel 2, but the invention is not limited to this. Depending on the size (grain size) of the small-diameter diamond abrasive grains of the diamond abrasive grain layer or the length of the outer peripheral surface of the wheel, an arbitrary number such as 70 or 100 can be determined and arranged. ..

また、小粒径ダイヤモンド砥粒および多面体単結晶ダイヤモンド砥粒の鍍着を、電気めっきによるものとしたが、これに限定されない。例えば、無電解めっきによるものでもよく、電気めっきと無電解めっきとでめっき層を形成して小粒径ダイヤモンド砥粒および多面体単結晶ダイヤモンド砥粒を鍍着するものでもよい。 Further, although the plating of the small-diameter diamond abrasive grains and the polyhedral single-crystal diamond abrasive grains was performed by electroplating, the plating is not limited to this. For example, electroless plating may be used, or a plating layer may be formed by electroplating and electroless plating to deposit small-diameter diamond abrasive grains and polyhedral single-crystal diamond abrasive grains.

また、接着剤6を非導電性接着剤としたが、これに限定されず、例えば、導電性接着剤でもよい。導電性接着剤としては、例えば、導電性フィラーを混合したエポキシ樹脂系の接着剤を使用することができる。導電性フィラーとして、例えばカーボンブラック、グラファイト等のカーボン系フィラー、Ni,Cu粉末等の金属系フィラーを挙げることができる。八面体単結晶ダイヤモンド砥粒を、導電性接着剤で接着した場合、電気めっき層の成長が八面体単結晶ダイヤモンド砥粒を接着する導電性接着剤より開始され、八面体単結晶ダイヤモンド砥粒と電気めっき層との間に隙間を生じさせない。これによって、電気めっき層による固定をより強固なものとすることができる。 Further, although the adhesive 6 is a non-conductive adhesive, the adhesive is not limited to this and may be, for example, a conductive adhesive. As the conductive adhesive, for example, an epoxy resin-based adhesive mixed with a conductive filler can be used. Examples of conductive fillers include carbon-based fillers such as carbon black and graphite, and metal-based fillers such as Ni and Cu powders. When the octahedral single crystal diamond abrasive grains are bonded with a conductive adhesive, the growth of the electroplating layer is started from the conductive adhesive that adheres the octahedral single crystal diamond abrasive grains to the octahedral single crystal diamond abrasive grains. No gap is formed between the electroplated layer. As a result, the fixing by the electroplating layer can be made stronger.

斯様に、上記した実施の形態で述べた具体的構成は、本発明の一例を示したものにすぎず、本発明はそのような具体的構成に限定されることなく、本発明の主旨を逸脱しない範囲で種々の態様を採り得るものである。 As described above, the specific configurations described in the above-described embodiments are merely examples of the present invention, and the present invention is not limited to such specific configurations, and the gist of the present invention is not limited. Various modes can be adopted without departing from the scope.

(産業上の利用可能性)
高い精度と長い寿命とが要求される歯車研削用ねじ状砥石の成形用電着ダイヤモンドドレッサに利用される。
(Industrial availability)
It is used for electrodeposition diamond dresser for forming screw-shaped grinding wheel for gear grinding, which requires high precision and long life.

