[go: up one dir, main page]

JP6699234B2 - Boiler water treatment method - Google Patents

Boiler water treatment method Download PDF

Info

Publication number
JP6699234B2
JP6699234B2 JP2016037638A JP2016037638A JP6699234B2 JP 6699234 B2 JP6699234 B2 JP 6699234B2 JP 2016037638 A JP2016037638 A JP 2016037638A JP 2016037638 A JP2016037638 A JP 2016037638A JP 6699234 B2 JP6699234 B2 JP 6699234B2
Authority
JP
Japan
Prior art keywords
boiler
water
agent
feed water
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2016037638A
Other languages
Japanese (ja)
Other versions
JP2017154049A (en
Inventor
和義 内田
和義 内田
信太郎 森
信太郎 森
和人 秋本
和人 秋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59808938&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6699234(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2016037638A priority Critical patent/JP6699234B2/en
Publication of JP2017154049A publication Critical patent/JP2017154049A/en
Application granted granted Critical
Publication of JP6699234B2 publication Critical patent/JP6699234B2/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

本発明は、ボイラの通常運転中に皮膜性アミンと給水pH調整剤を適用する場合において、皮膜性アミンの処理効果を清缶剤及び/又は脱酸素剤により補足することにより、補給水や回収復水の性状の影響を可能な限り低減し、水質の悪いボイラ給水であっても、ボイラの腐食やスケールを効果的に防止する方法に関する。   The present invention, when applying a film-forming amine and a feed water pH adjuster during normal operation of a boiler, supplements the treatment effect of the film-forming amine with a boiler agent and/or an oxygen scavenger to make up makeup water and recovery water. The present invention relates to a method for reducing the influence of the property of condensate as much as possible and effectively preventing the corrosion and scale of the boiler even in the case of boiler water with poor water quality.

日本工業標準調査会一般機械部会に設置された“ボイラの給水及びボイラ水専門部会”において水質基準に関する審議が行われ、1961年2月に、JISB8223“ボイラの給水及びボイラ水の水質”が制定された。   The "Boiler Water Supply and Boiler Water Special Committee" established in the General Machinery Subcommittee of the Japan Industrial Standards Committee deliberated on water quality standards and established JISB8223 "Boiler water supply and boiler water quality" in February 1961. Was done.

JISB8223(2015)において、給水系統の処理は、揮発性の脱酸素剤や揮発性の塩基(アミンやアンモニア)を用いる揮発性物質処理(AVT(R))、酸素を微量添加して酸素濃度を20〜50μg/Lにする酸素処理(OT)、酸素濃度を5μg/L未満の場合に揮発性物質処理を適用するAVT(LO)、酸素濃度が5〜20μg/Lの場合に揮発性物質処理を適用するAVT(O)に区分されている。OT、AVT(LO)、AVT(O)において、給水に酸素を含むことの利点は、近年課題になっているFAC(流れ加速型腐食)の抑制にある。
その中で酸素がAVT(O)の下限5μg/Lを超える場合で系統内に銅が存在する場合は、AVT(R)に変更することが望ましいと記載されている。
According to JIS B8223 (2015), the treatment of the water supply system is a volatile substance treatment (AVT(R)) using a volatile deoxidant or a volatile base (amine or ammonia), and a small amount of oxygen is added to adjust the oxygen concentration. Oxygen treatment (OT) to make 20 to 50 μg/L, AVT (LO) to apply volatile substance treatment when oxygen concentration is less than 5 μg/L, volatile substance treatment when oxygen concentration is 5 to 20 μg/L Is applied to AVT(O). In OT, AVT(LO), and AVT(O), the advantage of including oxygen in the water supply lies in the suppression of FAC (flow accelerated corrosion), which has been a problem in recent years.
Among them, it is described that it is desirable to change to AVT(R) when oxygen exceeds the lower limit of 5 μg/L of AVT(O) and copper is present in the system.

特開2010−216762号公報では、銅の使用部位の直前に脱酸素剤を添加するようにすることで、FACが発生しやすい比較的低温域での鉄の溶出を抑えるとともに脱酸素剤を添加することで銅の溶出を抑える方法が示されている。   In JP-A-2010-216762, by adding a deoxidizing agent immediately before the use site of copper, the elution of iron in a relatively low temperature region where FAC is likely to occur is suppressed and the deoxidizing agent is added. By doing so, a method for suppressing the elution of copper is disclosed.

図1は、特開2010−216762号公報に記載される発電ボイラシステムを示す系統図である。   FIG. 1 is a system diagram showing a power generation boiler system described in JP 2010-216762 A.

この発電ボイラシステム1は、ボイラ装置2で高圧蒸気S1を発生させ、この高圧蒸気S1で発電装置10を作動させるものであり、ボイラ装置2と、脱気器3と、給水タンク4と、2次側給水ライン5と、1次側給水ライン6と、pH調整剤注入装置7と、清缶剤注入装置8と、脱酸素剤注入装置9を備える高圧ボイラシステムと、発電装置10と、蒸気ライン11と、復水ライン12とから構成されている。   This power generation boiler system 1 is for generating high-pressure steam S1 in the boiler device 2 and operating the power generator 10 with this high-pressure steam S1. The boiler device 2, the deaerator 3, the water supply tank 4, and 2 High-pressure boiler system including secondary water supply line 5, primary water supply line 6, pH adjusting agent injecting device 7, decanting agent injecting device 8, and oxygen absorber injecting device 9, power generation device 10, and steam It is composed of a line 11 and a condensate line 12.