1…成形用電着ダイヤモンドドレッサ、2…ホイール、21…テーパ面、21f…表テーパ面、21r…裏テーパ面、22…外周面、25f…表帯状部(帯状の範囲)、25b…裏帯状部(帯状の範囲)、26…外周縁部、3…ダイヤモンド砥粒層、31…小粒径ダイヤモンド砥粒、32…電気めっき層(めっき層)、4…八面体単結晶ダイヤモンド砥粒(多面体単結晶ダイヤモンド砥粒)、41…稜線、42…頂部、43…頂部、5…取付溝、51a…溝内両壁面、51b…溝内両壁面、52…溝筋、6…接着剤、CL…回転軸線、do1,do2…十二面体の結晶面(取付結晶面)、oc1,oc2…八面体の結晶面(取付結晶面)、H1,H2…頭部側ミラー指数{1,1,1}面、M1,M2…基端部側ミラー指数{1,1,1}面(取付結晶面)。 DESCRIPTION OF SYMBOLS 1... Electrodeposition diamond dresser for forming, 2... Wheel, 21... Tapered surface, 21f... Front taper surface, 21r... Back taper surface, 22... Outer peripheral surface, 25f... Front strip|belt-shaped part (band-shaped range), 25b... Back strip|belt-shaped Part (band-shaped range), 26... Outer peripheral portion, 3... Diamond abrasive grain layer, 31... Small-diameter diamond abrasive grain, 32... Electroplating layer (plating layer), 4... Octahedral single crystal diamond abrasive grain (polyhedron) Single crystal diamond abrasive grains), 41... Ridge line, 42... Top part, 43... Top part, 5... Mounting groove, 51a... Inner groove wall surfaces, 51b... Inner groove wall surfaces, 52... Groove streak, 6... Adhesive, CL... Rotation axis, do1, do2... Dodecahedral crystal plane (attachment crystal plane), oc1, oc2... Octahedron crystal plane (attachment crystal plane), H1, H2... Head side Miller index {1,1, 1} Plane, M1, M2... Mirror index on the base end side {1,1,1} plane (attached crystal plane).

Claims (8)