ボイラ装置2は、高圧蒸気S1を発生させる水管ボイラを主要部とするものであり、ボイラ給水W3を予熱するエコノマイザ20と、蒸気ドラムを有した蒸気発生部21と、飽和蒸気を一定温度の過熱蒸気にするスーパーヒータ(不図示)とを有している。ボイラ装置2からは、蒸気ライン11を使用して、発電装置10の蒸気タービンに発電用の高圧蒸気S1が供給される。   The boiler device 2 has a water tube boiler that generates high-pressure steam S1 as a main part, and an economizer 20 that preheats the boiler feed water W3, a steam generation unit 21 that has a steam drum, and a saturated steam superheated at a constant temperature. It has a super heater (not shown) for making steam. From the boiler apparatus 2, the steam line 11 is used to supply the high-pressure steam S1 for power generation to the steam turbine of the power generation apparatus 10.

脱気器3は、ボイラ給水W3を低圧蒸気S2と接触させて加熱し、ボイラ給水W3中の溶存ガス(主として溶存酸素)を物理的に除去するものである。脱気器3内のボイラ給水W3は、発電装置10側における高圧蒸気S1の使用で生じた低圧蒸気S2により、通常110〜120℃程度にまで加熱される。   The deaerator 3 is for physically removing the dissolved gas (mainly dissolved oxygen) in the boiler feed water W3 by bringing the boiler feed water W3 into contact with the low-pressure steam S2 to heat it. The boiler feed water W3 in the deaerator 3 is usually heated to about 110 to 120° C. by the low pressure steam S2 generated by the use of the high pressure steam S1 on the power generation device 10 side.

給水タンク4は、復水ライン12からの復水W1と補給水ライン13からの補給水W2とを一時的に貯めて、これらの混合水をボイラ給水W3としてボイラ装置2側に供給するためのものである。復水ライン12には、復水器120とともに、図示しない脱塩装置(ポリッシャー)が設けられており、復水器120側から取り出された高圧蒸気S1の復水W1が脱塩処理される。復水器120の復水W1との接触部は、熱伝達率を上げるため、通常銅系材料(銅又は銅合金)で構成されることが多い。   The water supply tank 4 temporarily stores the condensate water W1 from the condensate line 12 and the makeup water W2 from the makeup water line 13, and supplies the mixed water to the boiler device 2 side as the boiler feed water W3. It is a thing. The condenser line 12 is provided with a condenser 120 and a desalting device (polisher) not shown, and the condensate W1 of the high-pressure steam S1 extracted from the condenser 120 side is desalted. The contact portion of the condenser 120 with the condensate W1 is usually made of a copper-based material (copper or copper alloy) in order to increase the heat transfer coefficient.

2次側給水ライン5は、脱気器3出口からボイラ装置2のエコノマイザ20入口までの、ボイラ給水W3が流れる給水ラインである。2次側給水ライン5は、脱気器3により脱気処理されたボイラ給水W3を高圧に加圧する給水ポンプ50と、高圧に加圧されたボイラ給水W3を、発電装置10側からの抽気蒸気等によって加熱する高圧給水加熱器51と、機器をつなぐ配管部52とを有している。高圧給水加熱器51は、ボイラ給水W3を、例えば110℃から200℃まで加熱する。なお、この2次側給水ライン5のボイラ給水W3と接する部分には、近年では、銅系材料は使用されておらず、ほぼすべての材料が、鋼系材料となっている。   The secondary side water supply line 5 is a water supply line from the outlet of the deaerator 3 to the inlet of the economizer 20 of the boiler device 2, through which the boiler water supply W3 flows. The secondary side water supply line 5 supplies the feed water pump 50 that pressurizes the boiler feed water W3 deaerated by the deaerator 3 to high pressure, and the boiler feed water W3 that is pressurized to high pressure from the power generation device 10 side. It has a high-pressure feed water heater 51 that is heated by the like, and a pipe portion 52 that connects the devices. The high-pressure feed water heater 51 heats the boiler feed water W3 from 110° C. to 200° C., for example. Incidentally, in recent years, no copper-based material has been used in a portion of the secondary side water supply line 5 that is in contact with the boiler water supply W3, and almost all the material is a steel-based material.

2次側給水ライン5の高圧給水加熱器51とエコノマイザ20間の、エコノマイザ20直前の配管部52には、エコノマイザ20から順次遠ざかる位置に、清缶剤M1の注入部P1、ボイラ給水W3のサンプリング部P2、脱酸素剤M2の注入部P3が設けられている。注入部P1には、清缶剤注入装置8により清缶剤M1が注入され、サンプリング部P2からは、この位置におけるボイラ給水W3の分析サンプルが取り出される。P1はボイラドラム直入の場合もある。   In the piping 52 between the high-pressure feed heater 51 and the economizer 20 of the secondary side water supply line 5 and in front of the economizer 20, the sampling portion P1 of the boiler can M1 and the boiler feed water W3 are sampled at positions where they are gradually separated from the economizer 20. A part P2 and an injection part P3 for the oxygen absorber M2 are provided. The dewatering agent injecting device 8 injects the dewatering agent M1 into the injecting section P1, and the sampling sample P2 takes out the analysis sample of the boiler feed water W3 at this position. P1 may be directly inserted into the boiler drum.

1次側給水ライン6は、給水タンク4出口から脱気器3入口までのボイラ給水W3が流れる給水ラインである。1次側給水ライン6は、給水タンク4出口のボイラ給水W3を、発電装置10側の蒸気(高圧蒸気S1に由来するもの)で直接又は間接加熱する低圧給水加熱器60と、機器をつなぐ配管部61とを有している。1次側給水ライン6のボイラ給水W3と接する部分には、通常銅系材料は使用されておらず、ほぼすべて材料が、鋼系材料となっている。脱気器3前の低圧給水予熱器60は、ボイラ給水W3の温度も低く、腐食性が低いことから、銅系材料が使用されることもある。   The primary side water supply line 6 is a water supply line through which the boiler water supply W3 from the water supply tank 4 outlet to the deaerator 3 inlet flows. The primary side water supply line 6 is a pipe connecting the equipment to a low pressure water supply heater 60 that directly or indirectly heats the boiler water supply W3 at the outlet of the water supply tank 4 with steam (derived from the high-pressure steam S1) on the power generator 10 side. And a part 61. In the portion of the primary side water supply line 6 that is in contact with the boiler water supply W3, a copper-based material is usually not used, and almost all the material is a steel-based material. Since the low-pressure feed water preheater 60 before the deaerator 3 has a low boiler feed water W3 temperature and low corrosiveness, a copper-based material may be used.

1次側給水ライン6の給水タンク4と低圧給水加熱器60との間には、pH調整剤M3の注入部P5が設けられており、この注入部P5から、pH調整剤注入装置7によりpH調整剤M3が注入される。注入部P5の前後に注入部P3に変えて脱酸素剤注入装置9により脱酸素剤M2が注入されることも多い。   An injection part P5 of the pH adjusting agent M3 is provided between the water supply tank 4 of the primary side water supply line 6 and the low-pressure water supply heater 60. From this injection part P5, the pH adjusting agent injection device 7 operates the pH. Conditioning agent M3 is injected. The oxygen scavenger M2 is often injected by the oxygen scavenger injection device 9 before and after the injection part P5 instead of the injection part P3.

この発電ボイラシステム1では、復水ライン12中で回収された復水W1と補給水W2とが給水タンク4に集められ、給水タンク4内のボイラ給水W3は、1次側給水ライン6を経由して脱気器3に供給され、1次側給水ライン6において、低圧給水加熱器60によって例えば50℃まで加熱されるとともに、pH調整剤M3や脱酸素剤M2が注入されて、そのpH(25℃基準)が一定値(例えば、pHが9.0)まで高められる。脱気器3に供給されたボイラ給水W3は、低圧蒸気S2と接触して、例えば110℃まで加熱されつつ脱気されて、脱気器3出口の溶存酸素濃度が低減される。   In this power generation boiler system 1, the condensate water W1 and makeup water W2 collected in the condensate line 12 are collected in the water supply tank 4, and the boiler water supply W3 in the water supply tank 4 passes through the primary side water supply line 6. Is supplied to the deaerator 3 and heated in the primary side water supply line 6 to, for example, 50° C. by the low-pressure feed water heater 60, and the pH adjuster M3 and the oxygen scavenger M2 are injected to adjust the pH The 25° C. standard is raised to a constant value (eg pH 9.0). The boiler feed water W3 supplied to the deaerator 3 comes into contact with the low-pressure steam S2 and is deaerated while being heated to, for example, 110° C., and the dissolved oxygen concentration at the outlet of the deaerator 3 is reduced.

脱気器3にて脱気処理されたボイラ給水W3は、給水ポンプ50によって圧力が所定値まで高められた後、高圧給水加熱器51によって、例えば、200℃まで加熱され、ボイラ装置2のエコノマイザ20直前で、清缶剤M1が注入されて、P3又はP5で添加された脱酸素剤M2によってボイラ装置2内のボイラ水等の溶存酸素濃度がほぼゼロに維持されるとともに、ボイラ装置2側におけるボイラ水の障害が除去される。そして、ボイラ装置2で発生された高圧蒸気S1は、蒸気ライン11を経て発電装置10に送られ、発電(蒸気タービンを回転)に使用された後、復水ライン12で復水W1として回収され、ボイラ給水W3の一部となる。なお、ボイラ装置2等で蒸気の一部は消費されるため、補給水W2が補給される。   The boiler feed water W3 that has been degassed by the deaerator 3 is heated to, for example, 200° C. by the high-pressure feed water heater 51 after the pressure is raised to a predetermined value by the water feed pump 50, and the economizer of the boiler device 2 is then used. Immediately before 20, the boiler agent M1 was injected, the dissolved oxygen concentration of the boiler water and the like in the boiler apparatus 2 was maintained at almost zero by the oxygen scavenger M2 added in P3 or P5, and the boiler apparatus 2 side The obstruction of boiler water in is eliminated. Then, the high-pressure steam S1 generated in the boiler device 2 is sent to the power generation device 10 via the steam line 11, used for power generation (rotating the steam turbine), and then recovered as the condensed water W1 in the condensate line 12. , Part of the boiler water supply W3. Since part of the steam is consumed in the boiler device 2 and the like, the makeup water W2 is supplemented.

一方、従来のヒドラジンなどの脱酸素剤を使用した処理に代わり、特に海外を中心として、皮膜性アミンを用いた水処理が行われるようになってきている。この方法は、皮膜性アミンと呼ばれるオクタデシルアミン等の長鎖アルキルアミンを添加して、蒸気復水系配管内の金属表面に撥水性皮膜を形成することで防食する方法である。   On the other hand, in place of the conventional treatment using a deoxidizer such as hydrazine, water treatment using a film-forming amine has come to be performed especially in overseas countries. This method is a method of preventing corrosion by adding a long-chain alkylamine such as octadecylamine called a film-forming amine to form a water-repellent film on the metal surface in the steam condensing system pipe.

例えば、Power Plant Chemistry,2009,vol.11(2)等には、オレイルプロパンジアミンなどの長鎖脂肪族アミンを用いて金属表面に吸着皮膜を形成してボイラの腐食を抑制することが記載されている。この場合、皮膜性アミンにはpHを上昇させる効果が無いので、皮膜性アミン処理を行う場合は、アンモニアもしくは中和性アミンなどの塩基性アミンを併用して、もしくは皮膜性アミンと中和性アミンを混合した水処理薬品を使用して、給・復水やボイラ水のpHをコントロールすることが行われる。   For example, Power Plant Chemistry, 2009, vol. 11(2) and the like describe that a long-chain aliphatic amine such as oleylpropanediamine is used to form an adsorption film on a metal surface to suppress boiler corrosion. In this case, since the film-forming amine has no effect of increasing the pH, when the film-forming amine treatment is carried out, ammonia or a basic amine such as a neutralizing amine is used together, or the film-forming amine and the neutralizing property are neutralized. Water treatment chemicals mixed with amines are used to control the pH of feed/condensate and boiler water.