外周面に向って薄くなるように外周部の両側にテーパ面を備えた円盤状に形成され前記回転軸線の回りに回転駆動される調質鋼製のホイールと、
前記テーパ面の外周縁部に所定幅で帯状に延在し、複数の小粒径ダイヤモンド砥粒がめっき層で鍍着されたダイヤモンド砥粒層と、
前記ホイールの前記外周面に前記回転軸線と平行に形成され、所定角度を成す溝内両壁面を有する複数の取付溝と、
前記小粒径ダイヤモンド砥粒よりも大きい粒状に形成され、前記所定角度と等しい取付結晶面を有し、前記取付結晶面を前記溝内両壁面に取り付けたとき、前記ホイールの前記外周面と平行になる面が劈開面とならない結晶である多面体単結晶ダイヤモンド砥粒と、を備え、
前記各多面体単結晶ダイヤモンド砥粒は、前記取付結晶面が前記ホイールの前記取付溝の前記溝内両壁面に前記めっき層で鍍着され、
前記ホイールの前記外周面において、前記複数の多面体単結晶ダイヤモンド砥粒間に、前記小粒径ダイヤモンド砥粒が前記めっき層で鍍着されている歯車研削用ねじ状砥石の成形用電着ダイヤモンドドレッサ。
A wheel made of tempered steel that is formed in a disk shape having tapered surfaces on both sides of the outer peripheral portion so as to become thinner toward the outer peripheral surface and is driven to rotate around the rotation axis,
Extending in a strip shape with a predetermined width on the outer peripheral edge of the tapered surface, a plurality of small-diameter diamond abrasive grains are plated with a diamond abrasive grain layer,
A plurality of mounting grooves formed on the outer peripheral surface of the wheel in parallel with the rotation axis and having inner wall surfaces of the groove forming a predetermined angle;
It is formed in a grain larger than the small-diameter diamond abrasive grain, has an attachment crystal plane equal to the predetermined angle, and when the attachment crystal plane is attached to both wall surfaces in the groove, it is parallel to the outer peripheral surface of the wheel. And a polyhedral single-crystal diamond abrasive grain that is a crystal whose surface that does not become a cleavage plane,
Each of the polyhedral single crystal diamond abrasive grains, the mounting crystal surface is plated with the plating layer on both wall surfaces in the groove of the mounting groove of the wheel,
On the outer peripheral surface of the wheel, between the plurality of polyhedral single crystal diamond abrasive grains, the small-diameter diamond abrasive grains are plated with the plating layer. An electrodeposition diamond dresser for forming a screw-shaped grinding wheel for gear grinding. ..
前記複数の多面体単結晶ダイヤモンド砥粒は、複数の八面体単結晶ダイヤモンド砥粒であり、
前記取付結晶面は、八面体単結晶ダイヤモンド砥粒における110°の角度を成して稜線で隣接する二つの基端部側ミラー指数{1,1,1}面であり、
前記ホイールは、前記回転軸線の方向に溝筋が延在し、対向する前記溝内両壁面が110°を成す前記取付溝が前記外周面に複数配置され、
前記各取付溝の前記溝内両壁面と、前記各八面体単結晶ダイヤモンド砥粒における前記二つの基端部側ミラー指数{1,1,1}面とは、接着剤で接着され、
前記めっき層は、前記二つの基端部側ミラー指数{1,1,1}面と、前記二つの基端部側ミラー指数{1,1,1}面と互いに対向する二つの頭部側ミラー指数{1,1,1}面とが、交差する頂部を覆って前記八面体単結晶ダイヤモンド砥粒を前記外周面に鍍着する請求項1に記載の歯車研削用ねじ状砥石の成形用電着ダイヤモンドドレッサ。
The plurality of polyhedral single crystal diamond abrasive grains are a plurality of octahedral single crystal diamond abrasive grains,
The attached crystal planes are two proximal end side Miller index {1,1,1} planes that are adjacent to each other at a ridgeline forming an angle of 110° in an octahedral single crystal diamond abrasive grain,
In the wheel, a groove line extends in the direction of the rotation axis, and a plurality of the mounting grooves having opposing inner wall surfaces of the groove forming 110° are arranged on the outer peripheral surface.
Both inner wall surfaces of each of the mounting grooves and the two base end side mirror index {1,1,1} faces of each octahedral single crystal diamond abrasive grain are bonded with an adhesive,
The plating layer includes two base end side mirror index {1,1,1} planes and two head side sides facing the two base end side mirror index {1,1,1} planes. The screw-shaped grindstone for gear grinding according to claim 1, wherein the octahedron single crystal diamond abrasive grains are plated on the outer peripheral surface so as to cover the top portion where the mirror index {1,1,1} plane intersects. Electroplated diamond dresser.
前記複数の多面体単結晶ダイヤモンド砥粒は、複数の十二面体単結晶ダイヤモンド砥粒であり、
前記取付結晶面は、前記十二面体単結晶ダイヤモンド砥粒に現れる稜線を挟んで120°の角度で対向する二つの基端部側結晶面と、前記基端部側結晶面に夫々連続し、前記十二面体単結晶ダイヤモンド砥粒が前記取付溝に取り付けられる際に垂直に配置される二つの垂直面とを含んで構成され、
前記ホイールは、前記回転軸線の方向に溝筋が延在し、対向する前記溝内両壁面が120°を成す前記取付溝が前記外周面に複数配置され、
前記各取付溝の前記溝内両壁面と、前記各十二面体単結晶ダイヤモンド砥粒における前記二つの基端部側結晶面とは、接着剤で接着され、
前記めっき層は、前記二つの基端部側結晶面に対して互いに対向する二つの頭部側結晶面と、二つの前記垂直面とが交差する二つの辺を覆って前記十二面体単結晶ダイヤモンド砥粒を前記外周面に鍍着する請求項1に記載の歯車研削用ねじ状砥石の成形用電着ダイヤモンドドレッサ。
The plurality of polyhedral single crystal diamond abrasive grains are a plurality of dodecahedron single crystal diamond abrasive grains,
The attached crystal planes are continuous with two base end side crystal planes facing each other at an angle of 120° with a ridge line appearing in the dodecahedron single crystal diamond abrasive grain, and the base end side crystal planes, respectively. The dodecahedron single crystal diamond abrasive grain is configured to include two vertical surfaces arranged vertically when being attached to the attachment groove,
In the wheel, a groove line extends in the direction of the rotation axis, and a plurality of the mounting grooves having opposing inner wall surfaces of the groove forming 120° are arranged on the outer peripheral surface.
Both the inner wall surfaces of each of the mounting grooves, and the two base end side crystal faces of each dodecahedron single crystal diamond abrasive grain are bonded with an adhesive,
The plating layer covers the two head side crystal planes facing each other with respect to the two base end side crystal planes, and the two sides where the two vertical planes intersect each other, and the dodecahedron single crystal. The electrodeposited diamond dresser for forming a screw-shaped grindstone for gear grinding according to claim 1, wherein diamond abrasive grains are plated on the outer peripheral surface.
前記二つの頭部側結晶面と、前記二つの垂直面とが、交差する前記辺が、前記ホイールの半径方向において前記外周面よりも前記回転軸線側に近い位置に配置されている請求項に記載の歯車研削用ねじ状砥石の成形用電着ダイヤモンドドレッサ。 Said two head side crystal surface, the two vertical plane is, the edges intersect, the claims in the radial direction than the outer peripheral surface is disposed at a position closer to the rotation axis side of the wheel 3 An electrodeposited diamond dresser for forming a screw-shaped grindstone for grinding a gear according to. 前記二つの基端部側ミラー指数{1,1,1}面と、前記二つの基端部側ミラー指数{1,1,1}面と互いに対向する前記二つの頭部側ミラー指数{1,1,1}面とが、交差する前記頂部が、前記ホイールの半径方向において前記外周面よりも前記回転軸線側に近い位置に配置されている請求項2に記載の歯車研削用ねじ状砥石の成形用電着ダイヤモンドドレッサ。 The two base end side Miller index {1,1,1} planes and the two head side Miller index {1 that oppose each other with the two base end side Miller index {1,1,1} planes. , 1,1} plane and is the top crossing is threaded grinding wheel for gear grinding according to claim 2 which is located closer to the axis of rotation side than the outer peripheral surface in the radial direction of the wheel Electrodeposited diamond dresser for forming. 前記小粒径ダイヤモンド砥粒の粒度は、♯20/30〜♯100/120であり、
前記多面体単結晶ダイヤモンド砥粒の粒度は、♯12/14〜♯60/80である請求項1ないし請求項のいずれか1項に記載の歯車研削用ねじ状砥石の成形用電着ダイヤモンドドレッサ。
The grain size of the small-diameter diamond abrasive grains is #20/30 to #100/120,
The grain size of the polyhedral single crystal diamond abrasive grains is #12/14 to #60/80. The electrodeposited diamond dresser for forming a thread grinding wheel for gear grinding according to any one of claims 1 to 5. ..
外周に向って薄くなるように外周部の両側にテーパ面を備えた円盤状に調質鋼製のホイールを形成するホイール形成工程と、
前記ホイールの回転軸線の方向に沿って溝筋が延在し対向する溝内両壁面が110°の角度を成す取付溝を、前記ホイールの狭小に形成された前記外周面に所定間隔で複数形成する取付溝形成工程と、
前記各取付溝の前記溝内両壁面に、八面体単結晶ダイヤモンド砥粒における110°の角度を成して稜線で隣接する二つの基端側ミラー指数{1,1,1}面において、前記八面体単結晶ダイヤモンド砥粒を接着剤により接着する八面体単結晶ダイヤモンド砥粒接着工程と、
前記ホイールの前記テーパ面における外周縁部に所定幅で帯状に延在する範囲および前記外周面に複数の小粒径ダイヤモンド砥粒を接触させるダイヤモンド砥粒接触工程と、