皮膜性アミンを用いる処理はPower Plant Chemistry,2015,vol.17(6)などに示されるようにFAC(流れ加速型腐食)の抑制効果があると言われている。
Power Plant Chemistry 2015,vol.17(6)の表1には、給水酸素濃度5〜20ppbの範囲で銅の存在する系においても適用可能とあるが、ボイラ水のカチオン導電率は5μS/cm以下との制約があり、カチオン導電率の高いボイラ水には適用できないことが記載されている(0.5以下は誤植)。
The treatment using a film-forming amine is described in Power Plant Chemistry, 2015, vol. It is said that it has an effect of suppressing FAC (flow accelerated corrosion) as shown in 17 (6) and the like.
Power Plant Chemistry 2015, vol. Table 1 of 17(6) can be applied to a system in which copper is present in the feed water oxygen concentration range of 5 to 20 ppb, but the cation conductivity of the boiler water is limited to 5 μS/cm or less, and It is described that it cannot be applied to boiler water with high conductivity (0.5 or less is a typographical error).

一方、JISB8223(2015)のAVT(R)(脱酸素剤としてヒドラジン使用)、酸素給水5μg/L未満のAVT(LO)では、ボイラ水のカチオン導電率は20μS/cmまで許容されている。このことは脱酸素剤を併用すれば、微量塩化物や硫酸イオンが共存しても、濃縮したボイラ水中の腐食が抑制されることを示している。この点では給水の水質悪化に対しては脱酸素処理の方が有効であると言える。
なお、ここで、カチオン導電率は硫酸イオンや塩化物イオン等の腐食性イオンの指標であり、カチオン導電率が高い程、ボイラ水の腐食性が高いことを示す。
On the other hand, in AVT(R) of JIS B8223 (2015) (using hydrazine as a deoxidizer) and AVT(LO) of less than 5 μg/L of oxygen feed water, the cation conductivity of boiler water is allowed up to 20 μS/cm. This indicates that the combined use of the oxygen scavenger suppresses corrosion in the concentrated boiler water even if a trace amount of chloride and sulfate ions coexist. From this point, it can be said that the deoxidation treatment is more effective for the deterioration of the water quality of the feed water.
Here, the cation conductivity is an index of corrosive ions such as sulfate ions and chloride ions, and the higher the cation conductivity, the higher the corrosiveness of boiler water.

また、清缶剤としてリン酸塩等の清缶剤を添加する方法も知られており、特開2010−216762号公報でも、脱酸素剤と清缶剤とを併用添加している。リン酸塩処理では、腐食性イオンに対する耐食性が高く、揮発性物質処理(AVT(R))と比べて、ボイラ水中の塩化物イオンの許容濃度はリン酸塩処理と比べて2〜5倍と高いことがJISB8223(2015)に記載されている。   Also known is a method of adding a canning agent such as a phosphate as a canning agent, and in JP 2010-216762A, an oxygen scavenger and a canning agent are added together. Phosphate treatment has high corrosion resistance to corrosive ions, and compared to volatile substance treatment (AVT(R)), the allowable concentration of chloride ions in boiler water is 2 to 5 times that of phosphate treatment. Highness is described in JIS B8223 (2015).

皮膜性アミン処理でもボイラ水のカチオン導電率は5μS/cm以下で厳しく設定されていることから、同様に塩化物イオンの許容濃度はリン酸塩処理よりも低く設定する必要があると考えられる。   Since the cation conductivity of the boiler water is strictly set to 5 μS/cm or less even in the case of the film-forming amine treatment, it is considered that the allowable concentration of chloride ion needs to be set lower than that of the phosphate treatment.

このようなことから、ボイラ給水の処理において、皮膜性アミン処理は、塩類濃度の混入に対して、従来の脱酸素剤とリン酸塩との併用処理よりも、ボイラ水の水質の許容度が低いと考えられる。   Therefore, in the treatment of boiler feed water, the film-forming amine treatment has a higher tolerance for the water quality of the boiler water than the conventional combined treatment of the oxygen scavenger and the phosphate with respect to the salt concentration. It is considered low.

特開2010−216762号公報JP, 2010-216762, A

JISB8223(2015)“ボイラの給水及びボイラ水の水質”JISB8223 (2015) "Water supply of boiler and water quality of boiler" Power Plant Chemistry,2009,vol.11(2)Power Plant Chemistry, 2009, vol. 11 (2) Power Plant Chemistry,2015,vol.17(6)Power Plant Chemistry, 2015, vol. 17 (6)

特許文献1に記載されるような皮膜性アミンとアンモニアもしくは中和性アミンなどの塩基性アミンとによる処理は、脱酸素剤を使用しないため、系内に酸素が存在することになる。そのため、補給水の悪化や復水器の漏洩などで系内の不純物濃度が高まると腐食が進行しやすいと考えられる。また、リン酸塩等の清缶剤も使用しないため復水器の漏洩などでスケール付着の恐れもある。   The treatment with a film-forming amine and a basic amine such as ammonia or a neutralizing amine as described in Patent Document 1 does not use an oxygen scavenger, so oxygen is present in the system. Therefore, it is considered that when the concentration of impurities in the system increases due to deterioration of makeup water or leakage of condenser, corrosion is likely to proceed. In addition, since no boiler cans such as phosphate are used, there is a risk of scale adhesion due to leakage of the condenser.

本発明は、皮膜性アミンと給水pH調整剤を用いた従来のボイラ水の水処理におけるこのような問題を解決し、水質の悪いボイラ給水であっても、ボイラの腐食やスケールを効果的に防止するボイラ水の水処理方法を提供することを課題とする。   The present invention solves such a problem in the conventional water treatment of boiler water using a film-forming amine and a feed water pH adjuster, and effectively corrodes and scales the boiler even in the case of poor water quality boiler feed water. An object of the present invention is to provide a method for preventing boiler water from being treated.

本発明者らは、上記課題を解決すべく検討を重ねた結果、皮膜性アミンと給水pH調整剤と共に、清缶剤及び/又は脱酸素剤を併用してボイラ給水に添加することにより、ボイラの腐食やスケールを効果的に防止することができることを見出した。   As a result of repeated studies to solve the above problems, the present inventors have added a boiler agent and/or an oxygen scavenger together with a film-forming amine and a feed water pH adjusting agent to the boiler feed water to add the boiler feed water. It has been found that the corrosion and scale of can be effectively prevented.

即ち、本発明は以下を要旨とする。   That is, the gist of the present invention is as follows.

[1] ボイラ給水に皮膜性アミンと給水pH調整剤に加えて清缶剤及び/又は脱酸素剤を添加する、ボイラ水の水処理方法。 [1] A water treatment method for boiler water, in which a boiler agent and/or an oxygen scavenger is added to the boiler feed water in addition to the film-forming amine and the feed water pH adjuster.

[2] [1]において、前記給水pH調整剤が中和性アミンを含む、ボイラ水の水処理方法。 [2] The method for water treatment of boiler water according to [1], wherein the feed water pH adjusting agent contains a neutralizing amine.

[3] [1]又は[2]において、前記ボイラ水のカチオン導電率が5μS/cmを超える、ボイラ水の水処理方法。 [3] The water treatment method for boiler water according to [1] or [2], wherein the cation conductivity of the boiler water exceeds 5 μS/cm.

[4] [3]において、前記カチオン導電率がボイラ水中の硫酸イオンと塩化物イオンに基づいて測定された値である、ボイラ水の水処理方法。 [4] The water treatment method for boiler water according to [3], wherein the cation conductivity is a value measured based on sulfate ions and chloride ions in the boiler water.

[5] [1]ないし[4]のいずれかにおいて、前記脱酸素剤をボイラシステムの給水加熱器からエコノマイザ入口の間で添加する、ボイラ水の水処理方法。 [5] The method for water treatment of boiler water according to any one of [1] to [4], wherein the oxygen scavenger is added between the feed water heater of the boiler system and the economizer inlet.

[6] [1]ないし[5]のいずれかにおいて、前記清缶剤がリン酸塩である、ボイラ水の水処理方法。 [6] The water treatment method for boiler water according to any one of [1] to [5], wherein the boiler agent is a phosphate.

本発明によれば、ボイラの通常運転中に皮膜性アミン及び給水pH調整剤を適用するボイラ水の水処理において、皮膜性アミンの処理効果を清缶剤及び/又は脱酸素剤により補足することにより、補給水や回収復水の性状の影響を可能な限り低減して、ボイラの腐食やスケールを効果的に防止することができる。
本発明のボイラ水の水処理方法は、カチオン導電率が5μS/cmを超えるような水質の悪いボイラ水であっても、ボイラの腐食やスケールを防止することができ、ボイラ水の水質管理を緩和することができる。
According to the present invention, in the water treatment of boiler water in which the film-forming amine and the feed water pH adjusting agent are applied during the normal operation of the boiler, the treatment effect of the film-forming amine is supplemented by a boiler agent and/or an oxygen scavenger. As a result, the influence of the properties of the makeup water and the recovered condensate can be reduced as much as possible, and the corrosion and scale of the boiler can be effectively prevented.
INDUSTRIAL APPLICABILITY The water treatment method for boiler water of the present invention can prevent the corrosion and scale of the boiler even in the case of poor-quality boiler water having a cation conductivity of more than 5 μS/cm. Can be relaxed.

発電ボイラシステムの一例を示す系統図である。It is a systematic diagram which shows an example of a power generation boiler system.

以下に本発明の実施の形態を詳細に説明する。   Embodiments of the present invention will be described in detail below.

本発明においては、ボイラ給水に皮膜性アミン及び給水pH調整剤(以下、「pH調整剤」と称す場合がある。)と清缶剤及び/又は脱酸素剤を添加する。好ましくは、ボイラ給水に皮膜性アミン及び給水pH調整剤と清缶剤及び脱酸素剤を添加する。
なお、本発明において、「ボイラ給水」とはボイラシステムにおいて、ボイラに入るまでの水をさし、「ボイラ水」とは、ボイラ缶内の水をさす。
In the present invention, a film-forming amine and a feed water pH adjusting agent (hereinafter sometimes referred to as “pH adjusting agent”), a boiler agent and/or an oxygen absorber are added to the boiler feed water. Preferably, a film-forming amine, a feed water pH adjusting agent, a boiler agent and a deoxidizer are added to the boiler feed water.
In the present invention, "boiler water supply" refers to water until it enters the boiler in the boiler system, and "boiler water" refers to water in the boiler can.

[ボイラ給水]
本発明で処理対象とするボイラには特に制限はなく、図1に示されるような高圧ボイラシステムであってもよく、複数の蒸気タービンと複数のボイラとの組合せであってもよい。
[Boiler water supply]
The boiler to be treated in the present invention is not particularly limited and may be a high pressure boiler system as shown in Fig. 1 or a combination of a plurality of steam turbines and a plurality of boilers.

前述の通り、ボイラ水のカチオン導電率には、処理方式により規定があり、従来の皮膜性アミン処理ではボイラ水のカチオン導電率は5μS/cm以下である必要があるが、本発明では、皮膜性アミン及びpH調整剤と共に清缶剤及び/又は脱酸素剤を併用することで、カチオン導電率が5μS/cmを超えるボイラ水であっても有効に処理することができ、カチオン導電率20μS/cm程度まで許容されるようになる。   As described above, the cation conductivity of the boiler water is regulated by the treatment method, and the cation conductivity of the boiler water needs to be 5 μS/cm or less in the conventional film-forming amine treatment. Boiler water having a cation conductivity of more than 5 μS/cm can be effectively treated by using a water removing agent and/or an oxygen scavenger together with a cationic amine and a pH adjusting agent, and a cation conductivity of 20 μS/cm. Up to about cm is allowed.