前記八面体単結晶ダイヤモンド砥粒が接着され前記小粒径ダイヤモンド砥粒が接触された前記外周面、および前記小粒径ダイヤモンド砥粒が接触された前記テーパ面の前記帯状に延在する範囲に、めっきにより形成されるめっき層を形成し、前記小粒径ダイヤモンド砥粒を前記外周面および前記帯状に延在する範囲に鍍着するとともに、前記八面体単結晶ダイヤモンド砥粒を、前記二つの基端部側ミラー指数{1,1,1}面と、前記二つの基端部側ミラー指数{1,1,1}面と互いに対向する二つの頭部側ミラー指数{1,1,1}面とが、交差する頂部を覆って前記外周面に鍍着するめっき工程と、を備えた歯車研削用ねじ状砥石の成形用電着ダイヤモンドドレッサの製造方法。
A wheel forming step of forming a wheel made of heat-treated steel in a disk shape having tapered surfaces on both sides of the outer peripheral portion so as to become thinner toward the outer periphery,
A plurality of mounting grooves are formed at predetermined intervals on the narrowed outer peripheral surface of the wheel, in which groove walls extend along the direction of the axis of rotation of the wheel and the opposing inner wall surfaces of the groove form an angle of 110°. Mounting groove forming step,
The two proximal end side Miller index {1,1,1} planes adjacent to each other at the ridgeline forming an angle of 110° in the octahedron single crystal diamond abrasive grains on both inner wall surfaces of the respective mounting grooves, An octahedral single crystal diamond abrasive grain bonding step of bonding an octahedral single crystal diamond abrasive grain with an adhesive,
A diamond abrasive grain contacting step of bringing a plurality of small-diameter diamond abrasive grains into contact with the outer peripheral surface and the outer peripheral surface of the outer peripheral surface of the tapered surface of the wheel that extends in a band shape with a predetermined width,
The octahedral single-crystal diamond abrasive grains are adhered to the outer peripheral surface to which the small-diameter diamond abrasive grains are contacted, and the taper surface to which the small-diameter diamond abrasive grains are contacted is in a range extending in the band shape. , Forming a plating layer formed by plating, and plating the small-diameter diamond abrasive grains in the range extending in the outer peripheral surface and the strip shape, the octahedral single crystal diamond abrasive grains, the two Base end side Miller index {1,1,1} plane and two head side Miller index {1,1,1 facing each other with the two base end side Miller index {1,1,1} planes. And a plating step of plating on the outer peripheral surface so as to cover the intersecting tops of the surfaces. The method for producing an electrodeposited diamond dresser for forming a screw grinding wheel for gear grinding.
前記取付溝形成工程は、さらに、各前記取付溝の深さ寸法を、取り付けられる各前記八面体単結晶ダイヤモンド砥粒における110°の角度を成して稜線で隣接する前記二つの基端側ミラー指数{1,1,1}面の互いに離間した側の前記頂部が、前記ホイールの半径方向において前記外周面よりも前記回転軸線側に近い位置に配置可能な深さ寸法に形成する請求項に記載の歯車研削用ねじ状砥石の成形用電着ダイヤモンドドレッサの製造方法。 In the mounting groove forming step, the two proximal mirrors adjacent to each other at a ridge line are formed such that the depth dimension of each mounting groove forms an angle of 110° in each octahedral single crystal diamond abrasive grain to be mounted. claim wherein the top of the spaced apart side exponent {1,1,1} plane is formed in the depth dimension can be located closer to the axis of rotation side than the outer peripheral surface in the radial direction of the wheel 7 5. A method for producing an electrodeposited diamond dresser for forming a screw-shaped grindstone for gear grinding according to.
JP2018551030A 2016-11-16 2017-08-04 Electrodeposited diamond dresser for forming screw-shaped grindstone for gear grinding and manufacturing method thereof Active JP6705910B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016223548 2016-11-16
JP2016223548 2016-11-16
PCT/JP2017/028344 WO2018092361A1 (en) 2016-11-16 2017-08-04 Electro-deposited diamond dresser for forming screw-shaped grinding stone for gear grinding and method of manufacturing same