このため、本発明は純水を補給水とするボイラに限らず、RO処理水(逆浸透膜透過水)、軟水を補給水とするボイラにも適用可能である。   Therefore, the present invention is not limited to the boiler using pure water as supplementary water, but can be applied to a boiler using RO treated water (reverse osmosis membrane permeated water) and soft water as supplementary water.

このボイラ水のカチオン導電率は、ボイラ水中の硫酸イオンと塩化物イオンに基づいて測定されることが好ましい。
また、カチオン導電率は25℃における測定値を示す。
The cation conductivity of the boiler water is preferably measured based on the sulfate ion and chloride ion in the boiler water.
Further, the cation conductivity shows a measured value at 25°C.

[皮膜性アミン]
ボイラ給水に添加する皮膜性アミンとしては、下記一般式(1)で表されるものが挙げられ、具体的には、オクタデシルアミン、N−オクタデセニルプロパン−1,3−ジアミン等の長鎖アルキルアミンの1種又は2種以上を用いることができる。
−[NH(R)−]−NH …(1)
(式中、Rは炭素数12〜18の長鎖(直鎖)アルキル基を示し、Rは炭素数1〜4のアルキル基を示す。nは0〜7の整数である。)
[Film forming amine]
Examples of the film-forming amine added to the boiler feed water include those represented by the following general formula (1), and specifically, long-chain compounds such as octadecylamine and N-octadecenylpropane-1,3-diamine. One or more chain alkylamines can be used.
R 1 - [NH (R 2 ) -] n -NH 2 ... (1)
(In the formula, R 1 represents a long-chain (straight-chain) alkyl group having 12 to 18 carbon atoms, R 2 represents an alkyl group having 1 to 4 carbon atoms, and n is an integer of 0 to 7.)

[pH調整剤]
本発明においては、ボイラ給水のpHを8.5〜10.3程度に調整するためのpH調整剤を併用する。
[PH adjuster]
In the present invention, a pH adjusting agent for adjusting the pH of the boiler feed water to about 8.5 to 10.3 is also used.

pH調整剤としては、アンモニア、モノエタノールアミン(MEA)、シクロへキシルアミン(CHA)、モルホリン(MOR)、ジエチルエタノールアミン(DEEA)、モノイソプロパノールアミン(MIPA)、3−メトキシプロピルアミン(MOPA)、2−アミノ−2−メチル−1−プロパノール(AMP)等の中和性アミン(揮発性アミン)等を用いることができる。これらは1種のみを用いてもよく、2種以上を併用してもよい。また、中和性アミンに替えて、脱酸素剤の熱分解に由来するアンモニアでpH調整しても良い。   As the pH adjuster, ammonia, monoethanolamine (MEA), cyclohexylamine (CHA), morpholine (MOR), diethylethanolamine (DEEA), monoisopropanolamine (MIPA), 3-methoxypropylamine (MOPA), A neutralizing amine (volatile amine) such as 2-amino-2-methyl-1-propanol (AMP) can be used. These may be used alone or in combination of two or more. Further, the pH may be adjusted with ammonia derived from thermal decomposition of the oxygen scavenger, instead of the neutralizing amine.

[脱酸素剤]
脱酸素剤としては、ヒドラジンやカルボヒドラジドなどのヒドラジン誘導体を用いることができる。また、非ヒドラジン系脱酸素剤として、カルボヒドラジド、ハイドロキノン、1−アミノピロリジン、1−アミノ−4−メチルピペラジン、N,N−ジエチルヒドロキシルアミン、イソプロピルヒドロキシルアミン、エリソルビン酸又はその塩、アスコルビン酸又はその塩を用いることもできる。
これらは1種のみを用いてもよく、2種以上を併用してもよい。
[Deoxidizer]
As the oxygen scavenger, hydrazine derivatives such as hydrazine and carbohydrazide can be used. Further, as a non-hydrazine-based oxygen scavenger, carbohydrazide, hydroquinone, 1-aminopyrrolidine, 1-amino-4-methylpiperazine, N,N-diethylhydroxylamine, isopropylhydroxylamine, erythorbic acid or a salt thereof, ascorbic acid or The salt can also be used.
These may be used alone or in combination of two or more.

[清缶剤]
清缶剤としては、リン酸ナトリウム等のリン酸塩などのリン酸系薬剤、水酸化カリウム、水酸化ナトリウム、炭酸カリウム、炭酸ナトリウム等の無機アルカリ剤などが挙げられ、好ましくはリン酸塩が用いられる。
これらは1種のみを用いてもよく、2種以上を併用してもよい。
[Cleaning agent]
Examples of the clearing agent include phosphate-based agents such as phosphates such as sodium phosphate, inorganic alkali agents such as potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, etc., and phosphates are preferred. Used.
These may be used alone or in combination of two or more.

特に、リン酸系の清缶剤は、pH緩衝性や硬度漏洩時の対応性のために水酸化ナトリウム等の苛性アルカリと共に使用しても良い。   In particular, the phosphoric acid type clearing agent may be used together with a caustic alkali such as sodium hydroxide for the purpose of pH buffering property and compatibility with hardness leakage.

なお、皮膜性アミンは、一般的に水に溶解し難いため、ボイラ給水中での皮膜性アミンの安定溶解状態を維持するために、通常、界面活性剤(乳化剤)と混合した製剤として用いられる。
しかし、界面活性剤は、清缶剤をキャリーオーバーさせる恐れがある。このため、本発明においては、清缶剤のキャリーオーバーを加速することがない界面活性剤を用いることが好ましい。
ここで、清缶剤のキャリーオーバーを加速させることがないとは、界面活性剤を添加していないボイラにおける清缶剤のキャリーオーバーの量に対して、界面活性剤を添加した場合の清缶剤のキャリーオーバー量が同等下であることをさす。
Since the film-forming amine is generally difficult to dissolve in water, it is usually used as a formulation mixed with a surfactant (emulsifier) in order to maintain a stable dissolved state of the film-forming amine in boiler feed water. .
However, the surfactant may cause carry-over of the boiler material. Therefore, in the present invention, it is preferable to use a surfactant that does not accelerate carryover of the can.
Here, not to accelerate the carryover of the clear can agent means that the amount of the carryover of the clear can agent in the boiler to which the surfactant is not added is compared to the amount of the clean can when the surfactant is added. Indicates that the carryover amount of the agent is below the same level.

[薬注箇所]
各薬剤の添加箇所としては、好ましくは以下の通りである。
皮膜性アミンは、脱気器前(上流側)の給水系や補給水系の低温領域(水温10〜100℃程度の領域)に添加することが好ましく、pH調整剤も皮膜性アミンと同様の箇所に添加することが好ましい。皮膜性アミン、pH調整剤を界面活性剤とともに予め混合して同一箇所に添加してもよく、皮膜性アミンとpH調整剤は別々に同一箇所に、あるいは近傍に添加してもよい。
[Chemical injection location]
The locations where each drug is added are preferably as follows.
It is preferable to add the film-forming amine to a low temperature region (a region where the water temperature is about 10 to 100°C) of the water supply system or the makeup water system before the deaerator (upstream side). Is preferably added to. The film-forming amine and the pH adjusting agent may be mixed together with the surfactant in advance and added to the same location, or the film-forming amine and the pH adjusting agent may be added separately to the same location or in the vicinity thereof.

脱酸素剤は、ボイラシステムの給水加熱器からエコノマイザ入口の間、特に高圧給水加熱器などのFAC発生部位以降に添加することで、ボイラ水中の溶存酸素を除去して防食できるため好適である。   It is preferable to add the oxygen scavenger between the feed water heater of the boiler system and the economizer inlet, especially after the FAC generation site such as the high-pressure feed water heater, because dissolved oxygen in the boiler water can be removed to prevent corrosion.

ボイラ給水を過熱蒸気の減温に使用する場合は、清缶剤は、一般に、減温水分岐点以降に添加することが好ましい。これは、清缶剤中の溶存固形物が、タービン翼上で析出するのを防ぐためである。   When the boiler feed water is used for reducing the temperature of superheated steam, it is generally preferable to add the boiler agent after the branch point of the reduced temperature water. This is to prevent the dissolved solid matter in the boiler material from precipitating on the turbine blade.

上記薬剤のうちの2種以上を同一箇所に添加する場合、予め混合して添加してもよく、各々別々に添加してもよい。   When two or more of the above-mentioned agents are added to the same location, they may be mixed in advance and then added separately.

[薬注量]
各薬剤の添加量は、好ましくは以下の通りである。
[Medication dosage]
The amount of each drug added is preferably as follows.

皮膜性アミンは、補給水に対して0.01〜10ppm、特に0.1〜1ppmの割合で添加することが好ましい。この範囲よりも添加量が少な過ぎると皮膜性アミンによる防食効果を十分に得ることができず、多過ぎると系統内に粘着性の付着物が生じるおそれがある。   The film-forming amine is preferably added in an amount of 0.01 to 10 ppm, particularly 0.1 to 1 ppm, relative to the makeup water. If the amount added is less than this range, the anticorrosive effect of the film-forming amine cannot be sufficiently obtained, and if it is too large, tacky deposits may occur in the system.

脱酸素剤は、脱気器出口の酸素濃度や、脱気器がない場合は、給水系の酸素濃度に対して必要量を添加する。例えば、ボイラ給水に対して0.01〜100mg/L、特に0.05〜50mg/Lの割合で添加することが好ましい。この範囲よりも添加量が少な過ぎると脱酸素剤による防食効果を十分に得ることができない。   The oxygen absorber is added in a necessary amount with respect to the oxygen concentration at the outlet of the deaerator and the oxygen concentration of the water supply system when there is no deaerator. For example, it is preferable to add 0.01 to 100 mg/L, especially 0.05 to 50 mg/L to the boiler feed water. If the amount added is less than this range, the antioxidative effect of the oxygen absorber cannot be sufficiently obtained.

清缶剤は、ボイラ水のpHが8.5〜10.8、特に8.8〜9.8になるように添加することが好ましい。この範囲よりも添加量が少な過ぎると清缶剤によるスケール防止効果を十分に得ることができず、多過ぎるとキャリーオーバーして蒸気の質を悪化させるおそれがある。   The boiler agent is preferably added so that the pH of the boiler water is 8.5 to 10.8, particularly 8.8 to 9.8. If the amount added is less than this range, the scale preventive effect of the canning agent cannot be sufficiently obtained, and if it is too large, carryover may occur and the vapor quality may deteriorate.

pH調整剤は、前述の通り、ボイラ給水のpHが8.5〜10.3の範囲となるように添加される。   As described above, the pH adjusting agent is added so that the pH of the boiler feed water is in the range of 8.5 to 10.3.

1 発電ボイラシステム(高圧ボイラシステム)
2 ボイラ装置(ボイラ)
3 脱気器
5 2次側給水ライン(給水ライン)
6 1次側給水ライン(給水ライン)
12 復水ライン
20 エコノマイザ
21 蒸気発生部
51 高圧給水加熱器(給水加熱器)
60 低圧給水加熱器(給水加熱器)
S1 高圧蒸気
S2 低圧蒸気
M1 清缶剤
M2 脱酸素剤
M3 pH調整剤
W1 復水
W2 補給水
W3 ボイラ給水
1 Power generation boiler system (high pressure boiler system)
2 Boiler device (boiler)
3 Deaerator 5 Secondary side water supply line (water supply line)
6 Primary side water supply line (water supply line)
12 Condensate line 20 Economizer 21 Steam generator 51 High-pressure feed water heater (feed water heater)
60 Low pressure water heater (water heater)
S1 High-pressure steam S2 Low-pressure steam M1 Cleaner agent M2 Deoxidizer M3 pH adjuster W1 Condensate W2 Make-up water W3 Boiler feed water