Publications (2)

Publication Number Publication Date
JPWO2018092361A1 JPWO2018092361A1 (en) 2019-06-24
JP6705910B2 true JP6705910B2 (en) 2020-06-03

Family

ID=62146313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018551030A Active JP6705910B2 (en) 2016-11-16 2017-08-04 Electrodeposited diamond dresser for forming screw-shaped grindstone for gear grinding and manufacturing method thereof

Country Status (4)

Country Link
JP (1) JP6705910B2 (en)
KR (1) KR102189236B1 (en)
CN (1) CN109963690B (en)
WO (1) WO2018092361A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH716096B1 (en) 2019-09-24 2020-11-13 Reishauer Ag Dressing tool and a method for applying hard material particles.
JP7097480B1 (en) * 2021-06-24 2022-07-07 浜松ホトニクス株式会社 Manufacturing method of X-ray tube, X-ray generator, and window member
CN115106936B (en) * 2022-06-24 2023-03-28 中国地质大学(武汉) Diamond dressing disc and preparation method thereof
JP7338924B1 (en) * 2023-01-11 2023-09-05 株式会社ツールテックス Manufacturing method of diamond dresser

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2683313B2 (en) * 1993-08-31 1997-11-26 神鋼コベルコツール株式会社 Diamond dressing gear
JP3052896B2 (en) 1997-06-13 2000-06-19 日本電気株式会社 Dress jig on polishing cloth surface and method of manufacturing the same
US7201645B2 (en) * 1999-11-22 2007-04-10 Chien-Min Sung Contoured CMP pad dresser and associated methods
WO2006019062A1 (en) * 2004-08-16 2006-02-23 Toyoda Van Moppes Ltd. Rotary diamond dresser
WO2007000831A1 (en) 2005-06-27 2007-01-04 A.L.M.T. Corp. Diamond rotary dresser for gear and method for truing and dressing gear processing grinding wheel using the rotary dresser
JP5506141B2 (en) 2006-04-18 2014-05-28 新日鐵住金株式会社 Rotating grinding tool excellent in rust removal and substrate adjustment of weathering steel, manufacturing method thereof, and substrate adjustment method of weathering steel using the same
CN104209863A (en) * 2013-06-03 2014-12-17 宁波江丰电子材料股份有限公司 Polishing pad finisher, manufacturing method of polishing pad finisher, polishing pad finishing device and polishing system
EP2835220B1 (en) * 2013-08-07 2019-09-11 Reishauer AG Trimming tool, and method for manufacturing the same

Also Published As

Publication number Publication date
CN109963690A (en) 2019-07-02
JPWO2018092361A1 (en) 2019-06-24
KR20190055236A (en) 2019-05-22
KR102189236B1 (en) 2020-12-09
CN109963690B (en) 2021-04-20
WO2018092361A1 (en) 2018-05-24

Similar Documents

Publication Publication Date Title
JP6705910B2 (en) Electrodeposited diamond dresser for forming screw-shaped grindstone for gear grinding and manufacturing method thereof
US8398466B2 (en) CMP pad conditioners with mosaic abrasive segments and associated methods
US8393934B2 (en) CMP pad dressers with hybridized abrasive surface and related methods
AU2006282293B2 (en) Tool with sintered body polishing surface and method of manufacturing the same
CN101722475B (en) CMP pad conditioner with hybrid abrasive surface and related methods
JP3829092B2 (en) Conditioner for polishing pad and method for producing the same
US8622787B2 (en) CMP pad dressers with hybridized abrasive surface and related methods
KR20020070897A (en) Super abrasive grain tool and method for manufacturing the same
WO2009043058A2 (en) Cmp pad conditioners with mosaic abrasive segments and associated methods
GB2154487A (en) Abrasive rotating tools
KR20020060735A (en) Ultra abrasive grain wheel f0r mirror finish
KR20080045075A (en) Ultra-hard cutters and related methods
CN202088116U (en) Diamond grinding disc
TW201505768A (en) Sapphire polishing pad trimmer having multiple trimmed grain combination
US20170232576A1 (en) Cmp pad conditioners with mosaic abrasive segments and associated methods
JP2011161584A (en) Grinding tool
JP2001071267A (en) Pad conditioning diamond dresser and its manufacturing method
JP6356404B2 (en) Electrodeposition wheel and method for producing electrodeposition wheel
CN114378343A (en) Small-diameter electroplating parallel milling cutter
US20150017884A1 (en) CMP Pad Dressers with Hybridized Abrasive Surface and Related Methods
CN218927436U (en) Trimmer
US20140120807A1 (en) Cmp pad conditioners with mosaic abrasive segments and associated methods
CN116276361A (en) Diameter dimension reworking method for rod-shaped part with length-diameter ratio larger than 8 after cadmium plating
KR101178281B1 (en) Pad conditioner having reduced friction
JPH11300621A (en) Grinding wheel with extra-abrasive grain having dimples dotted on outer peripheral surface and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200514

R150 Certificate of patent or registration of utility model

Ref document number: 6705910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250