Claims (5)

カチオン導電率が5μS/cmを超えるボイラ給水に皮膜性アミンと給水pH調整剤に加えて清缶剤及び/又は脱酸素剤を添加する、ボイラ水の水処理方法。 A water treatment method for boiler water, wherein a boiler agent and/or an oxygen scavenger is added to a boiler feed water having a cation conductivity of more than 5 μS/cm in addition to a film-forming amine and a feed water pH adjuster. 請求項1において、前記給水pH調整剤が中和性アミンを含む、ボイラ水の水処理方法。   The method for treating boiler water according to claim 1, wherein the feed water pH adjusting agent contains a neutralizing amine. 請求項1又は2において、前記カチオン導電率がボイラ水中の硫酸イオンと塩化物イオンに基づいて測定された値である、ボイラ水の水処理方法。 The water treatment method for boiler water according to claim 1 or 2 , wherein the cation conductivity is a value measured based on sulfate ions and chloride ions in the boiler water. 請求項1ないしのいずれか1項において、前記脱酸素剤をボイラシステムの給水加熱器からエコノマイザ入口の間で添加する、ボイラ水の水処理方法。 In any one of claims 1 to 3, wherein the addition between the oxygen scavenger from the feed water heater of the boiler system economizer inlet, water treatment method of the boiler water. 請求項1ないしのいずれか1項において、前記清缶剤がリン酸塩である、ボイラ水の水処理方法。 The water treatment method for boiler water according to any one of claims 1 to 4 , wherein the boiler agent is a phosphate.
JP2016037638A 2016-02-29 2016-02-29 Boiler water treatment method Ceased JP6699234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016037638A JP6699234B2 (en) 2016-02-29 2016-02-29 Boiler water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016037638A JP6699234B2 (en) 2016-02-29 2016-02-29 Boiler water treatment method

Publications (2)

Publication Number Publication Date
JP2017154049A JP2017154049A (en) 2017-09-07
JP6699234B2 true JP6699234B2 (en) 2020-05-27

Family

ID=59808938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016037638A Ceased JP6699234B2 (en) 2016-02-29 2016-02-29 Boiler water treatment method

Country Status (1)

Country Link
JP (1) JP6699234B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6937217B2 (en) * 2017-10-17 2021-09-22 三菱パワー株式会社 Seawater leak detection device and method in water supply system and steam turbine plant
JP6601516B2 (en) 2018-02-15 2019-11-06 栗田工業株式会社 Method for improving heating efficiency by steam and paper making method
JP2022532692A (en) * 2019-02-27 2022-07-19 栗田工業株式会社 How to provide corrosion protection for water-steam circuits
CN111233178A (en) * 2020-02-27 2020-06-05 威海翔泽新材料科技有限公司 Phosphorus-free composite cylinder cleaning agent for low-pressure boiler and preparation method thereof
CN113654027A (en) * 2021-04-29 2021-11-16 西安热工研究院有限公司 Feedwater oxygenation treatment system and method for drum boiler under precise oxygenation technology conditions

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216762A (en) * 2009-03-18 2010-09-30 Kurita Water Ind Ltd Method of preventing corrosion of water supply line and condensate line of high-pressure boiler system
JP5453990B2 (en) * 2009-08-04 2014-03-26 栗田工業株式会社 Corrosion inhibiting method and corrosion inhibiting apparatus for boiler equipment
JP5472707B2 (en) * 2009-10-09 2014-04-16 栗田工業株式会社 Operation method of boiler equipment
JP6215511B2 (en) * 2010-07-16 2017-10-18 栗田工業株式会社 Anticorrosive for boiler
JP5885996B2 (en) * 2011-11-01 2016-03-16 内外化学製品株式会社 Corrosion prevention or inhibitor for ferrous metals and corrosion prevention or inhibition method

Also Published As

Publication number Publication date
JP2017154049A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
JP6699234B2 (en) Boiler water treatment method
CN103038393B (en) Anticorrosive for boiler
JP3962919B2 (en) Metal anticorrosive, metal anticorrosion method, hydrogen chloride generation inhibitor and method for preventing hydrogen chloride generation in crude oil atmospheric distillation equipment
JPS60248287A (en) Deoxidation composition and method
JP6160741B2 (en) Boiler anticorrosion method and anticorrosive
CN105980317A (en) Scale removal method and scale removal agent for steam generating facilities
JP3855961B2 (en) Oxygen absorber and deoxygenation method
JP3356140B2 (en) Water treatment chemicals
JP6642023B2 (en) Deoxidizer and deoxidizing method
JP5862193B2 (en) Method for preventing iron scale in water side can of steam generator
JP2013068341A (en) Method for preventing corrosion of economizer in boiler
JP5849409B2 (en) Boiler water treatment agent and boiler water treatment method
JP5909956B2 (en) Method for inhibiting economizer corrosion in boilers
JP5900064B2 (en) Water treatment method for a boiler having an economizer
JP5691697B2 (en) Water treatment method for steam generating equipment
JP6144399B1 (en) Steam condensate corrosion inhibitor and corrosion inhibition method
WO2019065415A1 (en) Corrosion suppression method for copper-based material
RU2515871C2 (en) Inhibitor of carbonic acid corrosion for steam-generating installations of low and medium pressure aminat pk-1
JP2006274337A (en) Treatment agent and treatment method for boiler water
JP6485605B1 (en) Method for inhibiting corrosion of copper-based materials
JP2004069182A (en) Corrosion inhibitor injecting method
RU2516176C2 (en) Inhibitor of carbonic acid corrosion for steam boilers of low and medium pressure aminat pk-2
JPH1119510A (en) Deoxidizer for boiler

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200413

R150 Certificate of patent or registration of utility model

Ref document number: 6699234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RVOP Cancellation by post-grant opposition